1
|
Bahrami M, Burdette JH, Laurienti PJ, Nicklas BJ, Rejeski WJ, Fanning J. Neural Determinants of Sedentary Lifestyle in Older Adults: A Brain Network Analysis. Brain Behav 2025; 15:e70085. [PMID: 39778926 PMCID: PMC11710895 DOI: 10.1002/brb3.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE The prevalence of sedentary lifestyles (SL), which includes both high volumes of extended sitting behavior and a low volume of steps accumulated across the day, among older adults continues to rise contributing to increases in associated comorbidities and the loss of independence. The social, personal, and economic burdens are enormous. In recognition of the health implications of SL, current public health physical activity guidelines now emphasize the complimentary goals of sitting less by moving more. We recently completed a 6-month weight loss (WL) study followed by 12 months of reduced contact to examine weight regain in older adults with obesity. One of the treatment conditions involved WL + a day-long movement intervention that explicitly targeted reducing sitting time and increasing steps across the day (SitLess). METHOD The goal of the current study, using baseline fMRI and accelerometry data from 36 participants and advanced machine learning tools, was to determine if we could identify complex brain circuits underlying variability associated with changes in sitting time and daily steps during the 6-month intensive phase among participants randomized to the WL + SitLess treatment condition. Models generated from these analyses produced accuracy in predicting pre-post change in both measures that exceeded 92%, suggesting a critical role for the identified brain subnetworks in explaining variability in these outcomes in response to the intervention. The identified networks comprised regions, predominantly in the default mode and sensorimotor networks, that have been extensively linked to self-regulation and decision-making. FINDING These results provide insights into the theoretical basis of SL for older adults and in the design of future intervention research.
Collapse
Affiliation(s)
- Mohsen Bahrami
- Laboratory for Complex Brain NetworksWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jonathan H Burdette
- Laboratory for Complex Brain NetworksWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Paul J Laurienti
- Laboratory for Complex Brain NetworksWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Barbara J Nicklas
- Section on Geriatric Medicine, Department of Internal MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - W Jack Rejeski
- Section on Geriatric Medicine, Department of Internal MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Jason Fanning
- Department of Health and Exercise ScienceWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
2
|
Cajachagua-Torres KN, Quezada-Pinedo HG, Wu T, Trasande L, Ghassabian A. Exposure to Endocrine Disruptors in Early life and Neuroimaging Findings in Childhood and Adolescence: a Scoping Review. Curr Environ Health Rep 2024; 11:416-442. [PMID: 39078539 PMCID: PMC11324673 DOI: 10.1007/s40572-024-00457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE OF REVIEW: Evidence suggests neurotoxicity of endocrine disrupting chemicals (EDCs) during sensitive periods of development. We present an overview of pediatric population neuroimaging studies that examined brain influences of EDC exposure during prenatal period and childhood. RECENT FINDINGS: We found 46 studies that used magnetic resonance imaging (MRI) to examine brain influences of EDCs. These studies showed associations of prenatal exposure to phthalates, organophosphate pesticides (OPs), polyaromatic hydrocarbons and persistent organic pollutants with global and regional brain structural alterations. Few studies suggested alteration in functional MRI associated with prenatal OP exposure. However, studies on other groups of EDCs, such as bisphenols, and those that examined childhood exposure were less conclusive. These findings underscore the potential profound and lasting effects of prenatal EDC exposure on brain development, emphasizing the need for better regulation and strategies to reduce exposure and mitigate impacts. More studies are needed to examine the influence of postnatal exposure to EDC on brain imaging.
Collapse
Affiliation(s)
- Kim N Cajachagua-Torres
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA.
