1
|
Chai Z, Silverman D, Li S, Bina P, Yau KW. Dark continuous noise from visual pigment as a major mechanism underlying rod-cone difference in light sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2418031121. [PMID: 39656211 PMCID: PMC11665912 DOI: 10.1073/pnas.2418031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 01/15/2025] Open
Abstract
Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision. The same quantal noise in cones, however, is too low to explain the much higher diurnal light threshold. Separately, a dark continuous noise is present in rods, long accepted to originate from an intrinsic random activation of the cyclic guanosine monophosphate (cGMP)-phosphodiesterase enzyme mediating phototransduction downstream of the pigment. Here, we report the surprising finding that most of this rod dark continuous noise actually originates from rhodopsin itself. Importantly, we found the same continuous noise with a much higher magnitude from cone pigments. The rod and cone continuous noises are apparently both associated with a hitherto unrecognized "metastable" pigment conformational state physiologically resembling that in apo-opsin (opsin devoid of chromophore) and is intermittently active for very brief moments. The cone holopigment's high continuous noise is expected to act as an intrinsic equivalent light and adapt the cone dramatically, accounting for a major part of the light-sensitivity difference between rods and cones in darkness.
Collapse
Affiliation(s)
- Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sihan Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Parinaz Bina
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
2
|
LaMagna S, Umino Y, Solessio E. Signal Detection Theoretic Estimates of the Murine Absolute Visual Threshold Are Independent of Decision Bias. eNeuro 2024; 11:ENEURO.0222-24.2024. [PMID: 39317466 PMCID: PMC11470389 DOI: 10.1523/eneuro.0222-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Decision bias influences estimates of the absolute visual threshold. However, most psychophysical estimates of the murine absolute visual threshold have not taken bias into account. Here we developed a one-alternative forced choice (1AFC) assay to assess the decision bias of mice at the absolute visual threshold via the theory of signal detection and compared our approach with the more conventional high-threshold theoretic approach. In the 1AFC assay, mice of both sexes were trained to signal whether they detected a flash stimulus. We directly measured both hit and false alarm rates, which were used to estimate d' Using the theory of signal detection, we obtained absolute thresholds by interpolating the intensity where d' = 1 from d'-psychometric functions. This gave bias-independent estimates of the absolute visual threshold which ranged over sixfold, averaging ∼1 R* in 1,000 rods (n = 7 mice). To obtain high-threshold theoretic estimates of the absolute visual threshold from the same mice, we estimated threshold intensities from the frequency of seeing curves, corrected for guessing. This gave us thresholds that were strongly correlated with decision bias, ranging over 13-fold and averaged ∼1 R* in 2,500 rods. We conclude that the theory of signal detection uses false alarms to overcome decision bias and narrow the range of threshold estimates in mice, providing a powerful tool for understanding detection behavior near absolute visual threshold.
Collapse
Affiliation(s)
- Sam LaMagna
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Yumiko Umino
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Eduardo Solessio
- Center for Vision Research, Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
3
|
Fain GL. The mechanism of genetically inherited night blindness. Proc Natl Acad Sci U S A 2024; 121:e2408254121. [PMID: 38768361 PMCID: PMC11145283 DOI: 10.1073/pnas.2408254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Gordon L Fain
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
4
|
Morshedian A, Jiang Z, Radu RA, Fain GL, Sampath AP. Genetic manipulation of rod-cone differences in mouse retina. PLoS One 2024; 19:e0300584. [PMID: 38709779 PMCID: PMC11073714 DOI: 10.1371/journal.pone.0300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhichun Jiang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Roxana A. Radu
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Gordon L. Fain
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Alapakkam P. Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Abtout A, Reingruber J. Analysis of dim-light responses in rod and cone photoreceptors with altered calcium kinetics. J Math Biol 2023; 87:69. [PMID: 37823947 PMCID: PMC10570263 DOI: 10.1007/s00285-023-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Rod and cone photoreceptors in the retina of vertebrates are the primary sensory neurons underlying vision. They convert light into an electrical current using a signal transduction pathway that depends on Ca[Formula: see text] feedback. It is known that manipulating the Ca[Formula: see text] kinetics affects the response shape and the photoreceptor sensitivity, but a precise quantification of these effects remains unclear. We have approached this task in mouse retina by combining numerical simulations with mathematical analysis. We consider a parsimonious phototransduction model that incorporates negative Ca[Formula: see text] feedback onto the synthesis of cyclic GMP, and fast buffering reactions to alter the Ca[Formula: see text] kinetics. We derive analytic results for the photoreceptor functioning in sufficiently dim light conditions depending on the photoreceptor type. We exploit these results to obtain conceptual and quantitative insight into how response waveform and amplitude depend on the underlying biophysical processes and the Ca[Formula: see text] feedback. With a low amount of buffering, the Ca[Formula: see text] concentration changes in proportion to the current, and responses to flashes of light are monophasic. With more buffering, the change in the Ca[Formula: see text] concentration becomes delayed with respect to the current, which gives rise to a damped oscillation and a biphasic waveform. This shows that biphasic responses are not necessarily a manifestation of slow buffering reactions. We obtain analytic approximations for the peak flash amplitude as a function of the light intensity, which shows how the photoreceptor sensitivity depends on the biophysical parameters. Finally, we study how changing the extracellular Ca[Formula: see text] concentration affects the response.
Collapse
Affiliation(s)
- Annia Abtout
- Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Jürgen Reingruber
- Institute of Biology, Ecole Normale Supérieure, Paris, France.
- INSERM, U1024, Paris, France.
| |
Collapse
|
6
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
7
|
Caruso G, Klaus C, Hamm HE, Gurevich VV, Bisegna P, Andreucci D, DiBenedetto E, Makino CL. Pepperberg plot: Modeling flash response saturation in retinal rods of mouse. Front Mol Neurosci 2023; 15:1054449. [PMID: 36710929 PMCID: PMC9880052 DOI: 10.3389/fnmol.2022.1054449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain "Pepperberg plots," that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the "upward bend" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.
Collapse
Affiliation(s)
- Giovanni Caruso
- Italian National Research Council, Istituto di Scienze del Patrimonio Culturale, Rome, Italy
| | - Colin Klaus
- The College of Public Health Division of Biostatistics and The Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Andreucci
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Clint L. Makino
- Department of Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States,*Correspondence: Clint L. Makino,
| |
Collapse
|
8
|
Ricci M, Kim J, Johansson F. A computational passage-of-time model of the cerebellar Purkinje cell in eyeblink conditioning. Front Comput Neurosci 2023; 17:1108346. [PMID: 36950506 PMCID: PMC10025386 DOI: 10.3389/fncom.2023.1108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cerebellar Purkinje cell controlling eyeblinks can learn, remember, and reproduce the interstimulus interval in a classical conditioning paradigm. Given temporally separated inputs, the cerebellar Purkinje cell learns to pause its tonic inhibition of a motor pathway with high temporal precision so that an overt blink occurs at the right time. Most models place the passage-of-time representation in upstream network effects. Yet, bypassing the upstream network and directly stimulating the Purkinje cell's pre-synaptic fibers during conditioning still causes acquisition of a well-timed response. Additionally, while network models are sensitive to variance in the temporal structure of probe stimulation, in vivo findings suggest that the acquired Purkinje cell response is not. Such findings motivate alternative approaches to modeling neural function. Here, we present a proof-of-principle model of the passage-of-time which is internal to the Purkinje cell and is invariant to probe structure. The model is consistent with puzzling findings, accurately recapitulates Purkinje cell firing during classical conditioning and makes testable electrophysiological predictions.
