1
|
Drommelschmidt K, Mayrhofer T, Foldyna B, Müller H, Raudzus J, Göricke SL, Schweiger B, Sirin S. Cerebellar hemorrhages in very preterm infants: presence, involvement of the dentate nucleus, and cerebellar hypoplasia are associated with adverse cognitive outcomes. Eur Radiol 2025:10.1007/s00330-025-11452-0. [PMID: 39971793 DOI: 10.1007/s00330-025-11452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE Impaired cognition is a frequent complication of prematurity, closely related to patients' outcomes. Imaging features of cerebellar hemorrhages (CBH) related to impaired cognition are not well studied. This study evaluated the relationship between cMRI-derived CBH characteristics and clinical risk factors for adverse cognition. METHODS Our analysis is threefold: (1) We included very preterm infants (2009-2018) undergoing cMRI, and compared clinical and cMRI findings between infants with and without CBH. (2) In the CBH cohort, we associated clinical and imaging findings with cognitive outcomes (Bayley Score of Infant Development at two years corrected age, impaired outcomes: < 85) using uni- and multivariable logistic regression analyses. (3) We conducted a matched pair case-control analysis (CBH vs. no CBH) matching for gestational age (GA) and supratentorial injury. RESULTS Among the 507 infants (52% male; mean GA 26.8 ± 2.7 weeks), 53 (10.5%) presented with CBH. Cognition was impaired in those with CBH (case-control: 88 (IQR: 75-110) vs. 105 (IQR: 90-112), p < 0.001), even in those with CBH < 5 mm (case-control: 95 (IQR: 77.5-115) vs. 105 (IQR: 91-113), p = 0.037). In infants with CBH, red-blood-cell-transfusion requirement (odds ratio (OR) 1.32, 95% CI: 1.01-1.72, p = 0.037), dentate nucleus involvement (OR 17.61, 95% CI: 1.83-169.83, p = 0.013) and moderate-to-severe cerebellar hypoplasia (OR 26.41, 95% CI: 1.11-626.21, p = 0.043) were independent predictors of impaired cognition. Adding dentate nucleus involvement to cerebellar hypoplasia increased the discriminatory capacity (AUC 0.85 vs. 0.71, p = 0.004). CONCLUSION CBH (even < 5 mm) impact cognitive outcomes of very preterm infants, underlining the cerebellum's importance for cognition. In infants with CBH, involvement of the dentate nucleus and moderate-to-severe cerebellar hypoplasia are independent structural risk factors for impaired cognition. KEY POINTS Question The cerebellum is important for cognition. Cerebellar hemorrhages are common in preterm infants, but the imaging features related to impaired cognition are not well studied. Findings Even small cerebellar hemorrhages affected cognition. Involvement of the dentate nucleus and moderate-to-severe cerebellar hypoplasia were identified as new structural risk factors for adverse cognition. Clinical relevance Cerebral MRI enables precise diagnosis of cerebellar hemorrhages and the detection of structural risk factors for adverse cognition like dentate nucleus involvement and cerebellar moderate-to-severe hypoplasia. This knowledge facilitates risk estimation, structured follow-up, and interventions after prematurity.
Collapse
Affiliation(s)
- Karla Drommelschmidt
- Department of Pediatrics I, Neonatology, Pediatric Intensive Care, and Pediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (cTNBS), University Medicine Essen, Essen, Germany
| | - Thomas Mayrhofer
- School of Business Studies, Stralsund, University of Applied Sciences, Stralsund, Germany
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital - Harvard Medical School, Boston, USA
| | - Borek Foldyna
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital - Harvard Medical School, Boston, USA
| | - Hanna Müller
- Division of Neonatology and Department of Pediatrics, University Hospital of Tübingen, Tübingen, Germany
| | - Janika Raudzus
- School of Business Studies, Stralsund, University of Applied Sciences, Stralsund, Germany
| | - Sophia L Göricke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Schweiger
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Selma Sirin
- Department of Diagnostic Imaging, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Muehlbacher T, Dudink J, Steggerda SJ. Cerebellar Development and the Burden of Prematurity. CEREBELLUM (LONDON, ENGLAND) 2025; 24:39. [PMID: 39885037 PMCID: PMC11782465 DOI: 10.1007/s12311-025-01790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The role of the cerebellum in the neurodevelopmental outcomes of preterm infants has often been neglected. However, accumulating evidence indicates that normal cerebellar development is disrupted by prematurity-associated complications causing cerebellar injury and by prematurity itself. This hampers not only the normal development of motor skills and gait, but also cognitive, language, and behavioral development, collectively referred to as "developmental cognitive affective syndrome." In this comprehensive narrative review, we provide the results of an extensive literature search in PubMed and Embase to summarize recent evidence on altered cerebellar development in premature infants, focusing on neuroimaging findings, its causative factors and its impact on long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Tobias Muehlbacher
- Department of Neonatology, Newborn Research Zurich, University Hospital Zurich, Zurich, Switzerland.
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylke J Steggerda
- Department of Pediatrics, Division of Neonatology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
3
|
Wagner L, Cakar ME, Banchik M, Chiem E, Glynn SS, Than AH, Green SA, Dapretto M. Beyond motor learning: Insights from infant magnetic resonance imaging on the critical role of the cerebellum in behavioral development. Dev Cogn Neurosci 2025; 72:101514. [PMID: 39919679 DOI: 10.1016/j.dcn.2025.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/09/2025] Open
Abstract
Although the cerebellum is now recognized for its crucial role in non-motor functions such as language, perceptual processes, social communication, and executive function in adults, it is often overlooked in studies of non-motor behavioral development in infancy. Recent magnetic resonance imaging (MRI) research increasingly shows the cerebellum is key to understanding the emergence of complex human behaviors and neurodevelopmental conditions. This review summarizes studies from diverse MRI modalities that link early cerebellar development from birth to age two with emerging non-motor behaviors and psychiatric symptomatology. Our focus centered on both term and preterm infants, excluding studies of perinatal injury and cerebellar pathology. We conclude that the cerebellum is implicated in many non-motor behaviors and implicit learning mechanisms in infancy. The field's current limitations include inconsistencies in study design, a paucity of gold-standard infant neuroimaging tools, and treatment of the cerebellum as a uniform structure. Moving forward, the cerebellum should be considered a structure of greater interest to the developmental neuroimaging community. Studies should test developmental hypotheses about the behavioral roles of specific cerebro-cerebellar circuits, and theoretical frameworks such as Olson's "model switch" hypothesis of cerebellar learning. Large-scale, longitudinal, well-powered neuroimaging studies of typical and preterm development will be key.