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | - Hugo G Quezada-Pinedo
- Department of Pediatrics, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Tong Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Department of Pediatrics, NYU Grossman School of Medicine, 555 First Avenue, New York, NY, 10016, USA
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Burgos-Núñez S, Calao-Ramos C, Hernández SN, Enamorado-Montes G, Urango-Cárdenas I, Navarro-Frómeta A, Paternina-Uribe R, Marrugo-Negrete JL. Genetic damage among children living in agricultural areas in the North of Colombia. AN ACAD BRAS CIENC 2024; 96:e20221111. [PMID: 38808810 DOI: 10.1590/0001-3765202420221111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/21/2023] [Indexed: 05/30/2024] Open
Abstract
In recent years, the use of pesticides has increased considerably for pest control and to improve agricultural production. The rural areas of several municipalities of department of Cordoba, north of Colombia, are highly dependent on agriculture. In this study, a questionnaire and field observations about pesticide use and genotoxic damage through the comet assay in peripheral blood lymphocytes of children who live near crop fields was evaluated. Damage Index for Comet Assay (DICA) of five children populations exposed to pesticides (mean of 94.73±53.95 for the municipality of Monteria, the higher damage in this study) were significantly Higher than control children population (mean of 7.56±7.39). Results showed the damage index in children exposed group was higher than in the control group. An inadequate management of pesticides, as well as incorrect disposal of toxic wastes was observed in the study zone.
Collapse
Affiliation(s)
- Saudith Burgos-Núñez
- Universidad de Córdoba, Departamento de Química, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
| | - Clelia Calao-Ramos
- Universidad de Córdoba, Departamento de Química, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
- Universidad de Córdoba, Departamento de Bacteriología, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
| | - Sibila N Hernández
- Universidad de Córdoba, Departamento de Química, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
| | - Germán Enamorado-Montes
- Universidad de Córdoba, Departamento de Química, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
| | - Iván Urango-Cárdenas
- Universidad de Córdoba, Departamento de Química, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
| | - Amado Navarro-Frómeta
- Universidad Tecnológica Izúcar Matamoros, Departamento de Tecnología Ambiental y Alimentos, Prolongación Reforma 166, Barrio Santiago Mihuacán Código Postal 74420 Izúcar de Matamoros, México
| | - Roberth Paternina-Uribe
- Universidad de Córdoba, Departamento de Química, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
- Universidad de Córdoba, Departamento de Regencia y Farmacia, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
| | - José Luis Marrugo-Negrete
- Universidad de Córdoba, Departamento de Química, Carrera 6 # 77, 305, Código Postal 230002 Montería, Colombia
| |
Collapse
|
4
|
Kirse HA, Bahrami M, Lyday RG, Simpson SL, Peterson-Sockwell H, Burdette JH, Laurienti PJ. Differences in Brain Network Topology Based on Alcohol Use History in Adolescents. Brain Sci 2023; 13:1676. [PMID: 38137124 PMCID: PMC10741456 DOI: 10.3390/brainsci13121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Approximately 6 million youth aged 12 to 20 consume alcohol monthly in the United States. The effect of alcohol consumption in adolescence on behavior and cognition is heavily researched; however, little is known about how alcohol consumption in adolescence may alter brain function, leading to long-term developmental detriments. In order to investigate differences in brain connectivity associated with alcohol use in adolescents, brain networks were constructed using resting-state functional magnetic resonance imaging data collected by the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) from 698 youth (12-21 years; 117 hazardous drinkers and 581 no/low drinkers). Analyses assessed differences in brain network topology based on alcohol consumption in eight predefined brain networks, as well as in whole-brain connectivity. Within the central executive network (CEN), basal ganglia network (BGN), and sensorimotor network (SMN), no/low drinkers demonstrated stronger and more frequent connections between highly globally efficient nodes, with fewer and weaker connections between highly clustered nodes. Inverse results were observed within the dorsal attention network (DAN), visual network (VN), and frontotemporal network (FTN), with no/low drinkers demonstrating weaker connections between nodes with high efficiency and increased frequency of clustered nodes compared to hazardous drinkers. Cross-sectional results from this study show clear organizational differences between adolescents with no/low or hazardous alcohol use, suggesting that aberrant connectivity in these brain networks is associated with risky drinking behaviors.
