1
|
Duong VT, Lee D, Kim YH, Oh SO. Functional role of UNC13D in immune diseases and its therapeutic applications. Front Immunol 2024; 15:1460882. [PMID: 39469717 PMCID: PMC11513310 DOI: 10.3389/fimmu.2024.1460882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
UNC13 family (also known as Munc13) proteins are evolutionarily conserved proteins involved in the rapid and regulated secretion of vesicles, including synaptic vesicles and cytotoxic granules. Fast and regulated secretion at the neuronal and immunological synapses requires multiple steps, from the biogenesis of vesicles to membrane fusion, and a complex array of proteins for each step. Defects at these steps can lead to various genetic disorders. Recent studies have shown multiple roles of UNC13D in the secretion of cytotoxic granules by immune cells. Here, the molecular structure and detailed roles of UNC13D in the biogenesis, tethering, and priming of cytotoxic vesicles and in endoplasmic reticulum are summarized. Moreover, its association with immune diseases, including familial hemophagocytic lymphohistiocytosis type 3, macrophage activation syndrome, juvenile idiopathic arthritis, and autoimmune lymphoproliferative syndrome, is reviewed. Finally, the therapeutic application of CRISPR/Cas9-based gene therapy for genetic diseases is introduced.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
2
|
Xu DM, Zhang ZJ, Guo HK, Chen GJ, Ma YL. ERRα regulates synaptic transmission through reactive oxygen species in hippocampal neurons. Heliyon 2024; 10:e23739. [PMID: 38192817 PMCID: PMC10772171 DOI: 10.1016/j.heliyon.2023.e23739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Reactive oxygen species (ROS) play multiple roles in synaptic transmission, and estrogen-related receptor α (ERRα) is involved in regulating ROS production. The purpose of our study was to explore the underlying effect of ERRα on ROS production, neurite formation and synaptic transmission. Our results revealed that knocking down ERRα expression affected the formation of neuronal neurites and dendritic spines, which are the basic structures of synaptic transmission and play important roles in learning, memory and neuronal plasticity; moreover, the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) were decreased. These abnormalities were reversed by overexpression of human ERRα. Additionally, we also found that knocking down ERRα expression increased intracellular ROS levels in neurons. ROS inhibitor PBN rescued the changes in neurite formation and synaptic transmission induced by ERRα knockdown. These results indicate a new possible cellular mechanism by which ERRα affects intracellular ROS levels, which in turn regulate neurite and dendritic spine formation and synaptic transmission.
Collapse
Affiliation(s)
- De-Mei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Zhi-Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Hao-Kun Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
3
|
Ali G, Shin KC, Habbab W, Alkhadairi G, AbdelAleem A, AlShaban FA, Park Y, Stanton LW. Characterization of a loss-of-function NSF attachment protein beta mutation in monozygotic triplets affected with epilepsy and autism using cortical neurons from proband-derived and CRISPR-corrected induced pluripotent stem cell lines. Front Neurosci 2024; 17:1302470. [PMID: 38260021 PMCID: PMC10801733 DOI: 10.3389/fnins.2023.1302470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
We investigated whether a homozygous recessive genetic variant of NSF attachment protein beta (NAPB) gene inherited by monozygotic triplets contributed to their phenotype of early-onset epilepsy and autism. Induced pluripotent stem cell (iPSC) lines were generated from all three probands and both parents. The NAPB genetic variation was corrected in iPSC lines from two probands by CRISPR/Cas9 gene editing. Cortical neurons were produced by directed, in vitro differentiation from all iPSC lines. These cell line-derived neurons enabled us to determine that the genetic variation in the probands causes exon skipping and complete absence of NAPB protein. Electrophysiological and transcriptomic comparisons of cortical neurons derived from parents and probands cell lines indicate that loss of NAPB function contributes to alterations in neuronal functions and likely contributed to the impaired neurodevelopment of the triplets.
Collapse
Affiliation(s)
- Gowher Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Wesal Habbab
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ghaneya Alkhadairi
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Alice AbdelAleem
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Fouad A. AlShaban
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Lawrence W. Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
4
|
Sundaram RVK, Chatterjee A, Bera M, Grushin K, Panda A, Li F, Coleman J, Lee S, Ramakrishnan S, Ernst AM, Gupta K, Rothman JE, Krishnakumar SS. Novel Roles for Diacylglycerol in Synaptic Vesicle Priming and Release Revealed by Complete Reconstitution of Core Protein Machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543781. [PMID: 37333317 PMCID: PMC10274626 DOI: 10.1101/2023.06.05.543781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Here we introduce the full functional reconstitution of genetically-validated core protein machinery (SNAREs, Munc13, Munc18, Synaptotagmin, Complexin) for synaptic vesicle priming and release in a geometry that enables detailed characterization of the fate of docked vesicles both before and after release is triggered with Ca 2+ . Using this novel setup, we discover new roles for diacylglycerol (DAG) in regulating vesicle priming and Ca 2+- triggered release involving the SNARE assembly chaperone Munc13. We find that low concentrations of DAG profoundly accelerate the rate of Ca 2+ -dependent release, and high concentrations reduce clamping and permit extensive spontaneous release. As expected, DAG also increases the number of ready-release vesicles. Dynamic single-molecule imaging of Complexin binding to ready-release vesicles directly establishes that DAG accelerates the rate of SNAREpin assembly mediated by Munc13 and Munc18 chaperones. The selective effects of physiologically validated mutations confirmed that the Munc18-Syntaxin-VAMP2 'template' complex is a functional intermediate in the production of primed, ready-release vesicles, which requires the coordinated action of Munc13 and Munc18. SIGNIFICANCE STATEMENT Munc13 and Munc18 are SNARE-associated chaperones that act as "priming" factors, facilitating the formation of a pool of docked, release-ready vesicles and regulating Ca 2+ -evoked neurotransmitter release. Although important insights into Munc18/Munc13 function have been gained, how they assemble and operate together remains enigmatic. To address this, we developed a novel biochemically-defined fusion assay which enabled us to investigate the cooperative action of Munc13 and Munc18 in molecular terms. We find that Munc18 nucleates the SNARE complex, while Munc13 promotes and accelerates the SNARE assembly in a DAG-dependent manner. The concerted action of Munc13 and Munc18 stages the SNARE assembly process to ensure efficient 'clamping' and formation of stably docked vesicles, which can be triggered to fuse rapidly (∼10 msec) upon Ca 2+ influx.
Collapse
Affiliation(s)
- R Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Atrouli Chatterjee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kirill Grushin
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aniruddha Panda
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Feng Li
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Seong Lee
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andreas M. Ernst
- School of Biological Sciences, University of California San Diego, La Jolla CA 92093, USA
| | - Kallol Gupta
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James E. Rothman
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shyam S. Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Meunier FA, Hu Z. Functional Roles of UNC-13/Munc13 and UNC-18/Munc18 in Neurotransmission. ADVANCES IN NEUROBIOLOGY 2023; 33:203-231. [PMID: 37615868 DOI: 10.1007/978-3-031-34229-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are released from synaptic and secretory vesicles following calcium-triggered fusion with the plasma membrane. These exocytotic events are driven by assembly of a ternary SNARE complex between the vesicle SNARE synaptobrevin and the plasma membrane-associated SNAREs syntaxin and SNAP-25. Proteins that affect SNARE complex assembly are therefore important regulators of synaptic strength. In this chapter, we review our current understanding of the roles played by two SNARE interacting proteins: UNC-13/Munc13 and UNC-18/Munc18. We discuss results from both invertebrate and vertebrate model systems, highlighting recent advances, focusing on the current consensus on molecular mechanisms of action and nanoscale organization, and pointing out some unresolved aspects of their functions.
