1
|
Runwal GM, Edwards RH. The role of α-synuclein in exocytosis. Exp Neurol 2024; 373:114668. [PMID: 38147972 DOI: 10.1016/j.expneurol.2023.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The pathogenesis of degeneration in Parkinson's disease (PD) remains poorly understood but multiple lines of evidence have converged on the presynaptic protein α-synuclein (αsyn). αSyn has been shown to regulate several cellular processes, however, its normal function remains poorly understood. In this review, we will specifically focus on its role in exocytosis.
Collapse
Affiliation(s)
- Gautam M Runwal
- Departments of Neurology and Physiology, UCSF School of Medicine, United States of America; Departments of Neurology and Physiology, UCSF School of Medicine, United States of America- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Robert H Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, United States of America; Departments of Neurology and Physiology, UCSF School of Medicine, United States of America- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
2
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
3
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
4
|
Faria-Pereira A, Morais VA. Synapses: The Brain's Energy-Demanding Sites. Int J Mol Sci 2022; 23:3627. [PMID: 35408993 PMCID: PMC8998888 DOI: 10.3390/ijms23073627] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.
Collapse
Affiliation(s)
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
5
|
Inhibition of phosphatidylinositol kinase-III alpha induces or facilitates lysosome exocytosis from microglia. Neuroreport 2021; 31:697-701. [PMID: 32427802 DOI: 10.1097/wnr.0000000000001348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Besides degradation, lysosomes can also carry molecules for secretion out of the cell, such as ATP and cytokines, during unconventional secretion. Phosphatidylinositols and their metabolizing enzymes play important roles in the sorting and trafficking of lysosomal materials through the trans-Golgi network. The present study reveals a new function of phosphatidylinositol kinase-III alpha in the 'kiss-and-run' fusion of lysosomes at the plasma membrane to release ATP from microglia.
Collapse
|
6
|
SCAMP5 plays a critical role in axonal trafficking and synaptic localization of NHE6 to adjust quantal size at glutamatergic synapses. Proc Natl Acad Sci U S A 2021; 118:2011371118. [PMID: 33372133 DOI: 10.1073/pnas.2011371118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glutamate uptake into synaptic vesicles (SVs) depends on cation/H+ exchange activity, which converts the chemical gradient (ΔpH) into membrane potential (Δψ) across the SV membrane at the presynaptic terminals. Thus, the proper recruitment of cation/H+ exchanger to SVs is important in determining glutamate quantal size, yet little is known about its localization mechanism. Here, we found that secretory carrier membrane protein 5 (SCAMP5) interacted with the cation/H+ exchanger NHE6, and this interaction regulated NHE6 recruitment to glutamatergic presynaptic terminals. Protein-protein interaction analysis with truncated constructs revealed that the 2/3 loop domain of SCAMP5 is directly associated with the C-terminal region of NHE6. The use of optical imaging and electrophysiological recording showed that small hairpin RNA-mediated knockdown (KD) of SCAMP5 or perturbation of SCAMP5/NHE6 interaction markedly inhibited axonal trafficking and the presynaptic localization of NHE6, leading to hyperacidification of SVs and a reduction in the quantal size of glutamate release. Knockout of NHE6 occluded the effect of SCAMP5 KD without causing additional defects. Together, our results reveal that as a key regulator of axonal trafficking and synaptic localization of NHE6, SCAMP5 could adjust presynaptic strength by regulating quantal size at glutamatergic synapses. Since both proteins are autism candidate genes, the reduced quantal size by interrupting their interaction may underscore synaptic dysfunction observed in autism.
Collapse
|
7
|
Gramlich MW, Klyachko VA. Nanoscale Organization of Vesicle Release at Central Synapses. Trends Neurosci 2020; 42:425-437. [PMID: 31176424 DOI: 10.1016/j.tins.2019.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
Abstract
Presynaptic boutons support neurotransmitter release with nanoscale precision at sub-millisecond timescales. Studies over the past two decades have revealed a rich tapestry of molecular players governing synaptic vesicle fusion at highly specialized release sites in the active zone (AZ). However, the spatiotemporal organization of release at active synapses remains elusive, in part owing to the extremely small size of the AZ and the limited resolution of conventional approaches. Recent advances in fluorescence nanoscopy have revolutionized direct investigation of presynaptic release organization and dynamics. We discuss here recent nanoscopy-based studies of the molecular architecture, the spatial organization and dynamic regulation of release sites, and the mechanisms of release site replenishment. These findings have uncovered previously unknown levels of structural and functional organization at central synapses, with important implications for synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Michael W Gramlich
- Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA; Present address: Department of Physics, Auburn University, Auburn, AL, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Urbina FL, Gupton SL. SNARE-Mediated Exocytosis in Neuronal Development. Front Mol Neurosci 2020; 13:133. [PMID: 32848598 PMCID: PMC7427632 DOI: 10.3389/fnmol.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners. This developmental undertaking requires the rapid expansion of the plasma membrane surface area as neurons grow and polarize, extending axons through the extracellular environment. Critical to the expansion of the plasma membrane and addition of plasma membrane material is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Since their discovery, SNAREs have been implicated in several critical neuronal functions involving exocytic fusion in addition to synaptic transmission, including neurite initiation and outgrowth, axon specification, axon extension, and synaptogenesis. Decades of research have uncovered a rich variety of SNARE expression and function. The basis of SNARE-mediated fusion, the opening of a fusion pore, remains an enigmatic event, despite an incredible amount of research, as fusion is not only heterogeneous but also spatially small and temporally fast. Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FFV) and kiss-and-run (KNR) being the best described. Whereas most in vitro work has reconstituted fusion using VAMP-2, SNAP-25, and syntaxin-1; there is much to learn regarding the behaviors of distinct SNARE complexes. In the past few years, robust heterogeneity in the kinetics and fate of the fusion pore that varies by cell type have been uncovered, suggesting a paradigm shift in how the modes of exocytosis are viewed is warranted. Here, we explore both classic and recent work uncovering the variety of SNAREs and their importance in the development of neurons, as well as historical and newly proposed modes of exocytosis, their regulation, and proteins involved in the regulation of fusion kinetics.
Collapse
Affiliation(s)
- Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Wesseling JF. Considerations for Measuring Activity-Dependence of Recruitment of Synaptic Vesicles to the Readily Releasable Pool. Front Synaptic Neurosci 2019; 11:32. [PMID: 31824292 PMCID: PMC6879548 DOI: 10.3389/fnsyn.2019.00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 11/29/2022] Open
Abstract
The connection strength of most chemical synapses changes dynamically during normal use as a function of the recent history of activity. The phenomenon is known as short-term synaptic plasticity or synaptic dynamics, and is thought to be involved in processing and filtering information as it is transmitted across the synaptic cleft. Multiple presynaptic mechanisms have been implicated, but large gaps remain in our understanding of how the mechanisms are modulated and how they interact. One important factor is the timing of recruitment of synaptic vesicles to a readily-releasable pool. A number of studies have concluded that activity and/or residual Ca2+ can accelerate the mechanism, but alternative explanations for some of the evidence have emerged. Here I review the methodology that we have developed for isolating the recruitment and the dependence on activity from other kinds of mechanisms that are activated concurrently.