Collapse
Affiliation(s)
- Haley A. Kirse
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Graduate Program, Wake Forest Graduate School of Arts and Sciences, Integrative Physiology and Pharmacology, Winston-Salem, NC 27101, USA
| | - Mohsen Bahrami
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Robert G. Lyday
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Sean L. Simpson
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Hope Peterson-Sockwell
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
| | - Jonathan H. Burdette
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Paul J. Laurienti
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (H.A.K.); (M.B.); (R.G.L.); (S.L.S.); (H.P.-S.); (J.H.B.)
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
5
|
Simpson SL, Shappell HM, Bahrami M. Statistical Brain Network Analysis. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION 2023; 11:505-531. [PMID: 39184922 PMCID: PMC11343573 DOI: 10.1146/annurev-statistics-040522-020722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The recent fusion of network science and neuroscience has catalyzed a paradigm shift in how we study the brain and led to the field of brain network analysis. Brain network analyses hold great potential in helping us understand normal and abnormal brain function by providing profound clinical insight into links between system-level properties and health and behavioral outcomes. Nonetheless, methods for statistically analyzing networks at the group and individual levels have lagged behind. We have attempted to address this need by developing three complementary statistical frameworks-a mixed modeling framework, a distance regression framework, and a hidden semi-Markov modeling framework. These tools serve as synergistic fusions of statistical approaches with network science methods, providing needed analytic foundations for whole-brain network data. Here we delineate these approaches, briefly survey related tools, and discuss potential future avenues of research. We hope this review catalyzes further statistical interest and methodological development in the field.
Collapse
Affiliation(s)
- Sean L Simpson
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Heather M Shappell
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohsen Bahrami
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Lepetit C, Gaber M, Zhou K, Chen H, Holmes J, Summers P, Anderson KA, Scott RP, Pope CN, Hester K, Laurienti PJ, Quandt SA, Arcury TA, Vidi PA. Follicular DNA Damage and Pesticide Exposure Among Latinx Children in Rural and Urban Communities. EXPOSURE AND HEALTH 2023; 16:1039-1052. [PMID: 39220725 PMCID: PMC11362388 DOI: 10.1007/s12403-023-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 09/04/2024]
Abstract
The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00609-1.
Collapse
Affiliation(s)
- Cassandra Lepetit
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Mohamed Gaber
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Ke Zhou
- Sciences Humaines et Sociales, Institut de Cancérologie de l’Ouest, 44805 Saint Herblain, France
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Carey N. Pope
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Kirstin Hester
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Pierre-Alexandre Vidi
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
7
|
Simpson-Kent IL, Gataviņš MM, Tooley UA, Boroshok AL, McDermott CL, Park AT, Delgado Reyes L, Bathelt J, Tisdall MD, Mackey AP. Multilayer network associations between the exposome and childhood brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563611. [PMID: 37961103 PMCID: PMC10634748 DOI: 10.1101/2023.10.23.563611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Growing up in a high poverty neighborhood is associated with elevated risk for academic challenges and health problems. Here, we take a data-driven approach to exploring how measures of children's environments relate to the development of their brain structure and function in a community sample of children between the ages of 4 and 10 years. We constructed exposomes including measures of family socioeconomic status, children's exposure to adversity, and geocoded measures of neighborhood socioeconomic status, crime, and environmental toxins. We connected the exposome to two structural measures (cortical thickness and surface area, n = 170) and two functional measures (participation coefficient and clustering coefficient, n = 130). We found dense connections within exposome and brain layers and sparse connections between exposome and brain layers. Lower family income was associated with thinner visual cortex, consistent with the theory that accelerated development is detectable in early-developing regions. Greater neighborhood incidence of high blood lead levels was associated with greater segregation of the default mode network, consistent with evidence that toxins are deposited into the brain along the midline. Our study demonstrates the utility of multilayer network analysis to bridge environmental and neural explanatory levels to better understand the complexity of child development.
