1
|
Ramírez OA, Hellwig A, Zhang Z, Bading H. Pharmacological Targeting of the NMDAR/TRPM4 Death Signaling Complex with a TwinF Interface Inhibitor Prevents Excitotoxicity-Associated Dendritic Blebbing and Organelle Damage. Cells 2025; 14:195. [PMID: 39936986 DOI: 10.3390/cells14030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Focal swellings of dendrites ("dendritic blebbing") together with structural damage of mitochondria and the endoplasmic reticulum (ER) are morphological hallmarks of glutamate neurotoxicity, also known as excitotoxicity. These pathological alterations are generally thought to be caused by the so-called "overactivation" of N-methyl-D-aspartate receptors (NMDARs). Here, we demonstrate that the activation of extrasynaptic NMDARs, specifically when forming a protein-protein complex with TRPM4, drives these pathological traits. In contrast, strong activation of synaptic NMDARs fails to induce cell damage despite evoking plateau-type calcium signals that are comparable to those generated by activation of the NMDAR/TRPM4 complex, indicating that high intracellular calcium levels per se are not toxic to neurons. Using confocal laser scanning microscopy and transmission electron microscopy, we show that disrupting the NMDAR/TRPM4 complex using the recently discovered small-molecule TwinF interface inhibitor FP802 inhibits the NMDA-induced neurotoxicity-associated dendritic blebbing and structural damage to mitochondria and the ER. It also prevents, at least in part, the disruption of ER-mitochondria contact sites. These findings establish the NMDAR/TRPM4 complex as the trigger for the structural damage of dendrites and intracellular organelles associated with excitotoxicity. They also suggest that activation of the NMDAR/TRPM4 complex, in addition to inducing high-amplitude, plateau-type calcium signals, generates a second signal required for glutamate neurotoxicity ("two-hit hypothesis"). As structural damage to organelles, particularly mitochondria, is a common feature of many human neurodegenerative diseases, including Alzheimer's disease and amyotrophic lateral sclerosis (ALS), TwinF interface inhibitors have the potential to provide neuroprotection across a broad spectrum of these diseases.
Collapse
Affiliation(s)
- Omar A Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Zihong Zhang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
- Network Aging Research, Heidelberg University, 69115 Heidelberg, Germany
| |
Collapse
|
2
|
Lissek T. Cancer memory as a mechanism to establish malignancy. Biosystems 2025; 247:105381. [PMID: 39701407 DOI: 10.1016/j.biosystems.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Cancers during oncogenic progression hold information in epigenetic memory which allows flexible encoding of malignant phenotypes and more rapid reaction to the environment when compared to purely mutation-based clonal evolution mechanisms. Cancer memory describes a proposed mechanism by which complex information such as metastasis phenotypes, therapy resistance and interaction patterns with the tumor environment might be encoded at multiple levels via mechanisms used in memory formation in the brain and immune system (e.g. single-cell epigenetic changes and distributed state modifications in cellular ensembles). Carcinogenesis might hence be the result of physiological multi-level learning mechanisms unleashed by defined heritable oncogenic changes which lead to tumor-specific loss of goal state integration into the whole organism. The formation of cancer memories would create and bind new levels of individuality within the host organism into the entity we call cancer. Translational implications of cancer memory are that cancers could be engaged at higher organizational levels (e.g. be "trained" for memory extinction) and that compounds that are known to interfere with memory processes could be investigated for their potential to block cancer memory formation or recall. It also suggests that diagnostic measures should extend beyond sequencing approaches to functional diagnosis of cancer physiology.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Brookshier A, Lyden P. Differential vulnerability among cell types in the neurovascular unit: Description and mechanisms. J Cereb Blood Flow Metab 2025; 45:3-12. [PMID: 39520113 PMCID: PMC11563522 DOI: 10.1177/0271678x241299960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Currently, successful preclinical cerebroprotective agents fail to translate effectively into clinical practice suggesting the need for a comprehensive evaluation of all aspects of brain function. Selective vulnerability refers to the specific regional response of the brain following global ischemia, with observed patterns of vulnerability attributed to the distribution of neuronal subtypes and the functions of respective brain regions. Conversely, the concept of differential vulnerability pertains to the cell-type-specific reactions to cerebral ischemia, dictated by the biological characteristics of individual cells. This review aims to explore these vulnerability hypotheses and elucidate potential underlying cellular mechanisms.
Collapse
Affiliation(s)
- Allison Brookshier
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine of USC, Los Angeles, USA
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine of USC, Los Angeles, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, USA
| |
Collapse
|
4
|
Suryavanshi P, Langton R, Fairhead K, Glykys J. Brief and Diverse Excitotoxic Insults Increase the Neuronal Nuclear Membrane Permeability in the Neonatal Brain, Resulting in Neuronal Dysfunction and Cell Death. J Neurosci 2024; 44:e0350242024. [PMID: 39214703 PMCID: PMC11466074 DOI: 10.1523/jneurosci.0350-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca2+-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca2+ imaging in vivo [Postnatal Day (P)12-17] and in acute brain slices (P8-12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios occurred concurrently with persistent elevation in Ca2+ loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca2+-activated proteases, prevented elevated N/C ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
| | - Rachel Langton
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
| | - Kimberly Fairhead
- Biomedical Sciences, College of Liberal Arts and Sciences, The University of Iowa, Iowa City, Iowa 52242
| | - Joseph Glykys
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
5
|
Silvestre M, Dempster K, Mihaylov SR, Claxton S, Ultanir SK. Cell type-specific expression, regulation and compensation of CDKL5 activity in mouse brain. Mol Psychiatry 2024; 29:1844-1856. [PMID: 38326557 PMCID: PMC11371643 DOI: 10.1038/s41380-024-02434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
CDKL5 is a brain-enriched serine/threonine kinase, associated with a profound developmental and epileptic encephalopathy called CDKL5 deficiency disorder (CDD). To design targeted therapies for CDD, it is essential to determine where CDKL5 is expressed and is active in the brain and test if compensatory mechanisms exist at cellular level. We generated conditional Cdkl5 knockout mice in excitatory neurons, inhibitory neurons and astrocytes. To assess CDKL5 activity, we utilized a phosphospecific antibody for phosphorylated EB2, a well-known substrate of CDKL5. We found that CDKL5 and EB2 pS222 were prominent in excitatory and inhibitory neurons but were not detected in astrocytes. We observed that approximately 15-20% of EB2 pS222 remained in Cdkl5 knockout brains and primary neurons. Surprisingly, the remaining phosphorylation was modulated by NMDA and PP1/PP2A in neuronal CDKL5 knockout cultures, indicating the presence of a compensating kinase. Using a screen of candidate kinases with highest homology to the CDKL5 kinase domain, we found that CDKL2 and ICK can phosphorylate EB2 S222 in HEK293T cells and in primary neurons. We then generated Cdkl5/Cdkl2 dual knockout mice to directly test if CDKL2 phosphorylates EB2 in vivo and found that CDKL2 phosphorylates CDKL5 substrates in the brain. This study is the first indication that CDKL2 could potentially replace CDKL5 functions in the brain, alluding to novel therapeutic possibilities.