Collapse
Affiliation(s)
- Lauren Wagner
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Melis E Cakar
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Megan Banchik
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Emily Chiem
- Molecular, Cellular, Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, 90095, United States
| | - Siobhan Sive Glynn
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Amy H Than
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Shulamite A Green
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, CA 90095, United States; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles, Los Angeles, CA 90095, United States; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
4
|
Burstein O, Sabag M, Kurtzman L, Geva R. The role of focused attention in learning from early childhood to late adolescence: Implications of neonatal brainstem compromise following preterm birth. Child Dev 2025; 96:269-285. [PMID: 39297250 DOI: 10.1111/cdev.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This comprehensive longitudinal study explored for the first time the interrelations between neonatal brainstem abnormalities, focused attention (FA), and learning-following a preterm cohort (N = 175; 46.3% female; predominantly White) from birth (2003-2006) to 17 years. The findings indicated that FA during early childhood was associated with language outcomes in toddlerhood (n = 131) and academic and attention self-report indices in late adolescence (n = 44). Pilot assessments indicated that FA at 17 years (n = 25) was also associated with concurrent academic and attention functioning. Structural equation modeling analyses revealed that neonatal brainstem functioning, manifested in auditory brainstem response patterns, was associated with early-life FA competence, which affected learning development. Implications underscore the essential role of early brainstem function and FA in shaping childhood learning trajectories.
Collapse
Affiliation(s)
- Or Burstein
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Maya Sabag
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Lea Kurtzman
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Ronny Geva
- Department of Psychology, Bar Ilan University, Ramat Gan, Israel
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Zhao YK, Li M, Shi TT, Feng MM, Hu LL. Association of premature birth and maternal education level on attention deficit hyperactivity disorder in children: A meta-analysis. World J Psychiatry 2024; 14:1956-1970. [PMID: 39704357 PMCID: PMC11622030 DOI: 10.5498/wjp.v14.i12.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/28/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in childhood. There is growing evidence that both preterm birth and maternal education levels substantially affect the likelihood of ADHD in children. However, there are limited systematic reviews and meta-analyses examining these associations. AIM To systematically review and conduct a meta-analysis on the association of preterm birth and maternal education level on the risk of ADHD in children. METHODS We conducted a comprehensive literature search across MEDLINE (PubMed), Web of Science, Embase, and the Cochrane Library, including studies published up to June 17, 2024. Data synthesis was performed using random-effect models, and the quality of studies was assessed using the Newcastle-Ottawa Scale. RESULTS This study included twelve studies, which revealed a significant association between premature delivery and an increased risk of ADHD in children [odds ratio (OR) = 2.76, 95% confidence interval (CI): 2.52-3.04, P < 0.001, I² = 1.9%). Conversely, higher maternal education levels were significantly associated with a reduced risk of ADHD in children (OR = 0.59, 95%CI: 0.48-0.73, P < 0.001, I² = 47.1%). Subgroup analysis further indicated that maternal education levels significantly influenced ADHD risk, particularly in studies conducted in China (OR = 0.59, 95%CI: 0.46-0.75, P < 0.001, I² = 81.2%), while no significant association was observed in studies from other regions (OR = 1.25, 95%CI: 0.66-2.40, P = 0.495, I² = 92.3%). The sensitivity analysis confirmed the robustness of our findings, showing no significant publication bias. CONCLUSION This study found that preterm birth significantly increases the risk of ADHD in children, while a higher maternal education level serves as a protective factor against ADHD. To reduce the incidence of ADHD in children, public health policies should focus on early intervention for preterm infants and improving maternal education levels.
Collapse
Affiliation(s)
- Yin-Kai Zhao
- Third Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Meng Li
- Academy of Marxism, Henan Open University, Zhengzhou 450061, Henan Province, China
| | - Ting-Ting Shi
- Third Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Miao-Miao Feng
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital, Zhengzhou 450007, Henan Province, China
| | - Lu-Lu Hu
- Third Department of Obstetrics and Gynecology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
6
|
Meijer RF, Wang X, van Ooijen IM, van der Velde B, Dudink J, Benders MJNL, Tataranno ML. The relationship between early life EEG and brain MRI in preterm infants: A systematic review. Clin Neurophysiol 2024; 170:168-179. [PMID: 39729686 DOI: 10.1016/j.clinph.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 12/07/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVE To systematically review the literature on the associations between electroencephalogram (EEG) and brain magnetic resonance imaging (MRI) measures in preterm infants (gestational age < 37 weeks). METHODS A comprehensive search was performed in PubMed and EMBASE databases up to February 12th, 2024. Non-relevant studies were eliminated following the PRISMA guidelines. RESULTS Ten out of 991 identified studies were included. Brain MRI metrics used in these studies include volumes, cortical features, microstructural integrity, visual assessments, and cerebral linear measurements. EEG parameters were classified as qualitative (Burdjalov maturity score, seizure burden, and background activity) or quantitative (discontinuity, spectral content, amplitude, and connectivity). Among them, discontinuity and the Burdjalov score were most frequently examined. Higher discontinuity was associated with reduced brain volume, cortical surface, microstructural integrity, and linear measurements. The Burdjalov score related to brain maturation qualitatively assessed on MRI. No other consistent correlations could be established due to the variability across studies. CONCLUSIONS The reviewed studies utilized a variety of EEG and MRI measurements, while discontinuity and the Burdjalov score stood out as significant indicators of structural brain development. SIGNIFICANCE This review, for the first time, provides an extensive overview of EEG-MRI associations in preterm infants, potentially facilitating their clinical application.
Collapse
Affiliation(s)
- Roos F Meijer
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Xiaowan Wang
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Bauke van der Velde
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Chirumamilla VC, Mulkey SB, Anwar T, Baker R, Maxwell GL, De Asis-Cruz J, Kapse K, Limperopoulos C, du Plessis A, Govindan RB. Asymmetry of Directed Brain Connectivity at Birth in Low-Risk Full-Term Newborns. J Clin Neurophysiol 2024:00004691-990000000-00185. [PMID: 39531276 DOI: 10.1097/wnp.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Functional connectivity hubs were previously identified at the source level in low-risk full-term newborns by high-density electroencephalography (HD-EEG). However, the directionality of information flow among hubs remains unclear. The aim of this study was to study the directionality of information flow among source level hubs in low-risk full-term newborns using HD-EEG. METHODS A retrospective analysis of HD-EEG collected from a prospective study. Subjects included 112 low-risk full-term (37-41 weeks' gestation) newborns born in a large delivery center and studied within 72 hours of life by HD-EEG. The directionality of information flow between hubs at the source level was quantified using the partial directed coherence in the delta frequency band. Descriptive statistics were used to identify the maximum and minimum information flow. Differences in information flow between cerebral hemispheres were assessed using Student t-test. RESULTS There was higher information flow from the left hemisphere to the right hemisphere hubs (p < 0.05, t-statistic = 2). The brainstem had the highest information inflow and lowest outflow among all the hubs. The left putamen received the lowest information, and the right pallidum had the highest information outflow to other hubs. CONCLUSIONS In low-risk full-term newborns, there is a significant information flow asymmetry already present, with left hemisphere dominance at birth. The relationship between these findings and the more prevalent left hemisphere dominance observed in full-term newborns, particularly in relation to language, warrants further study.
