1
|
Benarroch E. What Is the Function and Relevance of 14-3-3 Proteins in Neurologic Disease? Neurology 2025; 104:e213418. [PMID: 39889260 DOI: 10.1212/wnl.0000000000213418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/02/2025] Open
|
2
|
Spooner HC, Costa AD, Westhoff M, Hernández-González A, Ibrahimkhail H, Yarov-Yarovoy V, Horne MC, Dickson EJ, Dixon RE. 14-3-3 promotes sarcolemmal expression of cardiac Ca V1.2 and nucleates isoproterenol-triggered channel superclustering. Proc Natl Acad Sci U S A 2025; 122:e2413308122. [PMID: 39869803 PMCID: PMC11804677 DOI: 10.1073/pnas.2413308122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025] Open
Abstract
The L-type Ca2+ channel (CaV1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca2+ flux that drives Ca2+-induced-Ca2+-release, CaV1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune CaV1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca2+ channel trafficking in nonmyocytes; however, whether 14-3-3 has similar effects on CaV1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including NaV1.5 and the human ether-à-go-go-related gene (hERG) potassium channel. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with CaV1.2 in a phosphorylation-dependent manner and regulates cardiac CaV1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, superresolution imaging, and coimmunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with CaV1.2. The degree of 14-3-3/CaV1.2 colocalization increased upon stimulation of β-adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated CaV1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs CaV1.2 superclustering. Isoproterenol-stimulated augmentation of sarcolemmal CaV1.2 expression, Ca2+ currents, and Ca2+ transients in ventricular myocytes were strengthened by 14-3-3 overexpression and attenuated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with CaV1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Heather C. Spooner
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Alexandre D. Costa
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Maartje Westhoff
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | | | - Husna Ibrahimkhail
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA95616
| | - Mary C. Horne
- Department of Pharmacology, University of California Davis, Davis, CA95616
| | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA95616
| |
Collapse
|
3
|
Spooner HC, Costa AD, González AH, Ibrahimkhail H, Yarov-Yarovoy V, Horne M, Dickson EJ, Dixon RE. 14-3-3 promotes sarcolemmal expression of cardiac Ca V 1.2 and nucleates isoproterenol-triggered channel super-clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.607987. [PMID: 39229175 PMCID: PMC11370440 DOI: 10.1101/2024.08.16.607987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The L-type Ca 2+ channel (Ca V 1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca 2+ flux that drives Ca 2+ -induced-Ca 2+ -release, Ca V 1.2 channels must be expressed on the sarcolemma; thus the regulatory mechanisms that tune Ca V 1.2 expression to meet contractile demand are an emerging area of research. A ubiquitously expressed protein called 14-3-3 has been proposed to affect Ca 2+ channel trafficking in non-myocytes, however whether 14-3-3 has similar effects on Ca V 1.2 in cardiomyocytes is unknown. 14-3-3 preferentially binds phospho-serine/threonine residues to affect many cellular processes and is known to regulate cardiac ion channels including Na V 1.5 and hERG. Altered 14-3-3 expression and function have been implicated in cardiac pathologies including hypertrophy. Accordingly, we tested the hypothesis that 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner and regulates cardiac Ca V 1.2 trafficking and recycling. Confocal imaging, proximity ligation assays, super-resolution imaging, and co-immunoprecipitation revealed a population of 14-3-3 colocalized and closely associated with Ca V 1.2. The degree of 14-3-3/Ca V 1.2 colocalization increased upon stimulation of β -adrenergic receptors with isoproterenol. Notably, only the 14-3-3-associated Ca V 1.2 population displayed increased cluster size with isoproterenol, revealing a role for 14-3-3 as a nucleation factor that directs Ca V 1.2 super-clustering. 14-3-3 overexpression increased basal Ca V 1.2 cluster size and Ca 2+ currents in ventricular myocytes, with maintained channel responsivity to isoproterenol. In contrast, isoproterenol-stimulated augmentation of sarcolemmal Ca V 1.2 expression and currents in ventricular myocytes were abrogated by 14-3-3 inhibition. These data support a model where 14-3-3 interacts with Ca V 1.2 in a phosphorylation-dependent manner to promote enhanced trafficking/recycling, clustering, and activity during β -adrenergic stimulation. Significance Statement The L-type Ca 2+ channel, Ca V 1.2, plays an essential role in excitation-contraction coupling in the heart and in part regulates the overall strength of contraction during basal and fight- or-flight β -adrenergic signaling conditions. Proteins that modulate the trafficking and/or activity of Ca V 1.2 are interesting both from a physiological and pathological perspective, since alterations in Ca V 1.2 can impact action potential duration and cause arrythmias. A small protein called 14-3-3 regulates other ion channels in the heart and other Ca 2+ channels, but how it may interact with Ca V 1.2 in the heart has never been studied. Examining factors that affect Ca V 1.2 at rest and during β -adrenergic stimulation is crucial for our ability to understand and treat disease and aging conditions where these pathways are altered.
Collapse
|
4
|
Logue JB, Vilmont V, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 proteins increases the intrinsic excitability of mouse hippocampal CA1 pyramidal neurons. Eur J Neurosci 2024; 59:3309-3321. [PMID: 38646841 DOI: 10.1111/ejn.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
14-3-3 proteins are a family of regulatory proteins that are abundantly expressed in the brain and enriched at the synapse. Dysfunctions of these proteins have been linked to neurodevelopmental and neuropsychiatric disorders. Our group has previously shown that functional inhibition of these proteins by a peptide inhibitor, difopein, in the mouse brain causes behavioural alterations and synaptic plasticity impairment in the hippocampus. Recently, we found an increased cFOS expression in difopein-expressing dorsal CA1 pyramidal neurons, indicating enhanced neuronal activity by 14-3-3 inhibition in these cells. In this study, we used slice electrophysiology to determine the effects of 14-3-3 inhibition on the intrinsic excitability of CA1 pyramidal neurons from a transgenic 14-3-3 functional knockout (FKO) mouse line. Our data demonstrate an increase in intrinsic excitability associated with 14-3-3 inhibition, as well as reveal action potential firing pattern shifts after novelty-induced hyperlocomotion in the 14-3-3 FKO mice. These results provide novel information on the role 14-3-3 proteins play in regulating intrinsic and activity-dependent neuronal excitability in the hippocampus.