Collapse
Affiliation(s)
- Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Suzanne Claxton
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Deep SN, Seelig S, Paul S, Poddar R. Homocysteine-induced sustained GluN2A NMDA receptor stimulation leads to mitochondrial ROS generation and neurotoxicity. J Biol Chem 2024; 300:107253. [PMID: 38569938 PMCID: PMC11081806 DOI: 10.1016/j.jbc.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
Homocysteine, a sulfur-containing amino acid derived from methionine metabolism, is a known agonist of N-methyl-D-aspartate receptor (NMDAR) and is involved in neurotoxicity. Our previous findings showed that neuronal exposure to elevated homocysteine levels leads to sustained low-level increase in intracellular Ca2+, which is dependent on GluN2A subunit-containing NMDAR (GluN2A-NMDAR) stimulation. These studies further showed a role of ERK MAPK in homocysteine-GluN2A-NMDAR-mediated neuronal death. However, the intracellular mechanisms associated with such sustained GluN2A-NMDAR stimulation and subsequent Ca2+ influx have remained unexplored. Using live-cell imaging with Fluo3-AM and biochemical approaches, we show that homocysteine-GluN2A NMDAR-induced initial Ca2+ influx triggers sequential phosphorylation and subsequent activation of the proline rich tyrosine kinase 2 (Pyk2) and Src family kinases, which in turn phosphorylates GluN2A-Tyr1325 residue of GluN2A-NMDARs to maintain channel activity. The continuity of this cycle of events leads to sustained Ca2+ influx through GluN2A-NMDAR. Our findings also show that lack of activation of the regulatory tyrosine phosphatase STEP, which can limit Pyk2 and Src family kinase activity further contributes to the maintenance of this cycle. Additional studies using live-cell imaging of neurons expressing a redox-sensitive GFP targeted to the mitochondrial matrix show that treatment with homocysteine leads to a progressive increase in mitochondrial reactive oxygen species generation, which is dependent on GluN2A-NMDAR-mediated sustained ERK MAPK activation. This later finding demonstrates a novel role of GluN2A-NMDAR in homocysteine-induced mitochondrial ROS generation and highlights the role of ERK MAPK as the intermediary signaling pathway between GluN2A-NMDAR stimulation and mitochondrial reactive oxygen species generation.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Sarah Seelig
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
7
|
Wu M, Xu S, Mi K, Yang S, Xu Y, Li J, Chen J, Zhang X. GluN2B-containing NMDA receptor attenuated neuronal apoptosis in the mouse model of HIBD through inhibiting endoplasmic reticulum stress-activated PERK/eIF2α signaling pathway. Front Mol Neurosci 2024; 17:1375843. [PMID: 38638600 PMCID: PMC11024425 DOI: 10.3389/fnmol.2024.1375843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Neonatal hypoxic-ischemic brain damage (HIBD) refers to brain damage in newborns caused by hypoxia and reduced or even stopped cerebral blood flow during the perinatal period. Currently, there are no targeted treatments for neonatal ischemic hypoxic brain damage, primarily due to the incomplete understanding of its pathophysiological mechanisms. Especially, the role of NMDA receptors is less studied in HIBD. Therefore, this study explored the molecular mechanism of endogenous protection mediated by GluN2B-NMDAR in HIBD. Method Hypoxic ischemia was induced in mice aged 9-11 days. The brain damage was examined by Nissl staining and HE staining, while neuronal apoptosis was examined by Hoechst staining and TTC staining. And cognitive deficiency of mice was examined by various behavior tests including Barnes Maze, Three Chamber Social Interaction Test and Elevated Plus Maze. The activation of ER stress signaling pathways were evaluated by Western blot. Results We found that after HIBD induction, the activation of GluN2B-NMDAR attenuated neuronal apoptosis and brain damage. Meanwhile, the ER stress PERK/eIF2α signaling pathway was activated in a time-dependent manner after HIBE. Furthermore, after selective inhibiting GluN2B-NMDAR in HIBD mice with ifenprodil, the PERK/eIF2α signaling pathway remains continuously activated, leading to neuronal apoptosis, morphological brain damage. and aggravating deficits in spatial memory, cognition, and social abilities in adult mice. Discussion The results of this study indicate that, unlike its role in adult brain damage, GluN2B in early development plays a neuroprotective role in HIBD by inhibiting excessive activation of the PERK/eIF2α signaling pathway. This study provides theoretical support for the clinical development of targeted drugs or treatment methods for HIBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaomin Zhang
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Beletskiy A, Zolotar A, Fortygina P, Chesnokova E, Uroshlev L, Balaban P, Kolosov P. Downregulation of Ribosomal Protein Genes Is Revealed in a Model of Rat Hippocampal Neuronal Culture Activation with GABA(A)R/GlyRa2 Antagonist Picrotoxin. Cells 2024; 13:383. [PMID: 38474347 PMCID: PMC10930765 DOI: 10.3390/cells13050383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Long-read transcriptome sequencing provides us with a convenient tool for the thorough study of biological processes such as neuronal plasticity. Here, we aimed to perform transcriptional profiling of rat hippocampal primary neuron cultures after stimulation with picrotoxin (PTX) to further understand molecular mechanisms of neuronal activation. To overcome the limitations of short-read RNA-Seq approaches, we performed an Oxford Nanopore Technologies MinION-based long-read sequencing and transcriptome assembly of rat primary hippocampal culture mRNA at three time points after the PTX activation. We used a specific approach to exclude uncapped mRNAs during sample preparation. Overall, we found 23,652 novel transcripts in comparison to reference annotations, out of which ~6000 were entirely novel and mostly transposon-derived loci. Analysis of differentially expressed genes (DEG) showed that 3046 genes were differentially expressed, of which 2037 were upregulated and 1009 were downregulated at 30 min after the PTX application, with only 446 and 13 genes differentially expressed at 1 h and 5 h time points, respectively. Most notably, multiple genes encoding ribosomal proteins, with a high basal expression level, were downregulated after 30 min incubation with PTX; we suggest that this indicates redistribution of transcriptional resources towards activity-induced genes. Novel loci and isoforms observed in this study may help us further understand the functional mRNA repertoire in neuronal plasticity processes. Together with other NGS techniques, differential gene expression analysis of sequencing data obtained using MinION platform might provide a simple method to optimize further study of neuronal plasticity.
Collapse
Affiliation(s)
- Alexander Beletskiy
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Anastasia Zolotar
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Ekaterina Chesnokova
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Leonid Uroshlev
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
| | - Peter Kolosov
- Institute of Higher Nervous Activity and Neurophysiology, The Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (A.Z.); (P.F.); (E.C.); (L.U.); (P.B.)
- Engelhardt Institute of Molecular Biology, The Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Yan J, Wang YM, Hellwig A, Bading H. TwinF interface inhibitor FP802 stops loss of motor neurons and mitigates disease progression in a mouse model of ALS. Cell Rep Med 2024; 5:101413. [PMID: 38325382 PMCID: PMC10897598 DOI: 10.1016/j.xcrm.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/16/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Toxic signaling by extrasynaptic NMDA receptors (eNMDARs) is considered an important promoter of amyotrophic lateral sclerosis (ALS) disease progression. To exploit this therapeutically, we take advantage of TwinF interface (TI) inhibition, a pharmacological principle that, contrary to classical NMDAR pharmacology, allows selective elimination of eNMDAR-mediated toxicity via disruption of the NMDAR/TRPM4 death signaling complex while sparing the vital physiological functions of synaptic NMDARs. Post-disease onset treatment of the SOD1G93A ALS mouse model with FP802, a modified TI inhibitor with a safe pharmacology profile, stops the progressive loss of motor neurons in the spinal cord, resulting in a reduction in the serum biomarker neurofilament light chain, improved motor performance, and an extension of life expectancy. FP802 also effectively blocks NMDA-induced death of neurons in ALS patient-derived forebrain organoids. These results establish eNMDAR toxicity as a key player in ALS pathogenesis. TI inhibitors may provide an effective treatment option for ALS patients.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Yu Meng Wang
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Fernandes HDB, Oliveira BDS, Machado CA, Carvalho BC, de Brito Toscano EC, da Silva MCM, Vieira ÉLM, de Oliveira ACP, Teixeira AL, de Miranda AS, da Silva AM. Behavioral, neurochemical and neuroimmune features of RasGEF1b deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110908. [PMID: 38048936 DOI: 10.1016/j.pnpbp.2023.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The factor RasGEF1b is a Ras guanine exchange factor involved in immune responses. Studies have also implicated RasGEF1b in the CNS development. It is still limited the understanding of the role of RasGEF1b in CNS functioning. Using RasGEF1b deficient mice (RasGEF1b-cKO), we investigated the impact of this gene deletion in behavior, cognition, brain neurochemistry and microglia morphology. We showed that RasGEF1b-cKO mice display spontaneous hyperlocomotion and anhedonia. RasGEF1b-cKO mice also exhibited compulsive-like behavior that was restored after acute treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (5 mg/kg). A down-regulation of mRNA of dopamine receptor (Drd1, Drd2, Drd4 and Drd5) and serotonin receptor genes (5Htr1a, 5Htr1b and 5Htr1d) was observed in hippocampus of RasGEF1b-cKO mice. These mice also had reduction of Drd1 and Drd2 in prefrontal cortex and 5Htr1d in striatum. In addition, morphological alterations were observed in RasGEF1b deficient microglia along with decreased levels of hippocampal BDNF. We provided original evidence that the deletion of RasGEF1b leads to unique behavioral features, implicating this factor in CNS functioning.
Collapse
Affiliation(s)
- Heliana de Barros Fernandes
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil; Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil.
| | - Bruna da Silva Oliveira
- Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Brener Cunha Carvalho
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Eliana Cristina de Brito Toscano
- Laboratório Integrado de Pesquisas em Patologia, Departamento de Patologia, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Av. Eugênio do Nascimento, s/n°, Dom Bosco, CEP: 36038-330, Juiz de Fora, MG, Brazil
| | - Maria Carolina M da Silva
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Campbell Family Mental Health Research Institute, Center of Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Antônio Carlos Pinheiro de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Departament of Psychiatry and Behavioral Science McGovern School, Behavioral and Biomedical Sciences Building (BBSB), The University of Texas Health Science Center, 941 East Road, Houston, TX 77054, United States of America
| | - Aline Silva de Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Aristóbolo Mendes da Silva
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Suryavanshi P, Langton R, Fairhead K, Glykys J. Brief and diverse excitotoxic insults cause an increase in neuronal nuclear membrane permeability in the neonatal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554167. [PMID: 37662276 PMCID: PMC10473591 DOI: 10.1101/2023.08.22.554167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neuronal swelling after excitotoxic insults is implicated in neuronal injury and death in the developing brain, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated. Using multiphoton Ca2+ imaging in vivo (P12-17) and in acute brain slices (P8-12), we explored Ca2+-dependent downstream effects after neuronal cytotoxic edema. We observed the translocation of cytosolic GCaMP6s into the nucleus of a subpopulation of neurons minutes after various excitotoxic insults. We used automated morphology-detection algorithms for neuronal segmentation and quantified the nuclear translocation of GCaMP6s as the ratio of nuclear and cytosolic intensity (N/C ratio). Elevated neuronal N/C ratios were correlated to higher Ca2+ loads and could occur independently of neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with increased nuclear pore size. Inhibiting calpains prevented elevated N/C ratios and neuronal swelling. Thus, our results indicate altered nuclear transport in a subpopulation of neurons shortly after injury in the developing brain, which can be used as an early biomarker of acute neuronal injury.
