1
|
Yang L, Cao G, Zhang S, Zhang W, Sun Y, Zhou J, Zhong T, Yuan Y, Liu T, Liu T, Guo L, Yu Y, Jiang X, Li G, Han J, Zhang T. Contrastive machine learning reveals species -shared and -specific brain functional architecture. Med Image Anal 2024; 101:103431. [PMID: 39689450 DOI: 10.1016/j.media.2024.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/19/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently entangled with each other and with other irrelevant factors. Here we develop a novel contrastive machine learning method, called shared-unique variation autoencoder (SU-VAE), to allow disentanglement of the species-shared and species-specific functional connectome variation between macaque and human brains on large-scale resting-state fMRI datasets. The method was validated by confirming that human-specific features are differentially related to cognitive scores, while features shared with macaque better capture sensorimotor ones. The projection of disentangled connectomes to the cortex revealed a gradient that reflected species divergence. In contrast to macaque, the introduction of human-specific connectomes to the shared ones enhanced network efficiency. We identified genes enriched on 'axon guidance' that could be related to the human-specific connectomes. The code contains the model and analysis can be found in https://github.com/BBBBrain/SU-VAE.
Collapse
Affiliation(s)
- Li Yang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Weihan Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yusong Sun
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Jingchao Zhou
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Tianyang Zhong
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yixuan Yuan
- The Department of Electronic Engineering, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Tao Liu
- School of Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, 30602, USA
| | - Lei Guo
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China
| | - Yongchun Yu
- Institutes of Brain Sciences, FuDan University, Shanghai, 200433, China
| | - Xi Jiang
- School of Life Sciences and Technology, University of Electronic Science and Technology, Chengdu, 611731, China
| | - Gang Li
- Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Junwei Han
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China.
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnic University, Xi'an, 710072, China.
| |
Collapse
|
2
|
Pereira-Obilinovic U, Froudist-Walsh S, Wang XJ. Cognitive network interactions through communication subspaces in large-scale models of the neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621513. [PMID: 39554020 PMCID: PMC11566003 DOI: 10.1101/2024.11.01.621513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The neocortex-wide neural activity is organized into distinct networks of areas engaged in different cognitive processes. To elucidate the underlying mechanism of flexible network reconfiguration, we developed connectivity-constrained macaque and human whole-cortex models. In our model, within-area connectivity consists of a mixture of symmetric, asymmetric, and random motifs that give rise to stable (attractor) or transient (sequential) heterogeneous dynamics. Assuming sparse low-rank plus random inter-areal connectivity, we show that our model captures key aspects of the cognitive networks' dynamics and interactions observed experimentally. In particular, the anti-correlation between the default mode network and the dorsal attention network. Communication between networks is shaped by the alignment of long-range communication subspaces with local connectivity motifs and is switchable in a bottom-up salience-dependent routing mechanism. Furthermore, the frontoparietal multiple-demand network displays a coexistence of stable and dynamic coding, suitable for top-down cognitive control. Our work provides a theoretical framework for understanding the dynamic routing in the cortical networks during cognition.
Collapse
|
3
|
Wei W, Benn RA, Scholz R, Shevchenko V, Klatzmann U, Alberti F, Chiou R, Wassermann D, Vanderwal T, Smallwood J, Margulies DS. A function-based mapping of sensory integration along the cortical hierarchy. Commun Biol 2024; 7:1593. [PMID: 39613829 PMCID: PMC11607388 DOI: 10.1038/s42003-024-07224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions. Sensory angle converts associations with three primary sensory signals to an angle representing the proportional contributions of different sensory modalities. This dimension identifies differences between brain states and emphasizes how sensory integration changes flexibly in response to varying cognitive demands. Furthermore, meta-analytic functional decoding with our model highlights the close relationship between cognitive functions and sensory integration, showing its potential for future research of human cognition through sensory information processing.
Collapse
Affiliation(s)
- Wei Wei
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - R Austin Benn
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Scholz
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Max Planck School of Cognition, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Victoria Shevchenko
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ulysse Klatzmann
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Francesco Alberti
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rocco Chiou
- School of Psychology, University of Surrey, Surrey, United Kingdom
| | | | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of bidirectional network cores in the brain with perceptual awareness and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591001. [PMID: 38746271 PMCID: PMC11092575 DOI: 10.1101/2024.04.30.591001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores were composed of regions previously reported to be affected by electrical stimulation that altered conscious perception. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Ouchi K, Yoshimaru D, Takemura A, Yamamoto S, Hayashi R, Higo N, Obara M, Sugase-Miyamoto Y, Tsurugizawa T. Multi-scale hierarchical brain regions detect individual and interspecies variations of structural connectivity in macaque monkeys and humans. Neuroimage 2024; 302:120901. [PMID: 39447715 DOI: 10.1016/j.neuroimage.2024.120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Macaques are representative animal models in translational research. However, the distinct shape and location of the brain regions between macaques and humans prevents us from comparing the brain structure directly. Here, we calculated structural connectivity (SC) with multi-scale hierarchical regions of interest (ROIs) to parcel out human and macaque brain into 8 (level 1 ROIs), 28 (level 2 ROIs), or 46 (level 3 ROIs) regions, which consist of anatomically and functionally defined level 4 ROIs (around 100 parcellation of the brain). The SC with the level 1 ROIs showed lower individual and interspecies variation in macaques and humans. SC with level 2 and 3 ROIs shows that the several regions in frontal, temporal and parietal lobe show distinct connectivity between macaques and humans. Lateral frontal cortex, motor cortex and auditory cortex were shown to be important areas for interspecies differences. These results provide insights to use macaques as animal models for translational study.
Collapse
Affiliation(s)
- Kazuya Ouchi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan
| | - Daisuke Yoshimaru
- Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan; Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato City Tokyo 105-8461, Japan
| | - Aya Takemura
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Shinya Yamamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryusuke Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Makoto Obara
- Philips Japan, 2-13-37 Kohnan, Minato-ku 108-8507, Tokyo, Japan
| | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan; Faculty of Engineering, Information and Systems, University of Tsukuba, Ibaraki 305-8573, Japan; Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato City Tokyo 105-8461, Japan.
| |
Collapse
|
6
|
Assimopoulos S, Warrington S, Bryant KL, Pszczolkowski S, Jbabdi S, Mars RB, Sotiropoulos SN. Generalising XTRACT tractography protocols across common macaque brain templates. Brain Struct Funct 2024; 229:1873-1888. [PMID: 38388696 PMCID: PMC11485040 DOI: 10.1007/s00429-024-02760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.
Collapse
Affiliation(s)
- Stephania Assimopoulos
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Katherine L Bryant
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stefan Pszczolkowski
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.
- Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Mars RB, Palomero-Gallagher N. Towards multi-modal, multi-species brain atlases: part two. Brain Struct Funct 2024; 229:1769-1772. [PMID: 39343839 DOI: 10.1007/s00429-024-02858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
8
|
Nashed JY, Gale DJ, Gallivan JP, Cook DJ. Changes in cortical manifold structure following stroke and its relation to behavioral recovery in the male macaque. Nat Commun 2024; 15:9005. [PMID: 39424864 PMCID: PMC11489416 DOI: 10.1038/s41467-024-53365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Stroke, a major cause of disability, disrupts brain function and motor skills. Previous research has mainly focused on reorganization of the motor system post-stroke, but the effects on other brain areas and their influence on recovery is poorly understood. Here, we use functional neuroimaging in a nonhuman primate model (23 male Cynomolgus Macaques), we explore how ischemic stroke affects whole-brain cortical architecture and its relation to spontaneous behavioral recovery. By projecting patterns of cortical functional connectivity onto a low-dimensional manifold space, we find that several regions in both sensorimotor cortex and higher-order transmodal cortex exhibit significant shifts in their manifold embedding from pre- to post-stroke. Furthermore, we observe that changes in default mode and limbic network regions, and not preserved sensorimotor cortical regions, are associated with animal behavioral recovery post-stroke. These results establish the whole-brain functional changes associated with stroke, and suggest an important role for higher-order transmodal cortex in post-stroke outcomes.
Collapse
Affiliation(s)
- Joseph Y Nashed
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- School of Medicine, Queen's University, Kingston, ON, Canada.
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Department of Psychology, Queen's University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- School of Medicine, Queen's University, Kingston, ON, Canada
- Division of Neurosurgery, Department of Surgery, Queen's University, Kingston, ON, Canada
| |
Collapse
|
9
|
Kim JZ, Larsen B, Parkes L. Shaping dynamical neural computations using spatiotemporal constraints. Biochem Biophys Res Commun 2024; 728:150302. [PMID: 38968771 DOI: 10.1016/j.bbrc.2024.150302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Dynamics play a critical role in computation. The principled evolution of states over time enables both biological and artificial networks to represent and integrate information to make decisions. In the past few decades, significant multidisciplinary progress has been made in bridging the gap between how we understand biological versus artificial computation, including how insights gained from one can translate to the other. Research has revealed that neurobiology is a key determinant of brain network architecture, which gives rise to spatiotemporally constrained patterns of activity that underlie computation. Here, we discuss how neural systems use dynamics for computation, and claim that the biological constraints that shape brain networks may be leveraged to improve the implementation of artificial neural networks. To formalize this discussion, we consider a natural artificial analog of the brain that has been used extensively to model neural computation: the recurrent neural network (RNN). In both the brain and the RNN, we emphasize the common computational substrate atop which dynamics occur-the connectivity between neurons-and we explore the unique computational advantages offered by biophysical constraints such as resource efficiency, spatial embedding, and neurodevelopment.
Collapse
Affiliation(s)
- Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA.
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, USA
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Gutierrez-Barragan D, Ramirez JSB, Panzeri S, Xu T, Gozzi A. Evolutionarily conserved fMRI network dynamics in the mouse, macaque, and human brain. Nat Commun 2024; 15:8518. [PMID: 39353895 PMCID: PMC11445567 DOI: 10.1038/s41467-024-52721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Evolutionarily relevant networks have been previously described in several mammalian species using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly dynamic and continually evolves over timescales of seconds. Whether the dynamic organization of resting-state fMRI network activity is conserved across mammalian species remains unclear. Using frame-wise clustering of fMRI time-series, we find that intrinsic fMRI network dynamics in awake male macaques and humans is characterized by recurrent transitions between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-modes), three of which are also plausibly represented in the male rodent brain. Importantly, in all species C-modes exhibit species-invariant dynamic features, including preferred occurrence at specific phases of fMRI global signal fluctuations, and a state transition structure compatible with infraslow coupled oscillator dynamics. Moreover, dominant C-mode occurrence reconstitutes the static organization of the fMRI connectome in all species, and is predictive of ranking of corresponding fMRI connectivity gradients. These results reveal a set of species-invariant principles underlying the dynamic organization of fMRI networks in mammalian species, and offer novel opportunities to relate fMRI network findings across the phylogenetic tree.
Collapse
Affiliation(s)
- Daniel Gutierrez-Barragan
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | - Julian S B Ramirez
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ting Xu
- Center for the Developing Brain. Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Lab, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
| |
Collapse
|
11
|
Royer J, Paquola C, Valk SL, Kirschner M, Hong SJ, Park BY, Bethlehem RAI, Leech R, Yeo BTT, Jefferies E, Smallwood J, Margulies D, Bernhardt BC. Gradients of Brain Organization: Smooth Sailing from Methods Development to User Community. Neuroinformatics 2024; 22:623-634. [PMID: 38568476 DOI: 10.1007/s12021-024-09660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 11/21/2024]
Abstract
Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization.
Collapse
Affiliation(s)
- Jessica Royer
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Data Science, Inha University, Incheon, South Korea
- Department of Statistics and Data Science, Inha University, Incheon, South Korea
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Paris, France
| | - Boris C Bernhardt
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Zhu J, Garin CM, Qi XL, Machado A, Wang Z, Hamed SB, Stanford TR, Salinas E, Whitlow CT, Anderson AW, Zhou XM, Calabro FJ, Luna B, Constantinidis C. Brain structure and activity predicting cognitive maturation in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.608315. [PMID: 39229176 PMCID: PMC11370567 DOI: 10.1101/2024.08.23.608315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive abilities of primates, including humans, continue to improve through adolescence 1,2. While a range of changes in brain structure and connectivity have been documented 3,4, how they affect neuronal activity that ultimately determines performance of cognitive functions remains unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive development. The developmental trajectory of neural activity in the prefrontal cortex accounted remarkably well for working memory improvements. While complex aspects of activity changed progressively during adolescence, such as the rotation of stimulus representation in multidimensional neuronal space, which has been implicated in cognitive flexibility, even simpler attributes, such as the baseline firing rate in the period preceding a stimulus appearance had predictive power over behavior. Unexpectedly, decreases in brain volume and thickness, which are widely thought to underlie cognitive changes in humans 5 did not predict well the trajectory of neural activity or cognitive performance changes. Whole brain cortical volume in particular, exhibited an increase and reached a local maximum in late adolescence, at a time of rapid behavioral improvement. Maturation of long-distance white matter tracts linking the frontal lobe with areas of the association cortex and subcortical regions best predicted changes in neuronal activity and behavior. Our results provide evidence that optimization of neural activity depending on widely distributed circuitry effects cognitive development in adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Clément M Garin
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Xue-Lian Qi
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Anna Machado
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Zhengyang Wang
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Terrence R Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
13
|
Cui Y, Li C, Lu Y, Ma L, Cheng L, Cao L, Yu S, Jiang T. Multimodal Connectivity-Based Individual Parcellation and Analysis for Humans and Rhesus Monkeys. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3343-3353. [PMID: 38656866 DOI: 10.1109/tmi.2024.3392946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Individual brains vary greatly in morphology, connectivity and organization. Individualized brain parcellation is capable of precisely localizing subject-specific functional regions. However, most individualization approaches have examined single modalities of data and have not generalized to nonhuman primates. The present study proposed a novel multimodal connectivity-based individual parcellation (MCIP) method, which optimizes within-region homogeneity, spatial continuity and similarity to a reference atlas with the fusion of personal functional and anatomical connectivity. Comprehensive evaluation demonstrated that MCIP outperformed state-of-the-art multimodal individualization methods in terms of functional and anatomical homogeneity, predictability of cognitive measures, heritability, reproducibility and generalizability across species. Comparative investigation showed a higher topographic variability in humans than that in macaques. Therefore, MCIP provides improved accurate and reliable mapping of brain functional regions over existing methods at an individual level across species, and could facilitate comparative and translational neuroscience research.