Collapse
Affiliation(s)
- Jordan B Logue
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Violet Vilmont
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Jiajing Zhang
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yuying Wu
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yi Zhou
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Vinueza-Gavilanes R, Bravo-González JJ, Basurco L, Boncristiani C, Fernández-Irigoyen J, Santamaría E, Marcilla I, Pérez-Mediavilla A, Luquin MR, Vales A, González-Aseguinolaza G, Aymerich MS, Aragón T, Arrasate M. Stabilization of 14-3-3 protein-protein interactions with Fusicoccin-A decreases alpha-synuclein dependent cell-autonomous death in neuronal and mouse models. Neurobiol Dis 2023:106166. [PMID: 37245833 DOI: 10.1016/j.nbd.2023.106166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases without effective treatment characterized by the abnormal aggregation of alpha-synuclein (aSyn) protein. Changes in levels or in the amino acid sequence of aSyn (by duplication/triplication of the aSyn gene or point mutations in the encoding region) cause familial cases of synucleinopathies. However, the specific molecular mechanisms of aSyn-dependent toxicity remain unclear. Increased aSyn protein levels or pathological mutations may favor abnormal protein-protein interactions (PPIs) that could either promote neuronal death or belong to a coping response program against neurotoxicity. Therefore, the identification and modulation of aSyn-dependent PPIs can provide new therapeutic targets for these diseases. To identify aSyn-dependent PPIs we performed a proximity biotinylation assay based on the promiscuous biotinylase BioID2. When expressed as a fusion protein, BioID2 biotinylates by proximity stable and transient interacting partners, allowing their identification by streptavidin affinity purification and mass spectrometry. The aSyn interactome was analyzed using BioID2-tagged wild-type (WT) and pathological mutant E46K aSyn versions in HEK293 cells. We found the 14-3-3 epsilon isoform as a common protein interactor for WT and E46K aSyn. 14-3-3 epsilon correlates with aSyn protein levels in brain regions of a transgenic mouse model overexpressing WT human aSyn. Using a neuronal model in which aSyn cell-autonomous toxicity is quantitatively scored by longitudinal survival analysis, we found that stabilization of 14-3-3 protein-proteins interactions with Fusicoccin-A (FC-A) decreases aSyn-dependent toxicity. Furthermore, FC-A treatment protects dopaminergic neuronal somas in the substantia nigra of a Parkinson's disease mouse model. Based on these results, we propose that the stabilization of 14-3-3 epsilon interaction with aSyn might reduce aSyn toxicity, and highlight FC-A as a potential therapeutic compound for synucleinopathies.
Collapse
Affiliation(s)
- Rodrigo Vinueza-Gavilanes
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| | - Jorge Juan Bravo-González
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| | - Leyre Basurco
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Biochemistry and Genetics Department, School of Sciences, University of Navarra, Pamplona, Spain.
| | | | - Joaquín Fernández-Irigoyen
- Proteored-Institute of Health Carlos III (ISCIII), Clinical Neuroproteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - Enrique Santamaría
- Proteored-Institute of Health Carlos III (ISCIII), Clinical Neuroproteomics Unit, Navarrabiomed, Navarra Health Department, Public University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - Irene Marcilla
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - Alberto Pérez-Mediavilla
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Biochemistry and Genetics Department, School of Sciences, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - María Rosario Luquin
- Department of Neurology, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - Africa Vales
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - María Soledad Aymerich
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Biochemistry and Genetics Department, School of Sciences, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - Tomás Aragón
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| | - Montserrat Arrasate
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.
| |
Collapse
|
6
|
Ahangari M, Everest E, Nguyen TH, Verrelli BC, Webb BT, Bacanu SA, Tahir Turanli E, Riley BP. Genome-wide analysis of schizophrenia and multiple sclerosis identifies shared genomic loci with mixed direction of effects. Brain Behav Immun 2022; 104:183-190. [PMID: 35714915 DOI: 10.1016/j.bbi.2022.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Common genetic variants identified in genome-wide association studies (GWAS) show varying degrees of genetic pleiotropy across complex human disorders. Clinical studies of schizophrenia (SCZ) suggest that in addition to neuropsychiatric symptoms, patients with SCZ also show variable immune dysregulation. Epidemiological studies of multiple sclerosis (MS), an autoimmune, neurodegenerative disorder of the central nervous system, suggest that in addition to the manifestation of neuroinflammatory complications, patients with MS may also show co-occurring neuropsychiatric symptoms with disease progression. In this study, we analyzed the largest available GWAS datasets for SCZ (N = 161,405) and MS (N = 41,505) using Gaussian causal mixture modeling (MiXeR) and conditional/conjunctional false discovery rate (condFDR) frameworks to explore and quantify the shared genetic architecture of these two complex disorders at common variant level. Despite detecting only a negligible genetic correlation (rG = 0.057), we observe polygenic overlap between SCZ and MS, and a substantial genetic enrichment in SCZ conditional on associations with MS, and vice versa. By leveraging this cross-disorder enrichment, we identified 36 loci jointly associated with SCZ and MS at conjunctional FDR < 0.05 with mixed direction of effects. Follow-up functional analysis of the shared loci implicates candidate genes and biological processes involved in immune response and B-cell receptor signaling pathways. In conclusion, this study demonstrates the presence of polygenic overlap between SCZ and MS in the absence of a genetic correlation and provides new insights into the shared genetic architecture of these two disorders at the common variant level.
Collapse
Affiliation(s)
- Mohammad Ahangari
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Integrative Life Sciences PhD Program, Virginia Commonwealth University, Richmond, VA, USA.
| | - Elif Everest
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Tan-Hoang Nguyen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bradley T Webb
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Eda Tahir Turanli
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Acibadem University, Istanbul, Turkey
| | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA; Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Zhang J, Navarrete M, Wu Y, Zhou Y. 14-3-3 Dysfunction in Dorsal Hippocampus CA1 (dCA1) Induces Psychomotor Behavior via a dCA1-Lateral Septum-Ventral Tegmental Area Pathway. Front Mol Neurosci 2022; 15:817227. [PMID: 35237127 PMCID: PMC8882652 DOI: 10.3389/fnmol.2022.817227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
While hippocampal hyperactivity is implicated in psychosis by both human and animal studies, whether it induces a hyperdopaminergic state and the underlying neural circuitry remains elusive. Previous studies established that region-specific inhibition of 14-3-3 proteins in the dorsal hippocampus CA1 (dCA1) induces schizophrenia-like behaviors in mice, including a novelty-induced locomotor hyperactivity. In this study, we showed that 14-3-3 dysfunction in the dCA1 over-activates ventral tegmental area (VTA) dopaminergic neurons, and such over-activation is necessary for eliciting psychomotor behavior in mice. We demonstrated that such hippocampal dysregulation of the VTA during psychomotor behavior is dependent on an over-activation of the lateral septum (LS), given that inhibition of the LS attenuates over-activation of dopaminergic neurons and psychomotor behavior induced by 14-3-3 inhibition in the dCA1. Moreover, 14-3-3 inhibition-induced neuronal activations within the dCA1-LS-VTA pathway and psychomotor behavior can be reproduced by direct chemogenetic activation of LS-projecting dCA1 neurons. Collectively, these results suggest that 14-3-3 dysfunction in the dCA1 results in hippocampal hyperactivation which leads to psychomotor behavior via a dCA1-LS-VTA pathway.
