1
|
Lorsung R, Cramer N, Alipio JB, Ji Y, Han S, Masri R, Keller A. Sex Differences in Central Amygdala Glutamate Responses to Calcitonin Gene-Related Peptide. J Neurosci 2025; 45:e1898242024. [PMID: 39663115 PMCID: PMC11714345 DOI: 10.1523/jneurosci.1898-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Women are disproportionately affected by chronic pain compared with men. While societal and environmental factors contribute to this disparity, sex-based biological differences in the processing of pain are also believed to play significant roles. The central lateral nucleus of the amygdala (CeLC) is a key region for the emotional-affective dimension of pain, and a prime target for exploring sex differences in pain processing since a recent study demonstrated sex differences in CGRP actions in this region. Inputs to CeLC from the parabrachial nucleus (PB) play a causal role in aversive processing and release both glutamate and calcitonin gene-related peptide (CGRP). CGRP is thought to play a crucial role in chronic pain by potentiating glutamatergic signaling in CeLC. However, it is not known if this CGRP-mediated synaptic plasticity occurs similarly in males and females. Here, we tested the hypothesis that female CeLC neurons experience greater potentiation of glutamatergic signaling than males following endogenous CGRP exposure. Using trains of optical stimuli to evoke transient CGRP release from PB terminals in CeLC, we find that subsequent glutamatergic responses are preferentially potentiated in CeLC neurons from female mice. This potentiation was CGRP dependent and involved a postsynaptic mechanism. This sex difference in CGRP sensitivity may explain sex differences in affective pain processing.
Collapse
Affiliation(s)
- Rebecca Lorsung
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nathan Cramer
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jason Bondoc Alipio
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Radi Masri
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201
- Faculty of Dentistry, University of Jordan, Amman 11942, Jordan
| | - Asaf Keller
- Department of Neurobiology and UM-MIND, School of Medicine, University of Maryland, Baltimore, Maryland 21201
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
2
|
Li Y, Ha NT, Li J, Yan Y, Chen Q, Cai L, Li W, Liu S, Li B, Cheng T, Sun Y, Wang Y, Deng J. Tachykinin signaling in the right parabrachial nucleus mediates early-phase neuropathic pain development. Neuron 2024:S0896-6273(24)00878-X. [PMID: 39719702 DOI: 10.1016/j.neuron.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
The lateral parabrachial nucleus (PBN) is critically involved in neuropathic pain modulation. However, the cellular and molecular mechanisms underlying this process remain largely unknown. Here, we report that in mice, the right-sided, but not the left-sided, PBN plays an essential role in the development of hyperalgesia following nerve injury, irrespective of the injury side. Spino-parabrachial pathways targeting the right-sided PBN display short-term facilitation, and right-sided PBN neurons exhibit an increase in the excitability and activity after nerve injury. Inhibiting Tacr1-positive neurons, blocking Tacr1-encoding tachykinin 1 receptor (NK1R), or knocking down the Tacr1 gene in the right-sided, rather than left-sided, PBN alleviates neuropathic pain-induced sensory hypersensitivity. Additionally, the right-sided PBN plays a critical role in the development of hyperalgesia during the early phase of neuropathic pain. These results highlight the essential role of NK1R in the lateralized modulation of neuropathic pain by the PBN, providing new insights into the mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
- Yinxia Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ngoc T Ha
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Juan Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yaxin Yan
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qian Chen
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Liping Cai
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weike Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shoupei Liu
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Bo Li
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Tianlin Cheng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai 200032, China
| | - Yangang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Lorsung R, Cramer N, Alipio JB, Ji Y, Han S, Masri R, Keller A. Sex differences in central amygdala glutamate responses to calcitonin gene-related peptide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622728. [PMID: 39574632 PMCID: PMC11581022 DOI: 10.1101/2024.11.09.622728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Women are disproportionately affected by chronic pain compared to men. While societal and environmental factors contribute to this disparity, sex-based biological differences in the processing of pain are also believed to play significant roles. The central lateral nucleus of the amygdala (CeLC) is a key region for the emotional-affective dimension of pain, and a prime target for exploring sex differences in pain processing since a recent study demonstrated sex differences in CGRP actions in this region. Inputs to CeLC from the parabrachial nucleus (PB) play a causal role in aversive processing, and release both glutamate and calcitonin gene-related peptide (CGRP). CGRP is thought to play a crucial role in chronic pain by potentiating glutamatergic signaling in CeLC. However, it is not known if this CGRP-mediated synaptic plasticity occurs similarly in males and females. Here, we tested the hypothesis that female CeLC neurons experience greater potentiation of glutamatergic signaling than males following endogenous CGRP exposure. Using trains of optical stimuli to evoke transient CGRP release from PB terminals in CeLC, we find that subsequent glutamatergic responses are preferentially potentiated in CeLC neurons from female mice. This potentiation was CGRP-dependent and involved a postsynaptic mechanism. This sex difference in CGRP sensitivity may explain sex differences in affective pain processing.