Collapse
Affiliation(s)
- Venkata C Chirumamilla
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, U.S.A
| | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, U.S.A
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, U.S.A
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, U.S.A
| | - Tayyba Anwar
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, U.S.A
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, U.S.A
- Department of Neurology, Children's National Hospital, Washington, District of Columbia, U.S.A
| | - Robin Baker
- Inova Women's and Children's Hospital, Fairfax, Virginia, U.S.A
- Fairfax Neonatal Associates, Fairfax, Virginia, U.S.A
| | - G Larry Maxwell
- Inova Women's and Children's Hospital, Fairfax, Virginia, U.S.A
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, U.S.A.; and
| | - Kushal Kapse
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, U.S.A.; and
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, District of Columbia, U.S.A.; and
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, U.S.A
| | - Adre du Plessis
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, U.S.A
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, U.S.A
| | - R B Govindan
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, U.S.A
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, U.S.A
| |
Collapse
|
8
|
Brandt M, Kosmeijer C, Achterberg E, de Theije C, Nijboer C. Timed fetal inflammation and postnatal hypoxia cause cortical white matter injury, interneuron imbalances, and behavioral deficits in a double-hit rat model of encephalopathy of prematurity. Brain Behav Immun Health 2024; 40:100817. [PMID: 39188404 PMCID: PMC11345510 DOI: 10.1016/j.bbih.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Extreme preterm birth-associated adversities are a major risk factor for aberrant brain development, known as encephalopathy of prematurity (EoP), which can lead to long-term neurodevelopmental impairments. Although progress in clinical care for preterm infants has markedly improved perinatal outcomes, there are currently no curative treatment options available to combat EoP. EoP has a multifactorial etiology, including but not limited to pre- or postnatal immune activation and oxygen fluctuations. Elucidating the underlying mechanisms of EoP and determining the efficacy of potential therapies relies on valid, clinically translatable experimental models that reflect the neurodevelopmental and pathophysiological hallmarks of EoP. Here, we expand on our double-hit rat model that can be used to study EoP disease mechanisms and therapeutic options in a preclinical setting. Pregnant Wistar dams were intraperitoneally injected with 10 μg/kg LPS on embryonic day (E)20 and offspring was subjected to hypoxia (140 min, 8% O2) at postnatal day 4. Rats exposed to fetal inflammation and postnatal hypoxia (FIPH) showed neurodevelopmental impairments, such as reduced nest-seeking ability, ultrasonic vocalizations, social engagement, and working memory, and increased anxiety and sensitivity. Impairments in myelination, oligodendrocyte maturation and interneuron development were examined as hallmarks for EoP, in different layers and coordinates of the cortex using histological and molecular techniques. Myelin density and complexity was decreased in the cortex, which partially coincided with a decrease in mature oligodendrocytes. Furthermore, interneuron populations (GAD67+ and PVALB+) were affected. To determine if the timing of inducing fetal inflammation affected the severity of EoP hallmarks in the cortex, multiple timepoints of fetal inflammation were compared. Inflammation at E20 combined with postnatal hypoxia gave the most severe EoP phenotype in the cortex. In conclusion, we present a double-hit rat model which displays various behavioral, anatomical and molecular hallmarks of EoP, including diffuse white matter injury. This double-hit model can be used to investigate pathophysiological mechanisms and potential therapies for EoP.
Collapse
Affiliation(s)
- M.J.V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.M. Kosmeijer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - E.J.M. Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - C.G.M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| |
Collapse
|
9
|
Xu F, Wang Y, Wang W, Liang W, Tang Y, Liu S. Preterm Birth Alters the Regional Development and Structural Covariance of Cerebellum at Term-Equivalent Age. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1932-1941. [PMID: 38581612 DOI: 10.1007/s12311-024-01691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Preterm birth is associated with increased risk for a spectrum of neurodevelopmental disabilities. The cerebellum is implicated in a wide range of cognitive functions extending beyond sensorimotor control and plays an increasingly recognized role in brain development. Morphometric studies based on volume analyses have revealed impaired cerebellar development in preterm infants. However, the structural covariance between the cerebellum and cerebral cortex has not been studied during the neonatal period, and the extent to which structural covariance is affected by preterm birth remains unknown. In this study, using the structural MR images of 52 preterm infants scanned at term-equivalent age and 312 full-term controls from the Developing Human Connectome Project, we compared volumetric growth, local cerebellum shape development and cerebello-cerebral structural covariance between the two groups. We found that although there was no significant difference in the overall volume measurements between preterm and full-term infants, the shape measurements were different. Compared with the control infants, preterm infants had significantly larger thickness in the vermis and lower thickness in the lateral portions of the bilateral cerebral hemispheres. The structural covariance between the cerebellum and frontal and parietal lobes was significantly greater in preterm infants than in full-term controls. The findings in this study suggested that cerebellar development and cerebello-cerebral structural covariance may be affected by premature birth.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yu Wang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjun Wang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Institute for Sectional Anatomy and Digital Human, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
11
|
吴 迪, 鞠 俊, 常 贺. [Effects of antenatal corticosteroid therapy in pregnant women on the brain development of preterm infants as assessed by amplitude-integrated electroencephalography]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:244-249. [PMID: 38557375 PMCID: PMC10986380 DOI: 10.7499/j.issn.1008-8830.2309148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To investigate the effects of antenatal corticosteroid (ACS) therapy in pregnant women on the brain development of preterm infants using amplitude-integrated electroencephalography (aEEG). METHODS A retrospective analysis was conducted on 211 preterm infants with a gestational age of 28 to 34+6 weeks. The infants were divided into an ACS group (131 cases) and a control group (80 cases) based on whether antenatal dexamethasone was given for promoting fetal lung maturity. The first aEEG monitoring (referred to as aEEG1) was performed within 24 hours after birth, and the second aEEG monitoring (referred to as aEEG2) was performed between 5 to 7 days after birth. The aEEG results were compared between the two groups. RESULTS In preterm infants with a gestational age of 28 to 31+6 weeks, the ACS group showed a more mature periodic pattern and higher lower amplitude boundary in aEEG1 compared to the control group (P<0.05). In preterm infants with a gestational age of 32 to 33+6 weeks and 34 to 34+6 weeks, the ACS group showed a higher proportion of continuous patterns, more mature periodic patterns and higher Burdjalov scores in aEEG1 (P<0.05). And the ACS group exhibited a higher proportion of continuous patterns, more mature periodic patterns, higher lower amplitude boundaries, narrower bandwidths, and higher Burdjalov scores in aEEG2 (P<0.05). CONCLUSIONS ACS-treated preterm infants have more mature aEEG patterns compared to those not treated with ACS, suggesting a beneficial effect of ACS on the brain development of preterm infants.