Collapse
Affiliation(s)
| | | | | | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
8
|
Thompson WC, Goldspink PH. 14-3-3 protein regulation of excitation-contraction coupling. Pflugers Arch 2021; 474:267-279. [PMID: 34820713 PMCID: PMC8837530 DOI: 10.1007/s00424-021-02635-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
14-3-3 proteins (14-3-3 s) are a family of highly conserved proteins that regulate many cellular processes in eukaryotes by interacting with a diverse array of client proteins. The 14-3-3 proteins have been implicated in several disease states and previous reviews have condensed the literature with respect to their structure, function, and the regulation of different cellular processes. This review focuses on the growing body of literature exploring the important role 14-3-3 proteins appear to play in regulating the biochemical and biophysical events associated with excitation-contraction coupling (ECC) in muscle. It presents both a timely and unique analysis that seeks to unite studies emphasizing the identification and diversity of 14-3-3 protein function and client protein interactions, as modulators of muscle contraction. It also highlights ideas within these two well-established but intersecting fields that support further investigation with respect to the mechanistic actions of 14-3-3 proteins in the modulation of force generation in muscle.
Collapse
Affiliation(s)
- Walter C Thompson
- Department of Physiology and Biophysics (M/C 901) and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, RM E-202, Chicago, IL, 60612, USA
| | - Paul H Goldspink
- Department of Physiology and Biophysics (M/C 901) and Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, RM E-202, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Pathways to Parkinson's disease: a spotlight on 14-3-3 proteins. NPJ Parkinsons Dis 2021; 7:85. [PMID: 34548498 PMCID: PMC8455551 DOI: 10.1038/s41531-021-00230-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
14-3-3s represent a family of highly conserved 30 kDa acidic proteins. 14-3-3s recognize and bind specific phospho-sequences on client partners and operate as molecular hubs to regulate their activity, localization, folding, degradation, and protein-protein interactions. 14-3-3s are also associated with the pathogenesis of several diseases, among which Parkinson's disease (PD). 14-3-3s are found within Lewy bodies (LBs) in PD patients, and their neuroprotective effects have been demonstrated in several animal models of PD. Notably, 14-3-3s interact with some of the major proteins known to be involved in the pathogenesis of PD. Here we first provide a detailed overview of the molecular composition and structural features of 14-3-3s, laying significant emphasis on their peculiar target-binding mechanisms. We then briefly describe the implication of 14-3-3s in the central nervous system and focus on their interaction with LRRK2, α-Synuclein, and Parkin, three of the major players in PD onset and progression. We finally discuss how different types of small molecules may interfere with 14-3-3s interactome, thus representing a valid strategy in the future of drug discovery.
Collapse
|
10
|
Gandini MA, Zamponi GW. Voltage‐gated calcium channel nanodomains: molecular composition and function. FEBS J 2021; 289:614-633. [DOI: 10.1111/febs.15759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Maria A. Gandini
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| |
Collapse
|
11
|
Dysregulation of peripheral expression of the YWHA genes during conversion to psychosis. Sci Rep 2020; 10:9863. [PMID: 32555255 PMCID: PMC7299951 DOI: 10.1038/s41598-020-66901-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/04/2020] [Indexed: 12/01/2022] Open
Abstract
The seven human 14-3-3 proteins are encoded by the YWHA-gene family. They are expressed in the brain where they play multiple roles including the modulation of synaptic plasticity and neuronal development. Previous studies have provided arguments for their involvement in schizophrenia, but their role during disease onset is unknown. We explored the peripheral-blood expression level of the seven YWHA genes in 92 young individuals at ultra-high risk for psychosis (UHR). During the study, 36 participants converted to psychosis (converters) while 56 did not (non-converters). YWHA genes expression was evaluated at baseline and after a mean follow-up of 10.3 months using multiplex quantitative PCR. Compared with non-converters, the converters had a significantly higher baseline expression levels for 5 YWHA family genes, and significantly different longitudinal changes in the expression of YWHAE, YWHAG, YWHAH, YWHAS and YWAHZ. A principal-component analysis also indicated that the YWHA expression was significantly different between converters and non-converters suggesting a dysregulation of the YWHA co-expression network. Although these results were obtained from peripheral blood which indirectly reflects brain chemistry, they indicate that this gene family may play a role in psychosis onset, opening the way to the identification of prognostic biomarkers or new drug targets.
Collapse
|
12
|
Colecraft HM. Designer genetically encoded voltage-dependent calcium channel inhibitors inspired by RGK GTPases. J Physiol 2020; 598:1683-1693. [PMID: 32104913 PMCID: PMC7195252 DOI: 10.1113/jp276544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
High‐voltage‐activated calcium (CaV1/CaV2) channels translate action potentials into Ca2+ influx in excitable cells to control essential biological processes that include; muscle contraction, synaptic transmission, hormone secretion and activity‐dependent regulation of gene expression. Modulation of CaV1/CaV2 channel activity is a powerful mechanism to regulate physiology, and there are a host of intracellular signalling molecules that tune different aspects of CaV channel trafficking and gating for this purpose. Beyond normal physiological regulation, the diverse CaV channel modulatory mechanisms may potentially be co‐opted or interfered with for therapeutic benefits. CaV1/CaV2 channels are potently inhibited by a four‐member sub‐family of Ras‐like GTPases known as RGK (Rad, Rem, Rem2, Gem/Kir) proteins. Understanding the mechanisms by which RGK proteins inhibit CaV1/CaV2 channels has led to the development of novel genetically encoded CaV channel blockers with unique properties; including, chemo‐ and optogenetic control of channel activity, and blocking channels either on the basis of their subcellular localization or by targeting an auxiliary subunit. These genetically encoded CaV channel inhibitors have outstanding utility as enabling research tools and potential therapeutics.
![]()
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Department of Pharmacology and Molecular Signaling, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
13
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
14-3-3 Proteins in Glutamatergic Synapses. Neural Plast 2018; 2018:8407609. [PMID: 29849571 PMCID: PMC5937437 DOI: 10.1155/2018/8407609] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
The 14-3-3 proteins are a family of proteins that are highly expressed in the brain and particularly enriched at synapses. Evidence accumulated in the last two decades has implicated 14-3-3 proteins as an important regulator of synaptic transmission and plasticity. Here, we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins at glutamatergic synapses. A key challenge for the future is to delineate the 14-3-3-dependent molecular pathways involved in regulating synaptic functions.
