1
|
Thorsen TM, Bøgh N, Bertelsen LB, Hansen ESS, Laustsen C. Multinuclear MRI Can Depict Metabolic and Energetic Changes in Mild Traumatic Brain Injury. NMR IN BIOMEDICINE 2025; 38:e5306. [PMID: 39676068 DOI: 10.1002/nbm.5306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
Mild traumatic brain injuries (TBIs) are frequent in the European population. The pathophysiological changes after TBI include metabolic changes, but these are not observable using current clinical tools. We aimed to evaluate multinuclear MRI as a mean of assessing these changes. In our model, pigs were exposed to a controlled cortical impact (CCI) directly on the dura and scanned at 2 h and 2 days after injury. A multinuclear MRI protocol was used. It included hyperpolarized [1-13C]pyruvate MRI, which allows depiction of hyperpolarized carbon-13, through its metabolism from pyruvate to lactate or bicarbonate. At Day 2, cerebral microdialysis were performed, and tissue was obtained for analyses. At Day 0, the cerebral blood flow was reduced in the affected hemisphere (TBI: 31.7 mL/100 mL/min, contralateral: 35.6 mL/100 mL/min, p = 0.1227), and the impacted area showed reduced oxygenation (R2*, TBI: 33.11 s-1, contralateral: 22.20 s-1, p = 0.035). At both days, the lactate-to-pyruvate ratios (hyperpolarized [1-13C]pyruvate) were increased (Day 0: p = 0.023, Day 2: p = 0.022). However, this study can only evaluate the total injury and, thus, cannot differentiate effects from craniotomy and CCI. This metabolic difference was not found using cerebral microdialysis nor a lactate dehydrogenase (LDH) activity assay. The metabolic changes depicted in this study contributes to our understanding of mild TBI; however, the clinical potential of multinuclear MRI is yet to be determined.
Collapse
Affiliation(s)
- Thomas M Thorsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte B Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Ehret V, Dürr SC, Ustsinau U, Friske J, Scherer T, Fürnsinn C, Starčuková J, Helbich TH, Philippe C, Krššák M. Deuterium Metabolic Imaging Enables the Tracing of Substrate Fluxes Through the Tricarboxylic Acid Cycle in the Liver. NMR IN BIOMEDICINE 2025; 38:e5309. [PMID: 39676029 DOI: 10.1002/nbm.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.
Collapse
Affiliation(s)
- Viktoria Ehret
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Sabine C Dürr
- Imaging Unit CIUS, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Usevalad Ustsinau
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Joachim Friske
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Jana Starčuková
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Khan AS, McLean MA, Kaggie JD, Horvat-Menih I, Matys T, Schulte RF, Locke MJ, Grimmer A, Wodtke P, Latimer E, Frary A, Graves MJ, Gallagher FA. Measuring cerebral enzymatic activity, brain pH and extracranial muscle metabolism with hyperpolarized 13C-pyruvate. NMR IN BIOMEDICINE 2024; 37:e5271. [PMID: 39367692 DOI: 10.1002/nbm.5271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Hyperpolarized carbon-13 (13C) magnetic resonance imaging (MRI) has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and patients. The exchange of pyruvate to lactate catalysed by lactate dehydrogenase (LDH) and that of pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH) are the most widely studied reactions in vivo. Here we show the potential of the technique to probe additional enzymatic activity within the brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high-flip-angle pulses were used to detect cerebral 13C-labelled carbon dioxide (13CO2), in addition to the 13C-bicarbonate (H13CO3 -) subsequently formed by carbonic anhydrase (CA). Brain pH measurements, which were weighted towards the extracellular compartment, were calculated from the ratio of H13CO3 - to 13CO2 in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± SD of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected, demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC) and subsequent transamination by aspartate aminotransferase (AST), with the average flux being on average 11% ± 3% of that through PDH. A hyperpolarized [1-13C]alanine signal was also detected, but this was localized to extracranial muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized 13C-MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.
Collapse
Affiliation(s)
- Alixander S Khan
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ines Horvat-Menih
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | | - Matthew J Locke
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Ashley Grimmer
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Pascal Wodtke
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Elizabeth Latimer
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Amy Frary
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Horvat-Menih I, McLean MA, Zamora-Morales MJ, Wylot M, Kaggie J, Khan AS, Gill AB, Duarte J, Locke MJ, Mendichovszky I, Li H, Priest AN, Warren AY, Welsh SJ, Jones JO, Armitage JN, Mitchell TJ, Stewart GD, Gallagher FA. Multiarm, non-randomised, single-centre feasibility study-investigation of the differential biology between benign and malignant renal masses using advanced magnetic resonance imaging techniques (IBM-Renal): protocol. BMJ Open 2024; 14:e083980. [PMID: 39461869 PMCID: PMC11529771 DOI: 10.1136/bmjopen-2024-083980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
INTRODUCTION Localised renal masses are an increasing burden on healthcare due to the rising number of cases. However, conventional imaging cannot reliably distinguish between benign and malignant renal masses, and renal mass biopsies are unable to characterise the entirety of the tumour due to sampling error, which may lead to delayed treatment or overtreatment. There is an unmet clinical need to develop novel imaging techniques to characterise renal masses more accurately. Renal tumours demonstrate characteristic metabolic reprogramming, and novel MRI methods have the potential to detect these metabolic perturbations, which may therefore aid accurate characterisation. Here, we present our study protocol for the investigation of the differential biology of benign and malignant renal masses using advanced MRI techniques (IBM-Renal). METHODS AND ANALYSIS IBM-Renal is a multiarm, single-centre, non-randomised, feasibility study with the aim to provide preliminary evidence for the potential role of the novel MRI techniques to phenotype localised renal lesions. 30 patients with localised renal masses will be recruited to three imaging arms, with 10 patients in each: (1) hyperpolarised [1-13C]-pyruvate MRI, (2) deuterium metabolic imaging (DMI) and (3) sodium MRI. The diagnosis will be made on samples acquired at biopsy or at surgery. The primary objective is the technical development of the novel MRI techniques, with the ultimate aim to understand whether these can identify differences between benign and malignant tumours, while the secondary objectives aim to assess how complementary the techniques are, and if they provide additional information. The exploratory objective is to link imaging findings with clinical data and molecular analyses for the biological validation of the novel MRI techniques. ETHICS AND DISSEMINATION This study was ethically approved (UK REC HRA: 22/EE/0136; current protocol version 2.1 dated 11 August 2022). The plans for dissemination include presentations at conferences, publications in scientific journals, a doctoral thesis and patient and public involvement. TRIAL REGISTRATION NUMBER NCT06016075.
