1
|
Ahmadian N, Konig MM, Otto S, Tesselaar K, van Eijsden P, Gosselink M, Gursan A, Klomp DW, Prompers JJ, Wiegers EC. Human Brain Deuterium Metabolic Imaging at 7 T: Impact of Different [6,6'- 2H 2]Glucose Doses. J Magn Reson Imaging 2024. [PMID: 39058248 DOI: 10.1002/jmri.29532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Deuterium metabolic imaging (DMI) is an innovative, noninvasive metabolic MR imaging method conducted after administration of 2H-labeled substrates. DMI after [6,6'-2H2]glucose consumption has been used to investigate brain metabolic processes, but the impact of different [6,6'-2H2]glucose doses on DMI brain data is not well known. PURPOSE To investigate three different [6,6'-2H2]glucose doses for DMI in the human brain at 7 T. STUDY TYPE Prospective. POPULATION Six healthy participants (age: 28 ± 8 years, male/female: 3/3). FIELD STRENGTH/SEQUENCE 7 T, 3D 2H free-induction-decay (FID)-magnetic resonance spectroscopic imaging (MRSI) sequence. ASSESSMENT Three subjects received two different doses (0.25 g/kg, 0.50 g/kg or 0.75 g/kg body weight) of [6,6'-2H2]glucose on two occasions and underwent consecutive 2H-MRSI scans for 120 minutes. Blood was sampled every 10 minutes during the scan, to determine plasma glucose levels and plasma 2H-Glucose atom percent excess (APE) (part-1). Three subjects underwent the same protocol once after receiving 0.50 g/kg [6,6'-2H2]glucose (part-2). STATISTICAL TEST Mean plasma 2H-Glucose APE and glucose plasma concentrations were compared using one-way ANOVA. Brain 2H-Glc and brain 2H-Glx (part-1) were analyzed with a two-level Linear Mixed Model. In part-2, a General Linear Model was used to compare brain metabolite signals. Statistical significance was set at P < 0.05. RESULTS Between 60 and 100 minutes after ingesting [6,6'-2H2]glucose, plasma 2H-Glc APE did not differ between 0.50 g/kg and 0.75 g/kg doses (P = 0.961), but was significantly lower for 0.25 g/kg. Time and doses significantly affected brain 2H-Glucose levels (estimate ± standard error [SE]: 0.89 ± 0.01, 1.09 ± 0.01, and 1.27 ± 0.01, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively) and brain 2H-Glutamate/Glutamine levels (estimate ± SE: 1.91 ± 0.03, 2.27 ± 0.03, and 2.46 ± 0.03, for 0.25 g/kg, 0.50 g/kg, and 0.75 g/kg, respectively). Plasma 2H-Glc APE, brain 2H-Glc, and brain 2H-Glx levels were comparable among subjects receiving 0.50 g/kg [6,6'-2H2]glucose. DATA CONCLUSION Brain 2H-Glucose and brain 2H-Glutamate/Glutamine showed to be [6,6'-2H2]glucose dose dependent. A dose of 0.50 g/kg demonstrated comparable, and well-detectable, 2H-Glucose and 2H-Glutamate/Glutamine signals in the brain. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Narjes Ahmadian
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maaike M Konig
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sigrid Otto
- CTI Lab Support, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kiki Tesselaar
- CTI Lab Support, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter van Eijsden
- Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ayhan Gursan
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Evita C Wiegers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Pan F, Liu X, Wan J, Guo Y, Sun P, Zhang X, Wang J, Bao Q, Yang L. Advances and prospects in deuterium metabolic imaging (DMI): a systematic review of in vivo studies. Eur Radiol Exp 2024; 8:65. [PMID: 38825658 PMCID: PMC11144684 DOI: 10.1186/s41747-024-00464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Deuterium metabolic imaging (DMI) has emerged as a promising non-invasive technique for studying metabolism in vivo. This review aims to summarize the current developments and discuss the futures in DMI technique in vivo. METHODS A systematic literature review was conducted based on the PRISMA 2020 statement by two authors. Specific technical details and potential applications of DMI in vivo were summarized, including strategies of deuterated metabolites detection, deuterium-labeled tracers and corresponding metabolic pathways in vivo, potential clinical