Collapse
|
15
|
Laßek M, Weingarten J, Wegner M, Neupärtl M, Array TN, Harde E, Beckert B, Golghalyani V, Ackermann J, Koch I, Müller UC, Karas M, Acker-Palmer A, Volknandt W. APP Deletion Accounts for Age-Dependent Changes in the Bioenergetic Metabolism and in Hyperphosphorylated CaMKII at Stimulated Hippocampal Presynaptic Active Zones. Front Synaptic Neurosci 2017; 9:1. [PMID: 28163681 PMCID: PMC5247443 DOI: 10.3389/fnsyn.2017.00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic release sites are characterized by exocytosis-competent synaptic vesicles tightly anchored to the presynaptic active zone (PAZ) whose proteome orchestrates the fast signaling events involved in synaptic vesicle cycle and plasticity. Allocation of the amyloid precursor protein (APP) to the PAZ proteome implicated a functional impact of APP in neuronal communication. In this study, we combined state-of-the-art proteomics, electrophysiology and bioinformatics to address protein abundance and functional changes at the native hippocampal PAZ in young and old APP-KO mice. We evaluated if APP deletion has an impact on the metabolic activity of presynaptic mitochondria. Furthermore, we quantified differences in the phosphorylation status after long-term-potentiation (LTP) induction at the purified native PAZ. We observed an increase in the phosphorylation of the signaling enzyme calmodulin-dependent kinase II (CaMKII) only in old APP-KO mice. During aging APP deletion is accompanied by a severe decrease in metabolic activity and hyperphosphorylation of CaMKII. This attributes an essential functional role to APP at hippocampal PAZ and putative molecular mechanisms underlying the age-dependent impairments in learning and memory in APP-KO mice.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Martin Wegner
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Moritz Neupärtl
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | | | - Eva Harde
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-UniversitätFrankfurt, Germany; Max Planck Institute for Brain ResearchFrankfurt, Germany
| | - Benedikt Beckert
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Vahid Golghalyani
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Ina Koch
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Ulrike C Müller
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg Heidelberg, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-UniversitätFrankfurt, Germany; Max Planck Institute for Brain ResearchFrankfurt, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| |
Collapse
|
16
|
Foote M, Qiao H, Graham K, Wu Y, Zhou Y. Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biol Psychiatry 2015; 78:386-95. [PMID: 25863357 PMCID: PMC4544659 DOI: 10.1016/j.biopsych.2015.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/19/2015] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia. METHODS We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain. RESULTS We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3-3 FKO mice display other behavioral deficits that correspond to the core symptoms of schizophrenia. These behavioral deficits may be attributed to alterations in multiple neurotransmission systems in the 14-3-3 FKO mice. In particular, inhibition of 14-3-3 proteins results in a reduction of dendritic complexity and spine density in forebrain excitatory neurons, which may underlie the altered synaptic connectivity in the prefrontal cortical synapse of the 14-3-3 FKO mice. At the molecular level, this dendritic spine defect may stem from dysregulated actin dynamics secondary to a disruption of the 14-3-3-dependent regulation of phosphorylated cofilin. CONCLUSIONS Collectively, our data provide a link between 14-3-3 dysfunction, synaptic alterations, and schizophrenia-associated behavioral deficits.
Collapse
Affiliation(s)
- Molly Foote
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Haifa Qiao
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Kourtney Graham
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida..
| |
Collapse
|
17
|
Liu F, Zhou Q, Zhou J, Sun H, Wang Y, Zou X, Feng L, Hou Z, Zhou A, Zhou Y, Li Y. 14-3-3τ promotes surface expression of Cav2.2 (α1B) Ca2+ channels. J Biol Chem 2014; 290:2689-98. [PMID: 25516596 DOI: 10.1074/jbc.m114.567800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Surface expression of voltage-gated Ca(2+) (Cav) channels is important for their function in calcium homeostasis in the physiology of excitable cells, but whether or not and how the α1 pore-forming subunits of Cav channels are trafficked to plasma membrane in the absence of the known Cav auxiliary subunits, β and α2δ, remains mysterious. Here we showed that 14-3-3 proteins promoted functional surface expression of the Cav2.2 α1B channel in transfected tsA-201 cells in the absence of any known Cav auxiliary subunit. Both the surface to total ratio of the expressed α1B protein and the current density of voltage step-evoked Ba(2+) current were markedly suppressed by the coexpression of a 14-3-3 antagonist construct, pSCM138, but not its inactive control, pSCM174, as determined by immunofluorescence assay and whole cell voltage clamp recording, respectively. By contrast, coexpression with 14-3-3τ significantly enhanced the surface expression and current density of the Cav2.2 α1B channel. Importantly, we found that between the two previously identified 14-3-3 binding regions at the α1B C terminus, only the proximal region (amino acids 1706-1940), closer to the end of the last transmembrane domain, was retained by the endoplasmic reticulum and facilitated by 14-3-3 to traffic to plasma membrane. Additionally, we showed that the 14-3-3/Cav β subunit coregulated the surface expression of Cav2.2 channels in transfected tsA-201 cells and neurons. Altogether, our findings reveal a previously unidentified regulatory function of 14-3-3 proteins in promoting the surface expression of Cav2.2 α1B channels.
Collapse
Affiliation(s)
- Feng Liu
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Qin Zhou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Jie Zhou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Hao Sun
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Yan Wang
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Xiuqun Zou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Lingling Feng
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Zhaoyuan Hou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Aiwu Zhou
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Yi Zhou
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Yong Li
- From the Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| |
Collapse
|
18
|
Depletion of 14-3-3γ reduces the surface expression of Transient Receptor Potential Melastatin 4b (TRPM4b) channels and attenuates TRPM4b-mediated glutamate-induced neuronal cell death. Mol Brain 2014; 7:52. [PMID: 25047048 PMCID: PMC4115172 DOI: 10.1186/s13041-014-0052-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/14/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND TRPM4 channels are Ca2+-activated nonselective cation channels which are deeply involved in physiological and pathological conditions. However, their trafficking mechanism and binding partners are still elusive. RESULTS We have found the 14-3-3γ as a binding partner for TRPM4b using its N-terminal fragment from the yeast-two hybrid screening. Ser88 at the N-terminus of TRPM4b is critical for 14-3-3γ binding by showing GST pull-down and co-immunoprecipitation. Heterologous overexpression of 14-3-3γ in HEK293T cells increased TRPM4b expression on the plasma membrane which was measured by whole-cell recordings and cell surface biotinylation experiment. Surface expression of TRPM4b was greatly reduced by short hairpin RNA (shRNA) against 14-3-3γ. Next, endogenous TRPM4b-mediated currents were electrophysiologically characterized by application of glutamate and 9-phenanthrol, a TRPM4b specific antagonist in HT-22 cells which originated from mouse hippocampal neurons. Glutamate-induced TRPM4b currents were significantly attenuated by shRNAs against 14-3-3γ or TRPM4b in these cells. Finally, glutamate-induced cell death was greatly prevented by treatment of 9-phenanthrol or 14-3-3γ shRNA. CONCLUSION These results showed that the cell surface expression of TRPM4 channels is mediated by 14-3-3γ binding, and the specific inhibition of this trafficking process can be a potential therapeutic target for glutamate-induced neuronal cell death.
Collapse
|
19
|
Tovo-Rodrigues L, Roux A, Hutz MH, Rohde LA, Woods AS. Functional characterization of G-protein-coupled receptors: a bioinformatics approach. Neuroscience 2014; 277:764-79. [PMID: 24997265 DOI: 10.1016/j.neuroscience.2014.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Complex molecular and cellular mechanisms regulate G protein-coupled receptors (GPCRs). It is suggested that proteins intrinsically disordered regions (IDRs) are to play a role in GPCR's intra and extracellular regions plasticity, due to their potential for post-translational modification and interaction with other proteins. These regions are defined as lacking a stable three-dimensional (3D) structure. They are rich in hydrophilic and charged, amino acids and are capable to assume different conformations which allow them to interact with multiple partners. In this study we analyzed 75 GPCR involved in synaptic transmission using computational tools for sequence-based prediction of IDRs within a protein. We also evaluated putative ligand-binding motifs using receptor sequences. The disorder analysis indicated that neurotransmitter GPCRs have a significant amount of disorder in their N-terminus, third intracellular loop (3IL) and C-terminus. About 31%, 39% and 53% of human GPCR involved in synaptic transmission are disordered in these regions. Thirty-three percent of receptors show at least one predicted PEST motif, this being statistically greater than the estimate for the rest of human GPCRs. About 90% of the receptors had at least one putative site for dimerization in their 3IL or C-terminus. ELM instances sampled in these domains were 14-3-3, SH3, SH2 and PDZ motifs. In conclusion, the increased flexibility observed in GPCRs, added to the enrichment of linear motifs, PEST and heteromerization sites, may be critical for the nervous system's functional plasticity.