Collapse
|
14
|
Vickery S, Patil KR, Dahnke R, Hopkins WD, Sherwood CC, Caspers S, Eickhoff SB, Hoffstaedter F. The uniqueness of human vulnerability to brain aging in great ape evolution. SCIENCE ADVANCES 2024; 10:eado2733. [PMID: 39196942 PMCID: PMC11352902 DOI: 10.1126/sciadv.ado2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Aging is associated with progressive gray matter loss in the brain. This spatially specific, morphological change over the life span in humans is also found in chimpanzees, and the comparison between these great ape species provides a unique evolutionary perspective on human brain aging. Here, we present a data-driven, comparative framework to explore the relationship between gray matter atrophy with age and recent cerebral expansion in the phylogeny of chimpanzees and humans. In humans, we show a positive relationship between cerebral aging and cortical expansion, whereas no such relationship was found in chimpanzees. This human-specific association between strong aging effects and large relative cortical expansion is particularly present in higher-order cognitive regions of the ventral prefrontal cortex and supports the "last-in-first-out" hypothesis for brain maturation in recent evolutionary development of human faculties.
Collapse
Affiliation(s)
- Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Kaustubh R. Patil
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| |
Collapse
|
15
|
Alldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, Shmuel A, Styner M, Sullivan E, Thiele A, Todorov O, Tsao D, Tusche A, Vlasova R, Wang Z, Wang L, Wang J, Weiss A, Wilson C, Yacoub E, Zarco W, Zhou Y, Zhu J, Margulies D, Fair D, Schroeder C, Milham M, Xu T. Brain Charts for the Rhesus Macaque Lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610193. [PMID: 39257737 PMCID: PMC11383706 DOI: 10.1101/2024.08.28.610193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
Collapse
Affiliation(s)
- S. Alldritt
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| | | | | | - R. Bethlehem
- University of Cambridge, Department of Psychology
| | | | | | | | | | | | | | | | - A. Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
| | - D.G. Amaral
- Department of Psychiatry and Behavioral Sciences and The MIND Institute
- University of California Davis
| | - C. Amiez
- Stem Cell and Brain Research Institute
| | | | - M.G. Baxter
- Section on Comparative Medicine, Wake Forest University School of Medicine
| | | | - J. Bennett
- University of California Davis, Dept of Psychology
| | - O. Berkner
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - B. Butler
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - A. Chen
- East China Normal University
| | | | | | | | | | | | | | | | | | - A. Falchier
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - A. Fox
- University of California Davis
| | | | - M. Froesel
- Institute for Cognitive Science Marc Jeannerod
| | | | | | | | - M. Gacoin
- Institute for Cognitive Science Marc Jeannerod
| | | | | | - C.M. Garin
- Department of Biomedical Engineering, Vanderbilt University
- Institut des Sciences Cognitives Marc Jeannerod (ISC-MJ)
| | | | - C. Guedj
- Lyon Neuroscience Research Center, University of Geneva
| | | | - S.B. Hamed
- Institute for Cognitive Science Marc Jeannerod
| | | | - R. Hartig
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - B. Hiba
- Institute for Cognitive Science Marc Jeannerod
| | - B.R. Howell
- Emory National Primate Research Center, Emory University
- Fralin Biomedical Research Institute, Virginia Tech
- Carilion Department of Human Development and Family Science, Virginia Tech
| | | | | | | | - J. Karpf
- Oregon National Primate Research Center
| | - S. Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University
| | - C. Klink
- Netherlands Institute for Neuroscience
| | | | | | | | | | - K.N. Lala
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews
| | | | - G. Li
- University of North Carolina at Chapel Hill
| | - P. Lindenfors
- Institute for Futures Studies, Stockholm, Sweden
- Centre for Cultural Evolution & Department of Zoology, Stockholm University, Sweden
| | - G. Linn
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - K. Masiello
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | - M. Meunier
- Lyon Neuroscience Research Center, ImpAct Team
| | | | | | | | - J. Nagy
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | | | | | - M. Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate Research
| | | | | | - M. Pinsk
- Princeton Neuroscience Institute, Princeton University
| | | | - E. Procyk
- Stem Cell and Brain Research Institute
| | - R. Rajimehr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - S.M. Reader
- Department of Biology, Utrecht University
- Department of Biology, McGill University
| | | | | | - B.E. Russ
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - J. Sallet
- University of Oxford
- INSERM Stem Cell & Brain Research Institute
| | - M.M. Sanchez
- Emory National Primate Research Center; Emory University
- Department of Psychiatry & Behavioral Sciences, School of Medicine
| | | | - C.M. Schwiedrzik
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Cognitive Neurobiology
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen
- Perception and Plasticity Group, German Primate Center – Leibniz Institute for Primate Research
| | - J.A. Scott
- Department of Bioengineering, Santa Clara University
| | | | | | | | - M. Styner
- University of North Carolina at Chapel Hill
| | | | | | - O.S. Todorov
- Department of Biology and Helmholtz Institute, Utrecht University
| | - D. Tsao
- Department of Computation and Neural Systems, California Institute of Technology
| | | | - R. Vlasova
- University of North Carolina at Chapel Hill
| | | | - L. Wang
- East China Normal University
| | - J. Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | | | | | | | | | - Y. Zhou
- Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University
| | - J. Zhu
- Department of Biomedical Engineering, Vanderbilt University
| | | | | | - C. Schroeder
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
- Deptartment of Psychiatry, Neurology and Neurosurgery, Columbia University
| | - M. Milham
- Child Mind Institute
- Nathan Kline Institute
| | - T. Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| |
Collapse
|
16
|
Lu Y, Cui Y, Cao L, Dong Z, Cheng L, Wu W, Wang C, Liu X, Liu Y, Zhang B, Li D, Zhao B, Wang H, Li K, Ma L, Shi W, Li W, Ma Y, Du Z, Zhang J, Xiong H, Luo N, Liu Y, Hou X, Han J, Sun H, Cai T, Peng Q, Feng L, Wang J, Paxinos G, Yang Z, Fan L, Jiang T. Macaque Brainnetome Atlas: A multifaceted brain map with parcellation, connection, and histology. Sci Bull (Beijing) 2024; 69:2241-2259. [PMID: 38580551 DOI: 10.1016/j.scib.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.