Collapse
Affiliation(s)
- Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
López-Murcia FJ, Reim K, Taschenberger H. Complexins: Ubiquitously Expressed Presynaptic Regulators of SNARE-Mediated Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:255-285. [PMID: 37615870 DOI: 10.1007/978-3-031-34229-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitter release is a spatially and temporally tightly regulated process, which requires assembly and disassembly of SNARE complexes to enable the exocytosis of transmitter-loaded synaptic vesicles (SVs) at presynaptic active zones (AZs). While the requirement for the core SNARE machinery is shared by most membrane fusion processes, SNARE-mediated fusion at AZs is uniquely regulated to allow very rapid Ca2+-triggered SV exocytosis following action potential (AP) arrival. To enable a sub-millisecond time course of AP-triggered SV fusion, synapse-specific accessory SNARE-binding proteins are required in addition to the core fusion machinery. Among the known SNARE regulators specific for Ca2+-triggered SV fusion are complexins, which are almost ubiquitously expressed in neurons. This chapter summarizes the structural features of complexins, models for their molecular interactions with SNAREs, and their roles in SV fusion.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
Ali G, Habbab W, Alkhadairi G, Al-Shaban FA, Stanton LW. Generation of induced pluripotent stem cell lines from nonaffected parents and monozygotic triplets affected with autism spectrum disorder and epilepsy. Stem Cell Res 2022; 65:102943. [PMID: 36272305 DOI: 10.1016/j.scr.2022.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
We have generated induced pluripotent stem cell (iPSC) lines from monozygotic triplets with a rare homozygous mutation in NAPB gene (c.354+2T>G). iPSC lines were also generated from their consanguineous parents who were both heterozygous for the inherited NAPB mutation. The iPSC lines were generated using non-integrating Sendai viral vectors. All iPSC lines showed prototypical stem cell morphology, expressed pluripotency markers and were able to differentiate to all three germ lineages. These iPSC lines will be useful to explore the molecular function of NAPB in neurophysiology and how its dysfunction potentially contributes to the progression of neurodevelopmental disorders associated with autism and epilepsy.
Collapse
Affiliation(s)
- Gowher Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Wesal Habbab
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ghaneya Alkhadairi
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Fouad A Al-Shaban
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Lawrence W Stanton
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
8
|
Tan C, de Nola G, Qiao C, Imig C, Born RT, Brose N, Kaeser PS. Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones. eLife 2022; 11:79077. [PMID: 36398873 PMCID: PMC9822248 DOI: 10.7554/elife.79077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Active zones consist of protein scaffolds that are tightly attached to the presynaptic plasma membrane. They dock and prime synaptic vesicles, couple them to voltage-gated Ca2+ channels, and direct neurotransmitter release toward postsynaptic receptor domains. Simultaneous RIM + ELKS ablation disrupts these scaffolds, abolishes vesicle docking, and removes active zone-targeted Munc13, but some vesicles remain releasable. To assess whether this enduring vesicular fusogenicity is mediated by non-active zone-anchored Munc13 or is Munc13-independent, we ablated Munc13-1 and Munc13-2 in addition to RIM + ELKS in mouse hippocampal neurons. The hextuple knockout synapses lacked docked vesicles, but other ultrastructural features were near-normal despite the strong genetic manipulation. Removing Munc13 in addition to RIM + ELKS impaired action potential-evoked vesicle fusion more strongly than RIM + ELKS knockout by further decreasing the releasable vesicle pool. Hence, Munc13 can support some fusogenicity without RIM and ELKS, and presynaptic recruitment of Munc13, even without active zone anchoring, suffices to generate some fusion-competent vesicles.
Collapse
Affiliation(s)
- Chao Tan
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Claire Qiao
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Cordelia Imig
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
9
|
Fadil SA, Janetopoulos C. The Polarized Redistribution of the Contractile Vacuole to the Rear of the Cell is Critical for Streaming and is Regulated by PI(4,5)P2-Mediated Exocytosis. Front Cell Dev Biol 2022; 9:765316. [PMID: 35928786 PMCID: PMC9344532 DOI: 10.3389/fcell.2021.765316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Dictyostelium discoideum amoebae align in a head to tail manner during the process of streaming during fruiting body formation. The chemoattractant cAMP is the chemoattractant regulating cell migration during this process and is released from the rear of cells. The process by which this cAMP release occurs has eluded investigators for many decades, but new findings suggest that this release can occur through expulsion during contractile vacuole (CV) ejection. The CV is an organelle that performs several functions inside the cell including the regulation of osmolarity, and discharges its content via exocytosis. The CV localizes to the rear of the cell and appears to be part of the polarity network, with the localization under the influence of the plasma membrane (PM) lipids, including the phosphoinositides (PIs), among those is PI(4,5)P2, the most abundant PI on the PM. Research on D. discoideum and neutrophils have shown that PI(4,5)P2 is enriched at the rear of migrating cells. In several systems, it has been shown that the essential regulator of exocytosis is through the exocyst complex, mediated in part by PI(4,5)P2-binding. This review features the role of the CV complex in D. discoideum signaling with a focus on the role of PI(4,5)P2 in regulating CV exocytosis and localization. Many of the regulators of these processes are conserved during evolution, so the mechanisms controlling exocytosis and membrane trafficking in D. discoideum and mammalian cells will be discussed, highlighting their important functions in membrane trafficking and signaling in health and disease.
Collapse
Affiliation(s)
- Sana A. Fadil
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- Department of Natural product, Faculty of Pharmacy, King Abdulaziz University, Saudia Arabia
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- The Science Research Institute, Albright College, Reading, PA, United States
- The Department of Cell Biology at Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Chris Janetopoulos,
| |
Collapse
|
10
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
11
|
Wang Z, Li J, Zhang T, Lu T, Wang H, Jia M, Liu J, Xiong J, Zhang D, Wang L. Family-based association study identifies SNAP25 as a susceptibility gene for autism in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:109985. [PMID: 32479779 DOI: 10.1016/j.pnpbp.2020.109985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Abstract
Autism is a neurodevelopmental disorder with high heritability. Synaptosome associated protein 25 (SNAP25) encodes a presynaptic membrane-binding protein. It plays a crucial role in neurotransmission and may be involved in the pathogenesis of autism. However, the association between SNAP25 and autism in the Han Chinese population remains unclear. To investigate whether single nucleotide polymorphisms (SNPs) in SNAP25 contribute to the risk of autism, we performed a family-based association study of 14 tagSNPs in SNAP25 in 640 Han Chinese autism trios. Our results demonstrated that rs363018 in SNAP25 was significantly associated with autism under both additive (A > G, Z = 3.144, P = .0017) and recessive models (A > G, Z = 3.055, P = .0023) after Bonferroni correction (P < .0036). An additional SNP, rs8636, was nominally associated with autism under the recessive model (C > T, Z = 1.972, P = .0487). Haplotype-based association test revealed that haplotypes A-T (Z = 2.038, P = .0415) and G-T (Z = -3.114, P = .0018) of rs363018-rs362582 were significantly associated with autism after the permutation test (P = .0158). These findings suggest that SNAP25 may represent a susceptibility gene for autism in the Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jun Li
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tian Zhang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Meixiang Jia
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jing Liu
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Jun Xiong
- Haidian Maternal & Child Health Hospital, Beijing 100080, China.