Collapse
Affiliation(s)
- P Suryavanshi
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - R Langton
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - K Fairhead
- Biomedical Sciences, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA
| | - J Glykys
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
- Department of Neurology, University of Iowa, Iowa City, IA
| |
Collapse
|
12
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
13
|
Karpova A, Samer S, Turacak R, Yuanxiang P, Kreutz MR. Integration of nuclear Ca 2+ transients and subnuclear protein shuttling provides a novel mechanism for the regulation of CREB-dependent gene expression. Cell Mol Life Sci 2023; 80:228. [PMID: 37491479 PMCID: PMC10368568 DOI: 10.1007/s00018-023-04876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Nuclear Ca2+ waves elicited by NMDAR and L-type voltage-gated Ca2+-channels as well as protein transport from synapse-to-nucleus are both instrumental in control of plasticity-related gene expression. At present it is not known whether fast [Ca2+]n transients converge in the nucleus with signaling of synapto-nuclear protein messenger. Jacob is a protein that translocate a signalosome from N-methyl-D-aspartate receptors (NMDAR) to the nucleus and that docks this signalosome to the transcription factor CREB. Here we show that the residing time of Jacob in the nucleoplasm strictly correlates with nuclear [Ca2+]n transients elicited by neuronal activity. A steep increase in [Ca2+]n induces instantaneous uncoupling of Jacob from LaminB1 at the nuclear lamina and promotes the association with the transcription factor cAMP-responsive element-binding protein (CREB) in hippocampal neurons. The size of the Jacob pool at the nuclear lamina is controlled by previous activity-dependent nuclear import, and thereby captures the previous history of NMDAR-induced nucleocytoplasmic shuttling. Moreover, the localization of Jacob at the nuclear lamina strongly correlates with synaptic activity and [Ca2+]n waves reflecting ongoing neuronal activity. In consequence, the resulting extension of the nuclear residing time of Jacob amplifies the capacity of the Jacob signalosome to regulate CREB-dependent gene expression and will, thereby, compensate for the relatively small number of molecules reaching the nucleus from individual synapses.
Collapse
Affiliation(s)
- Anna Karpova
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106, Magdeburg, Germany.
| | - Sebastian Samer
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Rabia Turacak
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Otto von Guericke University, 39106, Magdeburg, Germany.
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
14
|
Jiang Y, Liu Q, Zhao Y, Wang C, Sun M. Activation of CREB-BDNF Pathway in Pyramidal Neurons in the Hippocampus Improves the Neurological Outcome of Mice with Ischemic Stroke. Mol Neurobiol 2023; 60:1766-1781. [PMID: 36571720 DOI: 10.1007/s12035-022-03174-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Cerebral ischemia is characterized by several pathological reaction evolving over time. Hyperactivation of glutamatergic neurons is the main factor leading to excitotoxicity which potentiates oxidative stress and triggers the mechanisms of neural apoptosis after cerebral ischemia. However, it is unclear whether glutamate in the ventral hippocampal Cornus Ammonis 1 (vCA1) acts a part in neurological deficits, pain perception, anxiety, and depression induced by ischemic stroke. We investigated the effects of chemogenetic inhibition or activation of vCA1 pyramidal neurons which are mainly glutamatergic neurons on sequelae induced by cerebral ischemia. Our results revealed that inhibition of vCA1 pyramidal neurons by chemogenetics alleviated neurological deficits, pain perception, anxiety, and depression caused by cerebral ischemia in mice, but activation of vCA1 pyramidal neurons had limited effects. Moreover, we found that stroke was accompanied by decreased levels of cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in vCA1, which are modulated by glutamate. In this study, overexpression of CREB protein in pyramidal neurons in vCA1 by AAV virus significantly upregulated the content of BDNF and ameliorated the dysfunction induced by ischemic stroke. Our results demonstrated activation of the CREB-BDNF pathway in vCA1 pyramidal neurons significantly improved neurological deficits, pain perception, anxiety, and depression induced by ischemic stroke.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qingying Liu
- Department of Pain Management, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chunyang Wang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Gleitze S, Ramírez OA, Vega-Vásquez I, Yan J, Lobos P, Bading H, Núñez MT, Paula-Lima A, Hidalgo C. Ryanodine Receptor Mediated Calcium Release Contributes to Ferroptosis Induced in Primary Hippocampal Neurons by GPX4 Inhibition. Antioxidants (Basel) 2023; 12:antiox12030705. [PMID: 36978954 PMCID: PMC10045106 DOI: 10.3390/antiox12030705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ferroptosis, a newly described form of regulated cell death, is characterized by the iron-dependent accumulation of lipid peroxides, glutathione depletion, mitochondrial alterations, and enhanced lipoxygenase activity. Inhibition of glutathione peroxidase 4 (GPX4), a key intracellular antioxidant regulator, promotes ferroptosis in different cell types. Scant information is available on GPX4-induced ferroptosis in hippocampal neurons. Moreover, the role of calcium (Ca2+) signaling in ferroptosis remains elusive. Here, we report that RSL3, a selective inhibitor of GPX4, caused dendritic damage, lipid peroxidation, and induced cell death in rat primary hippocampal neurons. Previous incubation with the ferroptosis inhibitors deferoxamine or ferrostatin-1 reduced these effects. Likewise, preincubation with micromolar concentrations of ryanodine, which prevent Ca2+ release mediated by Ryanodine Receptor (RyR) channels, partially protected against RSL3-induced cell death. Incubation with RSL3 for 24 h suppressed the cytoplasmic Ca2+ concentration increase induced by the RyR agonist caffeine or by the SERCA inhibitor thapsigargin and reduced hippocampal RyR2 protein content. The present results add to the current understanding of ferroptosis-induced neuronal cell death in the hippocampus and provide new information both on the role of RyR-mediated Ca2+ signals on this process and on the effects of GPX4 inhibition on endoplasmic reticulum calcium content.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Omar A. Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7810000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
16
|
Tena-Morraja P, Riqué-Pujol G, Müller-Sánchez C, Reina M, Martínez-Estrada OM, Soriano FX. Synaptic Activity Regulates Mitochondrial Iron Metabolism to Enhance Neuronal Bioenergetics. Int J Mol Sci 2023; 24:ijms24020922. [PMID: 36674431 PMCID: PMC9864932 DOI: 10.3390/ijms24020922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Synaptic activity is the main energy-consuming process in the central nervous system. We are beginning to understand how energy is supplied and used during synaptic activity by neurons. However, the long-term metabolic adaptations associated with a previous episode of synaptic activity are not well understood. Herein, we show that an episode of synaptic activity increases mitochondrial bioenergetics beyond the duration of the synaptic activity by transcriptionally inducing the expression of iron metabolism genes with the consequent enhancement of cellular and mitochondrial iron uptake. Iron is a necessary component of the electron transport chain complexes, and its chelation or knockdown of mitochondrial iron transporter Mfrn1 blocks the activity-mediated bioenergetics boost. We found that Mfrn1 expression is regulated by the well-known regulator of synaptic plasticity CREB, suggesting the coordinated expression of synaptic plasticity programs with those required to meet the associated increase in energetic demands.
Collapse
Affiliation(s)
- Paula Tena-Morraja
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Guillem Riqué-Pujol
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
| | - Claudia Müller-Sánchez
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Manuel Reina
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Francesc X. Soriano
- Celltec-UB, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
17
|
Chhimpa N, Singh N, Puri N, Kayath HP. The Novel Role of Mitochondrial Citrate Synthase and Citrate in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S453-S472. [PMID: 37393492 PMCID: PMC10473122 DOI: 10.3233/jad-220514] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Citrate synthase is a key mitochondrial enzyme that utilizes acetyl-CoA and oxaloacetate to form citrate in the mitochondrial membrane, which participates in energy production in the TCA cycle and linked to the electron transport chain. Citrate transports through a citrate malate pump and synthesizes acetyl-CoA and acetylcholine (ACh) in neuronal cytoplasm. In a mature brain, acetyl-CoA is mainly utilized for ACh synthesis and is responsible for memory and cognition. Studies have shown low citrate synthase in different regions of brain in Alzheimer's disease (AD) patients, which reduces mitochondrial citrate, cellular bioenergetics, neurocytoplasmic citrate, acetyl-CoA, and ACh synthesis. Reduced citrate mediated low energy favors amyloid-β (Aβ) aggregation. Citrate inhibits Aβ25-35 and Aβ1-40 aggregation in vitro. Hence, citrate can be a better therapeutic option for AD by improving cellular energy and ACh synthesis, and inhibiting Aβ aggregation, which prevents tau hyperphosphorylation and glycogen synthase kinase-3 beta. Therefore, we need clinical studies if citrate reverses Aβ deposition by balancing mitochondrial energy pathway and neurocytoplasmic ACh production. Furthermore, in AD's silent phase pathophysiology, when neuronal cells are highly active, they shift ATP utilization from oxidative phosphorylation to glycolysis and prevent excessive generation of hydrogen peroxide and reactive oxygen species (oxidative stress) as neuroprotective action, which upregulates glucose transporter-3 (GLUT3) and pyruvate dehydrogenase kinase-3 (PDK3). PDK3 inhibits pyruvate dehydrogenase, which decreases mitochondrial-acetyl-CoA, citrate, and cellular bioenergetics, and decreases neurocytoplasmic citrate, acetyl-CoA, and ACh formation, thus initiating AD pathophysiology. Therefore, GLUT3 and PDK3 can be biomarkers for silent phase of AD.