Collapse
Affiliation(s)
- Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhenwei Dong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luqi Cheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Wen Wu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Xinyi Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youtong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bokai Zhao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Zongchang Du
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoxiao Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinglu Han
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Hongji Sun
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Cai
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Qiang Peng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Linqing Feng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - George Paxinos
- Neuroscience Research Australia and The University of New South Wales, Sydney NSW 2031, Australia
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| |
Collapse
|
17
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
18
|
Eichert N, DeKraker J, Howard AFD, Huszar IN, Zhu S, Sallet J, Miller KL, Mars RB, Jbabdi S, Bernhardt BC. Hippocampal connectivity patterns echo macroscale cortical evolution in the primate brain. Nat Commun 2024; 15:5963. [PMID: 39013855 PMCID: PMC11252401 DOI: 10.1038/s41467-024-49823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques. However, while functional organisation in both species followed an anterior-posterior axis, we observed a marked reconfiguration in the latter across species, which mirrors a rudimentary integration of the default-mode-network in non-human primates. Here we show that microstructurally preserved regions like the hippocampus may still undergo functional reconfiguration in primate evolution, due to their embedding within heteromodal association networks.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Jordan DeKraker
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Silei Zhu
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jérôme Sallet
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- INSERM U1208 Stem Cell and Brain Research Institute, Univ Lyon, Bron, France
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Boris C Bernhardt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
19
|
Salagnon M, d'Errico F, Rigaud S, Mellet E. Assigning a social status from face adornments: an fMRI study. Brain Struct Funct 2024; 229:1103-1120. [PMID: 38546871 DOI: 10.1007/s00429-024-02786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 06/05/2024]
Abstract
For at least 150,000 years, the human body has been culturally modified by the wearing of personal ornaments and probably by painting with red pigment. The present study used functional magnetic resonance imaging to explore the brain networks involved in attributing social status from face decorations. Results showed the fusiform gyrus, orbitofrontal cortex, and salience network were involved in social encoding, categorization, and evaluation. The hippocampus and parahippocampus were activated due to the memory and associative skills required for the task, while the inferior frontal gyrus likely interpreted face ornaments as symbols. Resting-state functional connectivity analysis clarified the interaction between these regions. The study highlights the importance of these neural interactions in the symbolic interpretation of social markers on the human face, which were likely active in early Homo species and intensified with Homo sapiens populations as more complex technologies were developed to culturalize the human face.
Collapse
Affiliation(s)
- M Salagnon
- CNRS, CEA, IMN, UMR 5293, Université Bordeaux, Bordeaux, GIN, France
- Univ. Bordeaux, PACEA UMR 5199, CNRS, Pessac, France
| | - F d'Errico
- Univ. Bordeaux, PACEA UMR 5199, CNRS, Pessac, France
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| | - S Rigaud
- Univ. Bordeaux, PACEA UMR 5199, CNRS, Pessac, France
| | - E Mellet
- CNRS, CEA, IMN, UMR 5293, Université Bordeaux, Bordeaux, GIN, France.
| |
Collapse
|
20
|
Wang X, Krieger-Redwood K, Lyu B, Lowndes R, Wu G, Souter NE, Wang X, Kong R, Shafiei G, Bernhardt BC, Cui Z, Smallwood J, Du Y, Jefferies E. The Brain's Topographical Organization Shapes Dynamic Interaction Patterns That Support Flexible Behavior Based on Rules and Long-Term Knowledge. J Neurosci 2024; 44:e2223232024. [PMID: 38527807 PMCID: PMC11140685 DOI: 10.1523/jneurosci.2223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographical architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long-term memory is less relevant. In this way, our study suggests that the topographical organization of the FPCN and the connections it forms with distant regions of cortex are important influences on how this system supports flexible behavior.
Collapse
Affiliation(s)
- Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Baihan Lyu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rebecca Lowndes
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Guowei Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas E Souter
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Xiaokang Wang
- Department of Biomedical Engineering, University of California, Davis, California 95616
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jonathan Smallwood
- Department of Psychology, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - Yi Du
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Institute for Brain Research, Beijing 102206, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai 200031, China
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
21
|
Lazari A, Tachrount M, Valverde JM, Papp D, Beauchamp A, McCarthy P, Ellegood J, Grandjean J, Johansen-Berg H, Zerbi V, Lerch JP, Mars RB. The mouse motor system contains multiple premotor areas and partially follows human organizational principles. Cell Rep 2024; 43:114191. [PMID: 38717901 DOI: 10.1016/j.celrep.2024.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/10/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Mohamed Tachrount
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Juan Miguel Valverde
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70150 Kuopio, Finland
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul McCarthy
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Joanes Grandjean
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFL, 1015 Lausanne, Switzerland; CIBM Center for Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Mouse Imaging Centre, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
22
|
Mezias C, Huo B, Bota M, Jayakumar J, Mitra PP. Establishing neuroanatomical correspondences across mouse and marmoset brain structures. RESEARCH SQUARE 2024:rs.3.rs-4373678. [PMID: 38826382 PMCID: PMC11142350 DOI: 10.21203/rs.3.rs-4373678/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Interest in the common marmoset is growing due to evolutionarily proximity to humans compared to laboratory mice, necessitating a comparison of mouse and marmoset brain architectures, including connectivity and cell type distributions. Creating an actionable comparative platform is challenging since these brains have distinct spatial organizations and expert neuroanatomists disagree. We propose a general theoretical framework to relate named atlas compartments across taxa and use it to establish a detailed correspondence between marmoset and mice brains. Contrary to conventional wisdom that brain structures may be easier to relate at higher levels of the atlas hierarchy, we find that finer parcellations at the leaf levels offer greater reconcilability despite naming discrepancies. Utilizing existing atlases and associated literature, we created a list of leaf-level structures for both species and establish five types of correspondence between them. One-to-one relations were found between 43% of the structures in mouse and 47% in marmoset, whereas 25% of mouse and 10% of marmoset structures were not relatable. The remaining structures show a set of more complex mappings which we quantify. Implementing this correspondence with volumetric atlases of the two species, we make available a computational tool for querying and visualizing relationships between the corresponding brains. Our findings provide a foundation for computational comparative analyses of mesoscale connectivity and cell type distributions in the laboratory mouse and the common marmoset.