Collapse
Affiliation(s)
- Ivan L. Simpson-Kent
- Institute of Psychology, Developmental and Educational Psychology Unit, Leiden University, Leiden, the Netherlands
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mārtiņš M. Gataviņš
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ursula A. Tooley
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Washington University in St. Louis, USA
- Department of Neurology, Washington University in St. Louis, USA
| | - Austin L. Boroshok
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anne T. Park
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joe Bathelt
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - M. Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson P. Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Arcury TA, Chen H, Quandt SA, Talton JW, Anderson KA, Scott RP, Summers P, Laurienti PJ. Pesticide Exposure among Latinx Children in Rural Farmworker and Urban Non-Farmworker Communities: Associations with Locality and Season. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5647. [PMID: 37174167 PMCID: PMC10178580 DOI: 10.3390/ijerph20095647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
This study uses repeated measures to document the pesticide exposure of rural and urban Latinx children (age eight at baseline), and to compare these children in terms of the frequency and concentration of their exposure to a large set of pesticides, accounting for season. We used silicone wristbands worn for one week up to ten times at quarterly intervals from 2018 to 2022 to assess pesticide exposure in children from rural farmworker (n = 75) and urban non-farmworker (n = 61) families. We determined the detection and concentrations (ng/g) of 72 pesticides and pesticide degradation products in the wristbands using gas chromatography electron capture detection and gas chromatography mass spectrometry. The most frequently detected pesticide classes were organochlorines, pyrethroids, and organophosphates. Controlling for season, organochlorine or phenylpyrazole detections were less likely for rural children than for urban children. Detections of organochlorines, pyrethroids, or organophosphates were lower in spring and summer versus winter. Controlling for season, urban children had greater concentrations of organochlorines, while rural children had greater concentrations of pyrethroids and Chlorpyrifos. Pesticide concentrations were lower in winter and spring compared with summer and fall. These results further document that pesticides are ubiquitous in the living environment for children in vulnerable, immigrant communities.
Collapse
Affiliation(s)
- Thomas A. Arcury
- Department of Family and Community Medicine, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Haiying Chen
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Division of Public Health Sciences, and Center for Worker Health, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jennifer W. Talton
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Fowler CH, Bagdasarov A, Camacho NL, Reuben A, Gaffrey MS. Toxicant exposure and the developing brain: A systematic review of the structural and functional MRI literature. Neurosci Biobehav Rev 2023; 144:105006. [PMID: 36535373 PMCID: PMC9922521 DOI: 10.1016/j.neubiorev.2022.105006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Youth worldwide are regularly exposed to pollutants and chemicals (i.e., toxicants) that may interfere with healthy brain development, and a surge in MRI research has begun to characterize the neurobiological consequences of these exposures. Here, a systematic review following PRISMA guidelines was conducted on developmental MRI studies of toxicants with known or suspected neurobiological impact. Associations were reviewed for 9 toxicant classes, including metals, air pollution, and flame retardants. Of 1264 identified studies, 46 met inclusion criteria. Qualitative synthesis revealed that most studies: (1) investigated air pollutants or metals, (2) assessed exposures prenatally, (3) assessed the brain in late middle childhood, (4) took place in North America or Western Europe, (5) drew samples from existing cohort studies, and (6) have been published since 2017. Given substantial heterogeneity in MRI measures, toxicant measures, and age groups assessed, more research is needed on all toxicants reviewed here. Future studies should also include larger samples, employ personal exposure monitoring, study independent samples in diverse world regions, and assess toxicant mixtures.