Collapse
Affiliation(s)
| | - Mary A McLean
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Marta Wylot
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Joao Duarte
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Matthew J Locke
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Iosif Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Nuclear Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hao Li
- Department of Radiology, University of Cambridge, Cambridge, UK
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, Shanghai, China
| | - Andrew N Priest
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah J Welsh
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James O Jones
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James N Armitage
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Thomas J Mitchell
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Grant D Stewart
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
5
|
Liu X, Bao Q, Liu Z, Wang J, Otikovs M, Zhang Z, Cheng X, Wang J, Frydman L, Zhou X, Liu M, Liu C. Exploring Metabolic Aberrations after Intracerebral Hemorrhage In Vivo with Deuterium Metabolic Spectroscopy Imaging. Anal Chem 2024; 96:15563-15571. [PMID: 39295127 DOI: 10.1021/acs.analchem.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Aberrations in metabolism after intracerebral hemorrhage (ICH), particularly lactate metabolism, play a crucial role in the pathophysiology and patient outcome. To date, the evaluation of metabolism relies heavily on invasive methods such as microdialysis, restricting a comprehensive understanding of the metabolic mechanisms associated with ICH. This study proposes a noninvasive metabolic imaging method based on 2H magnetic resonance spectroscopy and imaging (2H-MRS/MRSI) to detect metabolic changes after ICH in vivo. To overcome the low-sensitivity limitation of 2H, we designed a new 1H-2H double-resonance coil with 2H-channel active detuning and proposed chemical shift imaging based on the balanced steady-state free precession method (CSI-bSSFP). Compared with the volume coil, the signal-to-noise ratio (SNR) of the new coil was increased by 4.5 times. In addition, the SNR of CSI-bSSFP was 1.5 times higher than that of conventional CSI. These two technologies were applied to measure lactate metabolic flux at different phases of ICH. The results show a higher lactate concentration in ICH rats than in control rats, which is in line with the increased expression of lactate dehydrogenase measured via immunohistochemistry staining (AUCLac_area/Glc_area: control, 0.08 ± 0.02 vs ICH-3d, 0.39 ± 0.05 vs ICH-7d, 0.18 ± 0.02, P < 0.01; H-score: control, 126.4 ± 5.03 vs ICH-3d, 168.4 ± 5.71 vs ICH-7d,133.6 ± 7.70, P < 0.05). A higher lactate signal also appeared near the ICH region than in normal brain tissue. In conclusion, 2H-MRS/MRSI shows potential as a useful method for in vivo metabolic imaging and noninvasive assessment of ICH.
Collapse
Affiliation(s)
- Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhuang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Martins Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Zhi Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xin Cheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, Beijing 100600, China
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
6
|
Hsieh KL, Chen Q, Salzillo TC, Zhang J, Jiang X, Bhattacharya PK, Shams S. Hyperpolarized Magnetic Resonance Imaging, Nuclear Magnetic Resonance Metabolomics, and Artificial Intelligence to Interrogate the Metabolic Evolution of Glioblastoma. Metabolites 2024; 14:448. [PMID: 39195544 DOI: 10.3390/metabo14080448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma (GBM) is a malignant Grade VI cancer type with a median survival duration of only 8-16 months. Earlier detection of GBM could enable more effective treatment. Hyperpolarized magnetic resonance spectroscopy (HPMRS) could detect GBM earlier than conventional anatomical MRI in glioblastoma murine models. We further investigated whether artificial intelligence (A.I.) could detect GBM earlier than HPMRS. We developed a deep learning model that combines multiple modalities of cancer data to predict tumor progression, assess treatment effects, and to reconstruct in vivo metabolomic information from ex vivo data. Our model can detect GBM progression two weeks earlier than conventional MRIs and a week earlier than HPMRS alone. Our model accurately predicted in vivo biomarkers from HPMRS, and the results inferred biological relevance. Additionally, the model showed potential for examining treatment effects. Our model successfully detected tumor progression two weeks earlier than conventional MRIs and accurately predicted in vivo biomarkers using ex vivo information such as conventional MRIs, HPMRS, and tumor size data. The accuracy of these predictions is consistent with biological relevance.
Collapse
Affiliation(s)
- Kang Lin Hsieh
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Chen
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Travis C Salzillo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Zhang
- Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xiaoqian Jiang
- Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics at UTHealth Houston, Houston, TX 77030, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shyan Shams
- Department of Health Data Science and Artificial Intelligence, McWilliams School of Biomedical Informatics at UTHealth Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Khan AS, Peterson KA, Vittay OI, McLean MA, Kaggie JD, O’Brien JT, Rowe JB, Gallagher FA, Matys T, Wolfe S. Deuterium Metabolic Imaging of Alzheimer Disease at 3-T Magnetic Field Strength: A Pilot Case-Control Study. Radiology 2024; 312:e232407. [PMID: 39012255 PMCID: PMC11294762 DOI: 10.1148/radiol.232407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 07/17/2024]
Abstract
Background Impaired glucose metabolism is characteristic of several types of dementia, preceding cognitive symptoms and structural brain changes. Reduced glucose uptake in specific brain regions, detected using fluorine 18 (18F) fluorodeoxyglucose (FDG) PET, is a valuable diagnostic marker in Alzheimer disease (AD). However, the use of 18F-FDG PET in clinical practice may be limited by equipment availability and high cost. Purpose To test the feasibility of using MRI-based deuterium (2H) metabolic imaging (DMI) at a clinical magnetic field strength (3 T) to detect and localize changes in the concentration of glucose and its metabolites in the brains of patients with a clinical diagnosis of AD. Materials and Methods Participants were recruited for this prospective case-control pilot study between March 2021 and February 2023. DMI was performed at 3 T using a custom birdcage head coil following oral administration of deuterium-labeled glucose (0.75 g/kg). Unlocalized whole-brain MR spectroscopy (MRS) and three-dimensional MR spectroscopic imaging (MRSI) (voxel size, 3.2 cm cubic) were performed. Ratios of 2H-glucose, 2H-glutamate and 2H-glutamine (2H-Glx), and 2H-lactate spectroscopic peak signals to 2H-water peak signal were calculated for the whole-brain MR spectra and for individual MRSI voxels. Results A total of 19 participants, including 10 participants with AD (mean age, 68 years ± 5 [SD]; eight males) and nine cognitively healthy control participants (mean age, 70 years ± 6; six males) were evaluated. Whole-brain spectra demonstrated a reduced ratio of 2H-Glx to 2H-glucose peak signals in participants with AD compared with control participants (0.41 ± 0.09 vs 0.58 ± 0.20, respectively; P = .04), suggesting an impairment of oxidative glucose metabolism in AD. However, there was no evidence of localization of these changes to the expected regions of metabolic impairment at MRSI, presumably due to insufficient spatial resolution. Conclusion DMI at 3 T demonstrated impairment of oxidative glucose metabolism in the brains of patients with AD but no evidence of regional signal differences. © RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Alixander S. Khan
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Katie A. Peterson
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Orsolya I. Vittay
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Mary A. McLean
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Joshua D. Kaggie
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - John T. O’Brien
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - James B. Rowe
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Ferdia A. Gallagher
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Tomasz Matys
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| | - Shannyn Wolfe
- From the Departments of Radiology (A.S.K., K.A.P., M.A.M., J.D.K.,
F.A.G., T.M.), Psychiatry (J.T.O.), and Clinical Neurosciences (J.B.R.),