Collapse
Affiliation(s)
- John F Wesseling
- CSIC/Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
10
|
Henkel AW, Mouihate A, Welzel O. Differential Release of Exocytosis Marker Dyes Indicates Stimulation-Dependent Regulation of Synaptic Activity. Front Neurosci 2019; 13:1047. [PMID: 31632237 PMCID: PMC6783566 DOI: 10.3389/fnins.2019.01047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023] Open
Abstract
There is a general consensus that synaptic vesicular release by a full collapse process is the primary machinery of synaptic transmission. However, competing view suggests that synaptic vesicular release operates via a kiss-and-run mechanism. By monitoring the release dynamics of a synaptic vesicular marker, FM1-43 from individual synapses in hippocampal neurons, we found evidence that the release of synaptic vesicle was delayed by several seconds after the start of field stimulation. This phenomenon was associated with modified opening kinetics of fusion pores. Detailed analysis revealed that some synapses were completely inactive for a few seconds after stimulation, despite immediate calcium influx. This delay in vesicular release was modulated by various stimulation protocols and different frequencies, indicating an activity-dependent regulation mechanism for neurotransmitter exocytosis. Staurosporine, a drug known to induce “kiss-and-run” exocytosis, increased the proportion of delayed synapses as well as the delay duration, while fluoxetine acted contrarily. Besides being a serotonin reuptake inhibitor, it directly enhanced vesicle mobilization and reduced synaptic fatigue. Exocytosis was never delayed, when it was monitored with pH-sensitive probes, synaptopHlourin and αSyt-CypHerE5 antibody, indicating an instantaneous formation of a fusion pore that allowed rapid equilibration of vesicular lumenal pH but prevented FM1-43 release because of its slow dissociation from the inner vesicular membrane. Our observations suggest that synapses operate via a sequential “kiss-and-run” and “full-collapse” exocytosis mechanism. The initially narrow vesicular pore allows the equilibration of intravesicular pH which then progresses toward full fusion, causing FM1-43 release.
Collapse
Affiliation(s)
- Andreas W Henkel
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Sulzer D, Edwards RH. The physiological role of α-synuclein and its relationship to Parkinson's Disease. J Neurochem 2019; 150:475-486. [PMID: 31269263 PMCID: PMC6707892 DOI: 10.1111/jnc.14810] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
The protein α-synuclein has a central role in the pathogenesis of Parkinson's disease (PD). In this review, we discuss recent results concerning its primary function, which appears to be on cell membranes. The pre-synaptic location of synuclein has suggested a role in neurotransmitter release and it apparently associates with synaptic vesicles because of their high curvature. Indeed, synuclein over-expression inhibits synaptic vesicle exocytosis. However, loss of synuclein has not yet been shown to have a major effect on synaptic transmission. Consistent with work showing that synuclein can promote as well as sense membrane curvature, recent analysis of synuclein triple knockout mice now shows that synuclein accelerates dilation of the exocytic fusion pore. This form of regulation affects primarily the release of slowly discharged lumenal cargo such as neural peptides, but presumably also contributes to maintenance of the release site. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology and Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Cell Biology, Biomedical Sciences and Neuroscience, UCSF School of Medicine
| |
Collapse
|
12
|
Reshetniak S, Rizzoli SO. Interrogating Synaptic Architecture: Approaches for Labeling Organelles and Cytoskeleton Components. Front Synaptic Neurosci 2019; 11:23. [PMID: 31507402 PMCID: PMC6716447 DOI: 10.3389/fnsyn.2019.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission has been studied for decades, as a fundamental step in brain function. The structure of the synapse, and its changes during activity, turned out to be key aspects not only in the transfer of information between neurons, but also in cognitive processes such as learning and memory. The overall synaptic morphology has traditionally been studied by electron microscopy, which enables the visualization of synaptic structure in great detail. The changes in the organization of easily identified structures, such as the presynaptic active zone, or the postsynaptic density, are optimally studied via electron microscopy. However, few reliable methods are available for labeling individual organelles or protein complexes in electron microscopy. For such targets one typically relies either on combination of electron and fluorescence microscopy, or on super-resolution fluorescence microscopy. This review focuses on approaches and techniques used to specifically reveal synaptic organelles and protein complexes, such as cytoskeletal assemblies. We place the strongest emphasis on methods detecting the targets of interest by affinity binding, and we discuss the advantages and limitations of each method.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
- International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Silvio O. Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Mitchell SB, Iwabuchi S, Kawano H, Yuen TMT, Koh JY, Ho KWD, Harata NC. Structure of the Golgi apparatus is not influenced by a GAG deletion mutation in the dystonia-associated gene Tor1a. PLoS One 2018; 13:e0206123. [PMID: 30403723 PMCID: PMC6221310 DOI: 10.1371/journal.pone.0206123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Autosomal-dominant, early-onset DYT1 dystonia is associated with an in-frame deletion of a glutamic acid codon (ΔE) in the TOR1A gene. The gene product, torsinA, is an evolutionarily conserved AAA+ ATPase. The fact that constitutive secretion from patient fibroblasts is suppressed indicates that the ΔE-torsinA protein influences the cellular secretory machinery. However, which component is affected remains unclear. Prompted by recent reports that abnormal protein trafficking through the Golgi apparatus, the major protein-sorting center of the secretory pathway, is sometimes associated with a morphological change in the Golgi, we evaluated the influence of ΔE-torsinA on this organelle. Specifically, we examined its structure by confocal microscopy, in cultures of striatal, cerebral cortical and hippocampal neurons obtained from wild-type, heterozygous and homozygous ΔE-torsinA knock-in mice. In live neurons, the Golgi was assessed following uptake of a fluorescent ceramide analog, and in fixed neurons it was analyzed by immuno-fluorescence staining for the Golgi-marker GM130. Neither staining method indicated genotype-specific differences in the size, staining intensity, shape or localization of the Golgi. Moreover, no genotype-specific difference was observed as the neurons matured in vitro. These results were supported by a lack of genotype-specific differences in GM130 expression levels, as assessed by Western blotting. The Golgi was also disrupted by treatment with brefeldin A, but no genotype-specific differences were found in the immuno-fluorescence staining intensity of GM130. Overall, our results demonstrate that the ΔE-torsinA protein does not drastically influence Golgi morphology in neurons, irrespective of genotype, brain region (among those tested), or maturation stage in culture. While it remains possible that functional changes in the Golgi exist, our findings imply that any such changes are not severe enough to influence its morphology to a degree detectable by light microscopy.
Collapse
Affiliation(s)
- Sara B. Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Sadahiro Iwabuchi
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Hiroyuki Kawano
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Tsun Ming Tom Yuen
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Chemical and Biochemical Engineering, University of Iowa College of Engineering, Iowa City, Iowa, United States of America
| | - Jin-Young Koh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - K. W. David Ho
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - N. Charles Harata
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
14
|
Maschi D, Gramlich MW, Klyachko VA. Myosin V functions as a vesicle tether at the plasma membrane to control neurotransmitter release in central synapses. eLife 2018; 7:e39440. [PMID: 30320552 PMCID: PMC6209431 DOI: 10.7554/elife.39440] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/11/2018] [Indexed: 12/21/2022] Open
Abstract
Synaptic vesicle fusion occurs at specialized release sites at the active zone. How refilling of release sites with new vesicles is regulated in central synapses remains poorly understood. Using nanoscale-resolution detection of individual release events in rat hippocampal synapses we found that inhibition of myosin V, the predominant vesicle-associated motor, strongly reduced refilling of the release sites during repetitive stimulation. Single-vesicle tracking revealed that recycling vesicles continuously shuttle between a plasma membrane pool and an inner pool. Vesicle retention at the membrane pool was regulated by neural activity in a myosin V dependent manner. Ultrastructural measurements of vesicle occupancy at the plasma membrane together with analyses of single-vesicle trajectories during vesicle shuttling between the pools suggest that myosin V acts as a vesicle tether at the plasma membrane, rather than a motor transporting vesicles to the release sites, or directly regulating vesicle exocytosis.