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lifang Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
12
|
Gandini MA, Zamponi GW. Voltage‐gated calcium channel nanodomains: molecular composition and function. FEBS J 2021; 289:614-633. [DOI: 10.1111/febs.15759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Maria A. Gandini
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| |
Collapse
|
13
|
Abstract
Neurotransmitter release occurs by regulated exocytosis from synaptic vesicles (SVs). Evolutionarily conserved proteins mediate the essential aspects of this process, including the membrane fusion step and priming steps that make SVs release-competent. Unlike the proteins constituting the core fusion machinery, the SV protein Mover does not occur in all species and all synapses. Its restricted expression suggests that Mover may modulate basic aspects of transmitter release and short-term plasticity. To test this hypothesis, we analyzed synaptic transmission electrophysiologically at the mouse calyx of Held synapse in slices obtained from wild-type mice and mice lacking Mover. Spontaneous transmission was unaffected, indicating that the basic release machinery works in the absence of Mover. Evoked release and vesicular release probability were slightly reduced, and the paired pulse ratio was increased in Mover knockout mice. To explore whether Mover's role is restricted to certain subpools of SVs, we analyzed our data in terms of two models of priming. A model assuming two SV pools in parallel showed a reduced release probability of so-called "superprimed vesicles" while "normally primed" ones were unaffected. For the second model, which holds that vesicles transit sequentially from a loosely docked state to a tightly docked state before exocytosis, we found that knocking out Mover selectively decreased the release probability of tight state vesicles. These results indicate that Mover regulates a subclass of primed SVs in the mouse calyx of Held.
Collapse
|
14
|
Mochida S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int J Mol Sci 2020; 22:ijms22010327. [PMID: 33396919 PMCID: PMC7794938 DOI: 10.3390/ijms22010327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
15
|
Zhao X, Wang Y, Cai A, Mei S, Liu N, Kong X. A novel NAPB splicing mutation identified by Trio-based exome sequencing is associated with early-onset epileptic encephalopathy. Eur J Med Genet 2020; 64:104101. [PMID: 33189936 DOI: 10.1016/j.ejmg.2020.104101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
N-ethylmaleimide-sensitive factor attachment proteins (NAP: NAPA and NAPB) play a role in Soluble N-ethylmaleimide-sensitive accessory protein receptor (SNARE) complex dissociation and recycling, associated with neuronal regulation and brain development and various severe early-onset epilepsies. Here, we report two patients from a Chinese family presenting with unexplained early-onset epileptic encephalopathies (EOEE) syndrome characterized by multifocal seizures, profound intellectual disability and global developmental delay. We identified the homozygous c.433-1G > A variant of the NAPB as the causative by trio-based exome sequencing. The novel splicing mutation in NAPB was third variant reported associated with EOEE syndrome. Our results gave further hints on the associations of variants in NAPB with EOEE and indicated that for patients with unexplained EOEE, the NAPB gene should be included into the data analysis from whole exome sequencing, which contributes to uncover more patients affected and rich the phenotypic spectrum.
Collapse
Affiliation(s)
- Xuechao Zhao
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Yanhong Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, No-33, Longhu Waihuan East Road, 450018, Zhengzhou, Henan Province, China.
| | - Aojie Cai
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, No-33, Longhu Waihuan East Road, 450018, Zhengzhou, Henan Province, China.
| | - Ning Liu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
16
|
Coppola U, Olivo P, D’Aniello E, Johnson CJ, Stolfi A, Ristoratore F. Rimbp, a New Marker for the Nervous System of the Tunicate Ciona robusta. Genes (Basel) 2020; 11:genes11091006. [PMID: 32867148 PMCID: PMC7565545 DOI: 10.3390/genes11091006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Establishment of presynaptic mechanisms by proteins that regulate neurotransmitter release in the presynaptic active zone is considered a fundamental step in animal evolution. Rab3 interacting molecule-binding proteins (Rimbps) are crucial components of the presynaptic active zone and key players in calcium homeostasis. Although Rimbp involvement in these dynamics has been described in distantly related models such as fly and human, the role of this family in most invertebrates remains obscure. To fill this gap, we defined the evolutionary history of Rimbp family in animals, from sponges to mammals. We report, for the first time, the expression of the two isoforms of the unique Rimbp family member in Ciona robusta in distinct domains of the larval nervous system. We identify intronic enhancers that are able to drive expression in different nervous system territories partially corresponding to Rimbp endogenous expression. The analysis of gene expression patterns and the identification of regulatory elements of Rimbp will positively impact our understanding of this family of genes in the context of Ciona embryogenesis.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Paola Olivo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | - Enrico D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Correspondence: (A.S.); (F.R.)
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy; (U.C.); (P.O.); (E.D.)
- Correspondence: (A.S.); (F.R.)
| |
Collapse
|
17
|
Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse. Proc Natl Acad Sci U S A 2020; 117:14493-14502. [PMID: 32513685 DOI: 10.1073/pnas.2000265117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A high rate of synaptic vesicle (SV) release is required at cerebellar mossy fiber terminals for rapid information processing. As the number of release sites is limited, fast SV reloading is necessary to achieve sustained release. However, rapid reloading has not been observed directly. Here, we visualize SV movements near presynaptic membrane using total internal reflection fluorescence (TIRF) microscopy. Upon stimulation, SVs appeared in the TIRF-field and became tethered to the presynaptic membrane with unexpectedly rapid time course, almost as fast as SVs disappeared due to release. However, such stimulus-induced tethering was abolished by inhibiting exocytosis, suggesting that the tethering is tightly coupled to preceding exocytosis. The newly tethered vesicles became fusion competent not immediately but only 300 ms to 400 ms after tethering. Together with model simulations, we propose that rapid tethering leads to an immediate filling of vacated spaces and release sites within <100 nm of the active zone by SVs, which serve as precursors of readily releasable vesicles, thereby shortening delays during sustained activity.