Collapse
Affiliation(s)
- Rebecca Lorsung
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | - Nathan Cramer
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jason Bondoc Alipio
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | - Yadong Ji
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, USA, and Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Radi Masri
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, USA, and Faculty of Dentistry, University of Jordan, Amman, Jordan
| | - Asaf Keller
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
- Center to Advance Chronic Pain Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Zhang Y, Tang Y, Illes P. Modification of Neural Circuit Functions by Microglial P2Y6 Receptors in Health and Neurodegeneration. Mol Neurobiol 2024:10.1007/s12035-024-04531-8. [PMID: 39400857 DOI: 10.1007/s12035-024-04531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Neural circuits consisting of neurons and glial cells help to establish all functions of the CNS. Microglia, the resident immunocytes of the CNS, are endowed with UDP-sensitive P2Y6 receptors (P2Y6Rs) which regulate phagocytosis/pruning of excessive synapses during individual development and refine synapses in an activity-dependent manner during adulthood. In addition, this type of receptor plays a decisive role in primary (Alzheimer's disease, Parkinson's disease, neuropathic pain) and secondary (epilepsy, ischemic-, mechanical-, or irradiation-induced) neurodegeneration. A whole range of microglial cytokines controlled by P2Y6Rs, such as the interleukins IL-1β, IL-6, IL-8, and tumor necrosis factor-α (TNF-α), leads to neuroinflammation, resulting in neurodegeneration. Hence, small molecular antagonists of P2Y6Rs and genetic knockdown of this receptor provide feasible ways to alleviate inflammation-induced neurological disorders but might also interfere with the regulation of the synaptic circuitry. The present review aims at investigating this dual role of P2Y6Rs in microglia, both in shaping neural circuits by targeted phagocytosis and promoting neurodegenerative illnesses by fostering neuroinflammation through multiple transduction mechanisms.
Collapse
Affiliation(s)
- Yi Zhang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
5
|
McDougall SJ, Ong ZY, Heller R, Horton A, Thek KK, Choi EA, McNally GP, Lawrence AJ. Viscerosensory signalling to the nucleus accumbens via the solitary tract nucleus. J Neurochem 2024; 168:3116-3131. [PMID: 39032068 DOI: 10.1111/jnc.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The nucleus of the solitary tract (NTS) receives direct viscerosensory vagal afferent input that drives autonomic reflexes, neuroendocrine function and modulates behaviour. A subpopulation of NTS neurons project to the nucleus accumbens (NAc); however, the function of this NTS-NAc pathway remains unknown. A combination of neuroanatomical tracing, slice electrophysiology and fibre photometry was used in mice and/or rats to determine how NTS-NAc neurons fit within the viscerosensory network. NTS-NAc projection neurons are predominantly located in the medial and caudal portions of the NTS with 54 ± 7% (mice) and 65 ± 3% (rat) being TH-positive, representing the A2 NTS cell group. In horizontal brainstem slices, solitary tract (ST) stimulation evoked excitatory post-synaptic currents (EPSCs) in NTS-NAc projection neurons. The majority (75%) received low-jitter, zero-failure EPSCs characteristic of monosynaptic ST afferent input that identifies them as second order to primary sensory neurons. We then examined whether NTS-NAc neurons respond to cholecystokinin (CCK, 20 μg/kg ip) in vivo in both mice and rats. Surprisingly, there was no difference in the number of activated NTS-NAc cells between CCK and saline-treated mice. In rats, just 6% of NTS-NAc cells were recruited by CCK. As NTS TH neurons are the primary source for NAc noradrenaline, we measured noradrenaline release in the NAc and showed that NAc noradrenaline levels declined in response to cue-induced reward retrieval but not foot shock. Combined, these findings suggest that high-fidelity afferent information from viscerosensory afferents reaches the NAc. These signals are likely unrelated to CCK-sensitive vagal afferents but could interact with other sensory and higher order inputs to modulate learned appetitive behaviours.