Collapse
Affiliation(s)
- Dario Maschi
- Department of Cell Biology and PhysiologyWashington UniversityMissouriUnited States
- Department of Biomedical EngineeringWashington UniversityMissouriUnited States
| | - Michael W Gramlich
- Department of Cell Biology and PhysiologyWashington UniversityMissouriUnited States
- Department of Biomedical EngineeringWashington UniversityMissouriUnited States
| | - Vitaly A Klyachko
- Department of Cell Biology and PhysiologyWashington UniversityMissouriUnited States
- Department of Biomedical EngineeringWashington UniversityMissouriUnited States
| |
Collapse
|
15
|
Vásquez-Navarrete J, Martínez AD, Ory S, Baéz-Matus X, González-Jamett AM, Brauchi S, Caviedes P, Cárdenas AM. RCAN1 Knockdown Reverts Defects in the Number of Calcium-Induced Exocytotic Events in a Cellular Model of Down Syndrome. Front Cell Neurosci 2018; 12:189. [PMID: 30034324 PMCID: PMC6043644 DOI: 10.3389/fncel.2018.00189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
In humans, Down Syndrome (DS) is a condition caused by partial or full trisomy of chromosome 21. Genes present in the DS critical region can result in excess gene dosage, which at least partially can account for DS phenotype. Although regulator of calcineurin 1 (RCAN1) belongs to this region and its ectopic overexpression in neurons impairs transmitter release, synaptic plasticity, learning and memory, the relative contribution of RCAN1 in a context of DS has yet to be clarified. In the present work, we utilized an in vitro model of DS, the CTb neuronal cell line derived from the brain cortex of a trisomy 16 (Ts16) fetal mouse, which reportedly exhibits acetylcholine release impairments compared to CNh cells (a neuronal cell line established from a normal littermate). We analyzed single exocytotic events by using total internal reflection fluorescence microscopy (TIRFM) and the vesicular acetylcholine transporter fused to the pH-sensitive green fluorescent protein (VAChT-pHluorin) as a reporter. Our analyses showed that, compared with control CNh cells, the trisomic CTb cells overexpress RCAN1, and they display a reduced number of Ca2+-induced exocytotic events. Remarkably, RCAN1 knockdown increases the extent of exocytosis at levels comparable to those of CNh cells. These results support a critical contribution of RCAN1 to the exocytosis process in the trisomic condition.
Collapse
Affiliation(s)
- Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphane Ory
- Centre National de la Recherche Scientifique (CNRS UPR 3212), Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - Ximena Baéz-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastián Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología y Bioingeniería (CeBiB), Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Lucas SJ, Michel CB, Marra V, Smalley JL, Hennig MH, Graham BP, Forsythe ID. Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse. J Physiol 2018; 596:1699-1721. [PMID: 29430661 PMCID: PMC5924824 DOI: 10.1113/jp275107] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. ABSTRACT The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low.
Collapse
Affiliation(s)
- Sarah J. Lucas
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Christophe B. Michel
- Computing Science & Mathematics, Faculty of Natural SciencesUniversity of StirlingStirlingFK9 4LAUK
| | - Vincenzo Marra
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Joshua L. Smalley
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| | - Matthias H. Hennig
- Institute for Adaptive and Neural Computation, School of InformaticsUniversity of EdinburghEdinburghEH8 9ABUK
| | - Bruce P. Graham
- Computing Science & Mathematics, Faculty of Natural SciencesUniversity of StirlingStirlingFK9 4LAUK
| | - Ian D. Forsythe
- Department of Neuroscience, Psychology & BehaviourUniversity of LeicesterLeicesterLE1 9HNUK
| |
Collapse
|
17
|
Miller BA, Papke JB, Bindokas VP, Harkins AB. Light Activation of Calcein Inhibits Vesicle Release of Catecholamines. ACS Chem Neurosci 2017; 8:2309-2314. [PMID: 28707873 DOI: 10.1021/acschemneuro.7b00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Calcein, a fluorescent fluid phase marker, has been used to track and visualize cellular processes such as synaptic vesicle fusion. It is also the fluorophore for live cells in the commonly used Live/Dead viability assay. In pilot studies designed to determine fusion pore open size and vesicle movement in secretory cells, imaging analysis revealed that calcein reduced the number of vesicles released from the cells when stimulated with nicotine. Using amperometry to detect individual vesicle release events, we show that when calcein is present in the media, the number of vesicles that fuse with the cellular membrane is reduced when cells are stimulated with either nicotine or high K+. Experimentally, amperometric electrodes are not undergoing fouling in the presence of calcein. We hypothesized that calcein, when activated by light, releases reactive oxygen species that cause a reduction in secreted vesicles. We show that when calcein is protected from light during experimentation, little to no reduction of vesicle secretion occurred. Therefore, photoactivated calcein can cause deleterious results for measurements of cellular processes, likely to be the result of release of reactive oxygen species.
Collapse
Affiliation(s)
- Brooke A. Miller
- Department
of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Jason B. Papke
- Department
of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104, United States
| | - Vytas P. Bindokas
- Department
of Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Amy B. Harkins
- Department
of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104, United States
- Department
of Biomedical Engineering, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
18
|
Kaempf N, Maritzen T. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function. Front Cell Neurosci 2017; 11:320. [PMID: 29085282 PMCID: PMC5649181 DOI: 10.3389/fncel.2017.00320] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis.
Collapse
Affiliation(s)
- Natalie Kaempf
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Tanja Maritzen
- Molecular Physiology and Cell Biology Section, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| |
Collapse
|
19
|
Abstract
Synaptic vesicle recycling is essential for sustained and reliable neurotransmission. A key component of synaptic vesicle recycling is the synaptic vesicle biogenesis process that is observed in synapses and that maintains the molecular identity of synaptic vesicles. However, the mechanisms by which synaptic vesicles are retrieved and reconstituted after fusion remain unclear. The complex molecular composition of synaptic vesicles renders their rapid biogenesis a daunting task. Therefore, in this context, kiss-and-run type transient fusion of synaptic vesicles with the plasma membrane without loss of their membrane composition and molecular identity remains a viable hypothesis that can account for the fidelity of the synaptic vesicle cycle. In this article, we discuss the biological implications of this problem as well as its possible molecular solutions.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, University of Texas Southwestern Medical Centre, Dallas, TX, 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Centre, Dallas, TX, 75390-9111, USA
| |
Collapse
|
20
|
Bertone NI, Groisman AI, Mazzone GL, Cano R, Tabares L, Uchitel OD. Carbonic anhydrase inhibitor acetazolamide shifts synaptic vesicle recycling to a fast mode at the mouse neuromuscular junction. Synapse 2017; 71. [PMID: 28873252 DOI: 10.1002/syn.22009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Acetazolamide (AZ), a molecule frequently used to treat different neurological syndromes, is an inhibitor of the carbonic anhydrase (CA), an enzyme that regulates pH inside and outside cells. We combined fluorescent FM styryl dyes and electrophysiological techniques at ex vivo levator auris longus neuromuscular junctions (NMJs) from mice to investigate the modulation of synaptic transmission and vesicle recycling by AZ. Transmitter release was minimally affected by AZ, as evidenced by evoked and spontaneous end-plate potential measurements. However, optical evaluation with FM-styryl dyes of vesicle exocytosis elicited by 50 Hz stimuli showed a strong reduction in fluorescence loss in AZ treated NMJ, an effect that was abolished by bathing the NMJ in Hepes. The remaining dye was quenched by bromophenol, a small molecule capable of diffusing inside vesicles. Furthermore, in transgenic mice expressing Synaptophysin-pHluorin (SypHy), the fluorescence responses of motor nerve terminals to a 50 Hz train of stimuli was decrease to a 50% of controls in the presence of AZ. Immunohistochemistry experiments to evaluate the state of the Myosin light chain kinase (MLCK), an enzyme involved in vesicle recycling, demonstrated that MLCK phosphorylation was much stronger in the presence than AZ than in its absence in 50 Hz stimulated NMJs. We postulate that AZ, via cytosol acidification and activation of MLCK, shifts synaptic vesicle recycling to a fast (kiss-and-run) mode, which changes synaptic performance. These changes may contribute to the therapeutic action reported in many neurological syndromes like ataxia, epilepsy, and migraine.