Collapse
Affiliation(s)
- L Tovo-Rodrigues
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - A Roux
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - M H Hutz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L A Rohde
- Child and Adolescent Psychiatric Division, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| |
Collapse
|
20
|
14-3-3 proteins are required for hippocampal long-term potentiation and associative learning and memory. J Neurosci 2014; 34:4801-8. [PMID: 24695700 DOI: 10.1523/jneurosci.4393-13.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
14-3-3 is a family of regulatory proteins highly expressed in the brain. Previous invertebrate studies have demonstrated the importance of 14-3-3 in the regulation of synaptic functions and learning and memory. However, the in vivo role of 14-3-3 in these processes has not been determined using mammalian animal models. Here, we report the behavioral and electrophysiological characterization of a new animal model of 14-3-3 proteins. These transgenic mice, considered to be a 14-3-3 functional knock-out, express a known 14-3-3 inhibitor in various brain regions of different founder lines. We identify a founder-specific impairment in hippocampal-dependent learning and memory tasks, as well as a correlated suppression in long-term synaptic plasticity of the hippocampal synapses. Moreover, hippocampal synaptic NMDA receptor levels are selectively reduced in the transgenic founder line that exhibits both behavioral and synaptic plasticity deficits. Collectively, our findings provide evidence that 14-3-3 is a positive regulator of associative learning and memory at both the behavioral and cellular level.
Collapse
|
21
|
Bio-inspired voltage-dependent calcium channel blockers. Nat Commun 2014; 4:2540. [PMID: 24096474 PMCID: PMC4190111 DOI: 10.1038/ncomms3540] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/03/2013] [Indexed: 12/23/2022] Open
Abstract
Ca2+ influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically-encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin, and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics, and potency, simply by anchoring them to the plasma membrane. We term this method “channel inactivation induced by membrane-tethering of an associated protein” (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.
Collapse
|
22
|
Sun C, Qiao H, Zhou Q, Wang Y, Wu Y, Zhou Y, Li Y. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins. J Biol Chem 2013; 288:24676-90. [PMID: 23861400 PMCID: PMC3750165 DOI: 10.1074/jbc.m113.462069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/11/2013] [Indexed: 11/06/2022] Open
Abstract
Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs.
Collapse
Affiliation(s)
- Changcheng Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Maddala R, Nagendran T, de Ridder GG, Schey KL, Rao PV. L-type calcium channels play a critical role in maintaining lens transparency by regulating phosphorylation of aquaporin-0 and myosin light chain and expression of connexins. PLoS One 2013; 8:e64676. [PMID: 23734214 PMCID: PMC3667166 DOI: 10.1371/journal.pone.0064676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/17/2013] [Indexed: 01/18/2023] Open
Abstract
Homeostasis of intracellular calcium is crucial for lens cytoarchitecture and transparency, however, the identity of specific channel proteins regulating calcium influx within the lens is not completely understood. Here we examined the expression and distribution profiles of L-type calcium channels (LTCCs) and explored their role in morphological integrity and transparency of the mouse lens, using cDNA microarray, RT-PCR, immunoblot, pharmacological inhibitors and immunofluorescence analyses. The results revealed that Ca (V) 1.2 and 1.3 channels are expressed and distributed in both the epithelium and cortical fiber cells in mouse lens. Inhibition of LTCCs with felodipine or nifedipine induces progressive cortical cataract formation with time, in association with decreased lens weight in ex-vivo mouse lenses. Histological analyses of felodipine treated lenses revealed extensive disorganization and swelling of cortical fiber cells resembling the phenotype reported for altered aquaporin-0 activity without detectable cytotoxic effects. Analysis of both soluble and membrane rich fractions from felodipine treated lenses by SDS-PAGE in conjunction with mass spectrometry and immunoblot analyses revealed decreases in β-B1-crystallin, Hsp-90, spectrin and filensin. Significantly, loss of transparency in the felodipine treated lenses was preceded by an increase in aquaporin-0 serine-235 phosphorylation and levels of connexin-50, together with decreases in myosin light chain phosphorylation and the levels of 14-3-3ε, a phosphoprotein-binding regulatory protein. Felodipine treatment led to a significant increase in gene expression of connexin-50 and 46 in the mouse lens. Additionally, felodipine inhibition of LTCCs in primary cultures of mouse lens epithelial cells resulted in decreased intracellular calcium, and decreased actin stress fibers and myosin light chain phosphorylation, without detectable cytotoxic response. Taken together, these observations reveal a crucial role for LTCCs in regulation of expression, activity and stability of aquaporin-0, connexins, cytoskeletal proteins, and the mechanical properties of lens, all of which have a vital role in maintaining lens function and cytoarchitecture.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tharkika Nagendran
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Gustaaf G. de Ridder
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Catterall WA, Leal K, Nanou E. Calcium channels and short-term synaptic plasticity. J Biol Chem 2013; 288:10742-9. [PMID: 23400776 DOI: 10.1074/jbc.r112.411645] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Voltage-gated Ca(2+) channels in presynaptic nerve terminals initiate neurotransmitter release in response to depolarization by action potentials from the nerve axon. The strength of synaptic transmission is dependent on the third to fourth power of Ca(2+) entry, placing the Ca(2+) channels in a unique position for regulation of synaptic strength. Short-term synaptic plasticity regulates the strength of neurotransmission through facilitation and depression on the millisecond time scale and plays a key role in encoding information in the nervous system. Ca(V)2.1 channels are the major source of Ca(2+) entry for neurotransmission in the central nervous system. They are tightly regulated by Ca(2+), calmodulin, and related Ca(2+) sensor proteins, which cause facilitation and inactivation of channel activity. Emerging evidence reviewed here points to this mode of regulation of Ca(V)2.1 channels as a major contributor to short-term synaptic plasticity of neurotransmission and its diversity among synapses.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | |
Collapse
|
25
|
Hsu PH, Miaw SC, Chuang CC, Chang PY, Fu SJ, Jow GM, Chiu MM, Jeng CJ. 14-3-3θ is a binding partner of rat Eag1 potassium channels. PLoS One 2012; 7:e41203. [PMID: 22911758 PMCID: PMC3401112 DOI: 10.1371/journal.pone.0041203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022] Open
Abstract
The ether-à-go-go (Eag) potassium (K(+)) channel belongs to the superfamily of voltage-gated K(+) channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1)-interacting proteins from a rat brain cDNA library. One of the clones we identified was 14-3-3θ, which belongs to a family of small acidic protein abundantly expressed in the brain. Data from in vitro yeast two-hybrid and GST pull-down assays suggested that the direct association with 14-3-3θ was mediated by both the N- and the C-termini of rEag1. Co-precipitation of the two proteins was confirmed in both heterologous HEK293T cells and native hippocampal neurons. Electrophysiological studies showed that over-expression of 14-3-3θ led to a sizable suppression of rEag1 K(+) currents with no apparent alteration of the steady-state voltage dependence and gating kinetics. Furthermore, co-expression with 14-3-3θ failed to affect the total protein level, membrane trafficking, and single channel conductance of rEag1, implying that 14-3-3θ binding may render a fraction of the channel locked in a non-conducting state. Together these data suggest that 14-3-3θ is a binding partner of rEag1 and may modulate the functional expression of the K(+) channel in neurons.