Collapse
Affiliation(s)
- Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Zhi Yi Ong
- School of Psychology, UNSW Sydney, Kensington, New South Wales, Australia
| | - Rosa Heller
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Anna Horton
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Kimberly K Thek
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Eun A Choi
- School of Psychology, UNSW Sydney, Kensington, New South Wales, Australia
| | - Gavan P McNally
- School of Psychology, UNSW Sydney, Kensington, New South Wales, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
7
|
Brosens N, Lesuis SL, Rao-Ruiz P, van den Oever MC, Krugers HJ. Shaping Memories Via Stress: A Synaptic Engram Perspective. Biol Psychiatry 2023:S0006-3223(23)01720-1. [PMID: 37977215 DOI: 10.1016/j.biopsych.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.
Collapse
Affiliation(s)
- Niek Brosens
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| | - Sylvie L Lesuis
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Cellular and Cognitive Neuroscience group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Priyanka Rao-Ruiz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Elbaz M, Callado Perez A, Demers M, Zhao S, Foo C, Kleinfeld D, Deschenes M. A vibrissa pathway that activates the limbic system. eLife 2022; 11:72096. [PMID: 35142608 PMCID: PMC8830883 DOI: 10.7554/elife.72096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrissa sensory inputs play a central role in driving rodent behavior. These inputs transit through the sensory trigeminal nuclei, which give rise to the ascending lemniscal and paralemniscal pathways. While lemniscal projections are somatotopically mapped from brainstem to cortex, those of the paralemniscal pathway are more widely distributed. Yet the extent and topography of paralemniscal projections are unknown, along with the potential role of these projections in controlling behavior. Here, we used viral tracers to map paralemniscal projections. We find that this pathway broadcasts vibrissa-based sensory signals to brainstem regions that are involved in the regulation of autonomic functions and to forebrain regions that are involved in the expression of emotional reactions. We further provide evidence that GABAergic cells of the Kölliker-Fuse nucleus gate trigeminal sensory input in the paralemniscal pathway via a mechanism of presynaptic or extrasynaptic inhibition.
Collapse
Affiliation(s)
- Michaël Elbaz
- CERVO Research Center, Laval University, Québec City, Canada
| | - Amalia Callado Perez
- CERVO Research Center, Laval University, Québec City, Canada.,Department of Physics, University of California, San Diego, San Diego, United States
| | - Maxime Demers
- CERVO Research Center, Laval University, Québec City, Canada
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Conrad Foo
- Department of Physics, University of California, San Diego, San Diego, United States
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, San Diego, United States.,Section of Neurobiology, University of California, San Diego, San Diego, United States
| | | |
Collapse
|
9
|
Yim YY, McDonald WH, Betke KM, Kaya A, Hyde K, Erreger K, Gilsbach R, Hein L, Hamm HE. Specificities of Gβγ subunits for the SNARE complex before and after stimulation of α 2a-adrenergic receptors. Sci Signal 2021; 14:eabc4970. [PMID: 34932372 DOI: 10.1126/scisignal.abc4970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ligand binding to G protein–coupled receptors (GPCRs), such as the α2a-adrenergic receptor (α2aAR), results in the activation of heterotrimeric G proteins, which consist of functionally distinct Gα subunits and Gβγ dimers. α2aAR-dependent inhibition of synaptic transmission regulates functions such as spontaneous locomotor activity, anesthetic sparing, and working memory enhancement and requires the soluble NSF attachment protein receptor (SNARE) complex, a Gβγ effector. To understand how the Gβγ-SNARE complex underlies the α2aAR-dependent inhibition of synaptic transmission, we examined the specificity of Gβγ subunits for the SNARE complex in adrenergic neurons, in which auto-α2aARs respond to epinephrine released from these neurons, and nonadrenergic neurons, in which hetero-α2aARs respond to epinephrine released from other neurons. We performed a quantitative, targeted multiple reaction monitoring proteomic analysis of Gβ and Gγ subunits bound to the SNARE complex in synaptosomes from mouse brains. In the absence of stimulation of auto-α2aARs, Gβ1 and Gγ3 interacted with the SNARE complex. However, Gβ1, Gβ2, and Gγ3 were found in the complex when auto-α2aARs were activated by epinephrine. Further understanding of the specific usage of distinct Gβγ subunits in vivo may provide insights into the homeostatic regulation of synaptic transmission and the mechanisms of dysfunction that occur in neurological diseases.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Katherine M Betke