Collapse
Affiliation(s)
- Neeraj Chhimpa
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Pharmacology, Meharishi Markandeshwar College of Medical Science & Research, Ambala, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
18
|
Wang N, Langfelder P, Stricos M, Ramanathan L, Richman JB, Vaca R, Plascencia M, Gu X, Zhang S, Tamai TK, Zhang L, Gao F, Ouk K, Lu X, Ivanov LV, Vogt TF, Lu QR, Morton AJ, Colwell CS, Aaronson JS, Rosinski J, Horvath S, Yang XW. Mapping brain gene coexpression in daytime transcriptomes unveils diurnal molecular networks and deciphers perturbation gene signatures. Neuron 2022; 110:3318-3338.e9. [PMID: 36265442 PMCID: PMC9665885 DOI: 10.1016/j.neuron.2022.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
Brain tissue transcriptomes may be organized into gene coexpression networks, but their underlying biological drivers remain incompletely understood. Here, we undertook a large-scale transcriptomic study using 508 wild-type mouse striatal tissue samples dissected exclusively in the afternoons to define 38 highly reproducible gene coexpression modules. We found that 13 and 11 modules are enriched in cell-type and molecular complex markers, respectively. Importantly, 18 modules are highly enriched in daily rhythmically expressed genes that peak or trough with distinct temporal kinetics, revealing the underlying biology of striatal diurnal gene networks. Moreover, the diurnal coexpression networks are a dominant feature of daytime transcriptomes in the mouse cortex. We next employed the striatal coexpression modules to decipher the striatal transcriptomic signatures from Huntington's disease models and heterozygous null mice for 52 genes, uncovering novel functions for Prkcq and Kdm4b in oligodendrocyte differentiation and bipolar disorder-associated Trank1 in regulating anxiety-like behaviors and nocturnal locomotion.
Collapse
Affiliation(s)
- Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Stricos
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lalini Ramanathan
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey B Richman
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raymond Vaca
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mary Plascencia
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shasha Zhang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - T Katherine Tamai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liguo Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fuying Gao
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Xiang Lu
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Thomas F Vogt
- CHDI Management /CHDI Foundation, Princeton, NJ, USA
| | - Qing Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; UCLA Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Jim Rosinski
- CHDI Management /CHDI Foundation, Princeton, NJ, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Figlia G, Müller S, Hagenston AM, Kleber S, Roiuk M, Quast JP, Ten Bosch N, Carvajal Ibañez D, Mauceri D, Martin-Villalba A, Teleman AA. Brain-enriched RagB isoforms regulate the dynamics of mTORC1 activity through GATOR1 inhibition. Nat Cell Biol 2022; 24:1407-1421. [PMID: 36097071 PMCID: PMC9481464 DOI: 10.1038/s41556-022-00977-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/13/2022] [Indexed: 12/26/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient availability to appropriately regulate cellular anabolism and catabolism. During nutrient restriction, different organs in an animal do not respond equally, with vital organs being relatively spared. This raises the possibility that mTORC1 is differentially regulated in different cell types, yet little is known about this mechanistically. The Rag GTPases, RagA or RagB bound to RagC or RagD, tether mTORC1 in a nutrient-dependent manner to lysosomes where mTORC1 becomes activated. Although the RagA and B paralogues were assumed to be functionally equivalent, we find here that the RagB isoforms, which are highly expressed in neurons, impart mTORC1 with resistance to nutrient starvation by inhibiting the RagA/B GTPase-activating protein GATOR1. We further show that high expression of RagB isoforms is observed in some tumours, revealing an alternative strategy by which cancer cells can retain elevated mTORC1 upon low nutrient availability.
Collapse
Affiliation(s)
- Gianluca Figlia
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Sandra Müller
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mykola Roiuk
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Jan-Philipp Quast
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Nora Ten Bosch
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Carvajal Ibañez
- Heidelberg University, Heidelberg, Germany.,Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 366, Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelio A Teleman
- Signal Transduction in Cancer and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Wiegreffe C, Wahl T, Joos NS, Bonnefont J, Liu P, Britsch S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6‐dependent pathway. EMBO Rep 2022; 23:e54104. [PMID: 35766181 PMCID: PMC9346488 DOI: 10.15252/embr.202154104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper‐layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6‐dependent molecular pathway in regulation of developmental cell death during corticogenesis.
Collapse
Affiliation(s)
| | - Tobias Wahl
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| | | | - Jerome Bonnefont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI) Université Libre de Bruxelles (ULB) Brussels Belgium
- VIB‐KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neuroscience Leuven Brain Institute Leuven Belgium
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| |
Collapse
|
21
|
Andhika Rhaditya PA, Oishi K, Nishimura YV, Motoyama J. [Ca 2+] i fluctuation mediated by T-type Ca 2+ channel is required for the differentiation of cortical neural progenitor cells. Dev Biol 2022; 489:84-97. [PMID: 35690104 DOI: 10.1016/j.ydbio.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
The fluctuation of intracellular calcium concentration ([Ca2+]i) is known to be involved in various processes in the development of central nervous system, such as the proliferation of neural progenitor cells (NPCs), migration of intermediate progenitor cells (IPCs) from the ventricular zone (VZ) to the subventricular zone (SVZ), and migration of immature neurons from the SVZ to cortical plate. However, the roles of [Ca2+]i fluctuation in NPC development, especially in the differentiation of the self-renewing NPCs into neuron-generating NPCs and immature neurons have not been elucidated. Using calcium imaging of acute cortical slices and cells isolated from mouse embryonic cortex, we examined temporal changes in the pattern of [Ca2+]i fluctuations in VZ cells from E12 to E16. We observed intracellular Ca2+ levels in Pax6-positive self-renewing NPCs decreased with their neural differentiation. In E11, Pax6-positive NPCs and Tuj1-positive immature neurons exhibited characteristic [Ca2+]i fluctuations; few Pax6-positive NPCs exhibited [Ca2+]i transient, but many Tuj1-positive immature neurons did, suggesting that the change in pattern of [Ca2+]i fluctuation correlate to their differentiation. The [Ca2+]i fluctuation during NPCs development was mostly mediated by the T-type calcium channel and blockage of T-type calcium channel in neurosphere cultures increased the number of spheres and inhibited neuronal differentiation. Consistent with this finding, knockdown of Cav3.1 by RNAi in vivo maintained Pax6-positive cells as self-renewing NPCs, and simultaneously suppressing their neuronal differentiation of NPCs into Tbr1-positive immature neurons. These results reveal that [Ca2+]i fluctuation mediated by Cav3.1 is required for the neural differentiation of Pax6-positive self-renewing NPCs.
Collapse
Affiliation(s)
- Putu Adi Andhika Rhaditya
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Koji Oishi
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yoshiaki V Nishimura
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan; Division of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
22
|
Pumo GM, Kitazawa T, Rijli FM. Epigenetic and Transcriptional Regulation of Spontaneous and Sensory Activity Dependent Programs During Neuronal Circuit Development. Front Neural Circuits 2022; 16:911023. [PMID: 35664458 PMCID: PMC9158562 DOI: 10.3389/fncir.2022.911023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity generated before the onset of sensory transduction has a key role in wiring developing sensory circuits. From axonal targeting, to synapse formation and elimination, to the balanced integration of neurons into developing circuits, this type of activity is implicated in a variety of cellular processes. However, little is known about its molecular mechanisms of action, especially at the level of genome regulation. Conversely, sensory experience-dependent activity implements well-characterized transcriptional and epigenetic chromatin programs that underlie heterogeneous but specific genomic responses that shape both postnatal circuit development and neuroplasticity in the adult. In this review, we focus on our knowledge of the developmental processes regulated by spontaneous activity and the underlying transcriptional mechanisms. We also review novel findings on how chromatin regulates the specificity and developmental induction of the experience-dependent program, and speculate their relevance for our understanding of how spontaneous activity may act at the genomic level to instruct circuit assembly and prepare developing neurons for sensory-dependent connectivity refinement and processing.
Collapse
Affiliation(s)
- Gabriele M. Pumo
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| | - Taro Kitazawa
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Filippo M. Rijli
- Laboratory of Neurodevelopmental Epigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Zhou J, Geng Y, Su T, Wang Q, Ren Y, Zhao J, Fu C, Weber M, Lin H, Kaminker JS, Liu N, Sheng M, Chen Y. NMDA receptor-dependent prostaglandin-endoperoxide synthase 2 induction in neurons promotes glial proliferation during brain development and injury. Cell Rep 2022; 38:110557. [PMID: 35354047 DOI: 10.1016/j.celrep.2022.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/16/2021] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Astrocytes play critical roles in brain development and disease, but the mechanisms that regulate astrocyte proliferation are poorly understood. We report that astrocyte proliferation is bi-directionally regulated by neuronal activity via NMDA receptor (NMDAR) signaling in neurons. Prolonged treatment with an NMDAR antagonist reduced expression of cell-cycle-related genes in astrocytes in hippocampal cultures and suppressed astrocyte proliferation in vitro and in vivo, whereas neuronal activation promoted astrocyte proliferation, dependent on neuronal NMDARs. Expression of prostaglandin-endoperoxide synthase 2 (Ptgs2) is induced specifically in neurons by NMDAR activation and is required for activity-dependent astrocyte proliferation through its product, prostaglandin E2 (PGE2). NMDAR inhibition or Ptgs2 genetic ablation in mice reduced the proliferation of astrocytes and microglia induced by mild traumatic brain injury in the absence of secondary excitotoxicity-induced neuronal death. Our study defines an NMDAR-mediated signaling mechanism that allows trans-cellular control of glial proliferation by neurons in brain development and injury.