University of Cambridge, Hills Road, Cambridge CB2 0QQ, England; and
Departments of Radiology (O.I.V., F.A.G., T.M.) and Neurology (J.B.R.),
Cambridge University Hospitals NHS Foundation Trust, Cambridge, England
| |
Collapse
|
8
|
Pan F, Liu X, Wan J, Guo Y, Sun P, Zhang X, Wang J, Bao Q, Yang L. Advances and prospects in deuterium metabolic imaging (DMI): a systematic review of in vivo studies. Eur Radiol Exp 2024; 8:65. [PMID: 38825658 PMCID: PMC11144684 DOI: 10.1186/s41747-024-00464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Deuterium metabolic imaging (DMI) has emerged as a promising non-invasive technique for studying metabolism in vivo. This review aims to summarize the current developments and discuss the futures in DMI technique in vivo. METHODS A systematic literature review was conducted based on the PRISMA 2020 statement by two authors. Specific technical details and potential applications of DMI in vivo were summarized, including strategies of deuterated metabolites detection, deuterium-labeled tracers and corresponding metabolic pathways in vivo, potential clinical applications, routes of tracer administration, quantitative evaluations of metabolisms, and spatial resolution. RESULTS Of the 2,248 articles initially retrieved, 34 were finally included, highlighting 2 strategies for detecting deuterated metabolites: direct and indirect DMI. Various deuterated tracers (e.g., [6,6'-2H2]glucose, [2,2,2'-2H3]acetate) were utilized in DMI to detect and quantify different metabolic pathways such as glycolysis, tricarboxylic acid cycle, and fatty acid oxidation. The quantifications (e.g., lactate level, lactate/glutamine and glutamate ratio) hold promise for diagnosing malignancies and assessing early anti-tumor treatment responses. Tracers can be administered orally, intravenously, or intraperitoneally, either through bolus administration or continuous infusion. For metabolic quantification, both serial time point methods (including kinetic analysis and calculation of area under the curves) and single time point quantifications are viable. However, insufficient spatial resolution remains a major challenge in DMI (e.g., 3.3-mL spatial resolution with 10-min acquisition at 3 T). CONCLUSIONS Enhancing spatial resolution can facilitate the clinical translation of DMI. Furthermore, optimizing tracer synthesis, administration protocols, and quantification methodologies will further enhance their clinical applicability. RELEVANCE STATEMENT Deuterium metabolic imaging, a promising non-invasive technique, is systematically discussed in this review for its current progression, limitations, and future directions in studying in vivo energetic metabolism, displaying a relevant clinical potential. KEY POINTS • Deuterium metabolic imaging (DMI) shows promise for studying in vivo energetic metabolism. • This review explores DMI's current state, limits, and future research directions comprehensively. • The clinical translation of DMI is mainly impeded by limitations in spatial resolution.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiayu Wan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Sun
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Xiaoxiao Zhang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Larson PEZ, Bernard JML, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D. Current methods for hyperpolarized [1- 13C]pyruvate MRI human studies. Magn Reson Med 2024; 91:2204-2228. [PMID: 38441968 PMCID: PMC10997462 DOI: 10.1002/mrm.29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 03/07/2024]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
Affiliation(s)
- Peder EZ Larson
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Jenna ML Bernard
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center,
Houston, TX, USA
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto,
Ontario, Canada
- Department of Medical Biophysics, University of Toronto,
Toronto, Ontario, Canada
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North
Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14,
24118, Kiel, Germany
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
- Greenebaum Cancer Center, University of Maryland School
of Medicine, Baltimore, MD, USA
| | - Mary A McLean
- Department of Radiology, University of Cambridge,
Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of
Cambridge, Li Ka Shing Center, Cambridge, United Kingdom
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine,
Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich,
Germany
| | - James Slater
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | | | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | | |
Collapse
|
10
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2024; 71:1521-1530. [PMID: 38090865 PMCID: PMC11095995 DOI: 10.1109/tbme.2023.3341760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
|
11
|
Martinez Luque E, Liu Z, Sung D, Goldberg RM, Agarwal R, Bhattacharya A, Ahmed NS, Allen JW, Fleischer CC. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol Imaging Cancer 2024; 6:e230101. [PMID: 38578207 PMCID: PMC11148681 DOI: 10.1148/rycan.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.
Collapse
Affiliation(s)
- Eva Martinez Luque
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Zexuan Liu
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Dongsuk Sung
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rachel M. Goldberg
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rishab Agarwal
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Aditya Bhattacharya
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Nadine S. Ahmed
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Jason W. Allen
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Candace C. Fleischer
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| |
Collapse
|
12
|
Chaumeil MM, Bankson JA, Brindle KM, Epstein S, Gallagher FA, Grashei M, Guglielmetti C, Kaggie JD, Keshari KR, Knecht S, Laustsen C, Schmidt AB, Vigneron D, Yen YF, Schilling F. New Horizons in Hyperpolarized 13C MRI. Mol Imaging Biol 2024; 26:222-232. [PMID: 38147265 PMCID: PMC10972948 DOI: 10.1007/s11307-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Weill Cornell Graduate School, New York City, NY, USA
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Andreas B Schmidt
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Daniel Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Bøgh N, Vaeggemose M, Schulte RF, Hansen ESS, Laustsen C. Repeatability of deuterium metabolic imaging of healthy volunteers at 3 T. Eur Radiol Exp 2024; 8:44. [PMID: 38472611 PMCID: PMC10933246 DOI: 10.1186/s41747-024-00426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Magnetic resonance (MR) imaging of deuterated glucose, termed deuterium metabolic imaging (DMI), is emerging as a biomarker of pathway-specific glucose metabolism in tumors. DMI is being studied as a useful marker of treatment response in a scan-rescan scenario. This study aims to evaluate the repeatability of brain DMI. METHODS A repeatability study was performed in healthy volunteers from December 2022 to March 2023. The participants consumed 75 g of [6,6'-2H2]glucose. The delivery of 2H-glucose to the brain and its conversion to 2H-glutamine + glutamate, 2H-lactate, and 2H-water DMI was imaged at baseline and at 30, 70, and 120 min. DMI was performed using MR spectroscopic imaging on a 3-T system equipped with a 1H/2H-tuned head coil. Coefficients of variation (CoV) were computed for estimation of repeatability and between-subject variability. In a set of exploratory analyses, the variability effects of region, processing, and normalization were estimated. RESULTS Six male participants were recruited, aged 34 ± 6.5 years (mean ± standard deviation). There was 42 ± 2.7 days between sessions. Whole-brain levels of glutamine + glutamate, lactate, and glucose increased to 3.22 ± 0.4 mM, 1.55 ± 0.3 mM, and 3 ± 0.7 mM, respectively. The best signal-to-noise ratio and repeatability was obtained at the 120-min timepoint. Here, the within-subject whole-brain CoVs were -10% for all metabolites, while the between-subject CoVs were -20%. CONCLUSIONS DMI of glucose and its downstream metabolites is feasible and repeatable on a clinical 3 T system. TRIAL REGISTRATION ClinicalTrials.gov, NCT05402566 , registered the 25th of May 2022. RELEVANCE STATEMENT Brain deuterium metabolic imaging of healthy volunteers is repeatable and feasible at clinical field strengths, enabling the study of shifts in tumor metabolism associated with treatment response. KEY POINTS • Deuterium metabolic imaging is an emerging tumor biomarker with unknown repeatability. • The repeatability of deuterium metabolic imaging is on par with FDG-PET. • The study of deuterium metabolic imaging in clinical populations is feasible.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark.