applications, routes of tracer administration, quantitative evaluations of metabolisms, and spatial resolution. RESULTS Of the 2,248 articles initially retrieved, 34 were finally included, highlighting 2 strategies for detecting deuterated metabolites: direct and indirect DMI. Various deuterated tracers (e.g., [6,6'-2H2]glucose, [2,2,2'-2H3]acetate) were utilized in DMI to detect and quantify different metabolic pathways such as glycolysis, tricarboxylic acid cycle, and fatty acid oxidation. The quantifications (e.g., lactate level, lactate/glutamine and glutamate ratio) hold promise for diagnosing malignancies and assessing early anti-tumor treatment responses. Tracers can be administered orally, intravenously, or intraperitoneally, either through bolus administration or continuous infusion. For metabolic quantification, both serial time point methods (including kinetic analysis and calculation of area under the curves) and single time point quantifications are viable. However, insufficient spatial resolution remains a major challenge in DMI (e.g., 3.3-mL spatial resolution with 10-min acquisition at 3 T). CONCLUSIONS Enhancing spatial resolution can facilitate the clinical translation of DMI. Furthermore, optimizing tracer synthesis, administration protocols, and quantification methodologies will further enhance their clinical applicability. RELEVANCE STATEMENT Deuterium metabolic imaging, a promising non-invasive technique, is systematically discussed in this review for its current progression, limitations, and future directions in studying in vivo energetic metabolism, displaying a relevant clinical potential. KEY POINTS • Deuterium metabolic imaging (DMI) shows promise for studying in vivo energetic metabolism. • This review explores DMI's current state, limits, and future research directions comprehensively. • The clinical translation of DMI is mainly impeded by limitations in spatial resolution.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiayu Wan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Sun
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Xiaoxiao Zhang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Kasarla SS, Flocke V, Saw NMT, Fecke A, Sickmann A, Gunzer M, Flögel U, Phapale P. In-vivo tracking of deuterium metabolism in mouse organs using LC-MS/MS. J Chromatogr A 2024; 1717:464691. [PMID: 38301333 DOI: 10.1016/j.chroma.2024.464691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Mass spectrometry-based metabolomics with stable isotope labeling (SIL) is an established tool for sensitive and precise analyses of tissue metabolism, its flux, and pathway activities in diverse models of physiology and disease. Despite the simplicity and broad applicability of deuterium (2H)-labeled precursors for tracing metabolic pathways with minimal biological perturbations, they are rarely employed in LC-MS/MS-guided metabolomics. In this study, we have developed a LC-MS/MS-guided workflow to trace deuterium metabolism in mouse organs following 2H7 -glucose infusion. The workflow includes isotopically labeled glucose infusion, mouse organ isolation and metabolite extraction, zwitterion-based hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry, targeted data acquisition for sensitive detection of deuterated metabolites, a spectral library of over 400 metabolite standards, and multivariate data analysis with pathway mapping. The optimized method was validated for matrix effects, normalization, and quantification to provide both tissue metabolomics and tracking the in-vivo metabolic fate of deuterated glucose through key metabolic pathways. We quantified more than 100 metabolites in five major mouse organ tissues (liver, kidney, brain, brown adipose tissue, and heart). Furthermore, we mapped isotopologues of deuterated metabolites from glycolysis, tricarboxylic acid (TCA) cycle, and amino acid pathways, which are significant for studying both health and various diseases. This study will open new avenues in LC-MS based analysis of 2H-labeled tissue metabolism research in animal models and clinical settings.