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ali Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin Erreger
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ralf Gilsbach
- Fachbereich Medizin, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
11
|
Jaramillo AA, Brown JA, Winder DG. Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology 2021; 198:108757. [PMID: 34461068 DOI: 10.1016/j.neuropharm.2021.108757] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Our understanding of the role of the parabrachial nucleus (PBN) has evolved as technology has advanced, in part due to cell-specific studies and complex behavioral assays. This is reflected in the heterogeneous neuronal populations within the PBN to the extended amygdala (EA) circuits which encompass the bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) circuitry, as they differentially modulate aspects of behavior in response to diverse threat-like contexts necessary for survival. Here we review how the PBN→CeA and PBN→BNST pathways differentially modulate fear-like behavior, innate and conditioned, through unique changes in neurotransmission in response to stress-inducing contexts. Furthermore, we hypothesize how in specific instances the PBN→CeA and PBN→BNST circuits are redundant and in part intertwined with their respective reciprocal projections. By deconstructing the interoceptive and exteroceptive components of affect- and stress related behavioral paradigms, evidence suggests that the PBN→CeA circuit modulates innate response to physical stimuli and fear conditioning. Conversely, the PBN→BNST circuit modulates distress-like stress in unpredictable contexts. Thereby, the PBN provides a pathway for alarming interoceptive and exteroceptive stimuli to be processed and relayed to the EA to induce stress-relevant affect. Additionally, we provide a framework for future studies to detail the cell-type specific intricacies of PBN→EA circuits in mediating behavioral responses to threats, and the relevance of the PBN in drug-use as it relates to threat and negative reinforcement. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- A A Jaramillo
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA
| | - J A Brown
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA
| | - D G Winder
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA; Vanderbilt Kennedy Center, USA; Department of Psychiatry & Behavioral Sciences, USA.
| |
Collapse
|
12
|
K v1.1 channels mediate network excitability and feed-forward inhibition in local amygdala circuits. Sci Rep 2021; 11:15180. [PMID: 34312446 PMCID: PMC8313690 DOI: 10.1038/s41598-021-94633-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Kv1.1 containing potassium channels play crucial roles towards dampening neuronal excitability. Mice lacking Kv1.1 subunits (Kcna1−/−) display recurrent spontaneous seizures and often exhibit sudden unexpected death. Seizures in Kcna1−/− mice resemble those in well-characterized models of temporal lobe epilepsy known to involve limbic brain regions and spontaneous seizures result in enhanced cFos expression and neuronal death in the amygdala. Yet, the functional alterations leading to amygdala hyperexcitability have not been identified. In this study, we used Kcna1−/− mice to examine the contributions of Kv1.1 subunits to excitability in neuronal subtypes from basolateral (BLA) and central lateral (CeL) amygdala known to exhibit distinct firing patterns. We also analyzed synaptic transmission properties in an amygdala local circuit predicted to be involved in epilepsy-related comorbidities. Our data implicate Kv1.1 subunits in controlling spontaneous excitatory synaptic activity in BLA pyramidal neurons. In the CeL, Kv1.1 loss enhances intrinsic excitability and impairs inhibitory synaptic transmission, notably resulting in dysfunction of feed-forward inhibition, a critical mechanism for controlling spike timing. Overall, we find inhibitory control of CeL interneurons is reduced in Kcna1−/− mice suggesting that basal inhibitory network functioning is less able to prevent recurrent hyperexcitation related to seizures.