Collapse
Affiliation(s)
- Matthew Ricci
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Junkyung Kim
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Fredrik Johansson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Fredrik Johansson
| |
Collapse
|
9
|
Adhikari RD, Kossoff AM, Cornwall MC, Makino CL. Bicarbonate boosts flash response amplitude to augment absolute sensitivity and extend dynamic range in murine retinal rods. Front Mol Neurosci 2023; 16:1125006. [PMID: 37122625 PMCID: PMC10140344 DOI: 10.3389/fnmol.2023.1125006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Rod photoreceptors in the retina adjust their responsiveness and sensitivity so that they can continue to provide meaningful information over a wide range of light intensities. By stimulating membrane guanylate cyclases in the outer segment to synthesize cGMP at a faster rate in a Ca2+-dependent fashion, bicarbonate increases the circulating "dark" current and accelerates flash response kinetics in amphibian rods. Compared to amphibian rods, mammalian rods are smaller in size, operate at a higher temperature, and express visual cascade proteins with somewhat different biochemical properties. Here, we evaluated the role of bicarbonate in rods of cpfl3 mice. These mice are deficient in their expression of functional cone transducin, Gnat2, making cones very insensitive to light, so the rod response to light could be observed in isolation in electroretinogram recordings. Bicarbonate increased the dark current and absolute sensitivity and quickened flash response recovery in mouse rods to a greater extent than in amphibian rods. In addition, bicarbonate enabled mouse rods to respond over a range that extended to dimmer flashes. Larger flash responses may have resulted in part from a bicarbonate-induced elevation in intracellular pH. However, high pH alone had little effect on flash response recovery kinetics and even suppressed the accelerating effect of bicarbonate, consistent with a direct, modulatory action of bicarbonate on Ca2+- dependent, membrane guanylate cyclase activity.
Collapse
|
10
|
Human cone elongation responses can be explained by photoactivated cone opsin and membrane swelling and osmotic response to phosphate produced by RGS9-catalyzed GTPase. Proc Natl Acad Sci U S A 2022; 119:e2202485119. [PMID: 36122241 PMCID: PMC9522364 DOI: 10.1073/pnas.2202485119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical coherence tomography has established that human cone photoreceptor outer segments elongate in response to stimuli bleaching large fractions of their visual pigment. Elongation responses are completely described over their 200-fold bleaching range as the sum of two exponentially rising components differing 13-fold in time constants and 4-fold in light sensitivity. Bleaching measurements of individual cones with adaptive optics scanning laser ophthalmoscopy (SLO) suggest that component 2 arises from cone opsin and disk membrane swelling triggered by photoactivation. Application of a model of phototransduction suggests that component 1 corresponds to free phosphate generated by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in the α-subunit of G protein complexed with phosphodiesterase. Human cone outer segment (COS) length changes in response to stimuli bleaching up to 99% of L- and M-cone opsins were measured with high resolution, phase-resolved optical coherence tomography (OCT). Responses comprised a fast phase (∼5 ms), during which COSs shrink, and two slower phases (1.5 s), during which COSs elongate. The slower components saturated in amplitude (∼425 nm) and initial rate (∼3 nm ms−1) and are well described over the 200-fold bleaching range as the sum of two exponentially rising functions with time constants of 80 to 90 ms (component 1) and 1,000 to 1,250 ms (component 2). Measurements with adaptive optics reflection densitometry revealed component 2 to be linearly related to cone pigment bleaching, and the hypothesis is proposed that it arises from cone opsin and disk membrane swelling triggered by isomerization and rate-limited by chromophore hydrolysis and its reduction to membrane-localized all-trans retinol. The light sensitivity and kinetics of component 1 suggested that the underlying mechanism is an osmotic response to an amplified soluble by-product of phototransduction. The hypotheses that component 1 corresponds to G-protein subunits dissociating from the membrane, metabolites of cyclic guanosine monophosphate (cGMP) hydrolysis, or by-products of activated guanylate cyclase are rejected, while the hypothesis that it corresponds to phosphate produced by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in G protein–phosphodiesterase complexes was found to be consistent with the results. These results provide a basis for the assessment with optoretinography of phototransduction in individual cone photoreceptors in health and during disease progression and therapeutic interventions.
Collapse
|
11
|
Li RC, Molday LL, Lin CC, Ren X, Fleischmann A, Molday RS, Yau KW. Low signaling efficiency from receptor to effector in olfactory transduction: A quantified ligand-triggered GPCR pathway. Proc Natl Acad Sci U S A 2022; 119:e2121225119. [PMID: 35914143 PMCID: PMC9371729 DOI: 10.1073/pnas.2121225119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling is ubiquitous. As an archetype of this signaling motif, rod phototransduction has provided many fundamental, quantitative details, including a dogma that one active GPCR molecule activates a substantial number of downstream G protein/enzyme effector complexes. However, rod phototransduction is light-activated, whereas GPCR pathways are predominantly ligand-activated. Here, we report a detailed study of the ligand-triggered GPCR pathway in mammalian olfactory transduction, finding that an odorant-receptor molecule when (one-time) complexed with its most effective odorants produces on average much less than one downstream effector. Further experiments gave a nominal success probability of tentatively ∼10-4 (more conservatively, ∼10-2 to ∼10-5). This picture is potentially more generally representative of GPCR signaling than is rod phototransduction, constituting a paradigm shift.
Collapse
Affiliation(s)
- Rong-Chang Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chih-Chun Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xiaozhi Ren
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
12
|
Abbas F, Becker S, Jones BW, Mure LS, Panda S, Hanneken A, Vinberg F. Revival of light signalling in the postmortem mouse and human retina. Nature 2022; 606:351-357. [PMID: 35545677 PMCID: PMC10000337 DOI: 10.1038/s41586-022-04709-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.
Collapse
Affiliation(s)
- Fatima Abbas
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Ludovic S Mure
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Institute of Physiology, University of Bern, Bern, Switzerland
- Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| | | | - Anne Hanneken
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Retina Consultants San Diego, La Jolla, CA, USA.
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Li W, Trigg JS, Taghert PH. Regulation of PDF receptor signaling controlling daily locomotor rhythms in Drosophila. PLoS Genet 2022; 18:e1010013. [PMID: 35605015 PMCID: PMC9166358 DOI: 10.1371/journal.pgen.1010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/03/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Each day and in conjunction with ambient daylight conditions, neuropeptide PDF regulates the phase and amplitude of locomotor activity rhythms in Drosophila through its receptor, PDFR, a Family B G protein-coupled receptor (GPCR). We studied the in vivo process by which PDFR signaling turns off, by converting as many as half of the 28 potential sites of phosphorylation in its C terminal tail to a non-phosphorylatable residue (alanine). We report that many such sites are conserved evolutionarily, and their conversion creates a specific behavioral syndrome opposite to loss-of-function phenotypes previously described for pdfr. That syndrome includes increases in the amplitudes of both Morning and Evening behavioral peaks, as well as multi-hour delays of the Evening phase. The precise behavioral effects were dependent on day-length, and most effects mapped to conversion of only a few, specific serine residues near the very end of the protein and specific to its A isoform. Behavioral phase delays of the Evening activity under entraining conditions predicted the phase of activity cycles under constant darkness. The behavioral phenotypes produced by the most severe PDFR variant were ligand-dependent in vivo, and not a consequence of changes to their pharmacological properties, nor of changes in their surface expression, as measured in vitro. The mechanisms underlying termination of PDFR signaling are complex, subject to regulation that is modified by season, and central to a better understanding of the peptidergic modulation of behavior. In multi-cellular organisms, circadian pacemakers create output as a series of phase markers across the 24 hour day to allow other cells to pattern diverse aspects of daily rhythmic physiology and behavior. Within circadian pacemaker circuits, neuropeptide signaling is essential to help promote coherent circadian outputs. In the fruit fly Drosophila 150 neurons are dedicated circadian clocks and they all tell the same time. In spite of such strong synchronization, they provide diverse phasic outputs in the form of their discrete, asynchronous neuronal activity patterns. Neuropeptide signaling breaks the clock-generated symmetry and drives many pacemakers away from their preferred activity period in the morning. Each day, neuropeptide PDF is released by Morning pacemakers and delays the phase of activity of specific other pacemakers to later parts of the day or night. When and how the PDF that is released in the morning stops acting is unknown. Furthermore, timing of signal termination is not fixed because day length changes each day, hence the modulatory delay exerted by PDF must itself be regulated. Here we test a canonical model of G protein-coupled receptor physiology to ask how PDF receptor signaling is normally de-activated. We use behavioral measures to define sequence elements of the receptor whose post-translational modifications (e.g., phosphorylation) may define the duration of receptor signaling.