Collapse
Affiliation(s)
- Siva Swapna Kasarla
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Nay Min Thaw Saw
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Antonia Fecke
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen 45122, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf 40225, Germany
| | - Prasad Phapale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany.
| |
Collapse
|
4
|
Roalf DR, Figee M, Oathes DJ. Elevating the field for applying neuroimaging to individual patients in psychiatry. Transl Psychiatry 2024; 14:87. [PMID: 38341414 PMCID: PMC10858949 DOI: 10.1038/s41398-024-02781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Although neuroimaging has been widely applied in psychiatry, much of the exuberance in decades past has been tempered by failed replications and a lack of definitive evidence to support the utility of imaging to inform clinical decisions. There are multiple promising ways forward to demonstrate the relevance of neuroimaging for psychiatry at the individual patient level. Ultra-high field magnetic resonance imaging is developing as a sensitive measure of neurometabolic processes of particular relevance that holds promise as a new way to characterize patient abnormalities as well as variability in response to treatment. Neuroimaging may also be particularly suited to the science of brain stimulation interventions in psychiatry given that imaging can both inform brain targeting as well as measure changes in brain circuit communication as a function of how effectively interventions improve symptoms. We argue that a greater focus on individual patient imaging data will pave the way to stronger relevance to clinical care in psychiatry. We also stress the importance of using imaging in symptom-relevant experimental manipulations and how relevance will be best demonstrated by pairing imaging with differential treatment prediction and outcome measurement. The priorities for using brain imaging to inform psychiatry may be shifting, which compels the field to solidify clinical relevance for individual patients over exploratory associations and biomarkers that ultimately fail to replicate.
Collapse
Affiliation(s)
- David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Neurodevelopment & Psychosis Section, University of Pennsylvania, Philadelphia, PA, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Desmond J Oathes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Brain Imaging and Stimulation, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Neuromodulation in Depression and Stress, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Brain Science Translation, Innovation, and Modulation Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Song KH, Ge X, Engelbach JA, Thio LL, Neil JJ, Ackerman JJH, Garbow JR. Subcutaneous deuterated substrate administration in mice: An alternative to tail vein infusion. Magn Reson Med 2024; 91:681-686. [PMID: 37849055 DOI: 10.1002/mrm.29888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Tail-vein catheterization and subsequent in-magnet infusion is a common route of administration of deuterium (2 H)-labeled substrates in small-animal deuterium (D) MR studies. With mice, because of the tail vein's small diameter, this procedure is challenging. It requires considerable personnel training and practice, is prone to failure, and may preclude serial studies. Motivated by the need for an alternative, the time courses for common small-molecule deuterated substrates and downstream metabolites in brain following subcutaneous infusion were determined in mice and are presented herein. METHODS Three 2 H-labeled substrates-[6,6-2 H2 ]glucose, [2 H3 ]acetate, and [3,4,4,4-2 H4 ]beta-hydroxybutyrate-and 2 H2 O were administered to mice in-magnet via subcutaneous catheter. Brain time courses of the substrates and downstream metabolites (and semi-heavy water) were determined via single-voxel DMRS. RESULTS Subcutaneous catheter placement and substrate administration was readily accomplished with limited personnel training. Substrates reached pseudo-steady state in brain within ∼30-40 min of bolus infusion. Time constants characterizing the appearance in brain of deuterated substrates or semi-heavy water following 2 H2 O administration were similar (∼15 min). CONCLUSION Administration of deuterated substrates via subcutaneous catheter for in vivo DMRS experiments with mice is robust, requires limited personnel training, and enables substantial dosing. It is suitable for metabolic studies where pseudo-steady state substrate administration/accumulation is sufficient. It is particularly advantageous for serial longitudinal studies over an extended period because it avoids inevitable damage to the tail vein following multiple catheterizations.