Collapse
|
13
|
Thompson Gray AD, Simonetti J, Adegboye F, Jones CK, Zurawski Z, Hamm HE. Sexual Dimorphism in Stress-induced Hyperthermia in SNAP25Δ3 mice, a mouse model with disabled Gβγ regulation of the exocytotic fusion apparatus. Eur J Neurosci 2020; 52:2815-2826. [PMID: 32449556 DOI: 10.1111/ejn.14836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Behavioral assays in the mouse can show marked differences between male and female animals of a given genotype. These differences identified in such preclinical studies may have important clinical implications. We recently made a mouse model with impaired presynaptic inhibition through Gβγ-SNARE signaling. Here, we examine the role of sexual dimorphism in the severity of the phenotypes of this model, the SNAP25Δ3 mouse. In males, we already reported that SNAP25Δ3 homozygotes demonstrated phenotypes in motor coordination, nociception, spatial memory and stress processing. We now report that while minimal sexually dimorphic effects were observed for the nociceptive, motor or memory phenotypes, large differences were observed in the stress-induced hyperthermia paradigm, with male SNAP25Δ3 homozygotes exhibiting an increase in body temperature subsequent to handling relative to wild-type littermates, while no such genotype-dependent effect was observed in females. This suggests sexually dimorphic mechanisms of Gβγ-SNARE signaling for stress processing or thermoregulation within the mouse. Second, we examined the effects of heterozygosity with respect to the SNAP25Δ3 mutation. Heterozygote SNAP25Δ3 animals were tested alongside homozygote and wild-type littermates in all of the aforementioned paradigms and displayed phenotypes similar to wild-type animals or an intermediate state. From this, we conclude that the SNAP25Δ3 mutation does not behave in an autosomal dominant manner, but rather displays incomplete dominance for many phenotypes.
Collapse
Affiliation(s)
| | - Justice Simonetti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
14
|
Li JN, Sheets PL. Spared nerve injury differentially alters parabrachial monosynaptic excitatory inputs to molecularly specific neurons in distinct subregions of the central amygdala. Pain 2020; 161:166-176. [PMID: 31479066 PMCID: PMC6940027 DOI: 10.1097/j.pain.0000000000001691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022]
Abstract
Dissecting the organization of circuit pathways involved in pain affect is pivotal for understanding behavior associated with noxious sensory inputs. The central nucleus of the amygdala (CeA) comprises distinct populations of inhibitory GABAergic neurons expressing a wide range of molecular markers. CeA circuits are associated with aversive learning and nociceptive responses. The CeA receives nociceptive signals directly from the parabrachial nucleus (PBn), contributing to the affective and emotional aspects of pain. Although the CeA has emerged as an important node in pain processing, key questions remain regarding the specific targeting of PBn inputs to different CeA subregions and cell types. We used a multifaceted approach involving transgenic reporter mice, viral vector-mediated optogenetics, and brain slice electrophysiology to delineate cell-type-specific functional organization of the PBn-CeA pathway. Whole-cell patch clamp recordings of molecularly defined CeA neurons while optogenetically driving long-range inputs originating from PBn revealed the direct monosynaptic excitatory inputs from PBn neurons to 3 major subdivisions of the CeA: laterocapsular (CeC), lateral (CeL), and medial (CeM). Direct monosynaptic excitatory inputs from PBn targeted both somatostatin-expressing (SOM+) and corticotropin-releasing hormone expressing (CRH+) neurons in the CeA. We find that monosynaptic PBn input is preferentially organized to molecularly specific neurons in distinct subdivisions of the CeA. The spared nerve injury model of neuropathic pain differentially altered PBn monosynaptic excitatory input to CeA neurons based on molecular identity and topographical location within the CeA. These results provide insight into the functional organization of affective pain pathways and how they are altered by chronic pain.