Collapse
|
18
|
López-Murcia FJ, Reim K, Jahn O, Taschenberger H, Brose N. Acute Complexin Knockout Abates Spontaneous and Evoked Transmitter Release. Cell Rep 2020; 26:2521-2530.e5. [PMID: 30840877 DOI: 10.1016/j.celrep.2019.02.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
SNARE-mediated synaptic vesicle (SV) fusion is controlled by multiple regulatory proteins that determine neurotransmitter release efficiency. Complexins are essential SNARE regulators whose mode of action is unclear, as available evidence indicates positive SV fusion facilitation and negative "fusion clamp"-like activities, with the latter occurring only in certain contexts. Because these contradictory findings likely originate in part from different experimental perturbation strategies, we attempted to resolve them by examining a conditional complexin-knockout mouse line as the most stringent genetic perturbation model available. We found that acute complexin loss after synaptogenesis in autaptic and mass-cultured hippocampal neurons reduces SV fusion probability and thus abates the rates of spontaneous, synchronous, asynchronous, and delayed transmitter release but does not affect SV priming or cause "unclamping" of spontaneous SV fusion. Thus, complexins act as facilitators of SV fusion but are dispensable for "fusion clamping" in mammalian forebrain neurons.
Collapse
Affiliation(s)
- Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Kerstin Reim
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany.
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, 37073 Göttingen, Germany.
| |
Collapse
|
19
|
Structural and Functional Analysis of the CAPS SNARE-Binding Domain Required for SNARE Complex Formation and Exocytosis. Cell Rep 2020; 26:3347-3359.e6. [PMID: 30893606 DOI: 10.1016/j.celrep.2019.02.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Exocytosis of synaptic vesicles and dense-core vesicles requires both the Munc13 and CAPS (Ca2+-dependent activator proteins for secretion) proteins. CAPS contains a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-binding region (called the DAMH domain), which has been found to be essential for SNARE-mediated exocytosis. Here we report a crystal structure of the CAPS-1 DAMH domain at 2.9-Å resolution and reveal a dual role of CAPS-1 in SNARE complex formation. CAPS-1 plays an inhibitory role dependent on binding of the DAMH domain to the MUN domain of Munc13-1, which hinders the ability of Munc13 to catalyze opening of syntaxin-1, inhibiting SNARE complex formation, and a chaperone role dependent on interaction of the DAMH domain with the syntaxin-1/SNAP-25 complex, which stabilizes the open conformation of Syx1, facilitating SNARE complex formation. Our results suggest that CAPS-1 facilitates SNARE complex formation via the DAMH domain in a manner dependent on sequential and cooperative interaction with Munc13-1 and SNARE proteins.
Collapse
|
20
|
An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons. Cell Rep 2019; 27:2212-2228.e7. [DOI: 10.1016/j.celrep.2019.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/05/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
|
21
|
Held RG, Kaeser PS. ELKS active zone proteins as multitasking scaffolds for secretion. Open Biol 2019; 8:rsob.170258. [PMID: 29491150 PMCID: PMC5830537 DOI: 10.1098/rsob.170258] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments.
Collapse
Affiliation(s)
- Richard G Held
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Neher E, Brose N. Dynamically Primed Synaptic Vesicle States: Key to Understand Synaptic Short-Term Plasticity. Neuron 2018; 100:1283-1291. [DOI: 10.1016/j.neuron.2018.11.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023]
|
23
|
Cortès-Saladelafont E, Lipstein N, García-Cazorla À. Presynaptic disorders: a clinical and pathophysiological approach focused on the synaptic vesicle. J Inherit Metab Dis 2018; 41:1131-1145. [PMID: 30022305 DOI: 10.1007/s10545-018-0230-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
The aim of this report is to present a tentative clinical and pathophysiological approach to diseases affecting the neuronal presynaptic terminal, with a major focus on synaptic vesicles (SVs). Diseases are classified depending on which step of the neurobiology of the SV is predominantly affected: (1) biogenesis of vesicle precursors in the neuronal soma; (2) transport along the axon; (3) vesicle cycle at the presynaptic terminal (exocytosis-endocytosis cycle, with the main purpose of neurotransmitter release). Given that SVs have been defined as individual organelles, we highlight the link between the biological processes disturbed by genetic mutations and the clinical presentation of these disorders. The great majority of diseases may present as epileptic encephalopathies, intellectual disability (syndromic or nonsyndromic) with/without autism spectrum disorder (and other neuropsychiatric symptoms), and movement disorders. These symptoms may overlap and present in patients as a combination of clinical signs that results in the spectrum of the synaptopathies. A small number of diseases may also exhibit neuromuscular signs. In general, SV disorders tend to be severe, early encephalopathies that interfere with neurodevelopment. As a consequence, developmental delay and intellectual disability are constant in almost all the defects described. Considering that some of these diseases might mimic other neurometabolic conditions (and in particular treatable disorders), an initial extensive metabolic workup should always be considered. Further knowledge into pathophysiological mechanisms and biomarkers, as well as descriptions of new presynaptic disorders, will probably take place in the near future.
Collapse
Affiliation(s)
- Elisenda Cortès-Saladelafont
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Institut Pediàtric de Recerca and CIBERER, ISCIII, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950, Esplugues, Barcelona, Spain
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Àngels García-Cazorla
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Institut Pediàtric de Recerca and CIBERER, ISCIII, Hospital Sant Joan de Déu, Passeig Sant Joan de Déu, 2, 08950, Esplugues, Barcelona, Spain.
| |
Collapse
|
24
|
Madera-Salcedo IK, Danelli L, Tiwari N, Dema B, Pacreau E, Vibhushan S, Birnbaum J, Agabriel C, Liabeuf V, Klingebiel C, Menasche G, Macias-Silva M, Benhamou M, Charles N, González-Espinosa C, Vitte J, Blank U. Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Sci Signal 2018; 11:11/537/eaan4350. [DOI: 10.1126/scisignal.aan4350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression. Cell Rep 2017; 16:2901-2913. [PMID: 27626661 DOI: 10.1016/j.celrep.2016.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/28/2016] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
Short-term synaptic depression (STD) is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ) release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45) of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D) mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP), resulting in a pool size decrease. A phosphonegative CAST (S45A) inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation.