Collapse
Affiliation(s)
- Kyu-Ho Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John A Engelbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liu Lin Thio
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Neil
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph J H Ackerman
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Kuribayashi H, Urushibata Y, Imai H, Ahn S, Seethamraju RT, Isa T, Okada T. Quantification of Cerebral Glucose Concentrations via Detection of the H1-α-Glucose Peak in 1 H MRS at 7 T. J Magn Reson Imaging 2024; 59:661-672. [PMID: 37259965 DOI: 10.1002/jmri.28834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Sensitive detection and quantification of cerebral glucose is desired. PURPOSE To quantify cerebral glucose by detecting the H1-α-glucose peak at 5.23 ppm in 1 H magnetic resonance spectroscopy at 7 T. STUDY TYPE Prospective. SUBJECTS Twenty-eight non-fasted healthy subjects (aged 20-28 years). FIELD STRENGTH/SEQUENCE Short echo time stimulated echo acquisition mode (short-TE STEAM) and semi-localized by adiabatic selective refocusing (semi-LASER) at 7 T. ASSESSMENT Single voxel spectra were obtained from the posterior cingulate cortex (27-mL) using a 32-channel head coil. The H1-α-glucose peak in the spectrum with retrospective removal of the residual water peak was fitted using LCModel with a glucose basis set of only the H1-α-glucose peak. Conventional spectral analysis was performed with a glucose basis set of a full spectral pattern of glucose, also. Fitting precision was evaluated with Cramér-Rao lower bounds (CRLBs). The repeatability of glucose quantification via the semi-LASER sequence was tested. STATISTICAL TESTS Paired or Welch's t-test were used for normally distributed values. A P value of <0.05 was considered significant. The repeatability of measures was analyzed using coefficient of variation (CV). RESULTS Removal of the residual water peak improved the flatness and stability of baselines around the H1-α-glucose peak and reduced CRLBs for fitting the H1-α-glucose peak. The semi-LASER sequence was superior to the short-TE STEAM in the higher signal-to-noise ratio of the H1-α-glucose peak (mean ± SD 7.9 ± 2.5, P < 0.001). The conventional analysis overfitted the H1-α-glucose peak. The individual CVs of glucose quantification by detecting the H1-α-glucose peak were smaller than the corresponding CRLBs. DATA CONCLUSION Cerebral glucose concentration is quantitated to be 1.07 mM by detecting the H1-α-glucose peak in the semi-LASER spectra. Despite requiring long scan times, detecting the H1-α-glucose peak allows true glucose quantification free from the influence of overlapping taurine and macromolecule signals. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
| | | | - Hirohiko Imai
- Kyoto University Graduate School of Informatics, Kyoto, Japan
| | - Sinyeob Ahn
- Siemens Medical Solutions, Berkeley, California, USA
| | | | - Tadashi Isa
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Niess F, Strasser B, Hingerl L, Niess E, Motyka S, Hangel G, Krššák M, Gruber S, Spurny-Dworak B, Trattnig S, Scherer T, Lanzenberger R, Bogner W. Reproducibility of 3D MRSI for imaging human brain glucose metabolism using direct ( 2H) and indirect ( 1H) detection of deuterium labeled compounds at 7T and clinical 3T. Neuroimage 2023; 277:120250. [PMID: 37414233 PMCID: PMC11019874 DOI: 10.1016/j.neuroimage.2023.120250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
INTRODUCTION Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-2H2]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2H MRSI (DMI) and 1H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. METHODS Five volunteers (4 m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8 g/kg oral [6,6'-2H2]-glucose administration using time-resolved 3D 2H FID-MRSI with elliptical phase encoding at 7T and 3D 1H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. RESULTS One hour after oral tracer administration regionally averaged deuterium labeled Glx4 concentrations and the dynamics were not significantly different over all participants between 7T 2H DMI and 3T 1H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2H and 1H data points a weak to moderate negative correlation was observed for Glx4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc6 data GM (r=-0.61, p<0.001) and WM (r=-0.70, p<0.001). CONCLUSION This study demonstrates that indirect detection of deuterium labeled compounds using 1H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.