Collapse
Affiliation(s)
- Jun-Nan Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick L. Sheets
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
15
|
Sun N, Li BX, Hong YJ, Bing YH, Qiu DL, Chu CP. Noradrenaline depresses spontaneous complex spikes activity of cerebellar Purkinje cells via α2-adrenergic receptor in vivo in mice. Neurosci Lett 2019; 703:38-44. [PMID: 30853408 DOI: 10.1016/j.neulet.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/02/2019] [Accepted: 03/06/2019] [Indexed: 11/27/2022]
Abstract
Locus coeruleus (LC) noradrenergic neurons afferents release noradrenaline (NA) in the cerebellar cortex for modulating cerebellar neuronal circuitry function. Our previous study found that NA inhibited the spontaneous simple spikes activity of cerebellar Purkinje cells (PC) through activation of molecular layer interneurons (MLIs) in vivo in mice. We here examined the effects of NA on spontaneous complex spikes (CSs) activity of cerebellar PC in urethane-anesthetized mice by electrophysiology recording technique and pharmacological methods. Our results showed that cerebellar surface perfusion of NA significantly reduced the number of spikelets and the area under curve (AUC) of the spontaneous CSs. Application of nonselective adrenergic receptor (AR) antagonist, phentolamine, abolished the NA-induced inhibition of CSs. However applying a nonselective β-AR blocker, propranolol, failed to prevent the NA-induced inhibition of CSs activity. The NA-induced inhibition of CSs activity was not blocked by α1-AR antagonist, prazosin, but it was abolished by α2-AR antagonist, yohimibine. Moreover, application of α2-AR agonist, UK14304 induced a depression of CSs activity and mimicked the NA-induced inhibition of CS activity. These results indicate that NA regulates spontaneous CSs activity of cerebellar PCs via activation of α2-AR in vivo in mice. Our present results suggest that noradrenergic neurons of LC may modulate the outputs of cerebellar PCs via inhibition of CSs activity.
Collapse
Affiliation(s)
- Na Sun
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China; Department of Clinical Blood and Body Fluid Testing, College of Medical Technique, Beihua University, Jilin City, Jilin Province, China
| | - Bing-Xue Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Ying-Ji Hong
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Yan-Hua Bing
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Cellular Function Research Center, Yanbian University, 977 GongYuan Road, Yanji City, Jilin Province, 133002, China; Department of Psychology, Affiliated Hospital of Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
16
|
Burke KJ, Bender KJ. Modulation of Ion Channels in the Axon: Mechanisms and Function. Front Cell Neurosci 2019; 13:221. [PMID: 31156397 PMCID: PMC6533529 DOI: 10.3389/fncel.2019.00221] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
The axon is responsible for integrating synaptic signals, generating action potentials (APs), propagating those APs to downstream synapses and converting them into patterns of neurotransmitter vesicle release. This process is mediated by a rich assortment of voltage-gated ion channels whose function can be affected on short and long time scales by activity. Moreover, neuromodulators control the activity of these proteins through G-protein coupled receptor signaling cascades. Here, we review cellular mechanisms and signaling pathways involved in axonal ion channel modulation and examine how changes to ion channel function affect AP initiation, AP propagation, and the release of neurotransmitter. We then examine how these mechanisms could modulate synaptic function by focusing on three key features of synaptic information transmission: synaptic strength, synaptic variability, and short-term plasticity. Viewing these cellular mechanisms of neuromodulation from a functional perspective may assist in extending these findings to theories of neural circuit function and its neuromodulation.
Collapse
Affiliation(s)
| | - Kevin J. Bender
- Neuroscience Graduate Program and Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Li C, Kash TL. κ-Opioid Receptor Modulation of GABAergic Inputs onto Ventrolateral Periaqueductal Gray Dopamine Neurons. MOLECULAR NEUROPSYCHIATRY 2019; 5:190-199. [PMID: 31768372 DOI: 10.1159/000496974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022]
Abstract
The κ-opioid receptor (KOR) system has been implicated in the regulation of many behaviors including pain. While there are numerous studies suggesting KOR regulation of pain being mediated spinally, there have been reports of pain-like behaviors regulated by central KOR signaling. In particular, oxytocin-induced analgesia appears to be mediated by KOR receptors within the ventrolateral periaqueductal gray (vlPAG). We recently found that activation of dopamine (DA) neurons within the vlPAG is antinociceptive. In this study, we sought to determine the impact of KOR signaling on -GABAergic inputs onto vlPAG DA neurons, and the mechanism through which KOR impacts these inputs. We found that activation of KOR reduced GABAergic transmission onto vlPAG DA neurons. In addition, our data suggest this effect is mediated presynaptically via the G protein βγ-subunit. They raise the possibility that KOR activation disinhibits -vlPAG DA neurons, which could lead to altered regulation of pain-related behaviors.