Collapse
Affiliation(s)
- Nicolas Ivan Bertone
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Ayelén Ivana Groisman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Graciela Lujan Mazzone
- Laboratorios de Investigación aplicada en Neurociencias (LIAN)-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), CONICET, Buenos Aires, Argentina
| | - Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville 41009, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville 41009, Spain
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
21
|
Eich ML, Dembla E, Wahl S, Dembla M, Schwarz K, Schmitz F. The Calcineurin-Binding, Activity-Dependent Splice Variant Dynamin1xb Is Highly Enriched in Synapses in Various Regions of the Central Nervous System. Front Mol Neurosci 2017; 10:230. [PMID: 28790889 PMCID: PMC5524891 DOI: 10.3389/fnmol.2017.00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
In the present study, we generated and characterized a splice site-specific monoclonal antibody that selectively detects the calcineurin-binding dynamin1 splice variant dynamin1xb. Calcineurin is a Ca2+-regulated phosphatase that enhances dynamin1 activity and is an important Ca2+-sensing mediator of homeostatic synaptic plasticity in neurons. Using this dynamin1xb-specific antibody, we found dynamin1xb highly enriched in synapses of all analyzed brain regions. In photoreceptor ribbon synapses, dynamin1xb was enriched in close vicinity to the synaptic ribbon in a manner indicative of a peri-active zone immunolabeling. Interestingly, in dark-adapted mice we observed an enhanced and selective enrichment of dynamin1xb in both synaptic layers of the retina in comparison to light-adapted mice. This could be due to an illumination-dependent recruitment of dynamin1xb to retinal synapses and/or due to a darkness-induced increase of dynamin1xb biosynthesis. These latter findings indicate that dynamin1xb is part of a versatile and highly adjustable, activity-regulated endocytic synaptic machinery.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Ekta Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Silke Wahl
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Mayur Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
22
|
Lazarenko RM, DelBove CE, Strothman CE, Zhang Q. Ammonium chloride alters neuronal excitability and synaptic vesicle release. Sci Rep 2017; 7:5061. [PMID: 28698583 PMCID: PMC5505971 DOI: 10.1038/s41598-017-05338-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 01/28/2023] Open
Abstract
Genetically encoded pH-sensors are widely used in studying cell membrane trafficking and membrane protein turnover because they render exo-/endocytosis-associated pH changes to fluorescent signals. For imaging and analysis purposes, high concentration ammonium chloride is routinely used to alkalize intracellular membrane compartments under the assumption that it does not cause long-term effects on cellular processes being studied like neurotransmission. However, pathological studies about hyperammonemia have shown that ammonium is toxic to brain cells especially astrocytes and neurons. Here, we focus on ammonium’s physiological impacts on neurons including membrane potential, cytosolic Ca2+ and synaptic vesicles. We have found that extracellularly applied ammonium chloride as low as 5 mM causes intracellular Ca2+-increase and a reduction of vesicle release even after washout. The often-used 50 mM ammonium chloride causes more extensive and persistent changes, including membrane depolarization, prolonged elevation of intracellular Ca2+ and diminution of releasable synaptic vesicles. Our findings not only help to bridge the discrepancies in previous studies about synaptic vesicle release using those pH-sensors or other vesicle specific reporters, but also suggest an intriguing relationship between intracellular pH and neurotransmission.
Collapse
Affiliation(s)
- Roman M Lazarenko
- Department of Pharmacology, Vanderbilt University, 23rd Avenue South at Pierce Street, Nashville, TN, 37232, USA
| | - Claire E DelBove
- Department of Pharmacology, Vanderbilt University, 23rd Avenue South at Pierce Street, Nashville, TN, 37232, USA
| | - Claire E Strothman
- Department of Pharmacology, Vanderbilt University, 23rd Avenue South at Pierce Street, Nashville, TN, 37232, USA
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, 23rd Avenue South at Pierce Street, Nashville, TN, 37232, USA.
| |
Collapse
|
23
|
Abstract
Exocytosis is an important cellular process controlled by metabolic signaling. It involves vesicle fusion to the plasma membrane, followed by the opening of a fusion pore, and the subsequent release of the vesicular lumen content into the extracellular space. While most modeling efforts focus on the events leading to membrane fusion, how the vesicular membrane remodels after fusing to plasma membrane remains unclear. This latter event dictates the nature and the efficiency of exocytotic vesicular secretions, and is thus critical for exocytotic function. We provide a generic membrane mechanical model to systematically study the fate of post-fusion vesicles. We show that while membrane stiffness favors full-collapse vesicle fusion into the plasma membrane, the intravesicular pressure swells the vesicle and causes the fusion pore to shrink. Dimensions of the vesicle and its associated fusion pore further modulate this mechanical antagonism. We systematically define the mechanical conditions that account for the full spectrum of the observed vesicular secretion modes. Our model therefore can serve as a unified theoretical framework that sheds light on the elaborate control mechanism of exocytosis.
Collapse
Affiliation(s)
- Thomas Stephens
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America. Equal contribution
| | | | | |
Collapse
|
24
|
Cano R, Tabares L. The Active and Periactive Zone Organization and the Functional Properties of Small and Large Synapses. Front Synaptic Neurosci 2016; 8:12. [PMID: 27252645 PMCID: PMC4877509 DOI: 10.3389/fnsyn.2016.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022] Open
Abstract
The arrival of an action potential (AP) at a synaptic terminal elicits highly synchronized quanta release. Repetitive APs produce successive synaptic vesicle (SV) fusions that require management of spent SV components in the presynaptic membrane with minimum disturbance of the secretory apparatus. To this end, the synaptic machinery is structured accordingly to the strength and the range of frequencies at which each particular synapse operates. This results in variations in the number and dimension of Active Zones (AZs), amount and distribution of SVs, and probably, in the primary endocytic mechanisms they use. Understanding better how these structural differences determine the functional response in each case has been a matter of long-term interest. Here we review the structural and functional properties of three distinct types of synapses: the neuromuscular junction (NMJ; a giant, highly reliable synapse that must exocytose a large number of quanta with each stimulus to guarantee excitation of the postsynaptic cell), the hippocampal excitatory small synapse (which most often has a single release site and a relatively small pool of vesicles), and the cerebellar mossy fiber-granule cell synapse (which possesses hundreds of release sites and is able to translocate, dock and prime vesicles at high speed). We will focus on how the release apparatus is organized in each case, the relative amount of vesicular membrane that needs to be accommodated within the periAZ upon stimulation, the different mechanisms for retrieving the excess of membrane and finally, how these factors may influence the functioning of the release sites.