Collapse
|
12
|
Zhu L, Yuan Q, Jing C, Sun L, Jiang L. Angiogenic responses are enhanced by recombinant human erythropoietin in a model of periventricular white matter damage of neonatal rats through EPOR-ERK1 signaling. J Neuropathol Exp Neurol 2024; 83:161-167. [PMID: 38263262 PMCID: PMC10880070 DOI: 10.1093/jnen/nlae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Recombinant human erythropoietin (rh-EPO) has been shown to stimulate neurogenesis and angiogenesis, both of which play crucial roles in the repair of brain injuries. Previously, we observed that rh-EPO treatment effectively reduced brain damage and enhanced angiogenesis in a neonatal rat model of periventricular white matter damage (PWMD). The objective of this research is to investigate the specific mechanism through which rh-EPO regulates angiogenesis following PWMD in premature neonates. We conducted experiments utilizing a neonatal PWMD model. Following rh-EPO treatment, the levels of erythropoietin receptor (EPOR) were found to be increased in the damaged brain of rats. Although the total amount of extracellular signal-regulated kinase (ERK), a downstream protein in the EPO signaling pathway, remained unchanged, there was clear upregulation of phosphorylated ERK1 (p-ERK1) levels. The increase in levels of p-ERK1 was inhibited by an ERK kinase inhibitor, while the total amount of ERK remained unchanged. Conversely, the levels of EPOR were not affected by the inhibitor. Notably, the introduction of rh-EPO led to a significant increase in the frequency of angiogenesis-related cells and the expression levels of angiogenic factors. However, these effects were nullified when the ERK pathway was blocked. These findings indicate that rh-EPO enhances angiogenic responses through the EPOR-ERK1 pathway in a neonatal PWMD model.
Collapse
Affiliation(s)
- Lihua Zhu
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Qichao Yuan
- Department of Pediatrics, Danyang People’s Hospital Affiliate of Nantong University, Danyang 212300, China
| | - Chunping Jing
- Department of Pediatrics, Danyang People’s Hospital Affiliate of Nantong University, Danyang 212300, China
| | - Lingxian Sun
- Department of Clinical Medicine, Jiangsu Health Vocational College, Nanjing 211800, China
| | - Li Jiang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing 210009, China
| |
Collapse
|
13
|
Garg PM, Pittman I, Yi J, Shetty A, Taylor C, Reddy K, Inder TE, Varshney N, Hillegass WB, Garg PP. Clinical correlates of cerebellar injury in preterm infants with surgical necrotizing enterocolitis. J Neonatal Perinatal Med 2024; 17:705-716. [PMID: 39269856 PMCID: PMC11489020 DOI: 10.3233/npm-240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND The preterm infants are at risk of cerebellar injury and the risk factors for necrotizing enterocolitis (NEC) associated cerebellar injury are not fully understood. AIM Determine the risk factors of cerebellar injury in infants with surgical necrotizing enterocolitis (NEC). METHODS Retrospective study compared clinical/pathological information between surgical NEC infants with and those without cerebellar injury detected on brain MRI obtained at term equivalent age. Cerebellar Injury patterns that we identified on MRI brain were cerebellar hemorrhage, siderosis and/or cerebellar volume loss. RESULTS Cerebellar injury (21/65, 32.3%) in preterm infants with NEC was associated with patent ductus arteriosus (PDA) (18/21(85.7%) vs. 25/44(56.8%); p = 0.021), blood culture positive sepsis (13/21 (61.9%) vs. 11/44 (25%); p = 0.004) following NEC, predominantly grew gram positive bacteria (9/21(42.9%) vs. 4/44(9.1%); p = 0.001), greater red cell transfusion, higher rates of cholestasis following NEC and differences in intestinal histopathology (more hemorrhagic and reparative lesions) on univariate analysis. Those with cerebellar injury had higher grade white matter injury (14/21 (66.7%) vs. 4/44(9.1%) p = 0.0005) and higher-grade ROP (70.6% vs. 38.5%; p = 0.027) than those without cerebellar injury.On multilogistic regression, the positive blood culture sepsis (OR 3.9, CI 1.1-13.7, p = 0.03), PDA (OR 4.5, CI 1.0-19.9, p = 0.04) and severe intestinal pathological hemorrhage (grade 3-4) (OR 16.9, CI 2.1-135.5, p = 0.007) were independently associated with higher risk of cerebellar injury. CONCLUSION Preterm infants with surgical NEC with positive blood culture sepsis, PDA, and severe intestinal hemorrhagic lesions (grade 3-4) appear at greater risk for cerebellar injury.
Collapse
Affiliation(s)
- P M Garg
- Department of Pediatrics/Neonatology, Wake Forest University, Winston Salem, NC, USA
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - I Pittman
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - J Yi
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, NC, USA
| | - A Shetty
- Department of Pediatrics/Infectious Disease, Wake Forest University, Winston Salem, NC, USA
| | - C Taylor
- Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - K Reddy
- Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - T E Inder
- Children Hospital of Orange County, University of California, Irvine, Orange, CA, USA
| | - N Varshney
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - W B Hillegass
- Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - P P Garg
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
14
|
Cook KM, De Asis-Cruz J, Kim JH, Basu SK, Andescavage N, Murnick J, Spoehr E, Liggett M, du Plessis AJ, Limperopoulos C. Experience of early-life pain in premature infants is associated with atypical cerebellar development and later neurodevelopmental deficits. BMC Med 2023; 21:435. [PMID: 37957651 PMCID: PMC10644599 DOI: 10.1186/s12916-023-03141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Infants born very and extremely premature (V/EPT) are at a significantly elevated risk for neurodevelopmental disorders and delays even in the absence of structural brain injuries. These risks may be due to earlier-than-typical exposure to the extrauterine environment, and its bright lights, loud noises, and exposures to painful procedures. Given the relative underdeveloped pain modulatory responses in these infants, frequent pain exposures may confer risk for later deficits. METHODS Resting-state fMRI scans were collected at term equivalent age from 148 (45% male) infants born V/EPT and 99 infants (56% male) born at term age. Functional connectivity analyses were performed between functional regions correlating connectivity to the number of painful skin break procedures in the NICU, including heel lances, venipunctures, and IV placements. Subsequently, preterm infants returned at 18 months, for neurodevelopmental follow-up and completed assessments for autism risk and general neurodevelopment. RESULTS We observed that V/EPT infants exhibit pronounced hyperconnectivity within the cerebellum and between the cerebellum and both limbic and paralimbic regions correlating with the number of skin break procedures. Moreover, skin breaks were strongly associated with autism risk, motor, and language scores at 18 months. Subsample analyses revealed that the same cerebellar connections strongly correlating with breaks at term age were associated with language dysfunction at 18 months. CONCLUSIONS These results have significant implications for the clinical care of preterm infants undergoing painful exposures during routine NICU care, which typically occurs without anesthesia. Repeated pain exposures appear to have an increasingly detrimental effect on brain development during a critical period, and effects continue to be seen even 18 months later.