Collapse
Affiliation(s)
- Weihua Li
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jennifer S. Trigg
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Paul H. Taghert
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Sheng Y, Chen L, Ren X, Jiang Z, Yau KW. Molecular determinants of response kinetics of mouse M1 intrinsically-photosensitive retinal ganglion cells. Sci Rep 2021; 11:23424. [PMID: 34873237 PMCID: PMC8648817 DOI: 10.1038/s41598-021-02832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Intrinsically-photosensitive retinal ganglion cells (ipRGCs) are non-rod/non-cone retinal photoreceptors expressing the visual pigment, melanopsin, to detect ambient irradiance for various non-image-forming visual functions. The M1-subtype, amongst the best studied, mediates primarily circadian photoentrainment and pupillary light reflex. Their intrinsic light responses are more prolonged than those of rods and cones even at the single-photon level, in accordance with the typically slower time course of non-image-forming vision. The short (OPN4S) and long (OPN4L) alternatively-spliced forms of melanopsin proteins are both present in M1-ipRGCs, but their functional difference is unclear. We have examined this point by genetically removing the Opn4 gene (Opn4-/-) in mouse and re-expressing either OPN4S or OPN4L singly in Opn4-/- mice by using adeno-associated virus, but found no obvious difference in their intrinsic dim-flash responses. Previous studies have indicated that two dominant slow steps in M1-ipRGC phototransduction dictate these cells' intrinsic dim-flash-response kinetics, with time constants (τ1 and τ2) at room temperature of ~ 2 s and ~ 20 s, respectively. Here we found that melanopsin inactivation by phosphorylation or by β-arrestins may not be one of these two steps, because their genetic disruptions did not prolong the two time constants or affect the response waveform. Disruption of GAP (GTPase-Activating-Protein) activity on the effector enzyme, PLCβ4, in M1-ipRGC phototransduction to slow down G-protein deactivation also did not prolong the response decay, but caused its rising phase to become slightly sigmoidal by giving rise to a third time constant, τ3, of ~ 2 s (room temperature). This last observation suggests that GAP-mediated G-protein deactivation does partake in the flash-response termination, although normally with a time constant too short to be visible in the response waveform.
Collapse
Affiliation(s)
- Yanghui Sheng
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Graduate Neuroscience Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lujing Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Graduate Neuroscience Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Xiaozhi Ren
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Vedere Bio II, Inc., 700 Main St, Cambridge, MA, 02139, USA
| | - Zheng Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA
- Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin St, Houston, TX, 77030, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Zang J, Gesemann M, Keim J, Samardzija M, Grimm C, Neuhauss SCF. Circadian regulation of vertebrate cone photoreceptor function. eLife 2021; 10:e68903. [PMID: 34550876 PMCID: PMC8494479 DOI: 10.7554/elife.68903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Eukaryotes generally display a circadian rhythm as an adaption to the reoccurring day/night cycle. This is particularly true for visual physiology that is directly affected by changing light conditions. Here we investigate the influence of the circadian rhythm on the expression and function of visual transduction cascade regulators in diurnal zebrafish and nocturnal mice. We focused on regulators of shut-off kinetics such as Recoverins, Arrestins, Opsin kinases, and Regulator of G-protein signaling that have direct effects on temporal vision. Transcript as well as protein levels of most analyzed genes show a robust circadian rhythm-dependent regulation, which correlates with changes in photoresponse kinetics. Electroretinography demonstrates that photoresponse recovery in zebrafish is delayed in the evening and accelerated in the morning. Functional rhythmicity persists in continuous darkness, and it is reversed by an inverted light cycle and disrupted by constant light. This is in line with our finding that orthologous gene transcripts from diurnal zebrafish and nocturnal mice are often expressed in an anti-phasic daily rhythm.
Collapse
Affiliation(s)
- Jingjing Zang
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Matthias Gesemann
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Jennifer Keim
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian Grimm
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Stephan CF Neuhauss
- University of Zurich, Department of Molecular Life SciencesZurichSwitzerland
| |
Collapse
|
18
|
Abstract
Time is largely a hidden variable in vision. It is the condition for seeing interesting things such as spatial forms and patterns, colours and movements in the external world, and yet is not meant to be noticed in itself. Temporal aspects of visual processing have received comparatively little attention in research. Temporal properties have been made explicit mainly in measurements of resolution and integration in simple tasks such as detection of spatially homogeneous flicker or light pulses of varying duration. Only through a mechanistic understanding of their basis in retinal photoreceptors and circuits can such measures guide modelling of natural vision in different species and illuminate functional and evolutionary trade-offs. Temporal vision research would benefit from bridging traditions that speak different languages. Towards that goal, I here review studies from the fields of human psychophysics, retinal physiology and neuroethology, with a focus on fundamental constraints set by early vision. Summary: Simple measures of temporal vision such as the critical flicker frequency can be useful for modelling natural vision only if their relationship to photoreceptor responses and retinal processing is understood.
Collapse
Affiliation(s)
- Kristian Donner
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Abtout A, Fain G, Reingruber J. Analysis of waveform and amplitude of mouse rod and cone flash responses. J Physiol 2021; 599:3295-3312. [PMID: 33977528 DOI: 10.1113/jp281225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rod and cone photoreceptors, which use a signal transduction pathway consisting of many biological processes to transform light into an electrical response. We dissect and quantify the contribution of each of these processes to the photoreceptor light response by using a novel method of analysis that provides an analytical solution for the entire time course of the dim-flash light response. We find that the shape of the light response is exclusively controlled by deactivation parameters. Activation parameters scale this shape and alter the response amplitude. We show that the rising phase of the response depends on Ca2+ feedback, and we identify the deactivation parameters that control the recovery phase of the response. We devise new methods to extract values for deactivation and activation parameters from a separate analysis of response shape and response amplitude. ABSTRACT Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway comprising many biological processes to transform the absorption of light into an electrical response. A fundamental question in sensory transduction is how these processes contribute to the response. To study this question, we use a well-accepted phototransduction model, which we analyse with a novel method based on the log transform of the current. We derive an analytical solution that describes the entire time course of the photoreceptor response to dim flashes of light. We use this solution to dissect and quantify the contribution of each process to the response. We find that the entire dim-flash response is proportional to the flash intensity. By normalizing responses to unit amplitude, we define a waveform that is independent of the light intensity and characterizes the invariant shape of dim-flash responses. We show that this waveform is exclusively determined by deactivation rates; activation rates only scale the waveform and affect the amplitude. This analysis corrects a previous assumption that the rising phase is determined entirely by activation rates. We further show that the rising phase depends on Ca2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that control the recovery phase of the response, and we devise new methods to extract activation and deactivation rates from an analysis of response shape and response amplitude. In summary, we provide a comprehensive understanding of how the various transduction processes produce the cellular response.