Collapse
Affiliation(s)
- Christopher Mezias
- Cold Spring Harbor Laboratory, Department of Neuroscience, 1 Bungtown Rd, Cold Spring Harbor, NY
| | - Bingxing Huo
- Broad Institute of MIT and Harvard, Data Sciences Platform Division, 105 Broadway, Cambridge, MA
| | - Mihail Bota
- 15 Cismelei, 15 Bl. Constanta, Romania, 900842
| | - Jaikishan Jayakumar
- Indian Institute of Technology-Madras, Center for Computational Brain Research, Chennai, TM, India
| | - Partha P. Mitra
- Cold Spring Harbor Laboratory, Department of Neuroscience, 1 Bungtown Rd, Cold Spring Harbor, NY
| |
Collapse
|
23
|
Zhang S, Zhang T, Cao G, Zhou J, He Z, Li X, Ren Y, Liu T, Jiang X, Guo L, Han J, Liu T. Species -shared and -unique gyral peaks on human and macaque brains. eLife 2024; 12:RP90182. [PMID: 38635322 PMCID: PMC11026093 DOI: 10.7554/elife.90182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Jingchao Zhou
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Zhibin He
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Xiao Li
- School of Information Technology, Northwest UniversityXi'anChina
| | - Yudan Ren
- School of Information Technology, Northwest UniversityXi'anChina
| | - Tao Liu
- College of Science, North China University of Science and TechnologyTangshanChina
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Lei Guo
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Junwei Han
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of GeorgiaAthensUnited States
| |
Collapse
|
24
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
25
|
Luppi AI, Rosas FE, Mediano PAM, Menon DK, Stamatakis EA. Information decomposition and the informational architecture of the brain. Trends Cogn Sci 2024; 28:352-368. [PMID: 38199949 DOI: 10.1016/j.tics.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024]
Abstract
To explain how the brain orchestrates information-processing for cognition, we must understand information itself. Importantly, information is not a monolithic entity. Information decomposition techniques provide a way to split information into its constituent elements: unique, redundant, and synergistic information. We review how disentangling synergistic and redundant interactions is redefining our understanding of integrative brain function and its neural organisation. To explain how the brain navigates the trade-offs between redundancy and synergy, we review converging evidence integrating the structural, molecular, and functional underpinnings of synergy and redundancy; their roles in cognition and computation; and how they might arise over evolution and development. Overall, disentangling synergistic and redundant information provides a guiding principle for understanding the informational architecture of the brain and cognition.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - David K Menon
- Department of Medicine, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Xia J, Liu C, Li J, Meng Y, Yang S, Chen H, Liao W. Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets. Nat Commun 2024; 15:2289. [PMID: 38480767 PMCID: PMC10937940 DOI: 10.1038/s41467-024-46651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Deciphering the complex relationship between neuroanatomical connections and functional activity in primate brains remains a daunting task, especially regarding the influence of monosynaptic connectivity on cortical activity. Here, we investigate the anatomical-functional relationship and decompose the neuronal-tracing connectome of marmoset brains into a series of eigenmodes using graph signal processing. These cellular connectome eigenmodes effectively constrain the cortical activity derived from resting-state functional MRI, and uncover a patterned cellular-functional decoupling. This pattern reveals a spatial gradient from coupled dorsal-posterior to decoupled ventral-anterior cortices, and recapitulates micro-structural profiles and macro-scale hierarchical cortical organization. Notably, these marmoset-derived eigenmodes may facilitate the inference of spontaneous cortical activity and functional connectivity of homologous areas in humans, highlighting the potential generalizing of the connectomic constraints across species. Collectively, our findings illuminate how neuronal-tracing connectome eigenmodes constrain cortical activity and improve our understanding of the brain's anatomical-functional relationship.
Collapse
Affiliation(s)
- Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Cirong Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Siqi Yang
- School of Cybersecurity, Chengdu University of Information Technology, Chengdu, 610225, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|
27
|
Grandjean J, Lake EMR, Pagani M, Mandino F. What N Is N-ough for MRI-Based Animal Neuroimaging? eNeuro 2024; 11:ENEURO.0531-23.2024. [PMID: 38499355 PMCID: PMC10950324 DOI: 10.1523/eneuro.0531-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Fueled by the recent and controversial brain-wide association studies in humans, the animal neuroimaging community has also begun questioning whether using larger sample sizes is necessary for ethical and effective scientific progress. In this opinion piece, we illustrate two opposing views on sample size extremes in MRI-based animal neuroimaging.
Collapse
Affiliation(s)
- Joanes Grandjean
- Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500HB, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen 6500HB, The Netherlands
| | - Evelyn M R Lake
- Departments of Radiology and Biomedical Imaging, New Haven, Connecticut 06519
- Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut 06519
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto 38068, Italy
- IMT School for Advanced Studies, Lucca 55100, Italy
| | - Francesca Mandino
- Departments of Radiology and Biomedical Imaging, New Haven, Connecticut 06519
| |
Collapse
|
28
|
Betzel R, Puxeddu MG, Seguin C, Bazinet V, Luppi A, Podschun A, Singleton SP, Faskowitz J, Parakkattu V, Misic B, Markett S, Kuceyeski A, Parkes L. Controlling the human connectome with spatially diffuse input signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581006. [PMID: 38463980 PMCID: PMC10925126 DOI: 10.1101/2024.02.27.581006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The human brain is never at "rest"; its activity is constantly fluctuating over time, transitioning from one brain state-a whole-brain pattern of activity-to another. Network control theory offers a framework for understanding the effort - energy - associated with these transitions. One branch of control theory that is especially useful in this context is "optimal control", in which input signals are used to selectively drive the brain into a target state. Typically, these inputs are introduced independently to the nodes of the network (each input signal is associated with exactly one node). Though convenient, this input strategy ignores the continuity of cerebral cortex - geometrically, each region is connected to its spatial neighbors, allowing control signals, both exogenous and endogenous, to spread from their foci to nearby regions. Additionally, the spatial specificity of brain stimulation techniques is limited, such that the effects of a perturbation are measurable in tissue surrounding the stimulation site. Here, we adapt the network control model so that input signals have a spatial extent that decays exponentially from the input site. We show that this more realistic strategy takes advantage of spatial dependencies in structural connectivity and activity to reduce the energy (effort) associated with brain state transitions. We further leverage these dependencies to explore near-optimal control strategies such that, on a per-transition basis, the number of input signals required for a given control task is reduced, in some cases by two orders of magnitude. This approximation yields network-wide maps of input site density, which we compare to an existing database of functional, metabolic, genetic, and neurochemical maps, finding a close correspondence. Ultimately, not only do we propose a more efficient framework that is also more adherent to well-established brain organizational principles, but we also posit neurobiologically grounded bases for optimal control.