Collapse
Affiliation(s)
- Chia Li
- Curriculum in Neurobiology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
|
19
|
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE. Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 2019; 12:12/569/eaat8595. [PMID: 30783011 DOI: 10.1126/scisignal.aat8595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca2+ entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emily Church
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicholas A Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael R Dohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
20
|
Zurawski Z, Yim YY, Alford S, Hamm HE. The expanding roles and mechanisms of G protein-mediated presynaptic inhibition. J Biol Chem 2019; 294:1661-1670. [PMID: 30710014 PMCID: PMC6364771 DOI: 10.1074/jbc.tm118.004163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Throughout the past five decades, tremendous advancements have been made in our understanding of G protein signaling and presynaptic inhibition, many of which were published in the Journal of Biological Chemistry under the tenure of Herb Tabor as Editor-in-Chief. Here, we identify these critical advances, including the formulation of the ternary complex model of G protein-coupled receptor signaling and the discovery of Gβγ as a critical signaling component of the heterotrimeric G protein, along with the nature of presynaptic inhibition and its physiological role. We provide an overview for the discovery and physiological relevance of the two known Gβγ-mediated mechanisms for presynaptic inhibition: first, the action of Gβγ on voltage-gated calcium channels to inhibit calcium influx to the presynaptic active zone and, second, the direct binding of Gβγ to the SNARE complex to displace synaptotagmin downstream of calcium entry, which has been demonstrated to be important in neurons and secretory cells. These two mechanisms act in tandem with each other in a synergistic manner to provide more complete spatiotemporal control over neurotransmitter release.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600; Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612-7308
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612-7308
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600.
| |
Collapse
|
21
|
Cell-type specific parallel circuits in the bed nucleus of the stria terminalis and the central nucleus of the amygdala of the mouse. Brain Struct Funct 2019; 224:1067-1095. [PMID: 30610368 DOI: 10.1007/s00429-018-01825-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022]
Abstract
The central extended amygdala (EAc) is a forebrain macrosystem which has been widely implicated in reward, fear, anxiety, and pain. Its two key structures, the lateral bed nucleus of the stria terminalis (BSTL) and the central nucleus of the amygdala (CeA), share similar mesoscale connectivity. However, it is not known whether they also share similar cell-specific neuronal circuits. We addressed this question using tract-tracing and immunofluorescence to reveal the EAc microcircuits involving two neuronal populations expressing either protein kinase C delta (PKCδ) or somatostatin (SOM). PKCδ and SOM are expressed predominantly in the dorsal BSTL (BSTLD) and in the lateral/capsular parts of CeA (CeL/C). We found that, in both BSTLD and CeL/C, PKCδ+ cells are the main recipient of extra-EAc inputs from the lateral parabrachial nucleus (LPB), while SOM+ cells constitute the main source of long-range projections to extra-EAc targets, including LPB and periaqueductal gray. PKCδ+ cells can also integrate inputs from the basolateral nucleus of the amygdala or insular cortex. Within EAc, PKCδ+, but not SOM+ neurons, serve as the major source of inputs to the ventral BSTL and to the medial part of CeA. However, both cell types can be involved in mutual connections between BSTLD and CeL/C. These results unveil the pivotal positions of PKCδ+ and SOM+ neurons in organizing parallel cell-specific neuronal circuits within CeA and BSTL, but also between them, which further reinforce the notion of EAc as a structural and functional macrosystem.
Collapse
|
22
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
23
|
α 2A-Adrenergic Receptor Activation Decreases Parabrachial Nucleus Excitatory Drive onto BNST CRF Neurons and Reduces Their Activity In Vivo. J Neurosci 2018; 39:472-484. [PMID: 30478032 DOI: 10.1523/jneurosci.1035-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 11/21/2022] Open
Abstract
Stress contributes to numerous psychiatric disorders. Corticotropin releasing factor (CRF) signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and β-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, using Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the coexpression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENT Stress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent coexpression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between norepinephrine and CRF, and point to an action by which guanfacine may reduce negative affective responses.