Collapse
Affiliation(s)
- Annia Abtout
- Institut de Biologie de l'École Normale Supérieure, Paris, France
| | - Gordon Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
20
|
Functional modulation of phosphodiesterase-6 by calcium in mouse rod photoreceptors. Sci Rep 2021; 11:8938. [PMID: 33903621 PMCID: PMC8076185 DOI: 10.1038/s41598-021-88140-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Phosphodiesterase-6 (PDE6) is a key protein in the G-protein cascade converting photon information to bioelectrical signals in vertebrate photoreceptor cells. Here, we demonstrate that PDE6 is regulated by calcium, contrary to the common view that PDE1 is the unique PDE class whose activity is modulated by intracellular Ca2+. To broaden the operating range of photoreceptors, mammalian rod photoresponse recovery is accelerated mainly by two calcium sensor proteins: recoverin, modulating the lifetime of activated rhodopsin, and guanylate cyclase-activating proteins (GCAPs), regulating the cGMP synthesis. We found that decreasing rod intracellular Ca2+ concentration accelerates the flash response recovery and increases the basal PDE6 activity (βdark) maximally by ~ 30% when recording local electroretinography across the rod outer segment layer from GCAPs-/- recoverin-/- mice. Our modeling shows that a similar elevation in βdark can fully explain the observed acceleration of flash response recovery in low Ca2+. Additionally, a reduction of the free Ca2+ in GCAPs-/- recoverin-/- rods shifted the inhibition constants of competitive PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) against the thermally activated and light-activated forms of PDE6 to opposite directions, indicating a complex interaction between IBMX, PDE6, and calcium. The discovered regulation of PDE6 is a previously unknown mechanism in the Ca2+-mediated modulation of rod light sensitivity.
Collapse
|
21
|
Temporal Contrast Sensitivity Increases despite Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. eNeuro 2021; 8:ENEURO.0020-21.2021. [PMID: 33509952 PMCID: PMC8059883 DOI: 10.1523/eneuro.0020-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
The detection of temporal variations in amplitude of light intensity, or temporal contrast sensitivity (TCS), depends on the kinetics of rod photoresponse recovery. Uncharacteristically fast rod recovery kinetics are facets of both human patients and transgenic animal models with a P23H rhodopsin mutation, a prevalent cause of retinitis pigmentosa (RP). Here, we show that mice with this mutation (RhoP23H/+) exhibit an age-dependent and illumination-dependent enhancement in TCS compared with controls. At retinal illumination levels producing ≥1000 R*/rod/s or more, postnatal day 30 (P30) RhoP23H/+ mice exhibit a 1.2-fold to 2-fold increase in retinal and optomotor TCS relative to controls in response to flicker frequencies of 3, 6, and 12 Hz despite significant photoreceptor degeneration and loss of flash electroretinogram (ERG) b-wave amplitude. Surprisingly, the TCS of RhoP23H/+ mice further increases as degeneration advances. Enhanced TCS is also observed in a second model (rhodopsin heterozygous mice, Rho+/-) with fast rod recovery kinetics and no apparent retinal degeneration. In both mouse models, enhanced TCS is explained quantitatively by a comprehensive model that includes photoresponse recovery kinetics, density and collecting area of degenerating rods. Measurement of TCS may be a non-invasive early diagnostic tool indicative of rod dysfunction in some forms of retinal degenerative disease.
Collapse
|
22
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
23
|
The GARP Domain of the Rod CNG Channel's β1-Subunit Contains Distinct Sites for Outer Segment Targeting and Connecting to the Photoreceptor Disk Rim. J Neurosci 2021; 41:3094-3104. [PMID: 33637563 DOI: 10.1523/jneurosci.2609-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/15/2021] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Vision begins when light is captured by the outer segment organelle of photoreceptor cells in the retina. Outer segments are modified cilia filled with hundreds of flattened disk-shaped membranes. Disk membranes are separated from the surrounding plasma membrane, and each membrane type has unique protein components. The mechanisms underlying this protein sorting remain entirely unknown. In this study, we investigated the outer segment delivery of the rod cyclic nucleotide-gated (CNG) channel, which is located in the outer segment plasma membrane, where it mediates the electrical response to light. Using Xenopus and mouse models of both sexes, we now show that the targeted delivery of the CNG channel to the outer segment uses the conventional secretory pathway, including protein processing in both ER and Golgi, and requires preassembly of its constituent α1 and β1 subunits. We further demonstrate that the N-terminal glutamic acid-rich protein (GARP) domain of CNGβ1 contains two distinct functional regions. The glutamic acid-rich region encodes specific information targeting the channel to rod outer segments. The adjacent proline-enriched region connects the CNG channel to photoreceptor disk rims, likely through an interaction with peripherin-2. These data reveal fine functional specializations within the structural domains of the CNG channel and suggest that its sequestration to the outer segment plasma membrane requires an interaction with peripherin-2.SIGNIFICANCE STATEMENT Neurons and other differentiated cells have a remarkable ability to deliver and organize signaling proteins at precise subcellular locations. We now report that the CNG channel, mediating the electrical response to light in rod photoreceptors, contains two specialized regions within the N terminus of its β-subunit: one responsible for delivery of this channel to the ciliary outer segment organelle and another for subsequent channel sequestration into the outer segment plasma membrane. These findings expand our understanding of the molecular specializations used by neurons to populate their critical functional compartments.
Collapse
|
24
|
Abbas F, Vinberg F. Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans. Front Cell Neurosci 2021; 15:662453. [PMID: 33867944 PMCID: PMC8046925 DOI: 10.3389/fncel.2021.662453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.
Collapse
Affiliation(s)
- Fatima Abbas
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| | - Frans Vinberg
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
25
|
Light responses of mammalian cones. Pflugers Arch 2021; 473:1555-1568. [PMID: 33742309 DOI: 10.1007/s00424-021-02551-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.
Collapse
|
26
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
27
|
Regulation of retinal membrane guanylyl cyclase (RetGC) by negative calcium feedback and RD3 protein. Pflugers Arch 2021; 473:1393-1410. [PMID: 33537894 PMCID: PMC8329130 DOI: 10.1007/s00424-021-02523-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/07/2022]
Abstract
This article presents a brief overview of the main biochemical and cellular processes involved in regulation of cyclic GMP production in photoreceptors. The main focus is on how the fluctuations of free calcium concentrations in photoreceptors between light and dark regulate the activity of retinal membrane guanylyl cyclase (RetGC) via calcium sensor proteins. The emphasis of the review is on the structure of RetGC and guanylyl cyclase activating proteins (GCAPs) in relation to their functional role in photoreceptors and congenital diseases of photoreceptors. In addition to that, the structure and function of retinal degeneration-3 protein (RD3), which regulates RetGC in a calcium-independent manner, is discussed in detail in connections with its role in photoreceptor biology and inherited retinal blindness.
Collapse
|
28
|
Fortenbach C, Peinado Allina G, Shores CM, Karlen SJ, Miller EB, Bishop H, Trimmer JS, Burns ME, Pugh EN. Loss of the K+ channel Kv2.1 greatly reduces outward dark current and causes ionic dysregulation and degeneration in rod photoreceptors. J Gen Physiol 2021; 153:e202012687. [PMID: 33502442 PMCID: PMC7845921 DOI: 10.1085/jgp.202012687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vertebrate retinal photoreceptors signal light by suppressing a circulating "dark current" that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1-/-) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1-/- rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1-/- rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70-80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.
Collapse
Affiliation(s)
| | | | | | - Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, CA
| | - Hannah Bishop
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
| | - James S. Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Marie E. Burns
- Center for Neuroscience, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| | - Edward N. Pugh
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
- Department of Ophthalmology and Vision Science, University of California, Davis, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA
| |
Collapse
|
29
|
Lankford CK, Laird JG, Inamdar SM, Baker SA. A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision. Front Cell Neurosci 2020; 14:595523. [PMID: 33250719 PMCID: PMC7676898 DOI: 10.3389/fncel.2020.595523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning’s of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons—rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.