Collapse
|
26
|
Yim YY, McDonald WH, Hyde K, Cruz-Rodríguez O, Tesmer JJG, Hamm HE. Quantitative Multiple-Reaction Monitoring Proteomic Analysis of Gβ and Gγ Subunits in C57Bl6/J Brain Synaptosomes. Biochemistry 2017; 56:5405-5416. [PMID: 28880079 DOI: 10.1021/acs.biochem.7b00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gβγ dimers are one of the essential signaling units of activated G protein-coupled receptors (GPCRs). There are five Gβ and 12 Gγ subunits in humans; numerous studies have demonstrated that different Gβ and Gγ subunits selectively interact to form unique Gβγ dimers, which in turn may target specific receptors and effectors. Perturbation of Gβγ signaling can lead to impaired physiological responses. Moreover, previous targeted multiple-reaction monitoring (MRM) studies of Gβ and Gγ subunits have shown distinct regional and subcellular localization patterns in four brain regions. Nevertheless, no studies have quantified or compared their individual protein levels. In this study, we have developed a quantitative MRM method not only to quantify but also to compare the protein abundance of neuronal Gβ and Gγ subunits. In whole and fractionated crude synaptosomes, we were able to identify the most abundant neuronal Gβ and Gγ subunits and their subcellular localizations. For example, Gβ1 was mostly localized at the membrane while Gβ2 was evenly distributed throughout synaptosomal fractions. The protein expression levels and subcellular localizations of Gβ and Gγ subunits may affect the Gβγ dimerization and Gβγ-effector interactions. This study offers not only a new tool for quantifying and comparing Gβ and Gγ subunits but also new insights into the in vivo distribution of Gβ and Gγ subunits, and Gβγ dimer assembly in normal brain function.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| | | | | | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University , Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
27
|
Dhara M, Mohrmann R, Bruns D. v-SNARE function in chromaffin cells. Pflugers Arch 2017; 470:169-180. [PMID: 28887593 PMCID: PMC5748422 DOI: 10.1007/s00424-017-2066-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Vesicle fusion is elementary for intracellular trafficking and release of signal molecules, thus providing the basis for diverse forms of intercellular communication like hormonal regulation or synaptic transmission. A detailed characterization of the mechanisms underlying exocytosis is key to understand how the nervous system integrates information and generates appropriate responses to stimuli. The machinery for vesicular release employs common molecular players in different model systems including neuronal and neuroendocrine cells, in particular members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family, Sec1/Munc18-like proteins, and other accessory factors. To achieve temporal precision and speed, excitable cells utilize specialized regulatory proteins like synaptotagmin and complexin, whose interplay putatively synchronizes vesicle fusion and enhances stimulus-secretion coupling. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. Specifically, we will focus on the role of vesicle associated membrane proteins, also referred to as vesicular SNAREs, in fusion and rapid cargo discharge. We will further discuss the functions of SNARE regulators during exocytosis and focus on chromaffin cell as a model system of choice that allows for detailed structure-function analyses and direct measurements of vesicle fusion under precise control of intracellular [Ca]i.
Collapse
Affiliation(s)
- Madhurima Dhara
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, 66421, Homburg/Saar, Germany
| | - Dieter Bruns
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
28
|
SNAP-25 phosphorylation at Ser187 regulates synaptic facilitation and short-term plasticity in an age-dependent manner. Sci Rep 2017; 7:7996. [PMID: 28801590 PMCID: PMC5554206 DOI: 10.1038/s41598-017-08237-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
Abstract
Neurotransmitter release is mediated by the SNARE complex, but the role of its phosphorylation has scarcely been elucidated. Although PKC activators are known to facilitate synaptic transmission, there has been a heated debate on whether PKC mediates facilitation of neurotransmitter release through phosphorylation. One of the SNARE proteins, SNAP-25, is phosphorylated at the residue serine-187 by PKC, but its physiological significance has been unclear. To examine these issues, we analyzed mutant mice lacking the phosphorylation of SNAP-25 serine-187 and found that they exhibited reduced release probability and enhanced presynaptic short-term plasticity, suggesting that not only the release process, but also the dynamics of synaptic vesicles was regulated by the phosphorylation. Furthermore, it has been known that the release probability changes with development, but the precise mechanism has been unclear, and we found that developmental changes in release probability of neurotransmitters were regulated by the phosphorylation. These results indicate that SNAP-25 phosphorylation developmentally facilitates neurotransmitter release but strongly inhibits presynaptic short-term plasticity via modification of the dynamics of synaptic vesicles in presynaptic terminals.
Collapse
|
29
|
Kawabe H, Mitkovski M, Kaeser PS, Hirrlinger J, Opazo F, Nestvogel D, Kalla S, Fejtova A, Verrier SE, Bungers SR, Cooper BH, Varoqueaux F, Wang Y, Nehring RB, Gundelfinger ED, Rosenmund C, Rizzoli SO, Südhof TC, Rhee JS, Brose N. ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. J Cell Biol 2017; 216:1143-1161. [PMID: 28264913 PMCID: PMC5379939 DOI: 10.1083/jcb.201606086] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/18/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Presynaptic active zones (AZs) are unique subcellular structures at neuronal synapses, which contain a network of specific proteins that control synaptic vesicle (SV) tethering, priming, and fusion. Munc13s are core AZ proteins with an essential function in SV priming. In hippocampal neurons, two different Munc13s-Munc13-1 and bMunc13-2-mediate opposite forms of presynaptic short-term plasticity and thus differentially affect neuronal network characteristics. We found that most presynapses of cortical and hippocampal neurons contain only Munc13-1, whereas ∼10% contain both Munc13-1 and bMunc13-2. Whereas the presynaptic recruitment and activation of Munc13-1 depends on Rab3-interacting proteins (RIMs), we demonstrate here that bMunc13-2 is recruited to synapses by the AZ protein ELKS1, but not ELKS2, and that this recruitment determines basal SV priming and short-term plasticity. Thus, synapse-specific interactions of different Munc13 isoforms with ELKS1 or RIMs are key determinants of the molecular and functional heterogeneity of presynaptic AZs.
Collapse
Affiliation(s)
- Hiroshi Kawabe
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Carl Ludwig Institute for Physiology, University of Leipzig, 04109 Leipzig, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, 37073 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University of Göttingen Medical Center, 37073 Göttingen, Germany
| | - Dennis Nestvogel
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Stefan Kalla
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
- Research Group Presynaptic Plasticity, Leibniz Institute of Neurobiology and Center for Behavioral Brain Sciences, Otto von Guericke University, 39106 Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Sophie E Verrier
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Simon R Bungers
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Frederique Varoqueaux
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Yun Wang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute of Neurobiology, 39118 Magdeburg, Germany
| | - Christian Rosenmund
- Neuroscience Research Centre and NeuroCure, Charité, University Medicine Berlin, 10117 Berlin, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, 37073 Göttingen, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Jeong-Seop Rhee
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
30
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
31
|
Lipstein N, Verhoeven-Duif NM, Michelassi FE, Calloway N, van Hasselt PM, Pienkowska K, van Haaften G, van Haelst MM, van Empelen R, Cuppen I, van Teeseling HC, Evelein AMV, Vorstman JA, Thoms S, Jahn O, Duran KJ, Monroe GR, Ryan TA, Taschenberger H, Dittman JS, Rhee JS, Visser G, Jans JJ, Brose N. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J Clin Invest 2017; 127:1005-1018. [PMID: 28192369 DOI: 10.1172/jci90259] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies.
Collapse
|
32
|
MOCHIDA S. Millisecond Ca 2+ dynamics activate multiple protein cascades for synaptic vesicle control. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:802-820. [PMID: 29225307 PMCID: PMC5790758 DOI: 10.2183/pjab.93.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.