Collapse
Affiliation(s)
- Jia Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China
| | - Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuyan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China
| | - Yongfei Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China
| | - Martin Weber
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Han Lin
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joshua S Kaminker
- Department of Bioinformatics and Computational Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China
| | - Morgan Sheng
- Department of Neuroscience, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China.
| |
Collapse
|
24
|
Ortiz-Sanz C, Balantzategi U, Quintela-López T, Ruiz A, Luchena C, Zuazo-Ibarra J, Capetillo-Zarate E, Matute C, Zugaza JL, Alberdi E. Amyloid β / PKC-dependent alterations in NMDA receptor composition are detected in early stages of Alzheimer´s disease. Cell Death Dis 2022; 13:253. [PMID: 35306512 PMCID: PMC8934345 DOI: 10.1038/s41419-022-04687-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
Amyloid beta (Aβ)-mediated synapse dysfunction is an early event in Alzheimer’s disease (AD) pathogenesis and previous studies suggest that NMDA receptor (NMDAR) dysregulation may contribute to these pathological effects. Although Aβ peptides impair NMDAR expression and activity, the mechanisms mediating these alterations in the early stages of AD are unclear. Here, we observed that NMDAR subunit NR2B and PSD-95 levels were aberrantly upregulated and correlated with Aβ42 load in human postsynaptic fractions of the prefrontal cortex in early stages of AD patients, as well as in the hippocampus of 3xTg-AD mice. Importantly, NR2B and PSD95 dysregulation was revealed by an increased expression of both proteins in Aβ-injected mouse hippocampi. In cultured neurons, Aβ oligomers increased the NR2B-containing NMDAR density in neuronal membranes and the NMDA-induced intracellular Ca2+ increase, in addition to colocalization in dendrites of NR2B subunit and PSD95. Mechanistically, Aβ oligomers required integrin β1 to promote synaptic location and function of NR2B-containing NMDARs and PSD95 by phosphorylation through classic PKCs. These results provide evidence that Aβ oligomers modify the contribution of NR2B to NMDAR composition and function in the early stages of AD through an integrin β1 and PKC-dependent pathway. These data reveal a novel role of Aβ oligomers in synaptic dysfunction that may be relevant to early-stage AD pathogenesis.
Collapse
Affiliation(s)
- Carolina Ortiz-Sanz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Uxue Balantzategi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Tania Quintela-López
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, Physiology, & Pharmacology, University College London, London, UK
| | - Asier Ruiz
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Celia Luchena
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jone Zuazo-Ibarra
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Estibaliz Capetillo-Zarate
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Carlos Matute
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - José L Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, UPV/EHU, Leioa, Spain
| | - Elena Alberdi
- Department of Neuroscience, University of Basque Country (UPV/EHU) and CIBERNED, Leioa, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain.
| |
Collapse
|
25
|
Brito DV, Kupke J, Gulmez Karaca K, Oliveira AM. Regulation of neuronal plasticity by the DNA repair associated Gadd45 proteins. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100031. [PMID: 36685757 PMCID: PMC9846468 DOI: 10.1016/j.crneur.2022.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Neurons respond rapidly to extracellular stimuli by activating signaling pathways that modulate the function of already synthetized proteins. Alternatively, signal transduction to the cell nucleus induces de novo synthesis of proteins required for long-lasting adaptations. These complementary strategies are necessary for neuronal plasticity processes that underlie, among other functions, the formation of memories. Nonetheless, it is still not fully understood how the coupling between different stimuli and the activity of constitutively and/or de novo expressed proteins gate neuronal plasticity. Here, we discuss the molecular functions of the Growth Arrest and DNA Damage 45 (Gadd45) family of proteins in neuronal adaptation. We highlight recent findings that indicate that Gadd45 family members regulate this function through multiple cellular processes (e.g., DNA demethylation, gene expression, RNA stability, MAPK signaling). We then summarize the regulation of Gadd45 expression in neurons and put forward the hypothesis that the constitutive and neuronal activity-induced pools of Gadd45 proteins have distinct and complementary roles in modulating neuronal plasticity. Therefore, we propose that Gadd45 proteins are essential for brain function and their dysfunction might underlie pathophysiological conditions such as neuropsychiatric disorders.
Collapse
Affiliation(s)
- David V.C. Brito
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center Kapittelweg 29, 6525, EN Nijmegen, the Netherlands
| | - Ana M.M. Oliveira
- Institute of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany,Corresponding author. Institute of Neurobiology, Interdisciplinary Center for Neurosciences (IZN) Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
26
|
Oberländer K, Witte V, Mallien AS, Gass P, Bengtson CP, Bading H. Dysregulation of Npas4 and Inhba expression and an altered excitation-inhibition balance are associated with cognitive deficits in DBA/2 mice. Learn Mem 2022; 29:55-70. [PMID: 35042829 PMCID: PMC8774195 DOI: 10.1101/lm.053527.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/28/2021] [Indexed: 02/03/2023]
Abstract
Differences in the learning associated transcriptional profiles between mouse strains with distinct learning abilities could provide insight into the molecular basis of learning and memory. The inbred mouse strain DBA/2 shows deficits in hippocampus-dependent memory, yet the transcriptional responses to learning and the underlying mechanisms of the impairments are unknown. Comparing DBA/2J mice with the reference standard C57BL/6N mouse strain we verify an enhanced susceptibility to kainic acid induced seizures, confirm impairments in hippocampus-dependent spatial memory tasks and uncover additional behavioral abnormalities including deficits in hippocampus-independent learning. Surprisingly, we found no broad dysfunction of the DBA/2J strain in immediate early gene (IEG) activation but instead report brain region-specific and gene-specific alterations. The learning-associated IEGs Arc, c-Fos, and Nr4a1 showed no DBA/2J deficits in basal or synaptic activity induced gene expression in hippocampal or cortical primary neuronal cultures or in the CA1, CA3, or retrosplenial cortex following spatial object recognition (SOR) training in vivo. However, the parietal cortex showed reduced and the dentate gyrus showed enhanced SOR-evoked induction of most IEGs. All DBA/2J hippocampal regions exhibited elevated basal expression of inhibin β A (Inhba) and a learning-associated superinduction of the transcription factor neuronal Per-Arnt-Sim domain protein 4 (Npas4) known to regulate the synaptic excitation-inhibition balance. In line with this, CA1 pyramidal neurons of DBA/2J mice showed fewer inhibitory and more excitatory miniature postsynaptic currents but no alteration in most other electrophysiological properties or gross dendritic morphology. The dysregulation of Npas4 and Inhba expression and synaptic connectivity may underlie the cognitive deficits and increased susceptibility to seizures of DBA/2J mice.
Collapse
Affiliation(s)
- Kristin Oberländer
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Victoria Witte
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Stephanie Mallien
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, 68159 Mannheim, Germany
| | - C. Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate Receptors (NMDARs) in Epilepsy. Front Mol Neurosci 2022; 14:797253. [PMID: 35069111 PMCID: PMC8780133 DOI: 10.3389/fnmol.2021.797253] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders characterized by recurrent seizures. The mechanism of epilepsy remains unclear and previous studies suggest that N-methyl-D-aspartate receptors (NMDARs) play an important role in abnormal discharges, nerve conduction, neuron injury and inflammation, thereby they may participate in epileptogenesis. NMDARs belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian CNS. Despite numerous studies focusing on the role of NMDAR in epilepsy, the relationship appeared to be elusive. In this article, we reviewed the regulation of NMDAR and possible mechanisms of NMDAR in epilepsy and in respect of onset, development, and treatment, trying to provide more evidence for future studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic. J Biol Chem 2021; 298:101508. [PMID: 34942149 PMCID: PMC8808183 DOI: 10.1016/j.jbc.2021.101508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial sodium/calcium/lithium exchanger (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using a short hairpin RNA (shRNA)-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species (ROS) generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult, but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts and was associated both with ΔΨmbreakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 (CA1) region in vivo causes substantial neuro- and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but notably also renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neuro- and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.