Collapse
Affiliation(s)
- Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
Reingruber J, Ingram NT, Griffis KG, Fain GL. A kinetic analysis of mouse rod and cone photoreceptor responses. J Physiol 2020; 598:3747-3763. [PMID: 32557629 PMCID: PMC7484371 DOI: 10.1113/jp279524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Most vertebrate eyes have rods for dim-light vision and cones for brighter light and higher temporal sensitivity. Rods evolved from cone-like precursors through expression of different transduction genes or the same genes at different expression levels, but we do not know which molecular differences were most important. We approached this problem by analysing rod and cone responses with the same model but with different values for model parameters. We showed that, in addition to outer-segment volume, the most important differences between rods and cones are: (1) decreased transduction gain, reflecting smaller amplification in the G-protein cascade; (2) a faster rate of turnover of the second messenger cGMP in darkness; and (3) an accelerated rate of decay of the effector enzyme phosphodiesterase and perhaps also of activated visual pigment. We believe our analysis has identified the principal alterations during evolution responsible for the duplex retina. ABSTRACT Most vertebrates have rod and cone photoreceptors, which differ in their sensitivity and response kinetics. We know that rods evolved from cone-like precursors through the expression of different transduction genes or the same genes at different levels, but we do not know which molecular differences were most important. We have approached this problem in mouse retina by analysing the kinetic differences between rod flash responses and recent voltage-clamp recordings of cone flash responses, using a model incorporating the principal features of photoreceptor transduction. We apply a novel method of analysis using the log-transform of the current, and we ask which of the model's dynamic parameters need be changed to transform the flash response of a rod into that of a cone. The most important changes are a decrease in the gain of the response, reflecting a reduction in amplification of the transduction cascade; an increase in the rate of turnover of cGMP in darkness; and an increase in the rate of decay of activated phosphodiesterase, with perhaps also an increase in the rate of decay of light-activated visual pigment. Although we cannot exclude other differences, and in particular alterations in the Ca2+ economy of the photoreceptors, we believe that we have identified the kinetic parameters principally responsible for the differences in the flash responses of the two kinds of photoreceptors, which were likely during evolution to have resulted in the duplex retina.
Collapse
Affiliation(s)
- Jürgen Reingruber
- Institut de Biologie de l’École Normale Supérieure, 46 rue d’Ulm, 75005 Paris, France
| | - Norianne T. Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095–7239, USA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| | - Khris G. Griffis
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| | - Gordon L. Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095–7239, USA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA 90095–7000, USA
| |
Collapse
|
31
|
Lewis TR, Shores CR, Cady MA, Hao Y, Arshavsky VY, Burns ME. The F220C and F45L rhodopsin mutations identified in retinitis pigmentosa patients do not cause pathology in mice. Sci Rep 2020; 10:7538. [PMID: 32371886 PMCID: PMC7200662 DOI: 10.1038/s41598-020-64437-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 11/12/2022] Open
Abstract
Retinitis pigmentosa is a retinal degenerative disease that leads to blindness through photoreceptor loss. Rhodopsin is the most frequently mutated protein in this disease. While many rhodopsin mutations have well-understood consequences that lead to cell death, the disease association of several rhodopsin mutations identified in retinitis pigmentosa patients, including F220C and F45L, has been disputed. In this study, we generated two knockin mouse lines bearing each of these mutations. We did not observe any photoreceptor degeneration in either heterozygous or homozygous animals of either line. F220C mice exhibited minor disruptions of photoreceptor outer segment dimensions without any mislocalization of outer segment proteins, whereas photoreceptors of F45L mice were normal. Suction electrode recordings from individual photoreceptors of both mutant lines showed normal flash sensitivity and photoresponse kinetics. Taken together, these data suggest that neither the F220C nor F45L mutation has pathological consequences in mice and, therefore, may not be causative of retinitis pigmentosa in humans.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Camilla R Shores
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, United States
| | - Martha A Cady
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, United States.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, United States
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, United States. .,Center for Neuroscience and Department of Ophthalmology & Vision Science, University of California, Davis, CA, 95616, United States.
| |
Collapse
|
32
|
Kolesnikov AV, Chrispell JD, Osawa S, Kefalov VJ, Weiss ER. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors. FASEB J 2020; 34:2677-2690. [PMID: 31908030 PMCID: PMC7043924 DOI: 10.1096/fj.201902535r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
Abstract
Timely recovery of the light response in photoreceptors requires efficient inactivation of photoactivated rhodopsin. This process is initiated by phosphorylation of its carboxyl terminus by G protein-coupled receptor kinase 1 (GRK1). Previously, we showed that GRK1 is phosphorylated in the dark at Ser21 in a cAMP-dependent manner and dephosphorylated in the light. Results in vitro indicate that dephosphorylation of Ser21 increases GRK1 activity, leading to increased phosphorylation of rhodopsin. This creates the possibility of light-dependent regulation of GRK1 activity and its efficiency in inactivating the visual pigment. To address the functional role of GRK1 phosphorylation in rods and cones in vivo, we generated mutant mice in which Ser21 is substituted with alanine (GRK1-S21A), preventing dark-dependent phosphorylation of GRK1. GRK1-S21A mice had normal retinal morphology, without evidence of degeneration. The function of dark-adapted GRK1-S21A rods and cones was also unaffected, as demonstrated by the normal amplitude and kinetics of their responses obtained by ex vivo and in vivo ERG recordings. In contrast, rod dark adaptation following exposure to bright bleaching light was significantly delayed in GRK1-S21A mice, suggesting that the higher activity of this kinase results in enhanced rhodopsin phosphorylation and therefore delays its regeneration. In contrast, dark adaptation of cones was unaffected by the S21A mutation. Taken together, these data suggest that rhodopsin phosphorylation/dephosphorylation modulates the recovery of rhodopsin to the ground state and rod dark adaptation. They also reveal a novel role for cAMP-dependent phosphorylation of GRK1 in regulating the dark adaptation of rod but not cone photoreceptors.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jared D. Chrispell
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Shoji Osawa
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Vladimir J. Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ellen R. Weiss
- Department of Cell Biology and Physiology, The University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Lamb TD, Kraft TW. A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes. Open Biol 2020; 10:190241. [PMID: 31910741 PMCID: PMC7014685 DOI: 10.1098/rsob.190241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We develop an improved quantitative model of mammalian rod phototransduction, and we apply it to the prediction of responses to bright flashes of light. We take account of the recently characterized dimeric nature of PDE6 activation, where the configuration of primary importance has two transducin molecules bound. We simulate the stochastic nature of the activation and shut-off reactions to generate the predicted kinetics of the active molecular species on the disc membrane surfaces, and then we integrate the differential equations for the downstream cytoplasmic reactions to obtain the predicted electrical responses. The simulated responses recover the qualitative form of bright-flash response families recorded from mammalian rod photoreceptors. Furthermore, they provide an accurate description of the relationship between the time spent in saturation and flash intensity, predicting the transition between first and second ‘dominant time constants’ to occur at an intensity around 5000 isomerizations per flash, when the rate of transducin activation is taken to be 1250 transducins s−1 per activated rhodopsin. This rate is consistent with estimates from light-scattering experiments, but is around fourfold higher than has typically been assumed in other studies. We conclude that our model and parameters provide a compelling description of rod photoreceptor bright-flash responses.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Timothy W Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
34
|
Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction. J Neurosci 2019; 39:9689-9701. [PMID: 31676603 DOI: 10.1523/jneurosci.1142-19.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/04/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Retinal photoreceptor cells contain the highest concentration of docosahexaenoic acid (DHA) in our bodies, and it has been long assumed that this is critical for supporting normal vision. Indeed, early studies using DHA dietary restriction documented reduced light sensitivity by DHA-deprived retinas. Recently, it has been demonstrated that a major route of DHA entry in the retina is the delivery across the blood-retina barrier by the sodium-dependent lipid transporter, Mfsd2a. This discovery opened a unique opportunity to analyze photoreceptor health and function in DHA-deprived retinas using the Mfsd2a knock-out mouse as animal model. Our lipidome analyses of Mfsd2a -/- retinas and outer segment membranes corroborated the previously reported decrease in the fraction of DHA-containing phospholipids and a compensatory increase in phospholipids containing arachidonic acid. We also revealed an increase in the retinal content of monounsaturated fatty acids and a reduction in very long chain fatty acids. These changes could be explained by a combination of reduced DHA supply to the retina and a concomitant upregulation of several fatty acid desaturases controlled by sterol regulatory element-binding transcription factors, which are upregulated in Mfsd2a -/- retinas. Mfsd2a -/- retinas undergo slow progressive degeneration, with ∼30% of photoreceptor cells lost by the age of 6 months. Despite this pathology, the ultrastructure Mfsd2a -/- photoreceptors and their ability to produce light responses were essentially normal. These data demonstrate that, whereas maintaining the lysophosphatidylcholine route of DHA supply to the retina is essential for long-term photoreceptor survival, it is not important for supporting normal phototransduction.SIGNIFICANCE STATEMENT Phospholipids containing docosahexaenoic acid (DHA) are greatly enriched in the nervous system, with the highest concentration found in the light-sensitive membranes of photoreceptor cells. In this study, we analyzed the consequences of impaired DHA transport across the blood-retina barrier. We have found that, in addition to a predictable reduction in the DHA level, the affected retinas undergo a complex, transcriptionally-driven rebuilding of their membrane lipidome in a pattern preserving the overall saturation/desaturation balance of retinal phospholipids. Remarkably, these changes do not affect the ability of photoreceptors to produce responses to light but are detrimental for the long-term survival of these cells.