Collapse
Affiliation(s)
- Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
- Program in Neuroscience, Indiana University, Bloomington IN 47401
| | - Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Andrea Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | | | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
| | - Vibin Parakkattu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington IN 47401
- Cognitive Science Program, Indiana University, Bloomington IN 47401
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY
- Department of Computational Biology, Cornell University, Ithaca, NY
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
29
|
Zhang S, Zhang T, Cao G, Zhou J, He Z, Li X, Ren Y, Liu T, Jiang X, Guo L, Han J, Liu T. Species -Shared and -Unique Gyral Peaks on Human and Macaque Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550760. [PMID: 37546923 PMCID: PMC10402126 DOI: 10.1101/2023.07.26.550760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, we defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. In this study, we identified shared and unique gyral peaks in human and macaque, and investigated the similarities and differences in the spatial distribution, anatomical morphology, and functional connectivity of them.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Jingchao Zhou
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xiao Li
- School of Information Technology, Northwest University, Xi’an, China
| | - Yudan Ren
- School of Information Technology, Northwest University, Xi’an, China
| | - Tao Liu
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Okuno T, Ichinohe N, Woodward A. A reappraisal of the default mode and frontoparietal networks in the common marmoset brain. FRONTIERS IN NEUROIMAGING 2024; 2:1345643. [PMID: 38264540 PMCID: PMC10803424 DOI: 10.3389/fnimg.2023.1345643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
In recent years the common marmoset homolog of the human default mode network (DMN) has been a hot topic of discussion in the marmoset research field. Previously, the posterior cingulate cortex regions (PGM, A19M) and posterior parietal cortex regions (LIP, MIP) were defined as the DMN, but some studies claim that these form the frontoparietal network (FPN). We restarted from a neuroanatomical point of view and identified two DMN candidates: Comp-A (which has been called both the DMN and FPN) and Comp-B. We performed GLM analysis on auditory task-fMRI and found Comp-B to be more appropriate as the DMN, and Comp-A as the FPN. Additionally, through fingerprint analysis, a DMN and FPN in the tasking human was closer to the resting common marmoset. The human DMN appears to have an advanced function that may be underdeveloped in the common marmoset brain.
Collapse
Affiliation(s)
- Takuto Okuno
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noritaka Ichinohe
- Laboratory for Ultrastructure Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Alexander Woodward
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
31
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
32
|
Bagautdinova J, Bourque J, Sydnor VJ, Cieslak M, Alexander-Bloch AF, Bertolero MA, Cook PA, Gur RE, Gur RC, Hu F, Larsen B, Moore TM, Radhakrishnan H, Roalf DR, Shinohara RT, Tapera TM, Zhao C, Sotiras A, Davatzikos C, Satterthwaite TD. Development of white matter fiber covariance networks supports executive function in youth. Cell Rep 2023; 42:113487. [PMID: 37995188 PMCID: PMC10795769 DOI: 10.1016/j.celrep.2023.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
During adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning, we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber covariance networks aligned with known major tracts, while also capturing distinct patterns of spatial covariance across distributed white matter locations. Most networks showed age-related increases in fiber network properties, which were also related to developmental changes in executive function. This study delineates data-driven patterns of white matter development that support cognition.
Collapse
Affiliation(s)
- Joëlle Bagautdinova
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josiane Bourque
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell A Bertolero
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamsanandini Radhakrishnan
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russel T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tinashe M Tapera
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenying Zhao
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Berger T, Xu T, Opitz A. Systematic cross-species comparison of prefrontal cortex functional networks targeted via Transcranial Magnetic Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572653. [PMID: 38187657 PMCID: PMC10769354 DOI: 10.1101/2023.12.20.572653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation method that safely modulates neural activity in vivo. Its precision in targeting specific brain networks makes TMS invaluable in diverse clinical applications. For example, TMS is used to treat depression by targeting prefrontal brain networks and their connection to other brain regions. However, despite its widespread use, the underlying neural mechanisms of TMS are not completely understood. Non-human primates (NHPs) offer an ideal model to study TMS mechanisms through invasive electrophysiological recordings. As such, bridging the gap between NHP experiments and human applications is imperative to ensure translational relevance. Here, we systematically compare the TMS-targeted functional networks in the prefrontal cortex in humans and NHPs. To conduct this comparison, we combine TMS electric field modeling in humans and macaques with resting-state functional magnetic resonance imaging (fMRI) data to compare the functional networks targeted via TMS across species. We identified distinct stimulation zones in macaque and human models, each exhibiting variations in the impacted networks (macaque: Frontoparietal Network, Somatomotor Network; human: Frontoparietal Network, Default Network). We identified differences in brain gyrification and functional organization across species as the underlying cause of found network differences. The TMS-network profiles we identified will allow researchers to establish consistency in network activation across species, aiding in the translational efforts to develop improved TMS functional network targeting approaches.
Collapse
|
34
|
Keller AS, Pines AR, Shanmugan S, Sydnor VJ, Cui Z, Bertolero MA, Barzilay R, Alexander-Bloch AF, Byington N, Chen A, Conan GM, Davatzikos C, Feczko E, Hendrickson TJ, Houghton A, Larsen B, Li H, Miranda-Dominguez O, Roalf DR, Perrone A, Shetty A, Shinohara RT, Fan Y, Fair DA, Satterthwaite TD. Personalized functional brain network topography is associated with individual differences in youth cognition. Nat Commun 2023; 14:8411. [PMID: 38110396 PMCID: PMC10728159 DOI: 10.1038/s41467-023-44087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam R Pines
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sheila Shanmugan
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Maxwell A Bertolero
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Andrew Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory M Conan
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Alisha Shetty
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Griffa A, Mach M, Dedelley J, Gutierrez-Barragan D, Gozzi A, Allali G, Grandjean J, Van De Ville D, Amico E. Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice. Nat Commun 2023; 14:8216. [PMID: 38081838 PMCID: PMC10713651 DOI: 10.1038/s41467-023-43971-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.
Collapse
Affiliation(s)
- Alessandra Griffa
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | - Mathieu Mach
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Julien Dedelley
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gilles Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN, Nijmegen, The Netherlands
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
36
|
Pagani M, Gutierrez-Barragan D, de Guzman AE, Xu T, Gozzi A. Mapping and comparing fMRI connectivity networks across species. Commun Biol 2023; 6:1238. [PMID: 38062107 PMCID: PMC10703935 DOI: 10.1038/s42003-023-05629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.