Collapse
Affiliation(s)
- Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville Seville, Spain
| |
Collapse
|
25
|
Eckenstaler R, Lessmann V, Brigadski T. CAPS1 effects on intragranular pH and regulation of BDNF release from secretory granules in hippocampal neurons. J Cell Sci 2016; 129:1378-90. [PMID: 26869227 DOI: 10.1242/jcs.178251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/08/2016] [Indexed: 01/19/2023] Open
Abstract
The secretory protein brain-derived neurotrophic factor (BDNF) is assumed to be a key factor for the induction of synaptic plasticity processes in neurons. However, the molecular mechanisms for activity-dependent release of the protein largely remain elusive. Here, we demonstrate the relevance of the priming factor CAPS1 (also known as CADPS) for the maturation and exocytosis of BDNF-containing secretory granules, as well as for neurotransmitter release from synaptic vesicles. Using live-cell imaging and RNA silencing methods, we show that CAPS1 has a previously unrecognized function in regulating the intragranular pH of BDNF-containing secretory granules. Furthermore, our results demonstrate that acute single-cell knockdown of CAPS1 with unaltered expression in neighboring neurons leads to a strong reduction in the number of fusion-competent secretory granules and to a significant decrease of released BDNF following exocytosis in dendrites of CAPS1-deficient neurons. In addition, our results show a reduction in synaptic vesicle turnover after CAPS1 knockdown without affecting the density of active boutons in hippocampal neurons. Thus, our results reveal new functions of endogenous CAPS1 in the BDNF secretory granule life cycle, thereby representing a new mechanism of neuronal plasticity.
Collapse
Affiliation(s)
- Robert Eckenstaler
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany Center of Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Tanja Brigadski
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany Center of Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| |
Collapse
|
26
|
Xu Q, Zhang Y, Tang B, Zhang CY. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins. Anal Chem 2016; 88:2051-8. [PMID: 26759896 DOI: 10.1021/acs.analchem.5b03109] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics.
Collapse
Affiliation(s)
- Qinfeng Xu
- Single-Molecule Detection and Imaging Laboratory, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China
| | - Yihong Zhang
- Single-Molecule Detection and Imaging Laboratory, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China , Suzhou 215123, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China.,Single-Molecule Detection and Imaging Laboratory, Key Lab of Health Informatics of Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China
| |
Collapse
|
27
|
Stenovec M, Lasič E, Božić M, Bobnar ST, Stout RF, Grubišić V, Parpura V, Zorec R. Ketamine Inhibits ATP-Evoked Exocytotic Release of Brain-Derived Neurotrophic Factor from Vesicles in Cultured Rat Astrocytes. Mol Neurobiol 2015; 53:6882-6896. [PMID: 26660497 DOI: 10.1007/s12035-015-9562-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
Abstract
In the brain, astrocytes signal to neighboring cells via regulated exocytotic release of gliosignaling molecules, such as brain-derived neurotrophic factor (BDNF). Recent studies uncovered a role of ketamine, an anesthetic and antidepressant, in the regulation of BDNF expression and in the disruption of astrocytic Ca2+ signaling, but it is unclear whether it affects astroglial BDNF release. We investigated whether ketamine affects ATP-evoked Ca2+ signaling and exocytotic release of BDNF at the single-vesicle level in cultured rat astrocytes. Cells were transfected with a plasmid encoding preproBDNF tagged with the pH-sensitive fluorescent protein superecliptic pHluorin, (BDNF-pHse) to load vesicles and measure the release of BDNF-pHse when the exocytotic fusion pore opens and alkalinizes the luminal pH. In addition, cell-attached membrane capacitance changes were recorded to monitor unitary vesicle interaction with the plasma membrane. Intracellular Ca2+ activity was monitored with Fluo-4 and confocal microscopy, which was also used to immunocytochemically characterize BDNF-pHse-laden vesicles. As revealed by double-fluorescent micrographs, BDNF-pHse localized to vesicles positive for the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins, vesicle-associated membrane protein 2 (VAMP2), VAMP3, and synaptotagmin IV. Ketamine treatment decreased the number of ATP-evoked BDNF-pHse fusion/secretion events (P < 0.05), the frequency of ATP-evoked transient (P < 0.001) and full-fusion exocytotic (P < 0.05) events, along with a reduction in the ATP-evoked increase in intracellular Ca2+ activity in astrocytes by ~70 % (P < 0.001). The results show that ketamine treatment suppresses ATP-triggered vesicle fusion and BDNF secretion by increasing the probability of a narrow fusion pore open state and/or by reducing astrocytic Ca2+ excitability.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Randy F Stout
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
- The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladimir Grubišić
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
| | - Robert Zorec
- Celica Biomedical, Tehnološki park 24, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
28
|
Li D, Hérault K, Zylbersztejn K, Lauterbach MA, Guillon M, Oheim M, Ropert N. Astrocyte VAMP3 vesicles undergo Ca2+ -independent cycling and modulate glutamate transporter trafficking. J Physiol 2015; 593:2807-32. [PMID: 25864578 DOI: 10.1113/jp270362] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Mouse cortical astrocytes express VAMP3 but not VAMP2. VAMP3 vesicles undergo Ca(2+) -independent exo- and endocytotic cycling at the plasma membrane. VAMP3 vesicle traffic regulates the recycling of plasma membrane glutamate transporters. cAMP modulates VAMP3 vesicle cycling and glutamate uptake. ABSTRACT Previous studies suggest that small synaptic-like vesicles in astrocytes carry vesicle-associated vSNARE proteins, VAMP3 (cellubrevin) and VAMP2 (synaptobrevin 2), both contributing to the Ca(2+) -regulated exocytosis of gliotransmitters, thereby modulating brain information processing. Here, using cortical astrocytes taken from VAMP2 and VAMP3 knock-out mice, we find that astrocytes express only VAMP3. The morphology and function of VAMP3 vesicles were studied in cultured astrocytes at single vesicle level with stimulated emission depletion (STED) and total internal reflection fluorescence (TIRF) microscopies. We show that VAMP3 antibodies label small diameter (∼80 nm) vesicles and that VAMP3 vesicles undergo Ca(2+) -independent exo-endocytosis. We also show that this pathway modulates the surface expression of plasma membrane glutamate transporters and the glutamate uptake by astrocytes. Finally, using pharmacological and optogenetic tools, we provide evidence suggesting that the cytosolic cAMP level influences astrocytic VAMP3 vesicle trafficking and glutamate transport. Our results suggest a new role for VAMP3 vesicles in astrocytes.