Collapse
|
35
|
Spencer WJ, Ding JD, Lewis TR, Yu C, Phan S, Pearring JN, Kim KY, Thor A, Mathew R, Kalnitsky J, Hao Y, Travis AM, Biswas SK, Lo WK, Besharse JC, Ellisman MH, Saban DR, Burns ME, Arshavsky VY. PRCD is essential for high-fidelity photoreceptor disc formation. Proc Natl Acad Sci U S A 2019; 116:13087-13096. [PMID: 31189593 PMCID: PMC6601265 DOI: 10.1073/pnas.1906421116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a small protein residing in the light-sensitive disc membranes of the photoreceptor outer segment. Until now, the function of PRCD has remained enigmatic despite multiple demonstrations that its mutations cause blindness in humans and dogs. Here, we generated a PRCD knockout mouse and observed a striking defect in disc morphogenesis, whereby newly forming discs do not properly flatten. This leads to the budding of disc-derived vesicles, specifically at the site of disc morphogenesis, which accumulate in the interphotoreceptor matrix. The defect in nascent disc flattening only minimally alters the photoreceptor outer segment architecture beyond the site of new disc formation and does not affect the abundance of outer segment proteins and the photoreceptor's ability to generate responses to light. Interestingly, the retinal pigment epithelium, responsible for normal phagocytosis of shed outer segment material, lacks the capacity to clear the disc-derived vesicles. This deficiency is partially compensated by a unique pattern of microglial migration to the site of disc formation where they actively phagocytize vesicles. However, the microglial response is insufficient to prevent vesicular accumulation and photoreceptors of PRCD knockout mice undergo slow, progressive degeneration. Taken together, these data show that the function of PRCD is to keep evaginating membranes of new discs tightly apposed to each other, which is essential for the high fidelity of photoreceptor disc morphogenesis and photoreceptor survival.
Collapse
Affiliation(s)
- William J Spencer
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Chen Yu
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Andrea Thor
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Rose Mathew
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Joan Kalnitsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Amanda M Travis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Joseph C Besharse
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel R Saban
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95616
- Department of Ophthalmology, University of California, Davis, CA 95616
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710;
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
36
|
Hayashi F, Saito N, Tanimoto Y, Okada K, Morigaki K, Seno K, Maekawa S. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Commun Biol 2019; 2:209. [PMID: 31240247 PMCID: PMC6570657 DOI: 10.1038/s42003-019-0459-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disc membrane. Recent studies have suggested that rhodopsin forms highly ordered rows of dimers responsible for single-photon detection by rod photoreceptors. Dimerization is also known to confer to rhodopsin a high affinity for ordered lipids (raftophilicity). However, the role of rhodopsin organization and its raftophilicity in phototransduction remains obscure, owing to the lack of direct observation of rhodopsin dynamics and distribution in native discs. Here, we explore the single-molecule and semi-multimolecule behaviour of rhodopsin in native discs. Rhodopsin forms transient meso-scale clusters, even in darkness, which are loosely confined to the disc centre. Cognate G protein transducin co-distributes with rhodopsin, and exhibits lateral translocation to the disc periphery upon activation. We demonstrate that rhodopsin offers inherently distributed and stochastic platforms for G protein signalling by self-organizing raftophilic clusters, which continually repeat generation/extinction in the disc membrane.
Collapse
Affiliation(s)
- Fumio Hayashi
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Natsumi Saito
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Yasushi Tanimoto
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keisuke Okada
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Kenichi Morigaki
- Research Centre for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Graduate School of Agriculture, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keiji Seno
- Faculty of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
- International Mass Imaging Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
| | - Shohei Maekawa
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
37
|
Rod Photoresponse Kinetics Limit Temporal Contrast Sensitivity in Mesopic Vision. J Neurosci 2019; 39:3041-3056. [PMID: 30737308 DOI: 10.1523/jneurosci.1404-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian visual system operates over an extended range of ambient light levels by switching between rod and cone photoreceptors. Rod-driven vision is sluggish, highly sensitive, and operates in dim or scotopic lights, whereas cone-driven vision is brisk, less sensitive, and operates in bright or photopic lights. At intermediate or mesopic lights, vision transitions seamlessly from rod-driven to cone-driven, despite the profound differences in rod and cone response dynamics. The neural mechanisms underlying such a smooth handoff are not understood. Using an operant behavior assay, electrophysiological recordings, and mathematical modeling we examined the neural underpinnings of the mesopic visual transition in mice of either sex. We found that rods, but not cones, drive visual sensitivity to temporal light variations over much of the mesopic range. Surprisingly, speeding up rod photoresponse recovery kinetics in transgenic mice improved visual sensitivity to slow temporal variations, in the range where perceptual sensitivity is governed by Weber's law of sensation. In contrast, physiological processes acting downstream from phototransduction limit sensitivity to high frequencies and temporal resolution. We traced the paradoxical control of visual temporal sensitivity to rod photoresponses themselves. A scenario emerges where perceptual sensitivity is limited by: (1) the kinetics of neural processes acting downstream from phototransduction in scotopic lights, (2) rod response kinetics in mesopic lights, and (3) cone response kinetics as light levels rise into the photopic range.SIGNIFICANCE STATEMENT Our ability to detect flickering lights is constrained by the dynamics of the slowest step in the visual pathway. Cone photoresponse kinetics limit visual temporal sensitivity in bright (photopic) lights, whereas mechanisms in the inner retina limit sensitivity in dim (scotopic) lights. The neural mechanisms underlying the transition between scotopic and photopic vision in mesopic lights, when both rods are cones are active, are unknown. This study provides a missing link in this mechanism by establishing that rod photoresponse kinetics limit temporal sensitivity during the mesopic transition. Surprisingly, this range is where Weber's Law of Sensation governs temporal contrast sensitivity in mouse. Our results will help guide future studies of complex and dynamic interactions between rod-cone signals in the mesopic retina.