Collapse
Affiliation(s)
- Sumiko MOCHIDA
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
33
|
Safari MR, Omrani MD, Noroozi R, Sayad A, Sarrafzadeh S, Komaki A, Manjili FA, Mazdeh M, Ghaleiha A, Taheri M. Synaptosome-Associated Protein 25 (SNAP25) Gene Association Analysis Revealed Risk Variants for ASD, in Iranian Population. J Mol Neurosci 2016; 61:305-311. [PMID: 27888397 DOI: 10.1007/s12031-016-0860-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a common, complex neurological condition, affecting approximately 1% of people worldwide. Monogenic neurodevelopmental disorders which showed autistic behavior patterns have suggested synaptic dysfunction, as a key mechanism in the pathophysiology of ASD. Subsequently, genes involved in synaptic signaling have been investigated with a priority for candidate gene studies. A synaptosomal-associated protein 25 (SNAP25) gene plays a crucial role in the central nervous system, contributing to exocytosis by targeting and fusion of vesicles to the cell membrane. Studies have shown a correlation between aberrant expression of the SNAP25 and a variety of brain diseases. Single nucleotide polymorphisms (SNPs) in this gene are associated with several psychiatric diseases, such as bipolar, schizophrenia, and attention-deficit/hyperactivity disorder. The aim of the present study was to investigate whether polymorphisms (rs3746544 and rs1051312) in the regulatory 3'-untranslated region (3'UTR) of the SNAP25 gene have an association with ASD in unrelated Iranian case (N = 524)-control (N = 472) samples. We observed robust association of the rs3746544 SNP and ASD patients, in both allele and haplotype-based analyses. Our results supported the previous observations and indicated a possible role for SNAP25 polymorphisms as susceptibility genetic factors involved in developing ASD.
Collapse
Affiliation(s)
- Mohammad Reza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Rezvan Noroozi
- Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neurology, Hamadan University of Medical sciences, Hamadan, Iran
| | - Ali Ghaleiha
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran.
| |
Collapse
|
34
|
De Jesús-Cortés H, Lu Y, Anderson RM, Khan MZ, Nath V, McDaniel L, Lutter M, Radley JJ, Pieper AA, Cui H. Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice. Neuroscience 2016; 329:66-73. [PMID: 27155145 PMCID: PMC8916097 DOI: 10.1016/j.neuroscience.2016.04.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/09/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice.
Collapse
Affiliation(s)
- Héctor De Jesús-Cortés
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Yuan Lu
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rachel M Anderson
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael Z Khan
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Varun Nath
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Latisha McDaniel
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Michael Lutter
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Jason J Radley
- Department of Psychology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew A Pieper
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA; Free Radical & Radiation Biology Program, Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Huxing Cui
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
35
|
Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength. Proc Natl Acad Sci U S A 2016; 113:E4548-57. [PMID: 27432975 DOI: 10.1073/pnas.1606383113] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic synapses show large variations in strength and short-term plasticity (STP). We show here that synapses displaying an increased strength either after posttetanic potentiation (PTP) or through activation of the phospholipase-C-diacylglycerol pathway share characteristic properties with intrinsically strong synapses, such as (i) pronounced short-term depression (STD) during high-frequency stimulation; (ii) a conversion of that STD into a sequence of facilitation followed by STD after a few conditioning stimuli at low frequency; (iii) an equalizing effect of such conditioning stimulation, which reduces differences among synapses and abolishes potentiation; and (iv) a requirement of long periods of rest for reconstitution of the original STP pattern. These phenomena are quantitatively described by assuming that a small fraction of "superprimed" synaptic vesicles are in a state of elevated release probability (p ∼ 0.5). This fraction is variable in size among synapses (typically about 30%), but increases after application of phorbol ester or during PTP. The majority of vesicles, released during repetitive stimulation, have low release probability (p ∼ 0.1), are relatively uniform in number across synapses, and are rapidly recruited. In contrast, superprimed vesicles need several seconds to be regenerated. They mediate enhanced synaptic strength at the onset of burst-like activity, the impact of which is subject to modulation by slow modulatory transmitter systems.
Collapse
|
36
|
Kabachinski G, Kielar-Grevstad DM, Zhang X, James DJ, Martin TFJ. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion. Mol Biol Cell 2016; 27:654-68. [PMID: 26700319 PMCID: PMC4750925 DOI: 10.1091/mbc.e15-07-0509] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022] Open
Abstract
The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly.
Collapse
Affiliation(s)
- Greg Kabachinski
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | | | - Xingmin Zhang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
37
|
Hori H, Sasayama D, Teraishi T, Yamamoto N, Nakamura S, Ota M, Hattori K, Kim Y, Higuchi T, Kunugi H. Blood-based gene expression signatures of medication-free outpatients with major depressive disorder: integrative genome-wide and candidate gene analyses. Sci Rep 2016; 6:18776. [PMID: 26728011 PMCID: PMC4700430 DOI: 10.1038/srep18776] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/26/2015] [Indexed: 02/08/2023] Open
Abstract
Several microarray-based studies have investigated gene expression profiles in major depressive disorder (MDD), yet with highly variable findings. We examined blood-based genome-wide expression signatures of MDD, focusing on molecular pathways and networks underlying differentially expressed genes (DEGs) and behaviours of hypothesis-driven, evidence-based candidate genes for depression. Agilent human whole-genome arrays were used to measure gene expression in 14 medication-free outpatients with MDD who were at least moderately ill and 14 healthy controls matched pairwise for age and sex. After filtering, we compared expression of entire probes between patients and controls and identified DEGs. The DEGs were evaluated by pathway and network analyses. For the candidate gene analysis, we utilized 169 previously prioritized genes and examined their case-control separation efficiency and correlational co-expression network in patients relative to controls. The 317 screened DEGs mapped to a significantly over-represented pathway, the "synaptic transmission" pathway. The protein-protein interaction network was also significantly enriched, in which a number of key molecules for depression were included. The co-expression network of candidate genes was markedly disrupted in patients. This study provided evidence for an altered molecular network along with several key molecules in MDD and confirmed that the candidate genes are worthwhile targets for depression research.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Noriko Yamamoto
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | | | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Yoshiharu Kim
- Department of Adult Mental Health, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
| | - Teruhiko Higuchi
- National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| |
Collapse
|
38
|
Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5681036. [PMID: 26635909 PMCID: PMC4655263 DOI: 10.1155/2016/5681036] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/28/2015] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is an important gasotransmitter molecule that is involved in numerous physiological processes throughout the nervous system. In addition to its involvement in physiological plasticity processes (long-term potentiation, LTP; long-term depression, LTD) which can include NMDAR-mediated calcium-dependent activation of neuronal nitric oxide synthase (nNOS), new insights into physiological and pathological consequences of nitrergic signalling have recently emerged. In addition to the canonical cGMP-mediated signalling, NO is also implicated in numerous pathways involving posttranslational modifications. In this review we discuss the multiple effects of S-nitrosylation and 3-nitrotyrosination on proteins with potential modulation of function but limit the analyses to signalling involved in synaptic transmission and vesicular release. Here, crucial proteins which mediate synaptic transmission can undergo posttranslational modifications with either pre- or postsynaptic origin. During normal brain function, both pathways serve as important cellular signalling cascades that modulate a diverse array of physiological processes, including synaptic plasticity, transcriptional activity, and neuronal survival. In contrast, evidence suggests that aging and disease can induce nitrosative stress via excessive NO production. Consequently, uncontrolled S-nitrosylation/3-nitrotyrosination can occur and represent pathological features that contribute to the onset and progression of various neurodegenerative diseases, including Parkinson's, Alzheimer's, and Huntington's.