Collapse
|
29
|
Lissek T, Andrianarivelo A, Saint‐Jour E, Allichon M, Bauersachs HG, Nassar M, Piette C, Pruunsild P, Tan Y, Forget B, Heck N, Caboche J, Venance L, Vanhoutte P, Bading H. Npas4 regulates medium spiny neuron physiology and gates cocaine-induced hyperlocomotion. EMBO Rep 2021; 22:e51882. [PMID: 34661342 PMCID: PMC8647009 DOI: 10.15252/embr.202051882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
We show here that the transcription factor Npas4 is an important regulator of medium spiny neuron spine density and electrophysiological parameters and that it determines the magnitude of cocaine-induced hyperlocomotion in mice. Npas4 is induced by synaptic stimuli that cause calcium influx, but not dopaminergic or PKA-stimulating input, in mouse medium spiny neurons and human iPSC-derived forebrain organoids. This induction is independent of ubiquitous kinase pathways such as PKA and MAPK cascades, and instead depends on calcineurin and nuclear calcium signalling. Npas4 controls a large regulon containing transcripts for synaptic molecules, such as NMDA receptors and VDCC subunits, and determines in vivo MSN spine density, firing rate, I/O gain function and paired-pulse facilitation. These functions at the molecular and cellular levels control the locomotor response to drugs of abuse, as Npas4 knockdown in the nucleus accumbens decreases hyperlocomotion in response to cocaine in male mice while leaving basal locomotor behaviour unchanged.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for NeurosciencesDepartment of NeurobiologyHeidelberg UniversityHeidelbergGermany
| | - Andry Andrianarivelo
- INSERM, UMR‐S 1130Neuroscience Paris SeineInstitute of Biology Paris SeineParisFrance
- CNRSUMR 8246Neuroscience Paris SeineParisFrance
- Sorbonne UniversitéUPMC Université Paris 06UM CR18Neuroscience Paris SeineParisFrance
| | - Estefani Saint‐Jour
- INSERM, UMR‐S 1130Neuroscience Paris SeineInstitute of Biology Paris SeineParisFrance
- CNRSUMR 8246Neuroscience Paris SeineParisFrance
- Sorbonne UniversitéUPMC Université Paris 06UM CR18Neuroscience Paris SeineParisFrance
| | - Marie‐Charlotte Allichon
- INSERM, UMR‐S 1130Neuroscience Paris SeineInstitute of Biology Paris SeineParisFrance
- CNRSUMR 8246Neuroscience Paris SeineParisFrance
- Sorbonne UniversitéUPMC Université Paris 06UM CR18Neuroscience Paris SeineParisFrance
| | - Hanke Gwendolyn Bauersachs
- Interdisciplinary Center for NeurosciencesDepartment of NeurobiologyHeidelberg UniversityHeidelbergGermany
| | - Merie Nassar
- Center for Interdisciplinary Research in Biology (CIRB)College de FranceCNRS UMR7241INSERM U1050Université PSLParisFrance
| | - Charlotte Piette
- Center for Interdisciplinary Research in Biology (CIRB)College de FranceCNRS UMR7241INSERM U1050Université PSLParisFrance
| | - Priit Pruunsild
- Interdisciplinary Center for NeurosciencesDepartment of NeurobiologyHeidelberg UniversityHeidelbergGermany
| | - Yan‐Wei Tan
- Interdisciplinary Center for NeurosciencesDepartment of NeurobiologyHeidelberg UniversityHeidelbergGermany
| | - Benoit Forget
- INSERM, UMR‐S 1130Neuroscience Paris SeineInstitute of Biology Paris SeineParisFrance
- CNRSUMR 8246Neuroscience Paris SeineParisFrance
- Sorbonne UniversitéUPMC Université Paris 06UM CR18Neuroscience Paris SeineParisFrance
| | - Nicolas Heck
- INSERM, UMR‐S 1130Neuroscience Paris SeineInstitute of Biology Paris SeineParisFrance
- CNRSUMR 8246Neuroscience Paris SeineParisFrance
- Sorbonne UniversitéUPMC Université Paris 06UM CR18Neuroscience Paris SeineParisFrance
| | - Jocelyne Caboche
- INSERM, UMR‐S 1130Neuroscience Paris SeineInstitute of Biology Paris SeineParisFrance
- CNRSUMR 8246Neuroscience Paris SeineParisFrance
- Sorbonne UniversitéUPMC Université Paris 06UM CR18Neuroscience Paris SeineParisFrance
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB)College de FranceCNRS UMR7241INSERM U1050Université PSLParisFrance
| | - Peter Vanhoutte
- INSERM, UMR‐S 1130Neuroscience Paris SeineInstitute of Biology Paris SeineParisFrance
- CNRSUMR 8246Neuroscience Paris SeineParisFrance
- Sorbonne UniversitéUPMC Université Paris 06UM CR18Neuroscience Paris SeineParisFrance
| | - Hilmar Bading
- Interdisciplinary Center for NeurosciencesDepartment of NeurobiologyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
30
|
Bauersachs HG, Bengtson CP, Weiss U, Hellwig A, García-Vilela C, Zaremba B, Kaessmann H, Pruunsild P, Bading H. N-methyl-d-aspartate Receptor-mediated Preconditioning Mitigates Excitotoxicity in Human induced Pluripotent Stem Cell-derived Brain Organoids. Neuroscience 2021; 484:83-97. [DOI: 10.1016/j.neuroscience.2021.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
|
31
|
A role of anterior cingulate cortex in the emergence of worker-parasite relationship. Proc Natl Acad Sci U S A 2021; 118:2111145118. [PMID: 34815341 DOI: 10.1073/pnas.2111145118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
We studied the brain mechanisms underlying action selection in a social dilemma setting in which individuals' effortful gains are unfairly distributed among group members. A stable "worker-parasite" relationship developed when three individually operant-conditioned rats were placed together in a Skinner box equipped with response lever and food dispenser on opposite sides. Specifically, one rat, the "worker," engaged in lever-pressing while the other two "parasitic" rats profited from the worker's effort by crowding the feeder in anticipation of food. Anatomically, c-Fos expression in the anterior cingulate cortex (ACC) was significantly higher in worker rats than in parasite rats. Functionally, ACC inactivation suppressed the worker's lever-press behavior drastically under social, but only mildly under individual, settings. Transcriptionally, GABAA receptor- and potassium channel-related messenger RNA expressions were reliably lower in the worker's, relative to parasite's, ACC. These findings indicate the requirement of ACC activation for the expression of exploitable, effortful behavior, which could be mediated by molecular pathways involving GABAA receptor/potassium channel proteins.
Collapse
|
32
|
Fairless R, Bading H, Diem R. Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Front Neurosci 2021; 15:741280. [PMID: 34744612 PMCID: PMC8567076 DOI: 10.3389/fnins.2021.741280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Glutamate signalling is an essential aspect of neuronal communication involving many different glutamate receptors, and underlies the processes of memory, learning and synaptic plasticity. Despite neuroinflammatory diseases covering a range of maladies with very different biological causes and pathophysiologies, a central role for dysfunctional glutamate signalling is becoming apparent. This is not just restricted to the well-described role of glutamate in mediating neurodegeneration, but also includes a myriad of other influences that glutamate can exert on the vasculature, as well as immune cell and glial regulation, reflecting the ability of neurons to communicate with these compartments in order to couple their activity with neuronal requirements. Here, we discuss the role of pathophysiological glutamate signalling in neuroinflammatory disease, using both multiple sclerosis and Alzheimer's disease as examples, and how current steps are being made to harness our growing understanding of these processes in the development of neuroprotective strategies. This review focuses in particular on N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisooxazol-4-yl) propionate (AMPA) type ionotropic glutamate receptors, although metabotropic, G-protein-coupled glutamate receptors may also contribute to neuroinflammatory processes. Given the indispensable roles of glutamate-gated ion channels in synaptic communication, means of pharmacologically distinguishing between physiological and pathophysiological actions of glutamate will be discussed that allow deleterious signalling to be inhibited whilst minimising the disturbance of essential neuronal function.
Collapse
Affiliation(s)
- Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Fischer S, Nasyrov E, Brosien M, Preissner KT, Marti HH, Kunze R. Self-extracellular RNA promotes pro-inflammatory response of astrocytes to exogenous and endogenous danger signals. J Neuroinflammation 2021; 18:252. [PMID: 34727934 PMCID: PMC8561902 DOI: 10.1186/s12974-021-02286-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/28/2021] [Indexed: 01/16/2023] Open
Abstract
Objective Astrocytes participate in the local innate immune response of the central nervous system. In response to stress such as ischemia, activated cells release endogenous factors known as damage-associated molecular patterns (DAMPs). Self-extracellular RNA (eRNA) is such a ubiquitous alarm signal. However, it is unclear whether eRNA is involved in the early acute phase of cerebral ischemia and is sufficient to sensitize astrocytes towards a DAMP or PAMP (pathogen-associated molecular pattern) reaction. Methods Pro-inflammatory activation upon eRNA stimulation was characterized in primary murine astrocyte cultures. In vivo, an experimental stroke model was used to localize and quantify eRNA in murine brain sections. Using primary cortical neurons and the mouse hippocampal neuronal cell line HT-22, neuronal RNA release upon stress conditions related to cerebral hypoxia/ischemia was analyzed. Results While low-dose eRNA alone did not promote pro-inflammatory activation of astrocytes in culture, it strongly enhanced the expression of pro-inflammatory cytokines in the presence of either Pam2CSK4, a synthetic PAMP molecule that mimics bacterial infection, or high mobility group box 1 (HMGB1), a prominent DAMP. Synergism of eRNA/Pam2CSK4 and eRNA/HMGB1 was prevented by blockage of the astroglial toll-like receptor (TLR)-2. Inhibition of NF-κB- and mitogen-activated protein kinase-dependent signaling pathways hampered eRNA/Pam2CSK4-mediated pro-inflammatory activation of astrocytes. In vivo, the amount of non-nuclear, presumably extracellular ribosomal RNA in close proximity to neurons significantly accumulated across the infarct core and peri-infarct areas that was accompanied by transcriptional up-regulation of various pro-inflammatory factors. Accordingly, the exposure of neurons to hypoxic/ischemic stress in vitro resulted in the release of eRNA, partly mediated by active cellular processes dependent on the cytosolic calcium level. Conclusion The DAMP signal eRNA can sensitize astrocytes as active players in cerebral innate immunity towards exogenous and endogenous activators of inflammation (PAMPs and DAMPs) in a synergistic manner via TLR2-NF-κB-dependent signaling mechanisms. These findings provide new insights into the pathogenesis of ischemic stroke and other inflammatory neurological disorders. Further studies will clarify whether administration of RNase in vivo may serve as an effective treatment for inflammatory brain pathologies. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02286-w.
Collapse
Affiliation(s)
- Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.
| | - Emil Nasyrov
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.,Department of Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Monika Brosien
- German Center for Lung Research, Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Justus-Liebig-University, Giessen, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.,Department of Cardiology, Medical School, Kerckhoff-Heart-Research-Institute, Justus-Liebig-University, Giessen, Germany
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, Chen X. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci 2021; 15:685201. [PMID: 34658788 PMCID: PMC8515188 DOI: 10.3389/fncel.2021.685201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone receptor that primarily resides at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) and acts as a dynamic pluripotent modulator regulating cellular pathophysiological processes. Multiple pharmacological studies have confirmed the beneficial effects of Sig-1R activation on cellular calcium homeostasis, excitotoxicity modulation, reactive oxygen species (ROS) clearance, and the structural and functional stability of the ER, mitochondria, and MAM. The Sig-1R is expressed broadly in cells of the central nervous system (CNS) and has been reported to be involved in various neurological disorders. Traumatic brain injury (TBI)-induced secondary injury involves complex and interrelated pathophysiological processes such as cellular apoptosis, glutamate excitotoxicity, inflammatory responses, endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction. Thus, given the pluripotent modulation of the Sig-1R in diverse neurological disorders, we hypothesized that the Sig-1R may affect a series of pathophysiology after TBI. This review summarizes the current knowledge of the Sig-1R, its mechanistic role in various pathophysiological processes of multiple CNS diseases, and its potential therapeutic role in TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
35
|
Abstract
The susceptibility of the brain to ischaemic injury dramatically limits its viability following interruptions in blood flow. However, data from studies of dissociated cells, tissue specimens, isolated organs and whole bodies have brought into question the temporal limits within which the brain is capable of tolerating prolonged circulatory arrest. This Review assesses cell type-specific mechanisms of global cerebral ischaemia, and examines the circumstances in which the brain exhibits heightened resilience to injury. We suggest strategies for expanding such discoveries to fuel translational research into novel cytoprotective therapies, and describe emerging technologies and experimental concepts. By doing so, we propose a new multimodal framework to investigate brain resuscitation following extended periods of circulatory arrest.