Collapse
Affiliation(s)
- Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - A Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ting Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
37
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
38
|
Magielse N, Heuer K, Toro R, Schutter DJLG, Valk SL. A Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1293-1307. [PMID: 36417091 PMCID: PMC10657313 DOI: 10.1007/s12311-022-01495-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
The longstanding idea that the cerebral cortex is the main neural correlate of human cognition can be elaborated by comparative analyses along the vertebrate phylogenetic tree that support the view that the cerebello-cerebral system is suited to support non-motor functions more generally. In humans, diverse accounts have illustrated cerebellar involvement in cognitive functions. Although the neocortex, and its transmodal association cortices such as the prefrontal cortex, have become disproportionately large over primate evolution specifically, human neocortical volume does not appear to be exceptional relative to the variability within primates. Rather, several lines of evidence indicate that the exceptional volumetric increase of the lateral cerebellum in conjunction with its connectivity with the cerebral cortical system may be linked to non-motor functions and mental operation in primates. This idea is supported by diverging cerebello-cerebral adaptations that potentially coevolve with cognitive abilities across other vertebrates such as dolphins, parrots, and elephants. Modular adaptations upon the vertebrate cerebello-cerebral system may thus help better understand the neuroevolutionary trajectory of the primate brain and its relation to cognition in humans. Lateral cerebellar lobules crura I-II and their reciprocal connections to the cerebral cortical association areas appear to have substantially expanded in great apes, and humans. This, along with the notable increase in the ventral portions of the dentate nucleus and a shift to increased relative prefrontal-cerebellar connectivity, suggests that modular cerebellar adaptations support cognitive functions in humans. In sum, we show how comparative neuroscience provides new avenues to broaden our understanding of cerebellar and cerebello-cerebral functions in the context of cognition.
Collapse
Affiliation(s)
- Neville Magielse
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Katja Heuer
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roberto Toro
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
39
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. RESEARCH SQUARE 2023:rs.3.rs-3569352. [PMID: 38076888 PMCID: PMC10705693 DOI: 10.21203/rs.3.rs-3569352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The brainstem is a fundamental component of the central nervous system yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. Here we use high-resolution 7 Tesla fMRI to derive a functional connectome encompassing cortex as well as 58 brainstem nuclei spanning the midbrain, pons and medulla. We identify a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as multiple emergent phenomena including neurophysiological oscillatory rhythms, patterns of cognitive functional specialization, and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicate all findings using 3 Tesla data from the same participants. Collectively, we find that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson’s Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - James M. Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
40
|
Kim JZ, Larsen B, Parkes L. Shaping dynamical neural computations using spatiotemporal constraints. ARXIV 2023:arXiv:2311.15572v1. [PMID: 38076517 PMCID: PMC10705584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Dynamics play a critical role in computation. The principled evolution of states over time enables both biological and artificial networks to represent and integrate information to make decisions. In the past few decades, significant multidisciplinary progress has been made in bridging the gap between how we understand biological versus artificial computation, including how insights gained from one can translate to the other. Research has revealed that neurobiology is a key determinant of brain network architecture, which gives rise to spatiotemporally constrained patterns of activity that underlie computation. Here, we discuss how neural systems use dynamics for computation, and claim that the biological constraints that shape brain networks may be leveraged to improve the implementation of artificial neural networks. To formalize this discussion, we consider a natural artificial analog of the brain that has been used extensively to model neural computation: the recurrent neural network (RNN). In both the brain and the RNN, we emphasize the common computational substrate atop which dynamics occur-the connectivity between neurons-and we explore the unique computational advantages offered by biophysical constraints such as resource efficiency, spatial embedding, and neurodevelopment.
Collapse
Affiliation(s)
- Jason Z. Kim
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota
| | - Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia reduces the uniqueness of brain connectivity across individuals and across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566332. [PMID: 38014199 PMCID: PMC10680788 DOI: 10.1101/2023.11.08.566332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The human brain is characterised by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain: both with respect to the brains of other individuals, and the brains of another species. We report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organised: it co-localises with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol, and reversed upon recovery. Providing convergent evidence, we show that under anaesthesia the functional connectivity of the human brain becomes more similar to the macaque brain. Finally, anaesthesia diminishes the match between spontaneous brain activity and meta-analytic brain patterns aggregated from the NeuroSynth engine. Collectively, the present results reveal that anaesthetised human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- Neuro-X Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
42
|
Dunbar RIM. The origins and function of musical performance. Front Psychol 2023; 14:1257390. [PMID: 38022957 PMCID: PMC10667447 DOI: 10.3389/fpsyg.2023.1257390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Music is widely recognised as a human universal, yet there is no agreed explanation for its function, or why and when it evolved. I summarise experimental evidence that the primary function of musicking lies in social bonding, both at the dyadic and community levels, via the effect that performing any form of music has on the brain's endorphin system (the principal neurohormonal basis for social bonding in primates). The many other functions associated with music-making (mate choice, pleasure, coalition signalling, etc) are all better understood as derivative of this, either as secondary selection pressures or as windows of evolutionary opportunity (exaptations). If music's function is primarily as an adjunct of the social bonding mechanism (a feature it shares with laughter, feasting, storytelling and the rituals of religion), then reverse engineering the problem suggests that the capacity for music-making most likely evolved with the appearance of archaic humans. This agrees well with anatomical evidence for the capacity to sing.
Collapse
Affiliation(s)
- Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Radcliffe Quarter, Oxford, United Kingdom
| |
Collapse
|
43
|
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, Valk SL. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity. PLoS Biol 2023; 21:e3002365. [PMID: 37943873 PMCID: PMC10684102 DOI: 10.1371/journal.pbio.3002365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.
Collapse
Affiliation(s)
- Amin Saberi
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Meike D. Hettwer
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
44
|
Chiou R, Margulies D, Soltanlou M, Jefferies E, Kadosh RC. Semantic cognition versus numerical cognition: a topographical perspective. Trends Cogn Sci 2023; 27:993-995. [PMID: 37634952 DOI: 10.1016/j.tics.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
Semantic cognition and numerical cognition are dissociable faculties with separable neural mechanisms. However, recent advances in the cortical topography of the temporal and parietal lobes have revealed a common organisational principle for the neural representations of semantics and numbers. We discuss their convergence and divergence through the prism of topography.