Collapse
|
38
|
Determination of basal phosphodiesterase activity in mouse rod photoreceptors with cGMP clamp. Sci Rep 2019; 9:1183. [PMID: 30718640 PMCID: PMC6362171 DOI: 10.1038/s41598-018-37661-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Light regulates cGMP concentration in the photoreceptor cytoplasm by activating phosphodiesterase (PDE) molecules through a G-protein signalling cascade. Spontaneous PDE activity is present in rod outer segments even in darkness. This basal PDE activity (βdark) has not been determined in wild type mammalian photoreceptor cells although it plays a key role in setting the sensitivity and recovery kinetics of rod responses. We present a novel method for determination of βdark using local electroretinography (LERG) from isolated mouse retinas. The method is based on the ability of PDE inhibitors to decrease βdark, which can be counterbalanced by increasing PDE activity with light. This procedure clamps cytoplasmic cGMP to its dark value. βdark can be calculated based on the amount of light needed for the "cGMP clamp" and information extracted from the registered rod photoresponses. Here we apply this method to determine βdark values for the first time in the mammalian rods and obtain the following estimates for different mouse models: 3.9 s-1 for wild type, 4.5 s-1 for guanylate cyclase activating proteins (GCAPs) knockout, and 4.4 s-1 for GCAPs and recoverin double knockout mice. Our results suggest that depletion of GCAPs or recoverin do not affect βdark.
Collapse
|
39
|
Zang J, Neuhauss SCF. The Binding Properties and Physiological Functions of Recoverin. Front Mol Neurosci 2018; 11:473. [PMID: 30618620 PMCID: PMC6306944 DOI: 10.3389/fnmol.2018.00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Recoverin (Rcv) is a low molecular-weight, neuronal calcium sensor (NCS) primarily located in photoreceptor outer segments of the vertebrate retina. Calcium ions (Ca2+)-bound Rcv has been proposed to inhibit G-protein-coupled receptor kinase (GRKs) in darkness. During the light response, the Ca2+-free Rcv releases GRK, which in turn phosphorylates visual pigment, ultimately leading to the cessation of the visual transduction cascade. Technological advances over the last decade have contributed significantly to a deeper understanding of Rcv function. These include both biophysical and biochemical approaches that will be discussed in this review article. Furthermore, electrophysiological experiments uncovered additional functions of Rcv, such as regulation of the lifetime of Phosphodiesterase-Transducin complex. Recently, attention has been drawn to different roles in rod and cone photoreceptors.This review article focuses on Rcv binding properties to Ca2+, disc membrane and GRK, and its physiological functions in phototransduction and signal transmission.
Collapse
Affiliation(s)
- Jingjing Zang
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
40
|
Wang T, Reingruber J, Woodruff ML, Majumder A, Camarena A, Artemyev NO, Fain GL, Chen J. The PDE6 mutation in the rd10 retinal degeneration mouse model causes protein mislocalization and instability and promotes cell death through increased ion influx. J Biol Chem 2018; 293:15332-15346. [PMID: 30126843 DOI: 10.1074/jbc.ra118.004459] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The retinal degeneration model rd10 contains a missense mutation of the catalytic PDE6 β subunit, which hydrolyzes cGMP in response to light. This model produces cell death more slowly than others caused by PDE6 loss of function, making it of particular interest for studying potential therapeutics. We used morphology, biochemistry, and single-cell physiology to examine the mechanism of rd10 degeneration. Our results show that the mutation produces no alteration of Pde6b RNA but does dramatically decrease maximal and basal PDE6 activity, apparently caused by a decrease in protein stability and transport. The enzymatic properties of the remaining mutant PDE6 appear to be nearly normal. We demonstrate that an increase in free cGMP, which would result from decreased PDE6 activity and serve to increase opening of the cGMP-gated channels and calcium influx, is an underlying cause of cell death: degeneration of rd10/Cngb1 -/- double mutants is slower than the parent rd10 line. Paradoxically, degeneration in rd10/Cngb1 -/- is also slower than in Cngb1 -/- This rescue is correlated with a lowering of cGMP content in Cngb1 -/- retinas and suggests that it may be caused by mislocalization of active PDE6. Single-cell recordings from rd10 rods show that the rates of rise and decay of the response are significantly slower; simulations indicate that these changes are primarily the result of the decrease in PDE6 concentration and rod collecting area. Together, these results provide insights into the complex mechanisms that underlie rd10-mediated retinal degeneration and a cautionary note for analysis of therapeutic interventions.
Collapse
Affiliation(s)
- Tian Wang
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Jürgen Reingruber
- the Institut de Biologie, Group of Computational Biology and Applied Mathematics, École Normale Supérieure, 75005 Paris, France
| | - Michael L Woodruff
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606
| | - Anurima Majumder
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Andres Camarena
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821
| | - Nikolai O Artemyev
- the Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, and
| | - Gordon L Fain
- the Department of Integrative Biology and Physiology, UCLA, Los Angeles, California 90095-1606.,the Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7000
| | - Jeannie Chen
- From the Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821,
| |
Collapse
|
41
|
Qureshi BM, Behrmann E, Schöneberg J, Loerke J, Bürger J, Mielke T, Giesebrecht J, Noé F, Lamb TD, Hofmann KP, Spahn CMT, Heck M. It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods. Open Biol 2018; 8:180075. [PMID: 30068566 PMCID: PMC6119865 DOI: 10.1098/rsob.180075] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
Among cyclic nucleotide phosphodiesterases (PDEs), PDE6 is unique in serving as an effector enzyme in G protein-coupled signal transduction. In retinal rods and cones, PDE6 is membrane-bound and activated to hydrolyse its substrate, cGMP, by binding of two active G protein α-subunits (Gα*). To investigate the activation mechanism of mammalian rod PDE6, we have collected functional and structural data, and analysed them by reaction-diffusion simulations. Gα* titration of membrane-bound PDE6 reveals a strong functional asymmetry of the enzyme with respect to the affinity of Gα* for its two binding sites on membrane-bound PDE6 and the enzymatic activity of the intermediary 1 : 1 Gα* · PDE6 complex. Employing cGMP and its 8-bromo analogue as substrates, we find that Gα* · PDE6 forms with high affinity but has virtually no cGMP hydrolytic activity. To fully activate PDE6, it takes a second copy of Gα* which binds with lower affinity, forming Gα* · PDE6 · Gα*. Reaction-diffusion simulations show that the functional asymmetry of membrane-bound PDE6 constitutes a coincidence switch and explains the lack of G protein-related noise in visual signal transduction. The high local concentration of Gα* generated by a light-activated rhodopsin molecule efficiently activates PDE6, whereas the low density of spontaneously activated Gα* fails to activate the effector enzyme.
Collapse
Affiliation(s)
- Bilal M Qureshi
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Elmar Behrmann
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Schöneberg
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Justus Loerke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Bürger
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Mielke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Microscopy and Cryo Electron Microscopy Group, Max-Planck Institut für Molekulare Genetik, Berlin, Germany
| | - Jan Giesebrecht
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frank Noé
- Department of Mathematics, Computer Science and Bioinformatics, Freie Universität Berlin, Berlin, Germany
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Zentrum für Biophysik und Bioinformatik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Heck
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
42
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
43
|
Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring Vision to the Blind with Chemical Photoswitches. Chem Rev 2018; 118:10748-10773. [PMID: 29874052 DOI: 10.1021/acs.chemrev.7b00723] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Degenerative retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) affect millions of people around the world and lead to irreversible vision loss if left untreated. A number of therapeutic strategies have been developed over the years to treat these diseases or restore vision to already blind patients. In this Review, we describe the development and translational application of light-sensitive chemical photoswitches to restore visual function to the blind retina and compare the translational potential of photoswitches with other vision-restoring therapies. This therapeutic strategy is enabled by an efficient fusion of chemical synthesis, chemical biology, and molecular biology and is broadly applicable to other biological systems. We hope this Review will be of interest to chemists as well as neuroscientists and clinicians.