Collapse
Affiliation(s)
- Dongdong Li
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| | - Karine Hérault
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Kathleen Zylbersztejn
- INSERM ERL U950, Paris, F-75013, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75013, France.,CNRS, UMR 7592, Institut Jacques Monod, Paris, F-75013, France
| | - Marcel A Lauterbach
- Neurophotonics Laboratory, CNRS UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Marc Guillon
- Neurophotonics Laboratory, CNRS UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Martin Oheim
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| | - Nicole Ropert
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| |
Collapse
|
29
|
SNAREs Controlling Vesicular Release of BDNF and Development of Callosal Axons. Cell Rep 2015; 11:1054-66. [PMID: 25959820 DOI: 10.1016/j.celrep.2015.04.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/11/2015] [Accepted: 04/14/2015] [Indexed: 11/22/2022] Open
Abstract
At presynaptic active zones, exocytosis of neurotransmitter vesicles (SVs) is driven by SNARE complexes that recruit Syb2 and SNAP25. However, it remains unknown which SNAREs promote the secretion of neuronal proteins, including those essential for circuit development and experience-dependent plasticity. Here we demonstrate that Syb2 and SNAP25 mediate the vesicular release of BDNF in axons and dendrites of cortical neurons, suggesting these SNAREs act in multiple spatially segregated secretory pathways. Remarkably, axonal secretion of BDNF is also strongly regulated by SNAP47, which interacts with SNAP25 but appears to be dispensable for exocytosis of SVs. Cell-autonomous ablation of SNAP47 disrupts the layer-specific branching of callosal axons of projection cortical neurons in vivo, and this phenotype is recapitulated by ablation of BDNF or its receptor, TrkB. Our results provide insights into the molecular mechanisms of protein secretion, and they define the functions of SNAREs in BDNF signaling and regulation of neuronal connectivity.
Collapse
|
30
|
Koh JY, Iwabuchi S, Huang Z, Harata NC. Rapid genotyping of animals followed by establishing primary cultures of brain neurons. J Vis Exp 2015. [PMID: 25742545 DOI: 10.3791/51879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-resolution analysis of the morphology and function of mammalian neurons often requires the genotyping of individual animals followed by the analysis of primary cultures of neurons. We describe a set of procedures for: labeling newborn mice to be genotyped, rapid genotyping, and establishing low-density cultures of brain neurons from these mice. Individual mice are labeled by tattooing, which allows for long-term identification lasting into adulthood. Genotyping by the described protocol is fast and efficient, and allows for automated extraction of nucleic acid with good reliability. This is useful under circumstances where sufficient time for conventional genotyping is not available, e.g., in mice that suffer from neonatal lethality. Primary neuronal cultures are generated at low density, which enables imaging experiments at high spatial resolution. This culture method requires the preparation of glial feeder layers prior to neuronal plating. The protocol is applied in its entirety to a mouse model of the movement disorder DYT1 dystonia (ΔE-torsinA knock-in mice), and neuronal cultures are prepared from the hippocampus, cerebral cortex and striatum of these mice. This protocol can be applied to mice with other genetic mutations, as well as to animals of other species. Furthermore, individual components of the protocol can be used for isolated sub-projects. Thus this protocol will have wide applications, not only in neuroscience but also in other fields of biological and medical sciences.
Collapse
Affiliation(s)
- Jin-Young Koh
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine; Department of Psychiatry, University of Iowa Carver College of Medicine
| | - Sadahiro Iwabuchi
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | | | - N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine;
| |
Collapse
|
31
|
Röther M, Brauner JM, Ebert K, Welzel O, Jung J, Bauereiss A, Kornhuber J, Groemer TW. Dynamic properties of the alkaline vesicle population at hippocampal synapses. PLoS One 2014; 9:e102723. [PMID: 25079223 PMCID: PMC4117485 DOI: 10.1371/journal.pone.0102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval.
Collapse
Affiliation(s)
- Mareike Röther
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jan M. Brauner
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Ebert
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anna Bauereiss
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teja W. Groemer
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
32
|
Schikorski T. Readily releasable vesicles recycle at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 2014; 111:5415-20. [PMID: 24706824 PMCID: PMC3986142 DOI: 10.1073/pnas.1321541111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the synaptic vesicle cycle, synaptic vesicles fuse with the plasma membrane and recycle for repeated exo/endocytic events. By using activity-dependent N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide dye uptake combined with fast (<1 s) microwave-assisted fixation followed by photoconversion and ultrastructural 3D analysis, we tracked endocytic vesicles over time, "frame by frame." The first retrieved synaptic vesicles appeared 4 s after stimulation, and these endocytic vesicles were located just above the active zone. Second, the retrieved vesicles did not show any sign of a protein coat, and coated pits were not detected. Between 10 and 30 s, large labeled vesicles appeared that had up to 5 times the size of an individual synaptic vesicle. Starting at around 20 s, these large labeled vesicles decreased in number in favor of labeled synaptic vesicles, and after 30 s, labeled vesicles redocked at the active zone. The data suggest that readily releasable vesicles are retrieved as noncoated vesicles at the active zone.
Collapse
Affiliation(s)
- Thomas Schikorski
- Department of Neuroscience, Universidad Central del Caribe, Bayamon, PR 00956
| |
Collapse
|
33
|
Iwabuchi S, Kakazu Y, Koh JY, Goodman KM, Harata NC. Examination of synaptic vesicle recycling using FM dyes during evoked, spontaneous, and miniature synaptic activities. J Vis Exp 2014. [PMID: 24747983 DOI: 10.3791/50557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Synaptic vesicles in functional nerve terminals undergo exocytosis and endocytosis. This synaptic vesicle recycling can be effectively analyzed using styryl FM dyes, which reveal membrane turnover. Conventional protocols for the use of FM dyes were designed for analyzing neurons following stimulated (evoked) synaptic activity. Recently, protocols have become available for analyzing the FM signals that accompany weaker synaptic activities, such as spontaneous or miniature synaptic events. Analysis of these small changes in FM signals requires that the imaging system is sufficiently sensitive to detect small changes in intensity, yet that artifactual changes of large amplitude are suppressed. Here we describe a protocol that can be applied to evoked, spontaneous, and miniature synaptic activities, and use cultured hippocampal neurons as an example. This protocol also incorporates a means of assessing the rate of photobleaching of FM dyes, as this is a significant source of artifacts when imaging small changes in intensity.
Collapse
Affiliation(s)
- Sadahiro Iwabuchi
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | - Yasuhiro Kakazu
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | - Jin-Young Koh
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine
| | | | - N Charles Harata
- Department of Molecular Physiology & Biophysics, University of Iowa Carver College of Medicine;
| |
Collapse
|
34
|
Bulk endocytosis at neuronal synapses. SCIENCE CHINA-LIFE SCIENCES 2014; 57:378-83. [DOI: 10.1007/s11427-014-4636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/24/2014] [Indexed: 12/16/2022]
|
35
|
Stewart SE, Kondos SC, Matthews AY, D'Angelo ME, Dunstone MA, Whisstock JC, Trapani JA, Bird PI. The perforin pore facilitates the delivery of cationic cargos. J Biol Chem 2014; 289:9172-81. [PMID: 24558045 DOI: 10.1074/jbc.m113.544890] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic lymphocytes eliminate virally infected or neoplastic cells through the action of cytotoxic proteases (granzymes). The pore-forming protein perforin is essential for delivery of granzymes into the cytoplasm of target cells; however the mechanism of this delivery is incompletely understood. Perforin contains a membrane attack complex/perforin (MACPF) domain and oligomerizes to form an aqueous pore in the plasma membrane; therefore the simplest (and best supported) model suggests that granzymes passively diffuse through the perforin pore into the cytoplasm of the target cell. Here we demonstrate that perforin preferentially delivers cationic molecules while anionic and neutral cargoes are delivered inefficiently. Furthermore, another distantly related pore-forming MACPF protein, pleurotolysin (from the oyster mushroom), also favors the delivery of cationic molecules, and efficiently delivers human granzyme B. We propose that this facilitated diffusion is due to conserved features of oligomerized MACPF proteins, which may include an anionic lumen.