Collapse
|
36
|
RyR-mediated Ca 2+ release elicited by neuronal activity induces nuclear Ca 2+ signals, CREB phosphorylation, and Npas4/RyR2 expression. Proc Natl Acad Sci U S A 2021; 118:2102265118. [PMID: 34389673 DOI: 10.1073/pnas.2102265118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation-a key event in synaptic plasticity and hippocampal memory-and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.
Collapse
|
37
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
38
|
Back MK, Ruggieri S, Jacobi E, von Engelhardt J. Amyloid Beta-Mediated Changes in Synaptic Function and Spine Number of Neocortical Neurons Depend on NMDA Receptors. Int J Mol Sci 2021; 22:ijms22126298. [PMID: 34208315 PMCID: PMC8231237 DOI: 10.3390/ijms22126298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Onset and progression of Alzheimer's disease (AD) pathophysiology differs between brain regions. The neocortex, for example, is a brain region that is affected very early during AD. NMDA receptors (NMDARs) are involved in mediating amyloid beta (Aβ) toxicity. NMDAR expression, on the other hand, can be affected by Aβ. We tested whether the high vulnerability of neocortical neurons for Aβ-toxicity may result from specific NMDAR expression profiles or from a particular regulation of NMDAR expression by Aβ. Electrophysiological analyses suggested that pyramidal cells of 6-months-old wildtype mice express mostly GluN1/GluN2A NMDARs. While synaptic NMDAR-mediated currents are unaltered in 5xFAD mice, extrasynaptic NMDARs seem to contain GluN1/GluN2A and GluN1/GluN2A/GluN2B. We used conditional GluN1 and GluN2B knockout mice to investigate whether NMDARs contribute to Aβ-toxicity. Spine number was decreased in pyramidal cells of 5xFAD mice and increased in neurons with 3-week virus-mediated Aβ-overexpression. NMDARs were required for both Aβ-mediated changes in spine number and functional synapses. Thus, our study gives novel insights into the Aβ-mediated regulation of NMDAR expression and the role of NMDARs in Aβ pathophysiology in the somatosensory cortex.
Collapse
|
39
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
40
|
Woo MS, Ufer F, Rothammer N, Di Liberto G, Binkle L, Haferkamp U, Sonner JK, Engler JB, Hornig S, Bauer S, Wagner I, Egervari K, Raber J, Duvoisin RM, Pless O, Merkler D, Friese MA. Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med 2021; 218:e20201290. [PMID: 33661276 PMCID: PMC7938362 DOI: 10.1084/jem.20201290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system with continuous neuronal loss. Treatment of clinical progression remains challenging due to lack of insights into inflammation-induced neurodegenerative pathways. Here, we show that an imbalance in the neuronal receptor interactome is driving glutamate excitotoxicity in neurons of MS patients and identify the MS risk-associated metabotropic glutamate receptor 8 (GRM8) as a decisive modulator. Mechanistically, GRM8 activation counteracted neuronal cAMP accumulation, thereby directly desensitizing the inositol 1,4,5-trisphosphate receptor (IP3R). This profoundly limited glutamate-induced calcium release from the endoplasmic reticulum and subsequent cell death. Notably, we found Grm8-deficient neurons to be more prone to glutamate excitotoxicity, whereas pharmacological activation of GRM8 augmented neuroprotection in mouse and human neurons as well as in a preclinical mouse model of MS. Thus, we demonstrate that GRM8 conveys neuronal resilience to CNS inflammation and is a promising neuroprotective target with broad therapeutic implications.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Ufer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Lars Binkle
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Jana K. Sonner
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Hornig
- Experimentelle Neuropädiatrie, Klinik für Kinder und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Kristof Egervari
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR
| | - Robert M. Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva, Switzerland
| | - Manuel A. Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Gulmez Karaca K, Brito DVC, Kupke J, Zeuch B, Oliveira AMM. Engram reactivation during memory retrieval predicts long-term memory performance in aged mice. Neurobiol Aging 2021; 101:256-261. [PMID: 33647524 DOI: 10.1016/j.neurobiolaging.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Age-related cognitive decline preferentially targets long-lasting episodic memories that require intact hippocampal function. Memory traces (or engrams) are believed to be encoded within the neurons activated during learning (neuronal ensembles), and recalled by reactivation of the same population. However, whether engram reactivation dictates memory performance late in life is not known. Here, we labeled neuronal ensembles formed during object location recognition learning in the dentate gyrus, and analyzed the reactivation of this population during long-term memory recall in young adult, cognitively impaired- and unimpaired-aged mice. We found that reactivation of memory-encoding neuronal ensembles at long-term memory recall was disrupted in impaired but not unimpaired-aged mice. Furthermore, we showed that the memory performance in the aged population correlated with the degree of engram reactivation at long-term memory recall. Overall, our data implicates recall-induced engram reactivation as a prediction factor of memory performance in aging. Moreover, our findings suggest impairments in neuronal ensemble stabilization and/or reactivation as an underlying mechanism in age-dependent cognitive decline.
Collapse
Affiliation(s)
- Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Benjamin Zeuch
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
42
|
Marmolejo-Martínez-Artesero S, Casas C, Romeo-Guitart D. Endogenous Mechanisms of Neuroprotection: To Boost or Not to Boost. Cells 2021; 10:cells10020370. [PMID: 33578870 PMCID: PMC7916582 DOI: 10.3390/cells10020370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Postmitotic cells, like neurons, must live through a lifetime. For this reason, organisms/cells have evolved with self-repair mechanisms that allow them to have a long life. The discovery workflow of neuroprotectors during the last years has focused on blocking the pathophysiological mechanisms that lead to neuronal loss in neurodegeneration. Unfortunately, only a few strategies from these studies were able to slow down or prevent neurodegeneration. There is compelling evidence demonstrating that endorsing the self-healing mechanisms that organisms/cells endogenously have, commonly referred to as cellular resilience, can arm neurons and promote their self-healing. Although enhancing these mechanisms has not yet received sufficient attention, these pathways open up new therapeutic avenues to prevent neuronal death and ameliorate neurodegeneration. Here, we highlight the main endogenous mechanisms of protection and describe their role in promoting neuron survival during neurodegeneration.
Collapse
Affiliation(s)
- Sara Marmolejo-Martínez-Artesero
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - Caty Casas
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - David Romeo-Guitart
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- Laboratory “Hormonal Regulation of Brain Development and Functions”—Team 8, Institut Necker Enfants-Malades (INEM), INSERM U1151, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
- Correspondence: ; Tel.: +33-01-40-61-53-57
| |
Collapse
|
43
|
Poddar R. Hyperhomocysteinemia is an emerging comorbidity in ischemic stroke. Exp Neurol 2021; 336:113541. [PMID: 33278453 PMCID: PMC7856041 DOI: 10.1016/j.expneurol.2020.113541] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of the amino acid homocysteine is a common metabolic disorder that is considered to be a risk factor for ischemic stroke. However, it is still unclear whether predisposition to hyperhomocysteinemia could contribute to the severity of stroke outcome. This review highlights the advantages and limitations of the current rodent models of hyperhomocysteinemia, describes the consequence of mild hyperhomocysteinemia on the severity of ischemic brain damage in preclinical studies and summarizes the mechanisms involved in homocysteine induced neurotoxicity. The findings provide the premise for establishing hyperhomocysteinemia as a comorbidity for ischemic stroke and should be taken into consideration while developing potential therapeutic agents for stroke treatment.
Collapse
Affiliation(s)
- Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
44
|
Hu W, He J, Wang Y, Xu L, Zhao Y, Hu X, Shen H. Protective effect of Achyranthes bidentata polypeptides on NMDA-mediated injury is developmentally regulated via modulating NR2A and NR2B differentially. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:248. [PMID: 33708875 PMCID: PMC7940890 DOI: 10.21037/atm-20-581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background Achyranthes bidentata polypeptides (ABPPs) are a potent intervention for excitotoxicity-related disorders such as Parkinson’s disease and ischemic stroke. Previous work suggests that overstimulation of N-methyl-D-aspartate (NMDA) receptors plays a critical role in excitotoxicity, and expression of NR2 subunit variations is developmentally regulated. Our current study focused on neuroprotection of ABPPs on cultured neurons by modulation of NR2A and NR2B differentially. Methods Primary cultured neurons were treated with NVP-AAM077, Ro-256981, ABPPs, and then the neurons were exposed to NMDA to induce excitotoxicity. Cellular viability was detected promptly and 24-hour after exposure to NMDA by MTT assay. Patch-clamp recording was applied to evaluate the effect of ABPPs on NMDA-evoked current and the differential modulation of ABPPs on NR2A and NR2B subunits in conjunction with NVP-AAM077 and Ro-256981. Results ABPPs (10 µg/mL) blocked neuronal injury by NMDA in mature cultures, and the peptides conferred neuroprotection in immature cultures unless co-applied with NVP-AAM077. Furthermore, ABPPs enhanced NMDA current in mature cultures, while decreasing NMDA current in immature cultures. On the other hand, we showed that ABPPs increased NMDA current when Ro-256981 was present and decreased NMDA current when NVP-AAM007 was present. Conclusions Neuroprotection of ABPPs on NMDA-mediated injury differentially in immature and mature cultures involves enhancement of NR2A subunits and prevention of NR2B subunits, indicating that dosage of ABPP should be considered in treatment with patients at different developmental stages.