Collapse
Affiliation(s)
- Fabian Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria.
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria
| | - Eva Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Institute for Clinical Molecular MRI, Karl Landsteiner Society, Pölten 3100St, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| |
Collapse
|
8
|
Bednarik P, Goranovic D, Svatkova A, Niess F, Hingerl L, Strasser B, Deelchand DK, Spurny-Dworak B, Krssak M, Trattnig S, Hangel G, Scherer T, Lanzenberger R, Bogner W. 1H magnetic resonance spectroscopic imaging of deuterated glucose and of neurotransmitter metabolism at 7 T in the human brain. Nat Biomed Eng 2023; 7:1001-1013. [PMID: 37106154 PMCID: PMC10861140 DOI: 10.1038/s41551-023-01035-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Impaired glucose metabolism in the brain has been linked to several neurological disorders. Positron emission tomography and carbon-13 magnetic resonance spectroscopic imaging (MRSI) can be used to quantify the metabolism of glucose, but these methods involve exposure to radiation, cannot quantify downstream metabolism, or have poor spatial resolution. Deuterium MRSI (2H-MRSI) is a non-invasive and safe alternative for the quantification of the metabolism of 2H-labelled substrates such as glucose and their downstream metabolic products, yet it can only measure a limited number of deuterated compounds and requires specialized hardware. Here we show that proton MRSI (1H-MRSI) at 7 T has higher sensitivity, chemical specificity and spatiotemporal resolution than 2H-MRSI. We used 1H-MRSI in five volunteers to differentiate glutamate, glutamine, γ-aminobutyric acid and glucose deuterated at specific molecular positions, and to simultaneously map deuterated and non-deuterated metabolites. 1H-MRSI, which is amenable to clinically available magnetic-resonance hardware, may facilitate the study of glucose metabolism in the brain and its potential roles in neurological disorders.
Collapse
Affiliation(s)
- Petr Bednarik
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | - Dario Goranovic
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alena Svatkova
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Fabian Niess
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Martin Krssak
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gilbert Hangel
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Zou C, Ruan Y, Li H, Wan Q, Du F, Yuan J, Qin Q, Thompson GJ, Yang X, Li Y, Liu X, Zheng H. A new deuterium-labeled compound [2,3,4,6,6'- 2 H 5 ]-D-glucose for deuterium magnetic resonance metabolic imaging. NMR IN BIOMEDICINE 2023; 36:e4890. [PMID: 36477944 DOI: 10.1002/nbm.4890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/15/2023]
Abstract
Deuterium (2 H) magnetic resonance imaging is an emerging approach for noninvasively studying glucose metabolism in vivo, which is important for understanding pathogenesis and monitoring the progression of many diseases such as tumors, diabetes, and neurodegenerative diseases. However, the synthesis of 2 H-labeled glucose is costly because of the expensive raw substrates and the requirement for extreme reaction conditions, making the 2 H-labeled glucose rather expensive and unaffordable for clinic use. In this study, we present a new deuterated compound, [2,3,4,6,6'-2 H5 ]-D-glucose, with an approximate 10-fold reduction in production costs. The synthesis route uses cheaper raw substrate methyl-α-D-glucopyranoside, relies on mild reaction conditions (80°C), and has higher deuterium labeling efficiency. Magnetic resonance spectroscopy (MRS) and mass spectroscopy experiments confirmed the successful deuterium labeling in the compound. Animal studies demonstrated that the substrate could describe the glycolytic metabolism in a glioma rat model by quantifying the downstream metabolites through 2 H-MRS on an ultrahigh field system. Comparison of the glucose metabolism characteristics was carried out between [2,3,4,6,6'-2 H5 ]-D-glucose and commercial [6,6'-2 H2 ]-D-glucose in the animal studies. This cost-effective compound will help facilitate the clinical translation of deuterium magnetic resonance imaging, and enable this powerful metabolic imaging modality to be widely used in both preclinical and clinical research and applications.