Collapse
|
36
|
Ramírez-Franco J, Bartolomé-Martín D, Alonso B, Torres M, Sánchez-Prieto J. Cannabinoid type 1 receptors transiently silence glutamatergic nerve terminals of cultured cerebellar granule cells. PLoS One 2014; 9:e88594. [PMID: 24533119 PMCID: PMC3922925 DOI: 10.1371/journal.pone.0088594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals.
Collapse
Affiliation(s)
- Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Beatris Alonso
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- * E-mail: (JSP); (MT)
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- * E-mail: (JSP); (MT)
| |
Collapse
|
37
|
Kavalali ET, Jorgensen EM. Visualizing presynaptic function. Nat Neurosci 2013; 17:10-6. [PMID: 24369372 DOI: 10.1038/nn.3578] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/14/2013] [Indexed: 12/15/2022]
Abstract
Synaptic communication in the nervous system is initiated by the fusion of synaptic vesicles with the presynaptic plasma membrane and subsequent neurotransmitter release. In the 1980s, this process was characterized by electron microscopy, albeit without the ability to follow processes in living cells. In the last two decades, fluorescence imaging methods have been developed that report synaptic vesicle fusion, endocytosis and recycling. These probes have provided unprecedented insight into synaptic vesicle trafficking in individual synaptic terminals and revealed heterogeneity in recycling pathways as well as synaptic vesicle populations. These methods either take advantage of uptake of fluorescent probes into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive fluorescent marker at regions facing the vesicle lumen. We provide an overview of these methods, with particular emphasis on the challenges associated with their use and the opportunities for future investigations.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erik M Jorgensen
- 1] Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA. [2] Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
38
|
Watanabe S, Rost BR, Camacho-Pérez M, Davis MW, Söhl-Kielczynski B, Rosenmund C, Jorgensen EM. Ultrafast endocytosis at mouse hippocampal synapses. Nature 2013; 504:242-247. [PMID: 24305055 PMCID: PMC3957339 DOI: 10.1038/nature12809] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/01/2013] [Indexed: 01/21/2023]
Abstract
To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20 s after fusion by the assembly of clathrin scaffolds or in approximately 1 s by the reversal of fusion pores via 'kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--'flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30 ms of the stimulus. Compensatory endocytosis occurs within 50 to 100 ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that 'ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, U.S.A
| | - Benjamin R Rost
- Neuroscience Research Centre, Charité Universitätsmedizin, Berlin, Germany
| | | | - M Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, U.S.A
| | | | | | - Erik M Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, U.S.A
| |
Collapse
|
39
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
40
|
Watanabe S, Liu Q, Davis MW, Hollopeter G, Thomas N, Jorgensen NB, Jorgensen EM. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife 2013; 2:e00723. [PMID: 24015355 PMCID: PMC3762212 DOI: 10.7554/elife.00723] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/12/2013] [Indexed: 11/13/2022] Open
Abstract
Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI:http://dx.doi.org/10.7554/eLife.00723.001.
Collapse
Affiliation(s)
- Shigeki Watanabe
- Department of Biology , Howard Hughes Medical Institute, University of Utah , Salt Lake City , United States
| | | | | | | | | | | | | |
Collapse
|
41
|
Rose T, Schoenenberger P, Jezek K, Oertner T. Developmental Refinement of Vesicle Cycling at Schaffer Collateral Synapses. Neuron 2013; 77:1109-21. [DOI: 10.1016/j.neuron.2013.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 11/30/2022]
|
42
|
The pH probe CypHer™5E is effectively quenched by FM dyes. J Fluoresc 2013; 23:487-94. [PMID: 23397486 DOI: 10.1007/s10895-013-1164-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Concurrent imaging of spectrally distinct fluorescence probes has become an important method for live-cell microscopy experiments in many biological disciplines. The technique enables the identification of a multitude of causal relationships. However, interactions between fluorescent dyes beyond an obvious overlap of their fluorescent spectra are often neglected. Here we present the effects of the well-established fluorescent dyes FM®2-10 or FM®1-43 on the recently introduced pH-dependent probe CypHer™5E. Spectrophotometry as well as live-cell fluorescence microscopy revealed that both FM dyes are effective quenchers of CypHer™5E. Control experiments indicated that this effect is reversible and not due to bleaching. We conclude that, in general, parallel measurements of both dyes are possible, with low FM dye concentrations. Nevertheless, our results implicate that special care has to be taken in such dual colour experiments especially when analysing dynamic CypHer™5E signals in live-cell microscopy.
Collapse
|
43
|
Alabi AA, Tsien RW. Perspectives on Kiss-and-Run: Role in Exocytosis, Endocytosis, and Neurotransmission. Annu Rev Physiol 2013; 75:393-422. [DOI: 10.1146/annurev-physiol-020911-153305] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- AbdulRasheed A. Alabi
- Department of Molecular and Cellular Physiology, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford Medical School, Stanford, California 94305;
| | - Richard W. Tsien
- Department of Physiology and Neuroscience, Center for Neural Science, NYU Neuroscience Institute, New York University, New York, NY 10016;
| |
Collapse
|
44
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
45
|
Kakazu Y, Koh JY, Iwabuchi S, Gonzalez-Alegre P, Harata NC. Miniature release events of glutamate from hippocampal neurons are influenced by the dystonia-associated protein torsinA. Synapse 2012; 66:807-22. [PMID: 22588999 DOI: 10.1002/syn.21571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/09/2012] [Indexed: 12/23/2022]
Abstract
TorsinA is an evolutionarily conserved AAA+ ATPase, and human patients with an in-frame deletion of a single glutamate (ΔE) codon from the encoding gene suffer from autosomal-dominant, early-onset generalized DYT1 dystonia. Although only 30-40% of carriers of the mutation show overt motor symptoms, most experience enhanced excitability of the central nervous system. The cellular mechanism responsible for this change in excitability is not well understood. Here we show the effects of the ΔE-torsinA mutation on miniature neurotransmitter release from neurons. Neurotransmitter release was characterized in cultured hippocampal neurons obtained from wild-type, heterozygous, and homozygous ΔE-torsinA knock-in mice using two approaches. In the first approach, patch-clamp electrophysiology was used to record glutamate-mediated miniature excitatory postsynaptic currents (mEPSCs) in the presence of the Na⁺ channel blocker tetrodotoxin (TTX) and absence of GABA(A) receptor antagonists. The intervals between mEPSC events were significantly shorter in neurons obtained from the mutant mice than in those obtained from wild-type mice. In the second approach, the miniature exocytosis of synaptic vesicles was detected by imaging the unstimulated release of FM dye from the nerve terminals in the presence of TTX. Cumulative FM dye release was higher in neurons obtained from the mutant mice than in those obtained from wild-type mice. The number of glutamatergic nerve terminals was also assessed, and we found that this number was unchanged in heterozygous relative to wild-type neurons, but slightly increased in homozygous neurons. Notably, in both heterozygous and homozygous neurons, the unitary synaptic charge during each mEPSC event was unchanged. Overall, our results suggest more frequent miniature glutamate release in neurons with ΔE-torsinA mutations. This change may be one of the underlying mechanisms by which the excitability of the central nervous system is enhanced in the context of DYT1 dystonia. Moreover, qualitative differences between heterozygous and homozygous neurons with respect to certain synaptic properties indicate that the abnormalities observed in homozygotes may reflect more than a simple gene dosage effect.