Collapse
Affiliation(s)
- Po-Hao Hsu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chau-Ching Chuang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Yu Chang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Guey-Mei Jow
- School of Medicine, Fu-Jen Catholic University, Hsin-Chuang, New Taipei City, Taiwan
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Huang Z, Xu Z, Wu Y, Zhou Y. Determining nuclear localization of alpha-synuclein in mouse brains. Neuroscience 2011; 199:318-32. [PMID: 22033456 DOI: 10.1016/j.neuroscience.2011.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 11/17/2022]
Abstract
Alpha-synuclein (α-Syn) is a major component of Lewy bodies, abnormal protein aggregates that are present in neurons of patients with Parkinson's disease and other neurological disorders. Despite intensive investigation, the in vivo role of α-Syn in physiological and pathological processes is not fully understood. This study addresses a current debate on the nuclear localization of α-Syn protein in the brain. To assess the specificity of various α-Syn antibodies, we compared their staining patterns in wild-type mouse brains with that of the α-Syn knock-out mice. Among five different α-Syn antibodies tested here, two generated intensive nuclear staining throughout the normal mouse brain. However, nuclear staining by these two antibodies was also present in neurons of the α-Syn knock-out mice. This provides evidence that the nuclear signal is not specifically related to the presence of α-Syn, but it rather results from the cross-reactivity of the two antibodies to some unknown antigens in neuronal nuclei. In mouse brain neurons, endogenous α-Syn proteins are primarily localized to neuronal processes and nerve terminals but present only at low levels in the cell bodies. This is different from a generally uniform distribution of exogenously expressed α-Syn in both cytoplasm and nuclei of heterologous cells and suggests that the neuritic enrichment of α-Syn in neurons may be mediated by their specific interactions with certain structural or molecular components in the neuropil.
Collapse
Affiliation(s)
- Z Huang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
27
|
14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol 2011; 22:696-704. [PMID: 21920445 DOI: 10.1016/j.semcdb.2011.08.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/11/2011] [Indexed: 11/23/2022]
Abstract
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases. Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis.
Collapse
|
28
|
Park KD, Kim D, Reamtong O, Eyers C, Gaskell SJ, Liu R, Kohn H. Identification of a lacosamide binding protein using an affinity bait and chemical reporter strategy: 14-3-3 ζ. J Am Chem Soc 2011; 133:11320-30. [PMID: 21692503 DOI: 10.1021/ja2034156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have advanced a useful strategy to elucidate binding partners of ligands (drugs) with modest binding affinity. Key to this strategy is attaching to the ligand an affinity bait (AB) and a chemical reporter (CR) group, where the AB irreversibly attaches the ligand to the receptor upon binding and the CR group is employed for receptor detection and isolation. We have tested this AB&CR strategy using lacosamide ((R)-1), a low-molecular-weight antiepileptic drug. We demonstrate that using a (R)-lacosamide AB&CR agent ((R)-2) 14-3-3 ζ in rodent brain soluble lysates is preferentially adducted, adduction is stereospecific with respect to the AB&CR agent, and adduction depends upon the presence of endogenous levels of the small molecule metabolite xanthine. Substitution of lacosamide AB agent ((R)-5) for (R)-2 led to the identification of the 14-3-3 ζ adduction site (K120) by mass spectrometry. Competition experiments using increasing amounts of (R)-1 in the presence of (R)-2 demonstrated that (R)-1 binds at or near the (R)-2 modification site on 14-3-3 ζ. Structure-activity studies of xanthine derivatives provided information concerning the likely binding interaction between this metabolite and recombinant 14-3-3 ζ. Documentation of the 14-3-3 ζ-xanthine interaction was obtained with isothermal calorimetry using xanthine and the xanthine analogue 1,7-dimethylxanthine.
Collapse
Affiliation(s)
- Ki Duk Park
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Li Y, Liu X, Wu Y, Xu Z, Li H, Griffith LC, Zhou Y. Intracellular regions of the Eag potassium channel play a critical role in generation of voltage-dependent currents. J Biol Chem 2010; 286:1389-99. [PMID: 21059657 DOI: 10.1074/jbc.m110.184077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding, assembly, and trafficking of ion channels are tightly controlled processes and are important for biological functions relevant to health and disease. Here, we report that functional expression of the Eag channel is temperature-sensitive by a mechanism that is independent of trafficking or surface targeting of the channel protein. Eag channels in cells grown at 37 °C exhibit voltage-evoked gating charge movements but fail to conduct K(+) ions. By mutagenesis and chimeric channel studies, we show that the N- and C-terminal regions are involved in controlling a step after movement of the voltage sensor, as well as in regulating biophysical properties of the Eag channel. Synthesis and assembly of Eag at high temperature disrupt the ability of these domains to carry out their function. These results suggest an important role of the intracellular regions in the generation of Eag currents.
Collapse
Affiliation(s)
- Yong Li
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Akhtar LN, Qin H, Muldowney MT, Yanagisawa LL, Kutsch O, Clements JE, Benveniste EN. Suppressor of cytokine signaling 3 inhibits antiviral IFN-beta signaling to enhance HIV-1 replication in macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 185:2393-404. [PMID: 20631305 DOI: 10.4049/jimmunol.0903563] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV-1 replication within macrophages of the CNS often results in cognitive and motor impairment, which is known as HIV-associated dementia (HAD) in its most severe form. IFN-beta suppresses viral replication within these cells during early CNS infection, but the effect is transient. HIV-1 eventually overcomes this protective innate immune response to resume replication through an unknown mechanism, initiating the progression toward HAD. In this article, we show that Suppressor of Cytokine Signaling (SOCS)3, a molecular inhibitor of IFN signaling, may allow HIV-1 to evade innate immunity within the CNS. We found that SOCS3 is elevated in an in vivo SIV/macaque model of HAD and that the pattern of expression correlates with recurrence of viral replication and onset of CNS disease. In vitro, the HIV-1 regulatory protein transactivator of transcription induces SOCS3 in human and murine macrophages in a NF-kappaB-dependent manner. SOCS3 expression attenuates the response of macrophages to IFN-beta at proximal levels of pathway activation and downstream antiviral gene expression and consequently overcomes the inhibitory effect of IFN-beta on HIV-1 replication. These studies indicate that SOCS3 expression, induced by stimuli present in the HIV-1-infected brain, such as transactivator of transcription, inhibits antiviral IFN-beta signaling to enhance HIV-1 replication in macrophages. This consequence of SOCS3 expression in vitro, supported by a correlation with increased viral load and onset of CNS disease in vivo, suggests that SOCS3 may allow HIV-1 to evade the protective innate immune response within the CNS, allowing the recurrence of viral replication and, ultimately, promoting progression toward HAD.