- A&E, Gødstrup Hospital, Herning, Denmark.
| | - Michael Vaeggemose
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
- GE HealthCare, Brondby, Denmark
| | | | - Esben S S Hansen
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| |
Collapse
|
14
|
Song KH, Ge X, Engelbach JA, Thio LL, Neil JJ, Ackerman JJH, Garbow JR. Subcutaneous deuterated substrate administration in mice: An alternative to tail vein infusion. Magn Reson Med 2024; 91:681-686. [PMID: 37849055 DOI: 10.1002/mrm.29888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Tail-vein catheterization and subsequent in-magnet infusion is a common route of administration of deuterium (2 H)-labeled substrates in small-animal deuterium (D) MR studies. With mice, because of the tail vein's small diameter, this procedure is challenging. It requires considerable personnel training and practice, is prone to failure, and may preclude serial studies. Motivated by the need for an alternative, the time courses for common small-molecule deuterated substrates and downstream metabolites in brain following subcutaneous infusion were determined in mice and are presented herein. METHODS Three 2 H-labeled substrates-[6,6-2 H2 ]glucose, [2 H3 ]acetate, and [3,4,4,4-2 H4 ]beta-hydroxybutyrate-and 2 H2 O were administered to mice in-magnet via subcutaneous catheter. Brain time courses of the substrates and downstream metabolites (and semi-heavy water) were determined via single-voxel DMRS. RESULTS Subcutaneous catheter placement and substrate administration was readily accomplished with limited personnel training. Substrates reached pseudo-steady state in brain within ∼30-40 min of bolus infusion. Time constants characterizing the appearance in brain of deuterated substrates or semi-heavy water following 2 H2 O administration were similar (∼15 min). CONCLUSION Administration of deuterated substrates via subcutaneous catheter for in vivo DMRS experiments with mice is robust, requires limited personnel training, and enables substantial dosing. It is suitable for metabolic studies where pseudo-steady state substrate administration/accumulation is sufficient. It is particularly advantageous for serial longitudinal studies over an extended period because it avoids inevitable damage to the tail vein following multiple catheterizations.
Collapse
Affiliation(s)
- Kyu-Ho Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John A Engelbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liu Lin Thio
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Neil
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph J H Ackerman
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Song KH, Ge X, Engelbach J, Rich KM, Ackerman JJH, Garbow JR. Deuterium Magnetic Resonance Spectroscopy Quantifies Tumor Fraction in a Mouse Model of a Mixed Radiation Necrosis / GL261-Glioblastoma Lesion. Mol Imaging Biol 2024; 26:173-178. [PMID: 37516675 PMCID: PMC11151282 DOI: 10.1007/s11307-023-01837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE Distinguishing recurrent brain tumor from treatment effects, including late time-to-onset radiation necrosis (RN), presents an on-going challenge in post-treatment imaging of neuro-oncology patients. Experiments were performed in a novel mouse model that recapitulates the relevant clinical histologic features of recurrent glioblastoma growing in a RN environment, the mixed tumor/RN model. The goal of this work was to apply single-voxel deuterium (2H) magnetic resonance spectroscopy (MRS), in concert with administration of deuterated glucose, to determine if the metabolic signature of aerobic glycolysis (Warburg effect: glucose → lactate in the presence of O2), a distinguishing characteristic of proliferating tumor, provides a quantitative readout of the tumor fraction (percent) in a mixed tumor/RN lesion. PROCEDURES 2H MRS employed the SPin-ECho full-Intensity Acquired Localized (SPECIAL) MRS pulse sequence and outer volume suppression at 11.74 T. For each subject, a single 2H MRS voxel was placed over the mixed lesion as defined by contrast enhanced (CE) 1H T1-weighted MRI. Following intravenous administration of [6,6-2H2]glucose (Glc), 2H MRS monitored the glycolytic conversion to [3,3-2H2]lactate (Lac) and glutamate + glutamine (Glu + Gln = Glx). RESULTS Based on previous work, the tumor fraction of the mixed lesion was quantified as the ratio of tumor volume, defined by 1H magnetization transfer experiments, vs. the total mixed-lesion volume. Metabolite 2H MR spectral-amplitude values were converted to metabolite concentrations using the natural-abundance semi-heavy water (1HO2H) resonance as an internal concentration standard. The 2H MR-determined [Lac] / [Glx] ratio was strongly linearly correlated with tumor fraction in the mixed lesion (n = 9), Pearson's r = 0.87, and 77% of the variation in the [Lac] / [Glx] ratio was due to tumor percent r2 = 0.77. CONCLUSIONS This preclinical study supports the proposal that 2H MR could occupy a well-defined secondary role when standard-of-care 1H imaging is non-diagnostic regarding tumor presence and/or response to therapy.
Collapse
Affiliation(s)
- Kyu-Ho Song
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
| | - Xia Ge
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
| | - John Engelbach
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
| | - Keith M Rich
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
| | - Joseph J H Ackerman
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
- Department of Chemistry, Washington University, St. Louis, MO, USA
- Department of Internal Medicine, Washington University, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University, MO, St. Louis, USA
| | - Joel R Garbow
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA.
- Alvin J. Siteman Cancer Center, Washington University, MO, St. Louis, USA.
| |
Collapse
|
16
|
Høilund-Carlsen PF, Alavi A, Barrio JR. PET/CT/MRI in Clinical Trials of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S579-S601. [PMID: 39422954 DOI: 10.3233/jad-240206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
With the advent of PET imaging in 1976, 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET became the preferred method for in vivo investigation of cerebral processes, including regional hypometabolism in Alzheimer's disease. With the emergence of amyloid-PET tracers, [11C]Pittsburgh Compound-B in 2004 and later [18F]florbetapir, [18F]florbetaben, and [18F]flumetamol, amyloid-PET has replaced FDG-PET in Alzheimer's disease anti-amyloid clinical trial treatments to ensure "amyloid positivity" as an entry criterion, and to measure treatment-related decline in cerebral amyloid deposits. MRI has been used to rule out other brain diseases and screen for 'amyloid-related imaging abnormalities' (ARIAs) of two kinds, ARIA-E and ARIA-H, characterized by edema and micro-hemorrhage, respectively, and, to a lesser extent, to measure changes in cerebral volumes. While early immunotherapy trials of Alzheimer's disease showed no clinical effects, newer monoclonal antibody trials reported decreases of 27% to 85% in the cerebral amyloid-PET signal, interpreted by the Food and Drug Administration as amyloid removal expected to result in a reduction in clinical decline. However, due to the lack of diagnostic specificity of amyloid-PET tracers, amyloid positivity cannot prevent the inclusion of non-Alzheimer's patients and even healthy subjects in these clinical trials. Moreover, the "decreasing amyloid accumulation" assessed by amyloid-PET imaging has questionable quantitative value in the presence of treatment-related brain damage (ARIAs). Therefore, future Alzheimer's clinical trials should disregard amyloid-PET imaging and focus instead on assessment of regional brain function by FDG-PET and MRI monitoring of ARIAs and brain volume loss in all trial patients.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
Adamson PM, Datta K, Watkins R, Recht LD, Hurd RE, Spielman DM. Deuterium metabolic imaging for 3D mapping of glucose metabolism in humans with central nervous system lesions at 3T. Magn Reson Med 2024; 91:39-50. [PMID: 37796151 PMCID: PMC10841984 DOI: 10.1002/mrm.29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.