Collapse
Affiliation(s)
- Yasuhiro Kakazu
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
46
|
Chen YL, Chen YS, Chan H, Tseng YH, Yang SR, Tsai HY, Liu HY, Sun DS, Chang HH. The use of nanoscale visible light-responsive photocatalyst TiO2-Pt for the elimination of soil-borne pathogens. PLoS One 2012; 7:e31212. [PMID: 22384003 PMCID: PMC3285157 DOI: 10.1371/journal.pone.0031212] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/04/2012] [Indexed: 12/02/2022] Open
Abstract
Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO2-Pt) has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO2-Pt, suggesting that the TiO2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v) did not significantly reduce the antibacterial activity of TiO2-Pt in water. These findings suggest that the TiO2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Yao-Shen Chen
- Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, National Yung-Ming University, Taipei, Taiwan
| | - Hao Chan
- Graduate Institute of Medical Science, Tzu-Chi University, Hualien, Taiwan
| | - Yao-Hsuan Tseng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Shu-Ru Yang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hsin-Ying Tsai
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Hong-Yi Liu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Han WQ, Xia M, Xu M, Boini KM, Ritter JK, Li NJ, Li PL. Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells. J Cell Sci 2012; 125:1225-34. [PMID: 22349696 DOI: 10.1242/jcs.094565] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dysferlin has recently been reported to participate in cell membrane repair in muscle and other cells through lysosome fusion. Given that lysosome fusion is a crucial mechanism that leads to membrane raft clustering, the present study attempted to determine whether dysferlin is involved in this process and its related signalling, and explores the mechanism underlying dysferlin-mediated lysosome fusion in bovine coronary arterial endothelial cells (CAECs). We found that dysferlin is clustered in membrane raft macrodomains after Fas Ligand (FasL) stimulation as detected by confocal microscopy and membrane fraction flotation. Small-interfering RNA targeted to dysferlin prevented membrane raft clustering. Furthermore, the translocation of acid sphingomyelinase (ASMase) to membrane raft clusters, whereby local ASMase activation and ceramide production--an important step that mediates membrane raft clustering--was attenuated. Functionally, silencing of the dysferlin gene reversed FasL-induced impairment of endothelium-dependent vasodilation in isolated small coronary arteries. By monitoring fluorescence quenching or dequenching, silencing of the dysferlin gene was found to almost completely block lysosome fusion to plasma membrane upon FasL stimulation. Further studies to block C2A binding and silencing of AHNAK (a dysferlin C2A domain binding partner), showed that the dysferlin C2A domain is required for FasL-induced lysosome fusion to the cell membrane, ASMase translocation and membrane raft clustering. We conclude that dysferlin determines lysosome fusion to the plasma membrane through its C2A domain and it is therefore implicated in membrane-raft-mediated signaling and regulation of endothelial function in coronary circulation.
Collapse
Affiliation(s)
- Wei-Qing Han
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Park H, Li Y, Tsien RW. Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science 2012; 335:1362-6. [PMID: 22345401 DOI: 10.1126/science.1216937] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotransmission depends on movements of transmitter-laden synaptic vesicles, but accurate, nanometer-scale monitoring of vesicle dynamics in presynaptic terminals has remained elusive. Here, we report three-dimensional, real-time tracking of quantum dot-loaded single synaptic vesicles with an accuracy of 20 to 30 nanometers, less than a vesicle diameter. Determination of the time, position, and mode of fusion, aided by trypan blue quenching of Qdot fluorescence, revealed that vesicles starting close to their ultimate fusion sites tended to fuse earlier than those positioned farther away. The mode of fusion depended on the prior motion of vesicles, with long-dwelling vesicles preferring kiss-and-run rather than full-collapse fusion. Kiss-and-run fusion events were concentrated near the center of the synapse, whereas full-collapse fusion events were broadly spread.
Collapse
Affiliation(s)
- Hyokeun Park
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
49
|
Kakazu Y, Koh JY, Ho KWD, Gonzalez-Alegre P, Harata NC. Synaptic vesicle recycling is enhanced by torsinA that harbors the DYT1 dystonia mutation. Synapse 2012; 66:453-64. [PMID: 22213465 DOI: 10.1002/syn.21534] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/20/2011] [Accepted: 12/17/2011] [Indexed: 11/08/2022]
Abstract
Early-onset generalized dystonia, DYT1, is caused by a mutation in the gene encoding the evolutionarily conserved AAA+ ATPase torsinA. Synaptic abnormalities have been implicated in DYT1 dystonia, but the details of the synaptic pathophysiology are only partially understood. Here, we demonstrate a novel role for torsinA in synaptic vesicle recycling, using cultured hippocampal neurons from a knock-in mouse model of DYT1 dystonia (ΔE-torsinA) and live-cell imaging with styryl FM dyes. Neurons from heterozygous ΔE-torsinA mice released a larger fraction of the total recycling pool (TRP) during a single round of electrical stimulation than did wild-type neurons. Moreover, when the neurons were subjected to prior high activity, the time course of release was shortened. In neurons from homozygous mice, these enhanced exocytosis phenotypes were similar, but in addition the size of the TRP was reduced. Notably, when release was triggered by applying a calcium ionophore rather than electrical stimuli, neither a single nor two ΔE-torsinA alleles affected the time course of release. Thus, the site of action of ΔE-torsinA is at or upstream of the rise in calcium concentration in nerve terminals. Our results suggest that torsinA regulates synaptic vesicle recycling in central neurons. They also indicate that this regulation is influenced by neuronal activity, further supporting the idea that synaptic abnormalities contribute to the pathophysiology of DYT1 dystonia.
Collapse
Affiliation(s)
- Yasuhiro Kakazu
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
50
|
Long R, Hui CY, Jagota A, Bykhovskaia M. Adhesion energy can regulate vesicle fusion and stabilize partially fused states. J R Soc Interface 2012; 9:1555-67. [PMID: 22258550 DOI: 10.1098/rsif.2011.0827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Release of neurotransmitters from nerve terminals occurs by fusion of synaptic vesicles with the plasma membrane, and this process is highly regulated. Although major molecular components that control docking and fusion of vesicles to the synaptic membrane have been identified, the detailed mechanics of this process is not yet understood. We have developed a mathematical model that predicts how adhesion forces imposed by docking and fusion molecular machinery would affect the fusion process. We have computed the membrane stress that is produced by adhesion-driven vesicle bending and find that it is compressive. Further, our computations of the membrane curvature predict that strong adhesion can create a metastable state with a partially opened pore that would correspond to the 'kiss and run' release mode. Our model predicts that the larger the vesicle size, the more likely the metastable state with a transiently opened pore. These results contribute to understanding the mechanics of the fusion process, including possible clamping of the fusion by increasing molecular adhesion, and a balance between 'kiss and run' and full collapse fusion modes.
Collapse
Affiliation(s)
- Rong Long
- Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|