Collapse
Affiliation(s)
- Wenqing Hu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Bioengineering, Jacobs School of Engineering, UC San Diego, La Jolla, CA, USA
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yu Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xinping Hu
- Department of Information Technology, Library of Nantong University, Nantong University, Nantong, China
| | - Hongmei Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Affiliated Mental Health Center of Nantong University, Brain Hospital of Nantong City, Nantong, China
| |
Collapse
|
45
|
Simonetti M, Paldy E, Njoo C, Bali KK, Worzfeld T, Pitzer C, Kuner T, Offermanns S, Mauceri D, Kuner R. The impact of Semaphorin 4C/Plexin-B2 signaling on fear memory via remodeling of neuronal and synaptic morphology. Mol Psychiatry 2021; 26:1376-1398. [PMID: 31444474 PMCID: PMC7985029 DOI: 10.1038/s41380-019-0491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022]
Abstract
Aberrant fear is a cornerstone of several psychiatric disorders. Consequently, there is large interest in elucidation of signaling mechanisms that link extracellular cues to changes in neuronal function and structure in brain pathways that are important in the generation and maintenance of fear memory and its behavioral expression. Members of the Plexin-B family of receptors for class 4 semaphorins play important roles in developmental plasticity of neurons, and their expression persists in some areas of the adult nervous system. Here, we aimed to elucidate the role of Semaphorin 4C (Sema4C) and its cognate receptor, Plexin-B2, in the expression of contextual and cued fear memory, setting a mechanistic focus on structural plasticity and exploration of contributing signaling pathways. We observed that Plexin-B2 and Sema4C are expressed in forebrain areas related to fear memory, such as the anterior cingulate cortex, amygdala and the hippocampus, and their expression is regulated by aversive stimuli that induce fear memory. By generating forebrain-specific Plexin-B2 knockout mice and analyzing fear-related behaviors, we demonstrate that Sema4C-PlexinB2 signaling plays a crucial functional role in the recent and remote recall of fear memory. Detailed neuronal morphological analyses revealed that Sema4C-PlexinB2 signaling largely mediates fear-induced structural plasticity by enhancing dendritic ramifications and modulating synaptic density in the adult hippocampus. Analyses on signaling-related mutant mice showed that these functions are mediated by PlexinB2-dependent RhoA activation. These results deliver important insights into the mechanistic understanding of maladaptive plasticity in fear circuits and have implications for novel therapeutic strategies against fear-related disorders.
Collapse
Affiliation(s)
- Manuela Simonetti
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Eszter Paldy
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian Njoo
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Kiran Kumar Bali
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Thomas Worzfeld
- grid.10253.350000 0004 1936 9756Institute of Pharmacology, Marburg University, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany ,grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Claudia Pitzer
- grid.7700.00000 0001 2190 4373Interdisciplinary Neurobehavioral Core, Heidelberg University, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Thomas Kuner
- grid.7700.00000 0001 2190 4373Anatomy and Cell Biology Institute, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Stefan Offermanns
- grid.418032.c0000 0004 0491 220XDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Daniela Mauceri
- grid.7700.00000 0001 2190 4373Department of Neurobiology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
46
|
P A, Bulbule SR, N H, G A, R.L B, K.S D. Elevation of gene expression of Btg2, Gadd 153, and antioxidant markers in RONS-induced PC12 cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Free radicals generated in the biological system bring about modifications in biological molecules causing damage to their structure and function. Identifying the damage caused by ROS and RNS is important to predict the pathway of apoptosis due to stress in PC12 cells. The first defense mechanisms against them are antioxidants which act in various pathways through important cellular organelles like the mitochondria and endoplasmic reticulum. Specific biomarkers like Gadd153 which is a marker for endoplasmic reticulum stress, Nrf2 which responds to the redox changes and translocates the antioxidant response elements, and Btg2 which is an antioxidant regulator have not been addressed in different stress conditions previously in PC12 cells. Therefore, the study was conducted to analyze the gene expression pattern (SOD, Catalase, Btg2, Gadd153, and Nrf2) and the protein expression pattern (iNOS and MnSOD) of the antioxidant stress markers in differential stress-induced PC12 cells. Peroxynitrite (1 μM), rotenone (1 μM), H2O2(100 mM), and high glucose (33 mM) were used to induce oxidative and nitrosative stress in PC12 cells.
Results
The results obtained suggested that rotenone-induced PC12 cells showed a significant increase in the expression of catalase, Btg2, and Gadd153 compared to the control. Peroxynitrite-induced PC12 cells showed higher expression of Btg2 compared to the control. H2O2 and high glucose showed lesser expression compared to the control in all stress marker genes. In contrast, the Nrf2 gene expression is downregulated in all the stress-induced PC12 cells compared to the control. Further, MnSOD and iNOS protein expression studies suggest that PC12 cells exhibit a selective downregulation. Lower protein expression of MnSOD and iNOS may be resulted due to the mitochondrial dysfunction in peroxynitrite-, high glucose-, and H2O2-treated cells, whereas rotenone-induced cells showed lower expression, which could be the result of a dysfunction of the endoplasmic reticulum.
Conclusion
Different stress inducers like rotenone, peroxynitrite, H2O2, and high glucose increase the NO and ROS. Btg2 and Gadd153 genes were upregulated in the stress-induced cells, whereas the Nrf2 was significantly downregulated in differential stress-induced PC12 cells. Further, antioxidant marker genes were differentially expressed with different stress inducers.
Collapse
|
47
|
Vallese F, Catoni C, Cieri D, Barazzuol L, Ramirez O, Calore V, Bonora M, Giamogante F, Pinton P, Brini M, Calì T. An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nat Commun 2020; 11:6069. [PMID: 33247103 PMCID: PMC7699637 DOI: 10.1038/s41467-020-19892-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Membrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Domenico Cieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Omar Ramirez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Valentina Calore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy.
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
48
|
Yan J, Bengtson CP, Buchthal B, Hagenston AM, Bading H. Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 2020; 370:370/6513/eaay3302. [PMID: 33033186 DOI: 10.1126/science.aay3302] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 05/05/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Excitotoxicity induced by NMDA receptors (NMDARs) is thought to be intimately linked to high intracellular calcium load. Unexpectedly, NMDAR-mediated toxicity can be eliminated without affecting NMDAR-induced calcium signals. Instead, excitotoxicity requires physical coupling of NMDARs to TRPM4. This interaction is mediated by intracellular domains located in the near-membrane portions of the receptors. Structure-based computational drug screening using the interaction interface of TRPM4 in complex with NMDARs identified small molecules that spare NMDAR-induced calcium signaling but disrupt the NMDAR/TRPM4 complex. These interaction interface inhibitors strongly reduce NMDA-triggered toxicity and mitochondrial dysfunction, abolish cyclic adenosine monophosphate-responsive element-binding protein (CREB) shutoff, boost gene induction, and reduce neuronal loss in mouse models of stroke and retinal degeneration. Recombinant or small-molecule NMDAR/TRPM4 interface inhibitors may mitigate currently untreatable human neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Yan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Bettina Buchthal
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Anna M Hagenston
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Bas-Orth C, Schneider J, Lewen A, McQueen J, Hasenpusch-Theil K, Theil T, Hardingham GE, Bading H, Kann O. The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms. J Cereb Blood Flow Metab 2020; 40:2225-2239. [PMID: 31722597 PMCID: PMC7585921 DOI: 10.1177/0271678x19887777] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of the mitochondrial calcium uniporter (MCU) gene (Mcu) in cellular energy homeostasis and generation of electrical brain rhythms is widely unknown. We investigated this issue in mice and rats using Mcu-knockout and -knockdown strategies in vivo and in situ and determined the effects of these genetic manipulations on hippocampal gamma oscillations (30-70 Hz) and sharp wave-ripples. These physiological network states require precise neurotransmission between pyramidal cells and inhibitory interneurons, support spike-timing and synaptic plasticity and are associated with perception, attention and memory. Absence of the MCU resulted in (i) gamma oscillations with decreased power (by >40%) and lower synchrony, including less precise neural action potential generation ('spiking'), (ii) sharp waves with decreased incidence (by about 22%) and decreased fast ripple frequency (by about 3%) and (iii) lack of activity-dependent pyruvate dehydrogenase dephosphorylation. However, compensatory adaptation in gene expression related to mitochondrial function and glucose metabolism was not detected. These data suggest that the neuronal MCU is crucial for the generation of network rhythms, most likely by influences on oxidative phosphorylation and perhaps by controlling cytoplasmic Ca2+ homeostasis. This work contributes to an increased understanding of mitochondrial Ca2+ uptake in cortical information processing underlying cognition and behaviour.
Collapse
Affiliation(s)
- Carlos Bas-Orth
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Justus Schneider
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Lewen
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Jamie McQueen
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Thomas Theil
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hilmar Bading
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Oliver Kann
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|