Collapse
Affiliation(s)
- Philip M. Adamson
- Department of Electrical Engineering, Stanford University, Stanford, California USA
| | - Keshav Datta
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ron Watkins
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Lawrence D. Recht
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Ralph E. Hurd
- Department of Radiology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
18
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2023:S0939-3889(23)00120-4. [PMID: 38160135 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
19
|
Asano H, Elhelaly AE, Hyodo F, Iwasaki R, Noda Y, Kato H, Ichihashi K, Tomita H, Murata M, Mori T, Matsuo M. Deuterium Magnetic Resonance Imaging Using Deuterated Water-Induced 2H-Tissue Labeling Allows Monitoring Cancer Treatment at Clinical Field Strength. Clin Cancer Res 2023; 29:5173-5182. [PMID: 37732903 PMCID: PMC10722130 DOI: 10.1158/1078-0432.ccr-23-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE An accurate and noninvasive assessment of tumor response following treatment other than traditional anatomical imaging techniques is essential. Deuterium magnetic resonance spectroscopic (MRS) imaging has been demonstrated as an alternative for cancer metabolic imaging by high-field MRI using deuterium-labeled molecules. The study aim was to use 2H tissue labeling and deuterium MRI at clinical field strength for tumor visualization and assessment of three anticancer therapies in pancreatic cancer model mice. EXPERIMENTAL DESIGN MIA PaCa-2 pancreatic carcinoma and C26 colorectal carcinoma models of BALB/c-nu mice was prepared, and repeated deuterium MRI was performed during the first 10 days of free drinking of 30% D2O to track 2H distribution in tissues. 2H accumulation in the tumor after irradiation, bevacizumab administration, or gemcitabine administration was also measured in MIA PaCa-2-bearing mice. Confirmatory proton MRI, ex vivo metabolic hyperpolarization 13C-MRS, and histopathology were performed. RESULTS The mouse's whole-body distribution of 2H was visible 1 day after drinking, and the signal intensity increased daily. Although the tumor size did not change 1 and 3 days after irradiation, the amount of 2H decreased significantly. The 2H image intensity of the tumor also significantly decreased after the administration of bevacizumab or gemcitabine. Metabolic hyperpolarization 13C-MRS, proton MRI, and 2H-NMR spectroscopy confirmed the efficacy of the anticancer treatments. CONCLUSIONS Deuterium MRI at 1.5T proved feasible to track 2H distribution throughout mouse tissues during D2O administration and revealed a higher 2H accumulation in the tumor xenografts. This research demonstrated a promising successful method for preliminary assessment of radiotherapy and chemotherapy of cancer.
Collapse
Affiliation(s)
- Hirofumi Asano
- Department of Radiology, Gifu University, Gifu, Japan
- Department of Radiological Technology, Central Japan International Medical Center, Gifu, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, Gifu University, Gifu, Japan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fuminori Hyodo
- Department of Radiology, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Ryota Iwasaki
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Takashi Mori
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | |
Collapse
|
20
|
Hesse F, Wright A, Bulat F, Kreis F, Brindle KM. Assessment of the sensitivity of 2 H MR spectroscopy measurements of [2,3- 2 H 2 ]fumarate metabolism for detecting tumor cell death. NMR IN BIOMEDICINE 2023; 36:e4965. [PMID: 37148156 PMCID: PMC10909471 DOI: 10.1002/nbm.4965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Imaging the metabolism of [2,3-2 H2 ]fumarate to produce malate can be used to detect tumor cell death post-treatment. Here, we assess the sensitivity of the technique for detecting cell death by lowering the concentration of injected [2,3-2 H2 ]fumarate and by varying the extent of tumor cell death through changes in drug concentration. Mice were implanted subcutaneously with human triple negative breast cancer cells (MDA-MB-231) and injected with 0.1, 0.3, and 0.5 g/kg [2,3-2 H2 ]fumarate before and after treatment with a multivalent TRAlL-R2 agonist (MEDI3039) at 0.1, 0.4, and 0.8 mg/kg. Tumor conversion of [2,3-2 H2 ]fumarate to [2,3-2 H2 ]malate was assessed from a series of 13 spatially localized 2 H MR spectra acquired over 65 min using a pulse-acquire sequence with a 2-ms BIR4 adiabatic excitation pulse. Tumors were then excised and stained for histopathological markers of cell death: cleaved caspase 3 (CC3) and DNA damage (terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]). The rate of malate production and the malate/fumarate ratio plateaued at tumor fumarate concentrations of 2 mM, which were obtained with injected [2,3-2 H2 ]fumarate concentrations of 0.3 g/kg and above. Tumor malate concentration and the malate/fumarate ratio increased linearly with the extent of cell death determined histologically. At an injected [2,3-2 H2 ]fumarate concentration of 0.3 g/kg, 20% CC3 staining corresponded to a malate concentration of 0.62 mM and a malate/fumarate ratio of 0.21. Extrapolation indicated that there would be no detectable malate at 0% CC3 staining. The use of low and nontoxic fumarate concentrations and the production of [2,3-2 H2 ]malate at concentrations that are within the range that can be detected clinically suggest this technique could translate to the clinic.
Collapse
Affiliation(s)
- Friederike Hesse
- Cancer Research UK Cambridge InstituteCambridgeUK
- Department of RadiologyUniversity of CambridgeCambridgeUK
| | - Alan Wright
- Guy's and St Thomas's NHS Foundation TrustSt Thomas' HospitalLondonUK
| | - Flaviu Bulat
- Cancer Research UK Cambridge InstituteCambridgeUK
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Felix Kreis
- Cancer Research UK Cambridge InstituteCambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
21
|
Deen SS, Rooney C, Shinozaki A, McGing J, Grist JT, Tyler DJ, Serrão E, Gallagher FA. Hyperpolarized Carbon 13 MRI: Clinical Applications and Future Directions in Oncology. Radiol Imaging Cancer 2023; 5:e230005. [PMID: 37682052 PMCID: PMC10546364 DOI: 10.1148/rycan.230005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Hyperpolarized carbon 13 MRI (13C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected 13C-labeled molecules and their downstream metabolites to be imaged in vivo, thus providing real-time information on kinetics. To date, the most important reaction studied with hyperpolarized 13C MRI is exchange of the hyperpolarized 13C signal from injected [1-13C]pyruvate with the resident tissue lactate pool. Recent preclinical and human studies have shown the role of several biologic factors such as the lactate dehydrogenase enzyme, pyruvate transporter expression, and tissue hypoxia in generating the MRI signal from this reaction. Potential clinical applications of hyperpolarized 13C MRI in oncology include using metabolism to stratify tumors by grade, selecting therapeutic pathways based on tumor metabolic profiles, and detecting early treatment response through the imaging of shifts in metabolism that precede tumor structural changes. This review summarizes the foundations of hyperpolarized 13C MRI, presents key findings from human cancer studies, and explores the future clinical directions of the technique in oncology. Keywords: Hyperpolarized Carbon 13 MRI, Molecular Imaging, Cancer, Tissue Metabolism © RSNA, 2023.