Collapse
|
31
|
Scullin CS, Wilson MC, Partridge LD. Developmental changes in presynaptic Ca(2 +) clearance kinetics and synaptic plasticity in mouse Schaffer collateral terminals. Eur J Neurosci 2010; 31:817-26. [PMID: 20374283 DOI: 10.1111/j.1460-9568.2010.07137.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Presynaptic Ca(2+) influx pathways, cytoplasmic Ca(2+) buffering proteins and Ca(2+) extrusion processes undergo considerable change during the first postnatal month in rodent neurons. These changes may be critical in establishing short-term plasticity at maturing presynaptic terminals where neurotransmitter release is directly dependent on the dynamics of cytoplasmic residual Ca(2+) ([Ca(2+)](res)). In particular, the robust paired-pulse facilitation characteristic of adult neurons is almost entirely lacking in newborns. To examine developmental changes in processes controlling [Ca(2+)](res), we measured the timecourse of [Ca(2+)](res) decay in presynaptic terminals of Schaffer collateral to CA1 synapses in acute hippocampal slices following single and paired orthodromic stimuli in the stratum radiatum. Developmental changes were observed in both the rise time and slow exponential decay components of the response to single stimuli such that this decay was larger and faster in the adult. Furthermore, we observed a greater caffeine-sensitive basal Ca(2+) store, which was differentially affected when active uptake into the endoplasmic reticulum was blocked, in the presynaptic fields of the Schaffer collateral to CA1 terminals of P6 and younger mice when compared to adults. These transitions in [Ca(2+)](res) dynamics occurred gradually over the first weeks of postnatal life and correlated with changes in short-term plasticity.
Collapse
Affiliation(s)
- Chessa S Scullin
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
32
|
VanGuilder HD, Yan H, Farley JA, Sonntag WE, Freeman WM. Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem 2010; 113:1577-88. [PMID: 20374424 DOI: 10.1111/j.1471-4159.2010.06719.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Decreased cognitive performance reduces independence and quality of life for aging individuals. Healthy brain aging does not involve significant neuronal loss, but little is known about the effects of aging at synaptic terminals. Age-related cognitive decline likely reflects the manifestation of dysregulated synaptic function and ineffective neurotransmission. In this study, hippocampal synaptosomes were enriched from young-adult (3 months), adult (12 months), and aged (26 months) Fischer 344 x Brown Norway rats, and quantitative alterations in the synaptoproteome were examined by 2-DIGE and MS/MS. Bioinformatic analysis of differentially expressed proteins identified a significant effect of aging on a network of neurotransmission-regulating proteins. Specifically, altered expression of DNM1, HPCA, PSD95, SNAP25, STX1, SYN1, SYN2, SYP, and VAMP2 was confirmed by immunoblotting. 14-3-3 isoforms identified in the proteomic analysis were also confirmed as a result of their implication in the regulation of the synaptic vesicle cycle and neurotransmission modulation. The findings of this study demonstrate a coordinated down-regulation of neurotransmission-regulating proteins that suggests an age-based deterioration of hippocampal neurotransmission occurring between adulthood and advanced age. Altered synaptic protein expression may decrease stimulus-induced neurotransmission and vesicle replenishment during prolonged or intense stimulation, which are necessary for learning and the formation and perseverance of memory.
Collapse
Affiliation(s)
- Heather D VanGuilder
- Department of Pharmacology, Hershey Center for Applied Research, Penn State College of Medicine, University Drive, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
33
|
Lu R, Li Y, Zhang Y, Chen Y, Shields AD, Winder DG, Angelotti T, Jiao K, Limbird LE, Zhou Y, Wang Q. Epitope-tagged receptor knock-in mice reveal that differential desensitization of alpha2-adrenergic responses is because of ligand-selective internalization. J Biol Chem 2009; 284:13233-43. [PMID: 19276088 DOI: 10.1074/jbc.m807535200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although ligand-selective regulation of G protein-coupled receptor-mediated signaling and trafficking are well documented, little is known about whether ligand-selective effects occur on endogenous receptors or whether such effects modify the signaling response in physiologically relevant cells. Using a gene targeting approach, we generated a knock-in mouse line, in which N-terminal hemagglutinin epitope-tagged alpha(2A)-adrenergic receptor (AR) expression was driven by the endogenous mouse alpha(2A)AR gene locus. Exploiting this mouse line, we evaluated alpha(2A)AR trafficking and alpha(2A)AR-mediated inhibition of Ca(2+) currents in native sympathetic neurons in response to clonidine and guanfacine, two drugs used for treatment of hypertension, attention deficit and hyperactivity disorder, and enhancement of analgesia through actions on the alpha(2A)AR subtype. We discovered a more rapid desensitization of Ca(2+) current suppression by clonidine than guanfacine, which paralleled a more marked receptor phosphorylation and endocytosis of alpha(2A)AR evoked by clonidine than by guanfacine. Clonidine-induced alpha(2A)AR desensitization, but not receptor phosphorylation, was attenuated by blockade of endocytosis with concanavalin A, indicating a critical role for internalization of alpha(2A)AR in desensitization to this ligand. Our data on endogenous receptor-mediated signaling and trafficking in native cells reveal not only differential regulation of G protein-coupled receptor endocytosis by different ligands, but also a differential contribution of receptor endocytosis to signaling desensitization. Taken together, our data suggest that these HA-alpha(2A)AR knock-in mice will serve as an important model in developing ligands to favor endocytosis or nonendocytosis of receptors, depending on the target cell and pathophysiology being addressed.
Collapse
Affiliation(s)
- Roujian Lu
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zuzarte M, Heusser K, Renigunta V, Schlichthörl G, Rinné S, Wischmeyer E, Daut J, Schwappach B, Preisig-Müller R. Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14-3-3 proteins. J Physiol 2009; 587:929-52. [PMID: 19139046 PMCID: PMC2673767 DOI: 10.1113/jphysiol.2008.164756] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/08/2009] [Indexed: 01/03/2023] Open
Abstract
The two-pore-domain potassium channels TASK-1 (KCNK3) and TASK-3 (KCNK9) modulate the electrical activity of neurons and many other cell types. We expressed TASK-1, TASK-3 and related reporter constructs in Xenopus oocytes, mammalian cell lines and various yeast strains to study the mechanisms controlling their transport to the surface membrane and the role of 14-3-3 proteins. We measured potassium currents with the voltage-clamp technique and fused N- and C-terminal fragments of the channels to various reporter proteins to study changes in subcellular localisation and surface expression. Mutational analysis showed that binding of 14-3-3 proteins to the extreme C-terminus of TASK-1 and TASK-3 masks a tri-basic motif, KRR, which differs in several important aspects from canonical arginine-based (RxR) or lysine-based (KKxx) retention signals. Pulldown experiments with GST fusion proteins showed that the KRR motif in the C-terminus of TASK-3 channels was able to bind to COPI coatomer. Disabling the binding of 14-3-3, which exposes the KRR motif, caused localisation of the GFP-tagged channel protein mainly to the Golgi complex. TASK-1 and TASK-3 also possess a di-basic N-terminal retention signal, KR, whose function was found to be independent of the binding of 14-3-3. Suppression of channel surface expression with dominant-negative channel mutants revealed that interaction with 14-3-3 has no significant effect on the dimeric assembly of the channels. Our results give a comprehensive description of the mechanisms by which 14-3-3 proteins, together with N- and C-terminal sorting signals, control the intracellular traffic of TASK-1 and TASK-3.