Collapse
|
39
|
Slater CR. The functional organization of motor nerve terminals. Prog Neurobiol 2015; 134:55-103. [DOI: 10.1016/j.pneurobio.2015.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/28/2015] [Accepted: 09/05/2015] [Indexed: 12/19/2022]
|
40
|
Conroy J, Allen NM, Gorman KM, Shahwan A, Ennis S, Lynch SA, King MD. NAPB - a novel SNARE-associated protein for early-onset epileptic encephalopathy. Clin Genet 2015; 89:E1-3. [PMID: 26235277 DOI: 10.1111/cge.12648] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
Next-generation sequencing has accelerated the identification of disease genes in many rare genetic disorders including early-onset epileptic encephalopathies (EOEEs). While many of these disorders are caused by neuronal channelopathies, the role of synaptic and related neuronal proteins are increasingly being described. Here, we report a 6-year-old girl with unexplained EOEE characterized by multifocal seizures and profound global developmental delay. Recessive inheritance was considered due to parental consanguinity and Irish Traveller descent. Exome sequencing was performed. Variant prioritization identified a homozygous nonsense variant in the N-ethylmaleimide-sensitive factor attachment protein, beta (NAPB) gene resulting in a premature stop codon and 46% loss of the protein. NAPB plays a role in soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE)-complex dissociation and recycling (synaptic vesicle docking). Knockout mouse models of the murine ortholog Napb have been previously reported. These mice develop recurrent post-natal epileptic seizures in the absence of structural brain changes. The identification of a disease-causing variant in NAPB further recognizes the importance of the SNARE complex in the development of epilepsy and suggests that this gene should be considered in patients with unexplained EOEE.
Collapse
Affiliation(s)
- J Conroy
- Department of Research, Children's University Hospital, Temple Street, Dublin, Ireland.,Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - N M Allen
- Department of Child Neurology & Clinical Neurophysiology, Children's University Hospital, Temple Street, Dublin, Ireland
| | - K M Gorman
- Department of Child Neurology & Clinical Neurophysiology, Children's University Hospital, Temple Street, Dublin, Ireland
| | - A Shahwan
- Department of Child Neurology & Clinical Neurophysiology, Children's University Hospital, Temple Street, Dublin, Ireland
| | - S Ennis
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - S A Lynch
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,National Centre for Medical Genetics, Children's University Hospital, Temple Street, Dublin, Ireland
| | - M D King
- Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,Department of Child Neurology & Clinical Neurophysiology, Children's University Hospital, Temple Street, Dublin, Ireland
| |
Collapse
|
41
|
Complexin stabilizes newly primed synaptic vesicles and prevents their premature fusion at the mouse calyx of held synapse. J Neurosci 2015; 35:8272-90. [PMID: 26019341 DOI: 10.1523/jneurosci.4841-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Complexins (Cplxs) are small synaptic proteins that cooperate with SNARE-complexes in the control of synaptic vesicle (SV) fusion. Studies involving genetic mutation, knock-down, or knock-out indicated two key functions of Cplx that are not mutually exclusive but cannot easily be reconciled, one in facilitating SV fusion, and one in "clamping" SVs to prevent premature fusion. Most studies on the role of Cplxs in mammalian synapse function have relied on cultured neurons, heterologous expression systems, or membrane fusion assays in vitro, whereas little is known about the function of Cplxs in native synapses. We therefore studied consequences of genetic ablation of Cplx1 in the mouse calyx of Held synapse, and discovered a developmentally exacerbating phenotype of reduced spontaneous and evoked transmission but excessive asynchronous release after stimulation, compatible with combined facilitating and clamping functions of Cplx1. Because action potential waveforms, Ca(2+) influx, readily releasable SV pool size, and quantal size were unaltered, the reduced synaptic strength in the absence of Cplx1 is most likely a consequence of a decreased release probability, which is caused, in part, by less tight coupling between Ca(2+) channels and docked SV. We found further that the excessive asynchronous release in Cplx1-deficient calyces triggered aberrant action potentials in their target neurons, and slowed-down the recovery of EPSCs after depleting stimuli. The augmented asynchronous release had a delayed onset and lasted hundreds of milliseconds, indicating that it predominantly represents fusion of newly recruited SVs, which remain unstable and prone to premature fusion in the absence of Cplx1.
Collapse
|
42
|
Mohrmann R, Dhara M, Bruns D. Complexins: small but capable. Cell Mol Life Sci 2015; 72:4221-35. [PMID: 26245303 PMCID: PMC4611016 DOI: 10.1007/s00018-015-1998-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/02/2022]
Abstract
Despite intensive research, it is still unclear how an immediate and profound acceleration of exocytosis is triggered by appropriate Ca(2+)-stimuli in presynaptic terminals. This is due to the fact that the molecular mechanisms of "docking" and "priming" reactions, which set up secretory vesicles to fuse at millisecond time scale, are extremely hard to study. Yet, driven by a fruitful combination of in vitro and in vivo analyses, our mechanistic understanding of Ca(2+)-triggered vesicle fusion has certainly advanced in the past few years. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. In particular, we will focus on the role of the small regulatory factor complexin whose function in Ca(2+)-dependent exocytosis has been controversially discussed for more than a decade. Special emphasis will also be laid on the functional relationship of complexin and synaptotagmin, as both proteins possibly act as allies and/or antagonists to govern SNARE-mediated exocytosis.
Collapse
Affiliation(s)
- Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany. .,Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany.
| | - Madhurima Dhara
- Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany
| | - Dieter Bruns
- Medical Faculty, Department of Physiology, University of Saarland, CIPMM, 66421, Homburg/Saar, Germany.
| |
Collapse
|
43
|
Schneggenburger R, Rosenmund C. Molecular mechanisms governing Ca2+ regulation of evoked and spontaneous release. Nat Neurosci 2015; 18:935-41. [DOI: 10.1038/nn.4044] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022]
|
44
|
Li T, Tian Y, Li Q, Chen H, Lv H, Xie W, Han J. The Neurexin/N-Ethylmaleimide-sensitive Factor (NSF) Interaction Regulates Short Term Synaptic Depression. J Biol Chem 2015; 290:17656-17667. [PMID: 25953899 DOI: 10.1074/jbc.m115.644583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/06/2022] Open
Abstract
Although Neurexins, which are cell adhesion molecules localized predominantly to the presynaptic terminals, are known to regulate synapse formation and synaptic transmission, their roles in the regulation of synaptic vesicle release during repetitive nerve stimulation are unknown. Here, we show that nrx mutant synapses exhibit rapid short term synaptic depression upon tetanic nerve stimulation. Moreover, we demonstrate that the intracellular region of NRX is essential for synaptic vesicle release upon tetanic nerve stimulation. Using a yeast two-hybrid screen, we find that the intracellular region of NRX interacts with N-ethylmaleimide-sensitive factor (NSF), an enzyme that mediates soluble NSF attachment protein receptor (SNARE) complex disassembly and plays an important role in synaptic vesicle release. We further map the binding sites of each molecule and demonstrate that the NRX/NSF interaction is critical for both the distribution of NSF at the presynaptic terminals and SNARE complex disassembly. Our results reveal a previously unknown role of NRX in the regulation of short term synaptic depression upon tetanic nerve stimulation and provide new mechanistic insights into the role of NRX in synaptic vesicle release.