Collapse
Affiliation(s)
- Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingheng Ruan
- Shenzhen Dingbang Bioscience Co., Ltd, Shenzhen, Guangdong, China
| | - Huanxi Li
- Shenzhen Dingbang Bioscience Co., Ltd, Shenzhen, Guangdong, China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Feng Du
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jiawen Yuan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qikai Qin
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Xiaojun Yang
- Shenzhen Dingbang Bioscience Co., Ltd, Shenzhen, Guangdong, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Niess F, Hingerl L, Strasser B, Bednarik P, Goranovic D, Niess E, Hangel G, Krššák M, Spurny-Dworak B, Scherer T, Lanzenberger R, Bogner W. Noninvasive 3-Dimensional 1 H-Magnetic Resonance Spectroscopic Imaging of Human Brain Glucose and Neurotransmitter Metabolism Using Deuterium Labeling at 3T : Feasibility and Interscanner Reproducibility. Invest Radiol 2023; 58:431-437. [PMID: 36735486 PMCID: PMC10184811 DOI: 10.1097/rli.0000000000000953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Noninvasive, affordable, and reliable mapping of brain glucose metabolism is of critical interest for clinical research and routine application as metabolic impairment is linked to numerous pathologies, for example, cancer, dementia, and depression. A novel approach to map glucose metabolism noninvasively in the human brain has been presented recently on ultrahigh-field magnetic resonance (MR) scanners (≥7T) using indirect detection of deuterium-labeled glucose and downstream metabolites such as glutamate, glutamine, and lactate. The aim of this study was to demonstrate the feasibility to noninvasively detect deuterium-labeled downstream glucose metabolites indirectly in the human brain via 3-dimensional (3D) proton ( 1 H) MR spectroscopic imaging on a clinical 3T MR scanner without additional hardware. MATERIALS AND METHODS This prospective, institutional review board-approved study was performed in 7 healthy volunteers (mean age, 31 ± 4 years, 5 men/2 women) after obtaining written informed consent. After overnight fasting and oral deuterium-labeled glucose administration, 3D metabolic maps were acquired every ∼4 minutes with ∼0.24 mL isotropic spatial resolution using real-time motion-, shim-, and frequency-corrected echo-less 3D 1 H-MR spectroscopic Imaging on a clinical routine 3T MR system. To test the interscanner reproducibility of the method, subjects were remeasured on a similar 3T MR system. Time courses were analyzed using linear regression and nonparametric statistical tests. Deuterium-labeled glucose and downstream metabolites were detected indirectly via their respective signal decrease in dynamic 1 H MR spectra due to exchange of labeled and unlabeled molecules. RESULTS Sixty-five minutes after deuterium-labeled glucose administration, glutamate + glutamine (Glx) signal intensities decreased in gray/white matter (GM/WM) by -1.63 ± 0.3/-1.0 ± 0.3 mM (-13% ± 3%, P = 0.02/-11% ± 3%, P = 0.02), respectively. A moderate to strong negative correlation between Glx and time was observed in GM/WM ( r = -0.64, P < 0.001/ r = -0.54, P < 0.001), with 60% ± 18% ( P = 0.02) steeper slopes in GM versus WM, indicating faster metabolic activity. Other nonlabeled metabolites showed no significant changes. Excellent intrasubject repeatability was observed across scanners for static results at the beginning of the measurement (coefficient of variation 4% ± 4%), whereas differences were observed in individual Glx dynamics, presumably owing to physiological variation of glucose metabolism. CONCLUSION Our approach translates deuterium metabolic imaging to widely available clinical routine MR scanners without specialized hardware, offering a safe, affordable, and versatile (other substances than glucose can be labeled) approach for noninvasive imaging of glucose and neurotransmitter metabolism in the human brain.