Collapse
Affiliation(s)
- Surrin S Deen
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Catriona Rooney
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ayaka Shinozaki
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Jordan McGing
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - James T Grist
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Damian J Tyler
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Eva Serrão
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| | - Ferdia A Gallagher
- From the Department of Radiology, Cambridge University Hospitals, Biomedical Campus, Cambridge, CB2 0QQ, England (S.S.D., E.S., F.A.G.); Department of Physiology, Anatomy, and Genetics (C.R., A.S., J.T.G., D.J.T.) and the Oxford Centre for Clinical Magnetic Resonance Research (A.S., J.T.G., D.J.T.), University of Oxford, Oxford, England; Department of Radiology, Oxford University Hospitals, Oxford, England (J.M., J.T.G.); Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, England (J.T.G.); Department of Radiology, University of Cambridge, Cambridge, England (E.S., F.A.G.); Cancer Research UK Cambridge Centre, Cambridge, England (F.A.G.); and Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada (E.S.)
| |
Collapse
|
22
|
Autry AW, Vaziri S, LaFontaine M, Gordon JW, Chen HY, Kim Y, Villanueva-Meyer JE, Molinaro A, Clarke JL, Oberheim Bush NA, Xu D, Lupo JM, Larson PEZ, Vigneron DB, Chang SM, Li Y. Multi-parametric hyperpolarized 13C/ 1H imaging reveals Warburg-related metabolic dysfunction and associated regional heterogeneity in high-grade human gliomas. Neuroimage Clin 2023; 39:103501. [PMID: 37611371 PMCID: PMC10470324 DOI: 10.1016/j.nicl.2023.103501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Dynamic hyperpolarized (HP)-13C MRI has enabled real-time, non-invasive assessment of Warburg-related metabolic dysregulation in glioma using a [1-13C]pyruvate tracer that undergoes conversion to [1-13C]lactate and [13C]bicarbonate. Using a multi-parametric 1H/HP-13C imaging approach, we investigated dynamic and steady-state metabolism, together with physiological parameters, in high-grade gliomas to characterize active tumor. METHODS Multi-parametric 1H/HP-13C MRI data were acquired from fifteen patients with progressive/treatment-naïve glioblastoma [prog/TN GBM, IDH-wildtype (n = 11)], progressive astrocytoma, IDH-mutant, grade 4 (G4AIDH+, n = 2) and GBM manifesting treatment effects (n = 2). Voxel-wise regional analysis of the cohort with prog/TN GBM assessed imaging heterogeneity across contrast-enhancing/non-enhancing lesions (CEL/NEL) and normal-appearing white matter (NAWM) using a mixed effects model. To enable cross-nucleus parameter association, normalized perfusion, diffusion, and dynamic/steady-state (HP-13C/spectroscopic) metabolic data were collectively examined at the 13C resolution. Prog/TN GBM were similarly compared against progressive G4AIDH+ and treatment effects. RESULTS Regional analysis of Prog/TN GBM metabolism revealed statistically significant heterogeneity in 1H choline-to-N-acetylaspartate index (CNI)max, [1-13C]lactate, modified [1-13C]lactate-to-[1-13C]pyruvate ratio (CELval > NELval > NAWMval); [1-13C]lactate-to-[13C]bicarbonate ratio (CELval > NELval/NAWMval); and 1H-lactate (CELval/NELval > NAWMundetected). Significant associations were found between normalized perfusion (cerebral blood volume, nCBV; peak height, nPH) and levels of [1-13C]pyruvate and [1-13C]lactate, as well as between CNImax and levels of [1-13C]pyruvate, [1-13C]lactate and modified ratio. GBM, by comparison to G4AIDH+, displayed lower perfusion %-recovery and modeled rate constants for [1-13C]pyruvate-to-[1-13C]lactate conversion (kPL), and higher 1H-lactate and [1-13C]pyruvate levels, while having higher nCBV, %-recovery, kPL, [1-13C]pyruvate-to-[1-13C]lactate and modified ratios relative to treatment effects. CONCLUSIONS GBM consistently displayed aberrant, Warburg-related metabolism and regional heterogeneity detectable by novel HP-13C/1H imaging techniques.
Collapse
Affiliation(s)
- Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Sana Vaziri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Marisa LaFontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA; Department of Neurological Surgery, University of California, San Francisco, USA
| | - Annette Molinaro
- Department of Neurological Surgery, University of California, San Francisco, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, USA; Department of Neurology, University of California, San Francisco, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, USA; Department of Neurology, University of California, San Francisco, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA.
| |
Collapse
|
23
|
Niess F, Strasser B, Hingerl L, Niess E, Motyka S, Hangel G, Krššák M, Gruber S, Spurny-Dworak B, Trattnig S, Scherer T, Lanzenberger R, Bogner W. Reproducibility of 3D MRSI for imaging human brain glucose metabolism using direct ( 2H) and indirect ( 1H) detection of deuterium labeled compounds at 7T and clinical 3T. Neuroimage 2023; 277:120250. [PMID: 37414233 PMCID: PMC11019874 DOI: 10.1016/j.neuroimage.2023.120250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
INTRODUCTION Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'-2H2]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2H MRSI (DMI) and 1H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. METHODS Five volunteers (4 m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8 g/kg oral [6,6'-2H2]-glucose administration using time-resolved 3D 2H FID-MRSI with elliptical phase encoding at 7T and 3D 1H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. RESULTS One hour after oral tracer administration regionally averaged deuterium labeled Glx4 concentrations and the dynamics were not significantly different over all participants between 7T 2H DMI and 3T 1H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2H and 1H data points a weak to moderate negative correlation was observed for Glx4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc6 data GM (r=-0.61, p<0.001) and WM (r=-0.70, p<0.001). CONCLUSION This study demonstrates that indirect detection of deuterium labeled compounds using 1H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.
Collapse
Affiliation(s)
- Fabian Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria.
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria
| | - Eva Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Institute for Clinical Molecular MRI, Karl Landsteiner Society, Pölten 3100St, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Lazarettgasse 14, Vienna A-1090, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Austria
| |
Collapse
|
24
|
Woitek R, Brindle KM. Hyperpolarized Carbon-13 MRI in Breast Cancer. Diagnostics (Basel) 2023; 13:2311. [PMID: 37443703 DOI: 10.3390/diagnostics13132311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
One of the hallmarks of cancer is metabolic reprogramming, including high levels of aerobic glycolysis (the Warburg effect). Pyruvate is a product of glucose metabolism, and 13C-MR imaging of the metabolism of hyperpolarized (HP) [1-13C]pyruvate (HP 13C-MRI) has been shown to be a potentially versatile tool for the clinical evaluation of tumor metabolism. Hyperpolarization of the 13C nuclear spin can increase the sensitivity of detection by 4-5 orders of magnitude. Therefore, following intravenous injection, the location of hyperpolarized 13C-labeled pyruvate in the body and its subsequent metabolism can be tracked using 13C-MRI. Hyperpolarized [13C]urea and [1,4-13C2]fumarate are also likely to translate to the clinic in the near future as tools for imaging tissue perfusion and post-treatment tumor cell death, respectively. For clinical breast imaging, HP 13C-MRI can be combined with 1H-MRI to address the need for detailed anatomical imaging combined with improved functional tumor phenotyping and very early identification of patients not responding to standard and novel neoadjuvant treatments. If the technical complexity of the hyperpolarization process and the relatively high associated costs can be reduced, then hyperpolarized 13C-MRI has the potential to become more widely available for large-scale clinical trials.