Collapse
Affiliation(s)
- Marylou Zuzarte
- Institute of Physiology, Marburg University, Deutschhausstrasse 2, 35037 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Calcium Channel Regulation and Presynaptic Plasticity. Neuron 2008; 59:882-901. [PMID: 18817729 DOI: 10.1016/j.neuron.2008.09.005] [Citation(s) in RCA: 466] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 01/15/2023]
|
36
|
Cens T, Leyris JP, Charnet P. Introduction into Cav2.1 of the homologous mutation of Cav1.2 causing the Timothy syndrome questions the role of V421 in the phenotypic definition of P-type Ca2+ channel. Pflugers Arch 2008; 457:417-30. [DOI: 10.1007/s00424-008-0534-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/17/2008] [Accepted: 05/15/2008] [Indexed: 01/06/2023]
|
37
|
Dai G, Haedo RJ, Warren VA, Ratliff KS, Bugianesi RM, Rush A, Williams ME, Herrington J, Smith MM, McManus OB, Swensen AM. A High-Throughput Assay for Evaluating State Dependence and Subtype Selectivity of Cav2 Calcium Channel Inhibitors. Assay Drug Dev Technol 2008; 6:195-212. [DOI: 10.1089/adt.2008.136] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ge Dai
- Merck Research Laboratories, Rahway, NJ
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Richards KS, Swensen AM, Lipscombe D, Bommert K. Novel CaV2.1 clone replicates many properties of Purkinje cell CaV2.1 current. Eur J Neurosci 2008; 26:2950-61. [PMID: 18001290 DOI: 10.1111/j.1460-9568.2007.05912.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P-type calcium current is mediated by a voltage-sensing CaV2.1 alpha subunit in combination with modulatory auxiliary subunits. In Purkinje neurones, this current has distinctively slow inactivation kinetics that may depend on alternative splicing of the alpha subunit and/or association with different CaVbeta subunits. To better understand the molecular components of P-type calcium current, we cloned a CaV2.1 cDNA from total mouse brain. The full-length CaV2.1 isoform that we isolated (GenBank AY714490) contains sequences recently shown to be present in Purkinje neurones. In agreement with previously published work, the alternatively spliced amino acid V421, implicated in slow inactivation, was not encoded in AY714490 and was absent from reverse transcription-polymerase chain reaction products generated from single Purkinje cells. Next, we studied the expression of the four known mouse auxiliary CaVbeta2 isoforms in Purkinje neurones. Confirmation of the presence of CaVbeta2a in Purkinje cells, previously shown by others to slow CaV2.1 kinetics, led us to characterize its influence on current dynamics. We studied currents generated by the clone AY714490 coexpressed in tsA201 cells with four different CaVbeta subunits. In addition to the well-documented slowing of open-state inactivation kinetics, coexpression with the CaVbeta2a subunit also protected CaV2.1 channels from closed-state inactivation and prevented the channel from inactivating during physiological trains of action potential-like stimuli. This strong resistance to inactivation parallels the property of Purkinje neurone P-type currents and is suggestive of a role for CaVbeta2a in modulating the inactivation properties of P-type calcium currents in Purkinje neurones.
Collapse
|
39
|
NMDA receptor activation dephosphorylates AMPA receptor glutamate receptor 1 subunits at threonine 840. J Neurosci 2008; 27:13210-21. [PMID: 18045915 DOI: 10.1523/jneurosci.3056-07.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphorylation-dependent changes in AMPA receptor function have a crucial role in activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although three previously identified phosphorylation sites in AMPA receptor glutamate receptor 1 (GluR1) subunits (S818, S831, and S845) appear to have important roles in LTP and LTD, little is known about the role of other putative phosphorylation sites in GluR1. Here, we describe the characterization of a recently identified phosphorylation site in GluR1 at threonine 840. The results of in vivo and in vitro phosphorylation assays suggest that T840 is not a substrate for protein kinases known to phosphorylate GluR1 at previously identified phosphorylation sites, such as protein kinase A, protein kinase C, and calcium/calmodulin-dependent kinase II. Instead, in vitro phosphorylation assays suggest that T840 is a substrate for p70S6 kinase. Although LTP-inducing patterns of synaptic stimulation had no effect on GluR1 phosphorylation at T840 in the hippocampal CA1 region, bath application of NMDA induced a strong, protein phosphatase 1- and/or 2A-mediated decrease in T840 phosphorylation. Moreover, GluR1 phosphorylation at T840 was transiently decreased by a chemical LTD induction protocol that induced a short-term depression of synaptic strength and persistently decreased by a chemical LTD induction protocol that induced a lasting depression of synaptic transmission. Together, our results show that GluR1 phosphorylation at T840 is regulated by NMDA receptor activation and suggest that decreases in GluR1 phosphorylation at T840 may have a role in LTD.
Collapse
|
40
|
Jarvis SE, Zamponi GW. Trafficking and regulation of neuronal voltage-gated calcium channels. Curr Opin Cell Biol 2007; 19:474-82. [PMID: 17624753 DOI: 10.1016/j.ceb.2007.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 12/17/2022]
Abstract
The importance of voltage-gated calcium channels is underscored by the multitude of intracellular processes that depend on calcium, notably gene regulation and neurotransmission. Given their pivotal roles in calcium (and hence, cellular) homeostasis, voltage-gated calcium channels have been the subject of intense research, much of which has focused on channel regulation. While ongoing research continues to delineate the myriad of interactions that govern calcium channel regulation, an increasing amount of work has focused on the trafficking of voltage-gated calcium channels. This includes the mechanisms by which calcium channels are targeted to the plasma membrane, and, more specifically, to their appropriate loci within a given cell. In addition, we are beginning to gain some insights into the mechanisms by which calcium channels can be removed from the plasma membrane for recycling and/or degradation. Here we highlight recent advances in our understanding of these fundamentally important mechanisms.
Collapse
Affiliation(s)
- Scott E Jarvis
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Dr. NW, Calgary T2N 4N1, Canada
| | | |
Collapse
|
41
|
Sullivan JM. A simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression. J Neurophysiol 2006; 97:948-50. [PMID: 17079345 DOI: 10.1152/jn.00554.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the second stimulus. Here it is shown that PPD cannot be accounted for by depletion at excitatory synapses made by hippocampal neurons because PPD is unaffected by changes in the fraction of the readily releasable pool (RRP) released by the first of a pair of pulses.
Collapse
Affiliation(s)
- Jane M Sullivan
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA.
| |
Collapse
|