Collapse
Affiliation(s)
- Ivan Tochitsky
- F.M. Kirby Neurobiology Center , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Department of Neurobiology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Michael A Kienzler
- Department of Chemistry , University of Maine , Orono , Maine 04469 , United States
| | - Ehud Isacoff
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States.,Bioscience Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Richard H Kramer
- Department of Molecular and Cell Biology , University of California , Berkeley , California 94720 , United States.,Helen Wills Neuroscience Institute , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
44
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 580] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Morshedian A, Woodruff ML, Fain GL. Role of recoverin in rod photoreceptor light adaptation. J Physiol 2018; 596:1513-1526. [PMID: 29435986 DOI: 10.1113/jp275779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that can modulate the rate of rhodopsin phosphorylation. We describe two additional and perhaps more important functions during photoreceptor light adaptation. Recoverin influences the rate of change of adaptation. In wild-type rods, sensitivity and response integration time adapt with similar time constants of 150-200 ms. In Rv-/- rods lacking recoverin, sensitivity declines faster and integration time is already shorter and not significantly altered. During steady light exposure, rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is deleted, steady-state currents are already larger and rods saturate at brighter intensities. We propose that recoverin modulates spontaneous and light-activated phophodiesterase-6, the phototransduction effector enzyme, to increase sensitivity in dim light but improve responsiveness to change in brighter illumination. ABSTRACT Recoverin is a small molecular-weight, calcium-binding protein in rod outer segments that binds to G-protein receptor kinase 1 and can alter the rate of rhodopsin phosphorylation. A change in phosphorylation should change the lifetime of light-activated rhodopsin and the gain of phototransduction, but deletion of recoverin has little effect on the sensitivity of rods either in the dark or in dim-to-moderate background light. We describe two additional functions perhaps of greater physiological significance. (i) When the ambient intensity increases, sensitivity and integration time decrease in wild-type (WT) rods with similar time constants of 150-200 ms. Recoverin is part of the mechanism controlling this process because, in Rv-/- rods lacking recoverin, sensitivity declines more rapidly and integration time is already shorter and not further altered. (ii) During steady light exposure, WT rod circulating current slowly increases during a time course of tens of seconds, gradually extending the operating range of the rod. In Rv-/- rods, this mechanism is also deleted, steady-state currents are already larger and rods saturate at brighter intensities. We argue that neither (i) nor (ii) can be caused by modulation of rhodopsin phosphorylation but may instead be produced by direct modulation of phophodiesterase-6 (PDE6), the phototransduction effector enzyme. We propose that recoverin in dark-adapted rods keeps the integration time long and the spontaneous PDE6 rate relatively high to improve sensitivity. In background light, the integration time is decreased to facilitate detection of change and motion and the spontaneous PDE6 rate decreases to augment the rod working range.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | - Michael L Woodruff
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
46
|
GUCY2D Cone-Rod Dystrophy-6 Is a "Phototransduction Disease" Triggered by Abnormal Calcium Feedback on Retinal Membrane Guanylyl Cyclase 1. J Neurosci 2018; 38:2990-3000. [PMID: 29440533 DOI: 10.1523/jneurosci.2985-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S+ rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca2+ phototransduction feedback and abnormally high free-Ca2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2+/+ or GCAP1,2+/- backgrounds, was prevented in GCAP1,2-/- mice lacking Ca2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca2+ levels in photoreceptors.SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to the cyclase mediated by guanylyl cyclase activating proteins (GCAPs), which are calcium-sensor proteins. The abnormal calcium sensitivity of the cyclase increases cGMP-gated dark current in the rod outer segments, reshapes rod photoresponses, and triggers photoreceptor death. This work is the first to demonstrate a direct physiological effect of GUCY2D CORD6-linked mutation on photoreceptor physiology in vivo It also identifies the abnormal regulation of the cyclase by calcium-sensor proteins as the main trigger for the photoreceptor death.
Collapse
|
47
|
Lu Y, Liu C, Yao X. In vivo observation of transient photoreceptor movement correlated with oblique light stimulation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10497:104971M. [PMID: 29950751 PMCID: PMC6016829 DOI: 10.1117/12.2287262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for high resolution assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its fast time course and sub-cellular signal magnitude. By developing a line-scanning and virtually structured detection based super-resolution ophthalmoscope, we report here in vivo observation of TRP in frog retina. In vivo characterization of TRP time course and magnitude were implemented by using variable light stimulus intensities.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Changgeng Liu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Dephosphorylation by protein phosphatase 2A regulates visual pigment regeneration and the dark adaptation of mammalian photoreceptors. Proc Natl Acad Sci U S A 2017; 114:E9675-E9684. [PMID: 29078372 DOI: 10.1073/pnas.1712405114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Resetting of G-protein-coupled receptors (GPCRs) from their active state back to their biologically inert ground state is an integral part of GPCR signaling. This "on-off" GPCR cycle is regulated by reversible phosphorylation. Retinal rod and cone photoreceptors arguably represent the best-understood example of such GPCR signaling. Their visual pigments (opsins) are activated by light, transduce the signal, and are then inactivated by a GPCR kinase and arrestin. Although pigment inactivation by phosphorylation is well understood, the enzyme(s) responsible for pigment dephosphorylation and the functional significance of this reaction remain unknown. Here, we show that protein phosphatase 2A (PP2A) acts as opsin phosphatase in both rods and cones. Elimination of PP2A substantially slows pigment dephosphorylation, visual chromophore recycling, and ultimately photoreceptor dark adaptation. These findings demonstrate that visual pigment dephosphorylation regulates the dark adaptation of photoreceptors and provide insights into the role of this reaction in GPCR signaling.
Collapse
|
49
|
Wang Q, Pronin AN, Levay K, Almaca J, Fornoni A, Caicedo A, Slepak VZ. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion. FASEB J 2017; 31:4734-4744. [PMID: 28687610 DOI: 10.1096/fj.201700197rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
In pancreatic β cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in β cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gβ5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gβ5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gβ5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic β-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gβ5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| | - Joana Almaca
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alessia Fornoni
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Alejandro Caicedo
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; and
| |
Collapse
|
50
|
Rose K, Walston ST, Chen J. Separation of photoreceptor cell compartments in mouse retina for protein analysis. Mol Neurodegener 2017; 12:28. [PMID: 28399904 PMCID: PMC5387348 DOI: 10.1186/s13024-017-0171-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/30/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Light exposure triggers movement of certain signaling proteins within the cellular compartments of the highly polarized rod photoreceptor cell. This redistribution of proteins between the inner and outer segment compartments affects the performance and physiology of the rod cell. In addition, newly synthesized phototransduction proteins traverse from the site of their synthesis in the inner segment, through the thin connecting cilium, to reach their destination in the outer segment. Processes that impede normal trafficking of these abundant proteins lead to cell death. The study of movement and unique localization of biomolecules within the different compartments of the rod cell would be greatly facilitated by techniques that reliably separate these compartments. Ideally, these methods can be applied to the mouse retina due to the widespread usage of transgenic mouse models in the investigation of basic visual processes and disease mechanisms that affect vision. Although the retina is organized in distinct layers, the small and highly curved mouse retina makes physical separation of retinal layers a challenge. We introduce two peeling methods that efficiently and reliably isolate the rod outer segment and other cell compartments for Western blots to examine protein movement across these compartments. METHODS The first separation method employs Whatman® filter paper to successively remove the rod outer segments from isolated, live mouse retinas. The second method utilizes ScotchTM tape to peel the rod outer segment layer and the rod inner segment layer from lyophilized mouse retinas. Both procedures can be completed within one hour. RESULTS We utilize these two protocols on dark-adapted and light-exposed retinas of C57BL/6 mice and subject the isolated tissue layers to Western blots to demonstrate their effectiveness in detecting light-induced translocation of transducin (GNAT1) and rod arrestin (ARR1). Furthermore, we provide evidence that RGS9 does not undergo light-induced translocation. CONCLUSIONS These results demonstrate the effectiveness of the two different peeling protocols for the separation of the layered compartments of the mouse retina and their utility for investigations of protein compositions within these compartments.
Collapse
Affiliation(s)
- Kasey Rose
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Steven T Walston
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. .,Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|