Collapse
Affiliation(s)
- Kevin M Cook
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Jung-Hoon Kim
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Sudeepta K Basu
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Jonathan Murnick
- Dept. of Diagnostic Imaging & Radiology, Children's National Hospital, 111 Michigan Ave. NW, Washington, D.C, 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Melissa Liggett
- Division of Psychology, Children's National Hospital, 111 Michigan Ave. NW, Washington, DC, 20010, USA
| | - Adré J du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
15
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
16
|
Vidinopoulos K, Azman Z, Somers A, Zahra VA, Thiel A, Lu H, Pham Y, Tran NT, Allison BJ, Herlenius E, Hooper S, Galinsky R, Polglase GR. Mechanical ventilation induces brainstem inflammation in preterm fetal sheep. Front Pediatr 2023; 11:1225294. [PMID: 37936886 PMCID: PMC10626530 DOI: 10.3389/fped.2023.1225294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Background Preterm infants have immature respiratory drive and often require prolonged periods of mechanical ventilation. Prolonged mechanical ventilation induces systemic inflammation resulting in ventilation-induced brain injury, however its effect on brainstem respiratory centers is unknown. We aimed to determine the effects of 24 h of mechanical ventilation on inflammation and injury in brainstem respiratory centres of preterm fetal sheep. Methods Preterm fetal sheep at 110 ± 1 days (d) gestation were instrumented to provide mechanical ventilation in utero. At 112 ± 1 d gestation, fetuses received either mechanical ventilation (VENT; n = 7; 3 ml/kg) for 24 h, or no ventilation (CONT; n = 6). At post-mortem, fetal brainstems were collected for assessment of mRNA and histological markers of inflammation and injury. Results In utero ventilation (IUV) did not alter any blood-gas parameters. IUV significantly increased systemic IL-6 and IL-8 concentrations over the 24 h period compared to CONT. The number of ameboid microglia within the nucleus tractus solitarius and the raphe nucleus increased in VENT fetuses (p < 0.05 for both vs. control). The % area fraction of GFAP + staining was not significantly higher within the preBötzinger complex (p = 0.067) and retrotrapezoid nucleus and parafacial respiratory group (p = 0.057) in VENT fetuses compared to CONT. Numbers of caspase-3 and TUNEL-positive cells were similar between groups. Gene expression (mRNA) levels of inflammation, injury, cell death and prostaglandin synthesis within the brainstem were similar between groups. Conclusion Mechanical ventilation induces a systemic inflammatory response with only moderate inflammatory effects within the brainstem respiratory centres of preterm fetal sheep.
Collapse
Affiliation(s)
- Kayla Vidinopoulos
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Zahrah Azman
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Ainsley Somers
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Valerie A. Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alison Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Hui Lu
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Nhi Thao Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Astrid Lindgren Children’s Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stuart Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Prompinichpong K, Thengchaisri N, Suwanna N, Tiraphut B, Theerapan W, Steiner JM, Sattasathuchana P. A retrospective study of structural brain lesions identified by magnetic resonance imaging in 114 cats with neurological signs. Vet World 2023; 16:1871-1879. [PMID: 37859967 PMCID: PMC10583865 DOI: 10.14202/vetworld.2023.1871-1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Magnetic resonance imaging (MRI) has been widely used as a non-invasive modality to evaluate neurological organ structures. However, brain MRI studies in cats with neurological signs are limited. This study evaluated the association between patient characteristics, neurological signs, and brain lesion locations identified by MRI. Blood profiles of cats with presumptive inflammatory and structural brain lesions were also determined. Materials and Methods Medical records of 114 cats that underwent brain MRI were retrospectively reviewed. Cats were categorized into five groups based on the location of their lesion: Cerebrum, brainstem, cerebellum, multifocal, and non-structural. Patient characteristics, neurological signs, and hematological profiles were obtained from their medical records. Disease classification was categorized based on their etiologies. Associations were determined using Fisher's exact test. Blood parameters were compared using the Kruskal-Wallis test. Results A total of 114 cats met the inclusion criteria. Lesions were identified in the cerebrum (21.1%), brainstem (8.8%), cerebellum (6.1%), multifocal (39.5%), and non-structural (24.6%) of the cats. Common neurological signs included seizure activity (56.1%), cerebellar signs (41.2%), and anisocoria (25.4%). The most common brain abnormality was inflammation (40.4%). There was no significant difference in hematological profiles between cats with presumptive inflammatory and non-inflammatory brain lesions. Neutrophils, platelets, total protein, and globulin concentrations were higher in cats with structural brain lesions. Conclusion The most common neurological signs and brain disease category were seizure activity and inflammation, respectively. However, the hematological profile did not predict inflammatory and structural brain lesions.
Collapse
Affiliation(s)
- Kreevith Prompinichpong
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, 10900, Thailand
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Nirut Suwanna
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Bordin Tiraphut
- Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, 10900, Thailand
| | - Wutthiwong Theerapan
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Jörg M. Steiner
- Department of Small Animal Clinical Sciences, Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | - Panpicha Sattasathuchana
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
18
|
Cook KM, De Asis-Cruz J, Basu SK, Andescavage N, Murnick J, Spoehr E, du Plessis AJ, Limperopoulos C. Ex-utero third trimester developmental changes in functional brain network organization in infants born very and extremely preterm. Front Neurosci 2023; 17:1214080. [PMID: 37719160 PMCID: PMC10502339 DOI: 10.3389/fnins.2023.1214080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction The latter half of gestation is a period of rapid brain development, including the formation of fundamental functional brain network architecture. Unlike in-utero fetuses, infants born very and extremely preterm undergo these critical maturational changes in the extrauterine environment, with growing evidence suggesting this may result in altered brain networks. To date, however, the development of functional brain architecture has been unexplored. Methods From a prospective cohort of preterm infants, graph parameters were calculated for fMRI scans acquired prior to reaching term equivalent age. Eight graph properties were calculated, Clustering Coefficient (C), Characteristic Path Length (L), Modularity (Q), Local Efficiency (LE), Global Efficiency (GE), Normalized Clustering (λ), Normalized Path Length (γ), and Small-Worldness (σ). Properties were first compared to values generated from random and lattice networks and cost efficiency was evaluated. Subsequently, linear mixed effect models were used to assess relationship with postmenstrual age and infant sex. Results A total of 111 fMRI scans were acquired from 85 preterm infants born at a mean GA 28.93 ± 2.8. Infants displayed robust small world properties as well as both locally and globally efficient networks. Regression models found that GE increased while L, Q, λ, γ, and σ decreased with increasing postmenstrual age following multiple comparison correction (r2Adj range 0.143-0.401, p < 0048), with C and LE exhibited trending increases with age. Discussion This is the first direct investigation on the extra-uterine formation of functional brain architecture in preterm infants. Importantly, our results suggest that changes in functional architecture with increasing age exhibit a different trajectory relative to in utero fetus. Instead, they exhibit developmental changes more similar to the early postnatal period in term born infants.