Collapse
Affiliation(s)
- Tao Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Yao Tian
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Qian Li
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Huiying Chen
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Huihui Lv
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096
| | - Wei Xie
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|
45
|
SNAREs Controlling Vesicular Release of BDNF and Development of Callosal Axons. Cell Rep 2015; 11:1054-66. [PMID: 25959820 DOI: 10.1016/j.celrep.2015.04.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/11/2015] [Accepted: 04/14/2015] [Indexed: 11/22/2022] Open
Abstract
At presynaptic active zones, exocytosis of neurotransmitter vesicles (SVs) is driven by SNARE complexes that recruit Syb2 and SNAP25. However, it remains unknown which SNAREs promote the secretion of neuronal proteins, including those essential for circuit development and experience-dependent plasticity. Here we demonstrate that Syb2 and SNAP25 mediate the vesicular release of BDNF in axons and dendrites of cortical neurons, suggesting these SNAREs act in multiple spatially segregated secretory pathways. Remarkably, axonal secretion of BDNF is also strongly regulated by SNAP47, which interacts with SNAP25 but appears to be dispensable for exocytosis of SVs. Cell-autonomous ablation of SNAP47 disrupts the layer-specific branching of callosal axons of projection cortical neurons in vivo, and this phenotype is recapitulated by ablation of BDNF or its receptor, TrkB. Our results provide insights into the molecular mechanisms of protein secretion, and they define the functions of SNAREs in BDNF signaling and regulation of neuronal connectivity.
Collapse
|
46
|
Ehmann N, Sauer M, Kittel RJ. Super-resolution microscopy of the synaptic active zone. Front Cell Neurosci 2015; 9:7. [PMID: 25688186 PMCID: PMC4311638 DOI: 10.3389/fncel.2015.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/07/2015] [Indexed: 12/31/2022] Open
Abstract
Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins.
Collapse
Affiliation(s)
- Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg Würzburg, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
47
|
Kaeser PS. Pushing synaptic vesicles over the RIM. CELLULAR LOGISTICS 2014; 1:106-110. [PMID: 21922075 DOI: 10.4161/cl.1.3.16429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 01/19/2023]
Abstract
In a presynaptic nerve terminal, neurotransmitter release is largely restricted to specialized sites called active zones. Active zones consist of a complex protein network, and they organize fusion of synaptic vesicles with the presynaptic plasma membrane in response to action potentials. Rab3-interacting molecules (RIMs) are central components of active zones. In a recent series of experiments, we have systematically dissected the molecular mechanisms by which RIMs operate in synaptic vesicle release. We found that RIMs execute two critical functions of active zones by virtue of independent protein domains. They tether presyanptic Ca(2+) channels to the active zone, and they activate priming of synaptic vesicles by monomerizing homodimeric, constitutively inactive Munc13. These data indicate that RIMs orchestrate synaptic vesicle release into a coherent process. In conjunction with previous studies, they suggest that RIMs form a molecular platform on which plasticity of synaptic vesicle release can operate.
Collapse
Affiliation(s)
- Pascal S Kaeser
- Stanford Institute for Neuro-Innovation & Translational Neurosciences; Department of Molecular and Cellular Physiology; Stanford University; Stanford, CA USA
| |
Collapse
|
48
|
Nguyen Truong CQ, Nestvogel D, Ratai O, Schirra C, Stevens DR, Brose N, Rhee J, Rettig J. Secretory vesicle priming by CAPS is independent of its SNARE-binding MUN domain. Cell Rep 2014; 9:902-9. [PMID: 25437547 DOI: 10.1016/j.celrep.2014.09.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/12/2014] [Accepted: 09/28/2014] [Indexed: 01/27/2023] Open
Abstract
Priming of secretory vesicles is a prerequisite for their Ca(2+)-dependent fusion with the plasma membrane. The key vesicle priming proteins, Munc13s and CAPSs, are thought to mediate vesicle priming by regulating the conformation of the t-SNARE syntaxin, thereby facilitating SNARE complex assembly. Munc13s execute their priming function through their MUN domain. Given that the MUN domain of Ca(2+)-dependent activator protein for secretion (CAPS) also binds syntaxin, it was assumed that CAPSs prime vesicles through the same mechanism as Munc13s. We studied naturally occurring splice variants of CAPS2 in CAPS1/CAPS2-deficient cells and found that CAPS2 primes vesicles independently of its MUN domain. Instead, the pleckstrin homology domain of CAPS2 seemingly is essential for its priming function. Our findings indicate a priming mode for secretory vesicles. This process apparently requires membrane phospholipids, does not involve the binding or direct conformational regulation of syntaxin by MUN domains of CAPSs, and is therefore not redundant with Munc13 action.
Collapse
Affiliation(s)
| | - Dennis Nestvogel
- Neurophysiology Group, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Olga Ratai
- Institute of Physiology, Saarland University, Building 59, 66421 Homburg/Saar, Germany
| | - Claudia Schirra
- Institute of Physiology, Saarland University, Building 59, 66421 Homburg/Saar, Germany
| | - David R Stevens
- Institute of Physiology, Saarland University, Building 59, 66421 Homburg/Saar, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - JeongSeop Rhee
- Neurophysiology Group, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jens Rettig
- Institute of Physiology, Saarland University, Building 59, 66421 Homburg/Saar, Germany.
| |
Collapse
|
49
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
50
|
Mooney J, Thakur S, Kahng P, Trapani JG, Poccia D. Quantification of exocytosis kinetics by DIC image analysis of cortical lawns. J Chem Biol 2014; 7:43-55. [PMID: 24711858 DOI: 10.1007/s12154-013-0104-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Cortical lawns prepared from sea urchin eggs have offered a robust in vitro system for study of regulated exocytosis and membrane fusion events since their introduction by Vacquier almost 40 years ago (Vacquier in Dev Biol 43:62-74, 1975). Lawns have been imaged by phase contrast, darkfield, differential interference contrast, and electron microscopy. Quantification of exocytosis kinetics has been achieved primarily by light scattering assays. We present simple differential interference contrast image analysis procedures for quantifying the kinetics and extent of exocytosis in cortical lawns using an open vessel that allows rapid solvent equilibration and modification. These preparations maintain the architecture of the original cortices, allow for cytological and immunocytochemical analyses, and permit quantification of variation within and between lawns. When combined, these methods can shed light on factors controlling the rate of secretion in a spatially relevant cellular context. We additionally provide a subroutine for IGOR Pro® that converts raw data from line scans of cortical lawns into kinetic profiles of exocytosis. Rapid image acquisition reveals spatial variations in time of initiation of individual granule fusion events with the plasma membrane not previously reported.
Collapse
Affiliation(s)
- James Mooney
- Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Saumitra Thakur
- Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Peter Kahng
- Department of Biology, Amherst College, Amherst, MA 01002 USA
| | - Josef G Trapani
- Department of Biology, Amherst College, Amherst, MA 01002 USA ; Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| | - Dominic Poccia
- Department of Biology, Amherst College, Amherst, MA 01002 USA ; Program in Neuroscience, Amherst College, Amherst, MA 01002 USA
| |
Collapse
|