Collapse
Affiliation(s)
- Ramona Woitek
- Research Centre for Medical Image Analysis and AI, Danube Private University, 3500 Krems, Austria
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge CB2 0RE, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
25
|
Niess F, Hingerl L, Strasser B, Bednarik P, Goranovic D, Niess E, Hangel G, Krššák M, Spurny-Dworak B, Scherer T, Lanzenberger R, Bogner W. Noninvasive 3-Dimensional 1 H-Magnetic Resonance Spectroscopic Imaging of Human Brain Glucose and Neurotransmitter Metabolism Using Deuterium Labeling at 3T : Feasibility and Interscanner Reproducibility. Invest Radiol 2023; 58:431-437. [PMID: 36735486 PMCID: PMC10184811 DOI: 10.1097/rli.0000000000000953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Noninvasive, affordable, and reliable mapping of brain glucose metabolism is of critical interest for clinical research and routine application as metabolic impairment is linked to numerous pathologies, for example, cancer, dementia, and depression. A novel approach to map glucose metabolism noninvasively in the human brain has been presented recently on ultrahigh-field magnetic resonance (MR) scanners (≥7T) using indirect detection of deuterium-labeled glucose and downstream metabolites such as glutamate, glutamine, and lactate. The aim of this study was to demonstrate the feasibility to noninvasively detect deuterium-labeled downstream glucose metabolites indirectly in the human brain via 3-dimensional (3D) proton ( 1 H) MR spectroscopic imaging on a clinical 3T MR scanner without additional hardware. MATERIALS AND METHODS This prospective, institutional review board-approved study was performed in 7 healthy volunteers (mean age, 31 ± 4 years, 5 men/2 women) after obtaining written informed consent. After overnight fasting and oral deuterium-labeled glucose administration, 3D metabolic maps were acquired every ∼4 minutes with ∼0.24 mL isotropic spatial resolution using real-time motion-, shim-, and frequency-corrected echo-less 3D 1 H-MR spectroscopic Imaging on a clinical routine 3T MR system. To test the interscanner reproducibility of the method, subjects were remeasured on a similar 3T MR system. Time courses were analyzed using linear regression and nonparametric statistical tests. Deuterium-labeled glucose and downstream metabolites were detected indirectly via their respective signal decrease in dynamic 1 H MR spectra due to exchange of labeled and unlabeled molecules. RESULTS Sixty-five minutes after deuterium-labeled glucose administration, glutamate + glutamine (Glx) signal intensities decreased in gray/white matter (GM/WM) by -1.63 ± 0.3/-1.0 ± 0.3 mM (-13% ± 3%, P = 0.02/-11% ± 3%, P = 0.02), respectively. A moderate to strong negative correlation between Glx and time was observed in GM/WM ( r = -0.64, P < 0.001/ r = -0.54, P < 0.001), with 60% ± 18% ( P = 0.02) steeper slopes in GM versus WM, indicating faster metabolic activity. Other nonlabeled metabolites showed no significant changes. Excellent intrasubject repeatability was observed across scanners for static results at the beginning of the measurement (coefficient of variation 4% ± 4%), whereas differences were observed in individual Glx dynamics, presumably owing to physiological variation of glucose metabolism. CONCLUSION Our approach translates deuterium metabolic imaging to widely available clinical routine MR scanners without specialized hardware, offering a safe, affordable, and versatile (other substances than glucose can be labeled) approach for noninvasive imaging of glucose and neurotransmitter metabolism in the human brain.
Collapse
Affiliation(s)
- Fabian Niess
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Petr Bednarik
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Dario Goranovic
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eva Niess
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gilbert Hangel
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- From the High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Ip KL, Thomas MA, Behar KL, de Graaf RA, De Feyter HM. Mapping of exogenous choline uptake and metabolism in rat glioblastoma using deuterium metabolic imaging (DMI). Front Cell Neurosci 2023; 17:1130816. [PMID: 37187610 PMCID: PMC10175635 DOI: 10.3389/fncel.2023.1130816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction There is a lack of robust metabolic imaging techniques that can be routinely applied to characterize lesions in patients with brain tumors. Here we explore in an animal model of glioblastoma the feasibility to detect uptake and metabolism of deuterated choline and describe the tumor-to-brain image contrast. Methods RG2 cells were incubated with choline and the level of intracellular choline and its metabolites measured in cell extracts using high resolution 1H NMR. In rats with orthotopically implanted RG2 tumors deuterium metabolic imaging (DMI) was applied in vivo during, as well as 1 day after, intravenous infusion of 2H9-choline. In parallel experiments, RG2-bearing rats were infused with [1,1',2,2'-2H4]-choline and tissue metabolite extracts analyzed with high resolution 2H NMR to identify molecule-specific 2H-labeling in choline and its metabolites. Results In vitro experiments indicated high uptake and fast phosphorylation of exogenous choline in RG2 cells. In vivo DMI studies revealed a high signal from the 2H-labeled pool of choline + metabolites (total choline, 2H-tCho) in the tumor lesion but not in normal brain. Quantitative DMI-based metabolic maps of 2H-tCho showed high tumor-to-brain image contrast in maps acquired both during, and 24 h after deuterated choline infusion. High resolution 2H NMR revealed that DMI data acquired during 2H-choline infusion consists of free choline and phosphocholine, while the data acquired 24 h later represent phosphocholine and glycerophosphocholine. Discussion Uptake and metabolism of exogenous choline was high in RG2 tumors compared to normal brain, resulting in high tumor-to-brain image contrast on DMI-based metabolic maps. By varying the timing of DMI data acquisition relative to the start of the deuterated choline infusion, the metabolic maps can be weighted toward detection of choline uptake or choline metabolism. These proof-of-principle experiments highlight the potential of using deuterated choline combined with DMI to metabolically characterize brain tumors.