Collapse
Affiliation(s)
- Rocco Chiou
- School of Psychology, University of Surrey, Guildford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Daniel Margulies
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; The Integrative Neuroscience and Cognition Center, University of Paris, Paris, France
| | | | | | | |
Collapse
|
45
|
Hansen JY, Cauzzo S, Singh K, García-Gomar MG, Shine JM, Bianciardi M, Misic B. Integrating brainstem and cortical functional architectures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564245. [PMID: 37961347 PMCID: PMC10634864 DOI: 10.1101/2023.10.26.564245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The brainstem is a fundamental component of the central nervous system yet it is typically excluded from in vivo human brain mapping efforts, precluding a complete understanding of how the brainstem influences cortical function. Here we use high-resolution 7 Tesla fMRI to derive a functional connectome encompassing cortex as well as 58 brainstem nuclei spanning the midbrain, pons and medulla. We identify a compact set of integrative hubs in the brainstem with widespread connectivity with cerebral cortex. Patterns of connectivity between brainstem and cerebral cortex manifest as multiple emergent phenomena including neurophysiological oscillatory rhythms, patterns of cognitive functional specialization, and the unimodal-transmodal functional hierarchy. This persistent alignment between cortical functional topographies and brainstem nuclei is shaped by the spatial arrangement of multiple neurotransmitter receptors and transporters. We replicate all findings using 3 Tesla data from the same participants. Collectively, we find that multiple organizational features of cortical activity can be traced back to the brainstem.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Simone Cauzzo
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Parkinson’s Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - Kavita Singh
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - María Guadalupe García-Gomar
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - James M. Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bianciardi
- Brainstem Imaging Laboratory, Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard University, Boston, MA, USA
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
46
|
Zhu J, Margulies D, Qiu A. White matter functional gradients and their formation in adolescence. Cereb Cortex 2023; 33:10770-10783. [PMID: 37727985 DOI: 10.1093/cercor/bhad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
It is well known that functional magnetic resonance imaging (fMRI) is a widely used tool for studying brain activity. Recent research has shown that fluctuations in fMRI data can reflect functionally meaningful patterns of brain activity within the white matter. We leveraged resting-state fMRI from an adolescent population to characterize large-scale white matter functional gradients and their formation during adolescence. The white matter showed gray-matter-like unimodal-to-transmodal and sensorimotor-to-visual gradients with specific cognitive associations and a unique superficial-to-deep gradient with nonspecific cognitive associations. We propose two mechanisms for their formation in adolescence. One is a "function-molded" mechanism that may mediate the maturation of the transmodal white matter via the transmodal gray matter. The other is a "structure-root" mechanism that may support the mutual mediation roles of the unimodal and transmodal white matter maturation during adolescence. Thus, the spatial layout of the white matter functional gradients is in concert with the gray matter functional organization. The formation of the white matter functional gradients may be driven by brain anatomical wiring and functional needs.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Daniel Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 45 Rue des Saint-Pères, 75006 Paris, France
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- NUS (Suzhou) Research Institute, National University of Singapore, No. 377 Linquan Street, Suzhou 215000, China
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr, Singapore 117456, Singapore
- Institute of Data Science, National University of Singapore, 3 Research Link, #04-06, Singapore 117602, Singapore
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Kowloon, Hong Kong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
47
|
Hansen JY, Shafiei G, Voigt K, Liang EX, Cox SML, Leyton M, Jamadar SD, Misic B. Integrating multimodal and multiscale connectivity blueprints of the human cerebral cortex in health and disease. PLoS Biol 2023; 21:e3002314. [PMID: 37747886 PMCID: PMC10553842 DOI: 10.1371/journal.pbio.3002314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The brain is composed of disparate neural populations that communicate and interact with one another. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity all reflect how brain regions potentially interact with one another, a comprehensive study of how all these interregional relationships jointly reflect brain structure and function remains missing. Here, we systematically integrate 7 multimodal, multiscale types of interregional similarity ("connectivity modes") derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity, and electrophysiology in humans. We first show that for all connectivity modes, feature similarity decreases with distance and increases when regions are structurally connected. Next, we show that connectivity modes exhibit unique and diverse connection patterns, hub profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy of molecular connectivity modes-namely correlated gene expression and receptor similarity-that map onto multiple phenomena, including the rich club and patterns of abnormal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7 connectivity modes and show that the fused network maps onto major organizational features of the cortex including structural connectivity, intrinsic functional networks, and cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interregional relationships in the human cerebral cortex.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharina Voigt
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Emma X. Liang
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | | | - Marco Leyton
- Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
48
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
49
|
Sebenius I, Seidlitz J, Warrier V, Bethlehem RAI, Alexander-Bloch A, Mallard TT, Garcia RR, Bullmore ET, Morgan SE. Robust estimation of cortical similarity networks from brain MRI. Nat Neurosci 2023; 26:1461-1471. [PMID: 37460809 PMCID: PMC10400419 DOI: 10.1038/s41593-023-01376-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/08/2023] [Indexed: 08/05/2023]
Abstract
Structural similarity is a growing focus for magnetic resonance imaging (MRI) of connectomes. Here we propose Morphometric INverse Divergence (MIND), a new method to estimate within-subject similarity between cortical areas based on the divergence between their multivariate distributions of multiple MRI features. Compared to the prior approach of morphometric similarity networks (MSNs) on n > 11,000 scans spanning three human datasets and one macaque dataset, MIND networks were more reliable, more consistent with cortical cytoarchitectonics and symmetry and more correlated with tract-tracing measures of axonal connectivity. MIND networks derived from human T1-weighted MRI were more sensitive to age-related changes than MSNs or networks derived by tractography of diffusion-weighted MRI. Gene co-expression between cortical areas was more strongly coupled to MIND networks than to MSNs or tractography. MIND network phenotypes were also more heritable, especially edges between structurally differentiated areas. MIND network analysis provides a biologically validated lens for cortical connectomics using readily available MRI data.
Collapse
Affiliation(s)
- Isaac Sebenius
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Travis T Mallard
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rafael Romero Garcia
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Barcelona, Spain
| | | | - Sarah E Morgan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
- Alan Turing Institute, London, UK
| |
Collapse
|
50
|
Valk SL, Kanske P, Park BY, Hong SJ, Böckler A, Trautwein FM, Bernhardt BC, Singer T. Functional and microstructural plasticity following social and interoceptive mental training. eLife 2023; 12:e85188. [PMID: 37417306 PMCID: PMC10414971 DOI: 10.7554/elife.85188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/01/2023] [Indexed: 07/08/2023] Open
Abstract
The human brain supports social cognitive functions, including Theory of Mind, empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear how the learning and refinement of social skills shapes brain function and structure. We studied if different types of social mental training induce changes in cortical function and microstructure, investigating 332 healthy adults (197 women, 20-55 years) with repeated multimodal neuroimaging and behavioral testing. Our neuroimaging approach examined longitudinal changes in cortical functional gradients and myelin-sensitive T1 relaxometry, two complementary measures of cortical hierarchical organization. We observed marked changes in intrinsic cortical function and microstructure, which varied as a function of social training content. In particular, cortical function and microstructure changed as a result of attention-mindfulness and socio-cognitive training in regions functionally associated with attention and interoception, including insular and parietal cortices. Conversely, socio-affective and socio-cognitive training resulted in differential microstructural changes in regions classically implicated in interoceptive and emotional processing, including insular and orbitofrontal areas, but did not result in functional reorganization. Notably, longitudinal changes in cortical function and microstructure predicted behavioral change in attention, compassion and perspective-taking. Our work demonstrates functional and microstructural plasticity after the training of social-interoceptive functions, and illustrates the bidirectional relationship between brain organisation and human social skills.
Collapse
Affiliation(s)
- Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- INM-7, FZ JülichJülichGermany
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwonRepublic of Korea
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwonRepublic of Korea
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
- Department of Biomedical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Anne Böckler
- Department of Psychology, Wurzburg UniversityWurzburgGermany
| | - Fynn-Mathis Trautwein
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Tania Singer
- Social Neuroscience Lab, Max Planck SocietyBerlinGermany
| |
Collapse
|