Collapse
Affiliation(s)
- Fabian Niess
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Petr Bednarik
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Dario Goranovic
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eva Niess
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gilbert Hangel
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
Affiliation(s)
- Pandichelvam Veeraiah
- Scannexus (Ultra-High-Field MRI Center), 6229 EV Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
12
|
Niess F, Strasser B, Hingerl L, Niess E, Motyka S, Hangel G, Krššák M, Gruber S, Spurny-Dworak B, Trattnig S, Scherer T, Lanzenberger R, Bogner W. Reproducibility of 3D MRSI for imaging human brain glucose metabolism using direct ( 2 H) and indirect ( 1 H) detection of deuterium labeled compounds at 7T and clinical 3T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.17.23288672. [PMID: 37131634 PMCID: PMC10153308 DOI: 10.1101/2023.04.17.23288672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Introduction Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'- 2 H 2 ]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2 H MRSI (DMI) and 1 H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. Methods Five volunteers (4m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8g/kg oral [6,6'- 2 H 2 ]-glucose administration using time-resolved 3D 2 H FID-MRSI with elliptical phase encoding at 7T and 3D 1 H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. Results One hour after oral tracer administration regionally averaged deuterium labeled Glx 4 concentrations and the dynamics were not significantly different over all participants between 7T 2 H DMI and 3T 1 H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc 6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2 H and 1 H data points a weak to moderate negative correlation was observed for Glx 4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc 6 data GM (r=- 0.61, p<0.001) and WM (r=-0.70, p<0.001). Conclusion This study demonstrates that indirect detection of deuterium labeled compounds using 1 H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2 H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.
Collapse
Affiliation(s)
- Fabian Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Eva Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Department of Neurosurgery, Medical University of Vienna
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Institute for Clinical Molecular MRI, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| |
Collapse
|
13
|
Chen Ming Low J, Wright AJ, Hesse F, Cao J, Brindle KM. Metabolic imaging with deuterium labeled substrates. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:39-51. [PMID: 37321757 DOI: 10.1016/j.pnmrs.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/17/2023]
Abstract
Deuterium metabolic imaging (DMI) is an emerging clinically-applicable technique for the non-invasive investigation of tissue metabolism. The generally short T1 values of 2H-labeled metabolites in vivo can compensate for the relatively low sensitivity of detection by allowing rapid signal acquisition in the absence of significant signal saturation. Studies with deuterated substrates, including [6,6'-2H2]glucose, [2H3]acetate, [2H9]choline and [2,3-2H2]fumarate have demonstrated the considerable potential of DMI for imaging tissue metabolism and cell death in vivo. The technique is evaluated here in comparison with established metabolic imaging techniques, including PET measurements of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake and 13C MR imaging of the metabolism of hyperpolarized 13C-labeled substrates.
Collapse
Affiliation(s)
- Jacob Chen Ming Low
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jianbo Cao
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
14
|
Andrew R, Stimson RH. Mapping endocrine networks by stable isotope tracing. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100381. [PMID: 39185272 PMCID: PMC11344083 DOI: 10.1016/j.coemr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hormones regulate metabolic homeostasis through interlinked dynamic networks of proteins and small molecular weight metabolites, and state-of-the-art chemical technologies have been developed to decipher these complex pathways. Stable-isotope tracers have largely replaced radiotracers to measure flux in humans, building on advances in nuclear magnetic resonance spectroscopy and mass spectrometry. These technologies are now being applied to localise molecules within tissues. Radiotracers are still highly valuable both preclinically and in 3D imaging by positron emission tomography. The coming of age of vibrational spectroscopy in conjunction with stable-isotope tracing offers detailed cellular insights to map complex biological processes. Together with computational modelling, these approaches are poised to coalesce into multi-modal platforms to provide hitherto inaccessible dynamic and spatial insights into endocrine signalling.
Collapse
Affiliation(s)
- Ruth Andrew
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Roland H Stimson
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|