Collapse
Affiliation(s)
- Kevin M. Cook
- Developing Brain Institute, Children’s National Hospital, Washington, DC, United States
| | | | - Sudeepta K. Basu
- Developing Brain Institute, Children’s National Hospital, Washington, DC, United States
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National Hospital, Washington, DC, United States
| | - Jonathan Murnick
- Department of Diagnostic Imaging & Radiology, Children’s National Health System, Children’s National Hospital, Washington, DC, United States
| | - Emma Spoehr
- Developing Brain Institute, Children’s National Hospital, Washington, DC, United States
| | - Adré J. du Plessis
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC, United States
| | | |
Collapse
|
19
|
Adrian J, Sawyer C, Bakeman R, Haist F, Akshoomoff N. Longitudinal Structural and Diffusion-Weighted Neuroimaging of Young Children Born Preterm. Pediatr Neurol 2023; 141:34-41. [PMID: 36773405 DOI: 10.1016/j.pediatrneurol.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Children born preterm are at risk for diffuse injury to subcortical gray and white matter. METHODS We used a longitudinal cohort study to examine the development of subcortical gray matter and white matter volumes, and diffusivity measures of white matter tracts following preterm birth. Our participants were 47 children born preterm (24 to 32 weeks gestational age) and 28 children born at term. None of the children born preterm had significant neonatal brain injury. Children received structural and diffusion weighted magnetic resonance imaging scans at ages five, six, and seven years. We examined volumes of amygdala, hippocampus, caudate nucleus, putamen, thalamus, brainstem, cerebellar white matter, intracranial space, and ventricles, and volumes, fractional anisotropy, and mean diffusivity of anterior thalamic radiation, cingulum, corticospinal tract, corpus callosum, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, temporal and parietal superior longitudinal fasciculus, and uncinate fasciculus. RESULTS Children born preterm had smaller volumes of thalamus, brainstem, cerebellar white matter, cingulum, corticospinal tract, inferior frontal occipital fasciculus, uncinate fasciculus, and temporal superior longitudinal fasciculus, whereas their ventricles were larger compared with term-born controls. We found no significant effect of preterm birth on diffusivity measures. Despite developmental changes and growth, group differences were present and similarly strong at all three ages. CONCLUSION Even in the absence of significant neonatal brain injury, preterm birth has a persistent impact on early brain development. The lack of a significant term status by age interaction suggests a delayed developmental trajectory.
Collapse
Affiliation(s)
- Julia Adrian
- Department of Cognitive Science, University of California, San Diego, La Jolla, California; Center for Human Development, University of California, San Diego, La Jolla, California.
| | - Carolyn Sawyer
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Roger Bakeman
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Frank Haist
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Natacha Akshoomoff
- Center for Human Development, University of California, San Diego, La Jolla, California; Department of Psychiatry, University of California, San Diego, La Jolla, California
| |
Collapse
|
20
|
Kim SH, Shin SH, Yang HJ, Park SG, Lim SY, Choi YH, Kim EK, Kim HS. Neurodevelopmental outcomes and volumetric analysis of brain in preterm infants with isolated cerebellar hemorrhage. Front Neurol 2022; 13:1073703. [DOI: 10.3389/fneur.2022.1073703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
BackgroundCerebellar hemorrhage (CBH) is a major form of cerebellar injury in preterm infants. We aimed to investigate the risk factors and neurodevelopmental outcomes of isolated CBH and performed volumetric analysis at term-equivalent age.MethodsThis single-centered nested case-control study included 26 preterm infants with isolated CBH and 52 infants without isolated CBH and any significant supratentorial injury.ResultsIsolated CBH was associated with PCO2 fluctuation within 72 h after birth (adjusted odds ratio 1.007, 95% confidence interval 1.000–1.014). The composite score in the motor domain of the Bayley Scales of Infant and Toddler Development at 24 month of corrected age was lower in the punctate isolated CBH group than that in the control group (85.3 vs. 94.5, P = 0.023). Preterm infants with isolated CBH had smaller cerebellum and pons at term-equivalent age compared to the control group. Isolated CBH with adverse neurodevelopment had a smaller ventral diencephalon and midbrain compared to isolated CBH without adverse neurodevelopmental outcomes.ConclusionsIn preterm infants, isolated CBH with punctate lesions were associated with abnormal motor development at 24 months of corrected age. Isolated CBH accompanied by a smaller ventral diencephalon and midbrain at term equivalent had adverse neurodevelopmental outcomes.
Collapse
|
21
|
Iskusnykh IY, Chizhikov VV. Cerebellar development after preterm birth. Front Cell Dev Biol 2022; 10:1068288. [PMID: 36523506 PMCID: PMC9744950 DOI: 10.3389/fcell.2022.1068288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Preterm birth and its complications and the associated adverse factors, including brain hemorrhage, inflammation, and the side effects of medical treatments, are the leading causes of neurodevelopmental disability. Growing evidence suggests that preterm birth affects the cerebellum, which is the brain region involved in motor coordination, cognition, learning, memory, and social communication. The cerebellum is particularly vulnerable to the adverse effects of preterm birth because key cerebellar developmental processes, including the proliferation of neural progenitors, and differentiation and migration of neurons, occur in the third trimester of a human pregnancy. This review discusses the negative impacts of preterm birth and its associated factors on cerebellar development, focusing on the cellular and molecular mechanisms that mediate cerebellar pathology. A better understanding of the cerebellar developmental mechanisms affected by preterm birth is necessary for developing novel treatment and neuroprotective strategies to ameliorate the cognitive, behavioral, and motor deficits experienced by preterm subjects.
Collapse
|
22
|
Klein L, Van Steenwinckel J, Fleiss B, Scheuer T, Bührer C, Faivre V, Lemoine S, Blugeon C, Schwendimann L, Csaba Z, Bokobza C, Vousden DA, Lerch JP, Vernon AC, Gressens P, Schmitz T. A unique cerebellar pattern of microglia activation in a mouse model of encephalopathy of prematurity. Glia 2022; 70:1699-1719. [PMID: 35579329 PMCID: PMC9545095 DOI: 10.1002/glia.24190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
Abstract
Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1β, we sought to uncover causes of cerebellar damage. In this model, IL-1β is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1β treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1β leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.