Collapse
Affiliation(s)
- Kevan L. Ip
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Monique A. Thomas
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Kevin L. Behar
- Department of Psychiatry, Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
27
|
Niess F, Strasser B, Hingerl L, Niess E, Motyka S, Hangel G, Krššák M, Gruber S, Spurny-Dworak B, Trattnig S, Scherer T, Lanzenberger R, Bogner W. Reproducibility of 3D MRSI for imaging human brain glucose metabolism using direct ( 2 H) and indirect ( 1 H) detection of deuterium labeled compounds at 7T and clinical 3T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.17.23288672. [PMID: 37131634 PMCID: PMC10153308 DOI: 10.1101/2023.04.17.23288672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Introduction Deuterium metabolic imaging (DMI) and quantitative exchange label turnover (QELT) are novel MR spectroscopy techniques for non-invasive imaging of human brain glucose and neurotransmitter metabolism with high clinical potential. Following oral or intravenous administration of non-ionizing [6,6'- 2 H 2 ]-glucose, its uptake and synthesis of downstream metabolites can be mapped via direct or indirect detection of deuterium resonances using 2 H MRSI (DMI) and 1 H MRSI (QELT), respectively. The purpose of this study was to compare the dynamics of spatially resolved brain glucose metabolism, i.e., estimated concentration enrichment of deuterium labeled Glx (glutamate+glutamine) and Glc (glucose) acquired repeatedly in the same cohort of subjects using DMI at 7T and QELT at clinical 3T. Methods Five volunteers (4m/1f) were scanned in repeated sessions for 60 min after overnight fasting and 0.8g/kg oral [6,6'- 2 H 2 ]-glucose administration using time-resolved 3D 2 H FID-MRSI with elliptical phase encoding at 7T and 3D 1 H FID-MRSI with a non-Cartesian concentric ring trajectory readout at clinical 3T. Results One hour after oral tracer administration regionally averaged deuterium labeled Glx 4 concentrations and the dynamics were not significantly different over all participants between 7T 2 H DMI and 3T 1 H QELT data for GM (1.29±0.15 vs. 1.38±0.26 mM, p=0.65 & 21±3 vs. 26±3 µM/min, p=0.22) and WM (1.10±0.13 vs. 0.91±0.24 mM, p=0.34 & 19±2 vs. 17±3 µM/min, p=0.48). Also, the observed time constants of dynamic Glc 6 data in GM (24±14 vs. 19±7 min, p=0.65) and WM (28±19 vs. 18±9 min, p=0.43) dominated regions showed no significant differences. Between individual 2 H and 1 H data points a weak to moderate negative correlation was observed for Glx 4 concentrations in GM (r=-0.52, p<0.001), and WM (r=-0.3, p<0.001) dominated regions, while a strong negative correlation was observed for Glc 6 data GM (r=- 0.61, p<0.001) and WM (r=-0.70, p<0.001). Conclusion This study demonstrates that indirect detection of deuterium labeled compounds using 1 H QELT MRSI at widely available clinical 3T without additional hardware is able to reproduce absolute concentration estimates of downstream glucose metabolites and the dynamics of glucose uptake compared to 2 H DMI data acquired at 7T. This suggests significant potential for widespread application in clinical settings especially in environments with limited access to ultra-high field scanners and dedicated RF hardware.
Collapse
Affiliation(s)
- Fabian Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
| | - Eva Niess
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Department of Neurosurgery, Medical University of Vienna
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Institute for Clinical Molecular MRI, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna
- Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK)
| |
Collapse
|
28
|
Chen Ming Low J, Wright AJ, Hesse F, Cao J, Brindle KM. Metabolic imaging with deuterium labeled substrates. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:39-51. [PMID: 37321757 DOI: 10.1016/j.pnmrs.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/17/2023]
Abstract
Deuterium metabolic imaging (DMI) is an emerging clinically-applicable technique for the non-invasive investigation of tissue metabolism. The generally short T1 values of 2H-labeled metabolites in vivo can compensate for the relatively low sensitivity of detection by allowing rapid signal acquisition in the absence of significant signal saturation. Studies with deuterated substrates, including [6,6'-2H2]glucose, [2H3]acetate, [2H9]choline and [2,3-2H2]fumarate have demonstrated the considerable potential of DMI for imaging tissue metabolism and cell death in vivo. The technique is evaluated here in comparison with established metabolic imaging techniques, including PET measurements of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake and 13C MR imaging of the metabolism of hyperpolarized 13C-labeled substrates.
Collapse
Affiliation(s)
- Jacob Chen Ming Low
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jianbo Cao
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
29
|
Roig ES, De Feyter HM, Nixon TW, Ruhm L, Nikulin AV, Scheffler K, Avdievich NI, Henning A, de Graaf RA. Deuterium metabolic imaging of the human brain in vivo at 7 T. Magn Reson Med 2023; 89:29-39. [PMID: 36063499 PMCID: PMC9756916 DOI: 10.1002/mrm.29439] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To explore the potential of deuterium metabolic imaging (DMI) in the human brain in vivo at 7 T, using a multi-element deuterium (2 H) RF coil for 3D volume coverage. METHODS 1 H-MR images and localized 2 H MR spectra were acquired in vivo in the human brain of 3 healthy subjects to generate DMI maps of 2 H-labeled water, glucose, and glutamate/glutamine (Glx). In addition, non-localized 2 H-MR spectra were acquired both in vivo and in vitro to determine T1 and T2 relaxation times of deuterated metabolites at 7 T. The performance of the 2 H coil was assessed through numeric simulations and experimentally acquired B1 + maps. RESULTS 3D DMI maps covering the entire human brain in vivo were obtained from well-resolved deuterated (2 H) metabolite resonances of water, glucose, and Glx. The T1 and T2 relaxation times were consistent with those reported at adjacent field strengths. Experimental B1 + maps were in good agreement with simulations, indicating efficient and homogeneous B1 + transmission and low RF power deposition for 2 H, consistent with a similar array coil design reported at 9.4 T. CONCLUSION Here, we have demonstrated the successful implementation of 3D DMI in the human brain in vivo at 7 T. The spatial and temporal nominal resolutions achieved at 7 T (i.e., 2.7 mL in 28 min, respectively) were close to those achieved at 9.4 T and greatly outperformed DMI at lower magnetic fields. DMI at 7 T and beyond has clear potential in applications dealing with small brain lesions.
Collapse
Affiliation(s)
- Eulalia Serés Roig
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Loreen Ruhm
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Advanced Imaging Research Centre, University of Texas Southwestern Medical Centre, Dallas, Texas, USA
| | - Anton V. Nikulin
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Nikolai I. Avdievich
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Centre, University of Texas Southwestern Medical Centre, Dallas, Texas, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
30
|
Abstract
MRI is a widely available clinical tool for cancer diagnosis and treatment monitoring. MRI provides excellent soft tissue imaging, using a wide range of contrast mechanisms, and can non-invasively detect tissue metabolites. These approaches can be used to distinguish cancer from normal tissues, to stratify tumor aggressiveness, and to identify changes within both the tumor and its microenvironment in response to therapy. In this review, the role of MRI in immunotherapy monitoring will be discussed and how it could be utilized in the future to address some of the unique clinical questions that arise from immunotherapy. For example, MRI could play a role in identifying pseudoprogression, mixed response, T cell infiltration, cell tracking, and some of the characteristic immune-related adverse events associated with these agents. The factors to be considered when developing MRI imaging biomarkers for immunotherapy will be reviewed. Finally, the advantages and limitations of each approach will be discussed, as well as the challenges for future clinical translation into routine clinical care. Given the increasing use of immunotherapy in a wide range of cancers and the ability of MRI to detect the microstructural and functional changes associated with successful response to immunotherapy, the technique has great potential for more widespread and routine use in the future for these applications.
Collapse
Affiliation(s)
- Doreen Lau
- Centre for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Pippa G Corrie
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|