Collapse
Affiliation(s)
| | | | | | - Aaron Reuben
- Duke University, 417 Chapel Drive, Durham, NC 27708, USA
| | | |
Collapse
|
10
|
Mora AM, Baker JM, Hyland C, Rodríguez-Zamora MG, Rojas-Valverde D, Winkler MS, Staudacher P, Palzes VA, Gutiérrez-Vargas R, Lindh C, Reiss AL, Eskenazi B, Fuhrimann S, Sagiv SK. Pesticide exposure and cortical brain activation among farmworkers in Costa Rica. Neurotoxicology 2022; 93:200-210. [PMID: 36228750 PMCID: PMC10014323 DOI: 10.1016/j.neuro.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous epidemiological studies have reported associations of pesticide exposure with poor cognitive function and behavioral problems. However, these findings have relied primarily on neuropsychological assessments. Questions remain about the neurobiological effects of pesticide exposure, specifically where in the brain pesticides exert their effects and whether compensatory mechanisms in the brain may have masked pesticide-related associations in studies that relied purely on neuropsychological measures. METHODS We conducted a functional neuroimaging study in 48 farmworkers from Zarcero County, Costa Rica, in 2016. We measured concentrations of 13 insecticide, fungicide, or herbicide metabolites or parent compounds in urine samples collected during two study visits (approximately 3-5 weeks apart). We assessed cortical brain activation in the prefrontal cortex during tasks of working memory, attention, and cognitive flexibility using functional near-infrared spectroscopy (fNIRS). We estimated associations of pesticide exposure with cortical brain activation using multivariable linear regression models adjusted for age and education level. RESULTS We found that higher concentrations of insecticide metabolites were associated with reduced activation in the prefrontal cortex during a working memory task. For example, 3,5,6-trichloro-2-pyridinol (TCPy; a metabolite of the organophosphate chlorpyrifos) was associated with reduced activation in the left dorsolateral prefrontal cortex (β = -2.3; 95% CI: -3.9, -0.7 per two-fold increase in TCPy). Similarly, 3-phenoxybenzoic acid (3-PBA; a metabolite of pyrethroid insecticides) was associated with bilateral reduced activation in the dorsolateral prefrontal cortices (β = -3.1; 95% CI: -5.0, -1.2 and -2.3; 95% CI: -4.5, -0.2 per two-fold increase in 3-PBA for left and right cortices, respectively). These associations were similar, though weaker, for the attention and cognitive flexibility tasks. We observed null associations of fungicide and herbicide biomarker concentrations with cortical brain activation during the three tasks that were administered. CONCLUSION Our findings suggest that organophosphate and pyrethroid insecticides may impact cortical brain activation in the prefrontal cortex - neural dynamics that could potentially underlie previously reported associations with cognitive and behavioral function. Furthermore, our study demonstrates the feasibility and utility of fNIRS in epidemiological field studies.
Collapse
Affiliation(s)
- Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA.
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Carly Hyland
- School of Public Health and Population Science, Boise State University, 1910 W University Dr, Boise, ID 83725, USA
| | - María G Rodríguez-Zamora
- Escuela de Ingeniería en Seguridad Laboral e Higiene Ambiental (EISLHA), Instituto Tecnológico de Costa Rica, Calle 15, Avenida 14, 1 km Sur de la Basílica de los Ángeles, Cartago 30101, Provincia de Cartago, Costa Rica
| | - Daniel Rojas-Valverde
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Mirko S Winkler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Philipp Staudacher
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Vanessa A Palzes
- Drug and Alcohol Research Team at the Kaiser Permanente Northern California's Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Randall Gutiérrez-Vargas
- Centro de Investigación y Diagnóstico en Salud y Deporte, Escuela Ciencias del Movimiento Humano y Calidad de Vida, Campus Benjamin Nuñez, Universidad Nacional, Heredia 86-3000, Costa Rica
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Institute of Laboratory Medicine, Lund University, Scheelevägen 2, 22363 Lund, Sweden
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA; Department of Radiology, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 55, 4051 Basel, Switzerland; University of Basel, Peterspl. 1, 4001 Basel, Switzerland
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Suite 265, Berkeley, CA 94720, USA
| |
Collapse
|