Collapse
Affiliation(s)
- Luisa Klein
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Bobbi Fleiss
- NeuroDiderot, InsermUniversité de ParisParisFrance
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVictoriaAustralia
| | - Till Scheuer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | - Christoph Bührer
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| | | | - Sophie Lemoine
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | - Corinne Blugeon
- Genomics Core Facility, Département de Biologie, École Normale Supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERMUniversité PSLParisFrance
| | | | - Zsolt Csaba
- NeuroDiderot, InsermUniversité de ParisParisFrance
| | | | - Dulcie A. Vousden
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Jason P. Lerch
- Mouse Imaging CentreThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
- Wellcome Trust Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | | | - Thomas Schmitz
- Department of NeonatologyCharité University Medicine BerlinBerlinGermany
| |
Collapse
|
23
|
Chirumamilla VC, Hitchings L, Mulkey SB, Anwar T, Baker R, Larry Maxwell G, De Asis-Cruz J, Kapse K, Limperopoulos C, du Plessis A, Govindan R. Electroencephalogram in low-risk term newborns predicts neurodevelopmental metrics at age two years. Clin Neurophysiol 2022; 140:21-28. [DOI: 10.1016/j.clinph.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022]
|
24
|
Schmidbauer VU, Dovjak GO, Yildirim MS, Mayr-Geisl G, Weber M, Diogo MC, Gruber GM, Prayer F, Milos RI, Stuempflen M, Ulm B, Binder J, Bettelheim D, Kiss H, Prayer D, Kasprian G. Mapping Human Fetal Brain Maturation In Vivo Using Quantitative MRI. AJNR Am J Neuroradiol 2021; 42:2086-2093. [PMID: 34503947 DOI: 10.3174/ajnr.a7286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE On the basis of a single multidynamic multiecho sequence acquisition, SyMRI generates a variety of quantitative image data that can characterize tissue-specific properties. The aim of this retrospective study was to evaluate the feasibility of SyMRI for the qualitative and quantitative assessment of fetal brain maturation. MATERIALS AND METHODS In 52 fetuses, multidynamic multiecho sequence acquisitions were available. SyMRI was used to perform multidynamic multiecho-based postprocessing. Fetal brain maturity was scored qualitatively on the basis of SyMRI-generated MR imaging data. The results were compared with conventionally acquired T1-weighted/T2-weighted contrasts as a standard of reference. Myelin-related changes in T1-/T2-relaxation time/relaxation rate, proton density, and MR imaging signal intensity of the developing fetal brain stem were measured. A Pearson correlation analysis was used to detect correlations between the following: 1) the gestational age at MR imaging and the fetal brain maturity score, and 2) the gestational age at MR imaging and the quantitative measurements. RESULTS SyMRI provided images of sufficient quality in 12/52 (23.08%) (range, 23 + 6-34 + 0) fetal multidynamic multiecho sequence acquisitions. The fetal brain maturity score positively correlated with gestational age at MR imaging (SyMRI: r = 0.915, P < .001/standard of reference: r = 0.966, P < .001). Myelination-related changes in the T2 relaxation time/T2 relaxation rate of the medulla oblongata significantly correlated with gestational age at MR imaging (T2-relaxation time: r = -0.739, P = .006/T2-relaxation rate: r = 0.790, P = .002). CONCLUSIONS Fetal motion limits the applicability of multidynamic multiecho-based postprocessing. However, SyMRI-generated image data of sufficient quality enable the qualitative assessment of maturity-related changes of the fetal brain. In addition, quantitative T2 relaxation time/T2 relaxation rate mapping characterizes myelin-related changes of the brain stem prenatally. This approach, if successful, opens novel possibilities for the evaluation of structural and biochemical aspects of fetal brain maturation.
Collapse
Affiliation(s)
- V U Schmidbauer
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - G O Dovjak
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - M S Yildirim
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | | | - M Weber
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - M C Diogo
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - G M Gruber
- Department of Anatomy and Biomechanics (G.M.G.), Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - F Prayer
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - R-I Milos
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - M Stuempflen
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - B Ulm
- Obstetrics and Gynecology (B.U., J.B., D.B., H.K.), Medical University of Vienna, Vienna, Austria
| | - J Binder
- Obstetrics and Gynecology (B.U., J.B., D.B., H.K.), Medical University of Vienna, Vienna, Austria
| | - D Bettelheim
- Obstetrics and Gynecology (B.U., J.B., D.B., H.K.), Medical University of Vienna, Vienna, Austria
| | - H Kiss
- Obstetrics and Gynecology (B.U., J.B., D.B., H.K.), Medical University of Vienna, Vienna, Austria
| | - D Prayer
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| | - G Kasprian
- From the Departments of Biomedical Imaging and Image-Guided Therapy (V.U.S., G.O.D., M.S.Y., M.W., M.C.D., F.P., R.-I.M., M.S., D.P. G.K)
| |
Collapse
|
25
|
Ultrasound measurements of brain structures differ between moderate-late preterm and full-term infants at term equivalent age. Early Hum Dev 2021; 160:105424. [PMID: 34303106 DOI: 10.1016/j.earlhumdev.2021.105424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Brain growth in moderate preterm (MP; gestational age (GA) 32+0-33+6 weeks) and late preterm infants (LP; GA 34+0-36+6 weeks) may be impaired, even in the absence of brain injury. AIMS The aims of this study were to assess brain measurements of MP and LP infants, and to compare these with full-term infants (GA > 37 weeks) using linear cranial ultrasound (cUS) at term equivalent age (TEA). STUDY DESIGN cUS data from two prospective cohorts were combined. Two investigators performed offline measurements on standard cUS planes. Eleven brain structures were compared between MP, LP and full-term infants using uni- and multivariable linear regression. Results were adjusted for postmenstrual age at cUS and corrected for multiple testing. RESULTS Brain measurements of 44 MP, 54 LP and 52 full-term infants were determined on cUS scans at TEA. Biparietal diameter and basal ganglia-insula width were smaller in MP (-9.1 mm and - 1.7 mm, p < 0.001) and LP infants (-7.0 mm and - 1.7 mm, p < 0.001) compared to full-term infants. Corpus callosum - fastigium length was larger in MP (+2.2 mm, p < 0.001) than in full-term infants. No significant differences were found between MP and LP infants. CONCLUSIONS These findings suggest that brain growth in MP and LP infants differs from full-term infants. Whether these differences have clinical implications remains to be investigated.
Collapse
|
26
|
Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol 2021; 80:634-648. [PMID: 34363661 DOI: 10.1093/jnen/nlab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microglial activation during critical phases of brain development can result in short- and long-term consequences for neurological and psychiatric health. Several studies in humans and rodents have shown that microglial activation, leading to a transition from the homeostatic state toward a proinflammatory phenotype, has adverse effects on the developing brain and neurodevelopmental disorders. Targeting proinflammatory microglia may be an effective strategy for protecting the brain and attenuating neurodevelopmental disorders induced by inflammation. In this review we focus on the role of inflammation and the activation of immature microglia (pre-microglia) soon after birth in prematurity-associated neurodevelopmental disorders, and the specific features of pre-microglia during development. We also highlight the relevance of immunomodulatory strategies for regulating activated microglia in a rodent model of perinatal brain injury. An original neuroprotective approach involving a nanoparticle-based therapy and targeting microglia, with the aim of improving myelination and protecting the developing brain, is also addressed.
Collapse
Affiliation(s)
- Andrée Delahaye-Duriez
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Histologie-Embryologie-Cytogénétique, Bondy, France
| | - Adrien Dufour
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Cindy Bokobza
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Pierre Gressens
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | | |
Collapse
|
27
|
Spoto G, Amore G, Vetri L, Quatrosi G, Cafeo A, Gitto E, Nicotera AG, Di Rosa G. Cerebellum and Prematurity: A Complex Interplay Between Disruptive and Dysmaturational Events. Front Syst Neurosci 2021; 15:655164. [PMID: 34177475 PMCID: PMC8222913 DOI: 10.3389/fnsys.2021.655164] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The cerebellum plays a critical regulatory role in motor coordination, cognition, behavior, language, memory, and learning, hence overseeing a multiplicity of functions. Cerebellar development begins during early embryonic development, lasting until the first postnatal years. Particularly, the greatest increase of its volume occurs during the third trimester of pregnancy, which represents a critical period for cerebellar maturation. Preterm birth and all the related prenatal and perinatal contingencies may determine both dysmaturative and lesional events, potentially involving the developing cerebellum, and contributing to the constellation of the neuropsychiatric outcomes with several implications in setting-up clinical follow-up and early intervention.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Luigi Vetri
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Quatrosi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Anna Cafeo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
28
|
Schmidbauer V, Dovjak G, Geisl G, Weber M, Diogo MC, Yildirim MS, Goeral K, Klebermass-Schrehof K, Berger A, Prayer D, Kasprian G. Impact of Prematurity on the Tissue Properties of the Neonatal Brain Stem: A Quantitative MR Approach. AJNR Am J Neuroradiol 2021; 42:581-589. [PMID: 33478940 DOI: 10.3174/ajnr.a6945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Preterm birth interferes with regular brain development. The aim of this study was to investigate the impact of prematurity on the physical tissue properties of the neonatal brain stem using a quantitative MR imaging approach. MATERIALS AND METHODS A total of 55 neonates (extremely preterm [n = 30]: <28 + 0 weeks gestational age; preterm [n = 10]: 28 + 0-36 + 6 weeks gestational age; term [n = 15]: ≥37 + 0 weeks gestational age) were included in this retrospective study. In most cases, imaging was performed at approximately term-equivalent age using a standard MR protocol. MR data postprocessing software SyMRI was used to perform multidynamic multiecho sequence (acquisition time: 5 minutes, 24 seconds)-based MR postprocessing to determine T1 relaxation time, T2 relaxation time, and proton density. Mixed-model ANCOVA (covariate: gestational age at MR imaging) and the post hoc Bonferroni test were used to compare the groups. RESULTS There were significant differences between premature and term infants for T1 relaxation time (midbrain: P < .001; pons: P < .001; basis pontis: P = .005; tegmentum pontis: P < .001; medulla oblongata: P < .001), T2 relaxation time (midbrain: P < .001; tegmentum pontis: P < .001), and proton density (tegmentum pontis: P = .004). The post hoc Bonferroni test revealed that T1 relaxation time/T2 relaxation time in the midbrain differed significantly between extremely preterm and preterm (T1 relaxation time: P < .001/T2 relaxation time: P = .02), extremely preterm and term (T1 relaxation time/T2 relaxation time: P < .001), and preterm and term infants (T1 relaxation time: P < .001/T2 relaxation time: P = .006). CONCLUSIONS Quantitative MR parameters allow preterm and term neonates to be differentiated. T1 and T2 relaxation time metrics of the midbrain allow differentiation between the different stages of prematurity. SyMRI allows for a quantitative assessment of incomplete brain maturation by providing tissue-specific properties while not exceeding a clinically acceptable imaging time.
Collapse
Affiliation(s)
- V Schmidbauer
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| | - G Dovjak
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| | - G Geisl
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| | - M Weber
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| | - M C Diogo
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| | - M S Yildirim
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| | - K Goeral
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics (K.G., K.K.-S., A.B.), Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - K Klebermass-Schrehof
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics (K.G., K.K.-S., A.B.), Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - A Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics (K.G., K.K.-S., A.B.), Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - D Prayer
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| | - G Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
| |
Collapse
|
29
|
Volpe J. Commentary - Cerebellar underdevelopment in the very preterm infant: Important and underestimated source of cognitive deficits. J Neonatal Perinatal Med 2021; 14:451-456. [PMID: 33967062 PMCID: PMC8673497 DOI: 10.3233/npm-210774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- J.J. Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
- Address for correspondence: Joseph J. Volpe, M.D., Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, 221 Longwood Avenue, Room 343C, Boston, MA 02115 USA. Tel.: +1 617 525 4145; E-mail:
| |
Collapse
|
30
|
Gu Q, Liu H, Ma J, Yuan J, Li X, Qiao L. A Narrative Review of Circular RNAs in Brain Development and Diseases of Preterm Infants. Front Pediatr 2021; 9:706012. [PMID: 34621711 PMCID: PMC8490812 DOI: 10.3389/fped.2021.706012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Circular RNAs (circRNAs) generated by back-splicing are the vital class of non-coding RNAs (ncRNAs). Circular RNAs are highly abundant and stable in eukaryotes, and many of them are evolutionarily conserved. They are blessed with higher expression in mammalian brains and could take part in the regulation of physiological and pathophysiological processes. In addition, premature birth is important in neurodevelopmental diseases. Brain damage in preterm infants may represent the main cause of long-term neurodevelopmental disorders in surviving babies. Until recently, more and more researches have been evidenced that circRNAs are involved in the pathogenesis of encephalopathy of premature. We aim at explaining neuroinflammation promoting the brain damage. In this review, we summarize the current findings of circRNAs properties, expression, and functions, as well as their significances in the neurodevelopmental impairments, white matter damage (WMD) and hypoxic-ischemic encephalopathy (HIE). So we think that circRNAs have a direct impact on neurodevelopment and brain injury, and will be a powerful tool in the repair of the injured immature brain. Even though their exact roles and mechanisms of gene regulation remain elusive, circRNAs have potential applications as diagnostic biomarkers for brain damage and the target for neuroprotective intervention.
Collapse
Affiliation(s)
- Qianying Gu
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Heng Liu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jingjing Ma
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiaming Yuan
- Department of Pediatrics, Tianchang People's Hospital, Anhui, China
| | - Xinger Li
- Department of Biobank, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lixing Qiao
- School of Medicine, Southeast University, Nanjing, China.,Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
31
|
Ophelders DR, Gussenhoven R, Klein L, Jellema RK, Westerlaken RJ, Hütten MC, Vermeulen J, Wassink G, Gunn AJ, Wolfs TG. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells 2020; 9:E1871. [PMID: 32785181 PMCID: PMC7464163 DOI: 10.3390/cells9081871] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.e., chorioamnionitis), hypoxia-ischemia, and various postnatal injurious triggers (i.e., oxidative stress, sepsis, mechanical ventilation, hemodynamic instability). These perinatal insults cause a self-perpetuating cascade of peripheral and cerebral inflammation that plays a critical role in the etiology of diffuse white and grey matter injuries that underlies a spectrum of connectivity deficits in survivors from extremely preterm birth. This review focuses on chorioamnionitis and hypoxia-ischemia, which are two important antenatal risk factors for preterm brain injury, and highlights the latest insights on its pathophysiology, potential treatment, and future perspectives to narrow the translational gap between preclinical research and clinical applications.
Collapse
Affiliation(s)
- Daan R.M.G. Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Rob J.J. Westerlaken
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthias C. Hütten
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jeroen Vermeulen
- Department of Pediatric Neurology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Tim G.A.M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|