Collapse
|
24
|
Burke KJ, Keeshen CM, Bender KJ. Two Forms of Synaptic Depression Produced by Differential Neuromodulation of Presynaptic Calcium Channels. Neuron 2018; 99:969-984.e7. [PMID: 30122380 PMCID: PMC7874512 DOI: 10.1016/j.neuron.2018.07.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/03/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023]
Abstract
Neuromodulators are important regulators of synaptic transmission throughout the brain. At the presynaptic terminal, neuromodulation of calcium channels (CaVs) can affect transmission not only by changing neurotransmitter release probability, but also by shaping short-term plasticity (STP). Indeed, changes in STP are often considered a requirement for defining a presynaptic site of action. Nevertheless, some synapses exhibit non-canonical forms of neuromodulation, where release probability is altered without a corresponding change in STP. Here, we identify biophysical mechanisms whereby both canonical and non-canonical presynaptic neuromodulation can occur at the same synapse. At a subset of glutamatergic terminals in prefrontal cortex, GABAB and D1/D5 dopamine receptors suppress release probability with and without canonical increases in short-term facilitation by modulating different aspects of presynaptic CaV function. These findings establish a framework whereby signaling from multiple neuromodulators can converge on presynaptic CaVs to differentially tune release dynamics at the same synapse.
Collapse
Affiliation(s)
- Kenneth J Burke
- Neuroscience Graduate Program, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Caroline M Keeshen
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Neuroscience Graduate Program, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Choy JMC, Agahari FA, Li L, Stricker C. Noradrenaline Increases mEPSC Frequency in Pyramidal Cells in Layer II of Rat Barrel Cortex via Calcium Release From Presynaptic Stores. Front Cell Neurosci 2018; 12:213. [PMID: 30100867 PMCID: PMC6072855 DOI: 10.3389/fncel.2018.00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Somatosensory cortex is innervated by afferents originating from the locus coeruleus which typically release noradrenaline. We tested if activation of presynaptic α1-adrenoceptors (AR) coupled to a Gq-mediated signaling cascade resulted in calcium (Ca2+) release from stores and thereby increased spontaneous transmitter release in rat barrel cortex. Adding 1–100 μM noradrenaline (NA) or 5 μM cirazoline (CO), a α1-AR specific agonist, to the standard artificial cerebrospinal fluid increased the frequency of miniature excitatory postsynaptic currents (mEPSC) by 64 ± 7% in 51% of pyramidal cells in layer II (responders) with no effect on the amplitude. In 42 responders, the mEPSC frequency during control was significantly smaller (39 ± 2 vs. 53 ± 4 Hz) and upon NA exposure, the input resistance (Rin) decreased (9 ± 7%) compared to non-responders. Experiments using CO and the antagonist prazosin revealed that NA acted via binding to α1-ARs, which was further corroborated by simultaneously blocking β- and α2-ARs with propranolol and yohimbine, which did not prevent the increase in mEPSC frequency. To verify elements in the signaling cascade, both the phospholipase C inhibitor edelfosine and the membrane permeable IP3 receptor blocker 2-APB averted the increase in mEPSC frequency. Likewise, emptying Ca2+ stores with cyclopiazonic acid or the chelation of intracellular Ca2+ with BAPTA-AM prevented the frequency increase, suggesting that the frequency increase was caused by presynaptic store release. When group I metabotropic glutamate receptors were activated with DHPG, co-application of NA occluded a further frequency increase suggesting that the two receptor activations may not signal independently of each other. The increased mEPSC frequency in a subset of pyramidal cells results in enhanced synaptic noise, which, together with the reduction in Rin, will affect computation in the network.
Collapse
Affiliation(s)
- Julian M C Choy
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Fransiscus A Agahari
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan
| | - Li Li
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Zhejiang Provincial Key Laboratory of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Christian Stricker
- Neuronal Network Laboratory, Eccles Institute of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,ANU Medical School, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
26
|
Kawatani M, Akimoto N, Yamada A, Furue H, Kawatani M. Noradrenergic effects in rat sacral autonomic nucleus using in vitro slice patch-clamp recordings. Biomed Res 2018; 38:359-369. [PMID: 29225214 DOI: 10.2220/biomedres.38.359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Noradrenergic modulation has been frequently discussed in the context of neural activities that are related to pelvic organs. The sacral preganglionic nucleus (SPN) is a spinal nucleus containing parasympathetic preganglionic neurons that send fibers to pelvic nerves. In spite of the abundant presence of noradrenergic fibers around the SPN, the effects of noradrenaline (NA) remain obscure. To explore this issue, NA (50 μM) was applied to parasympathetic preganglionic neurons in the SPN during whole-cell patch clamp recording. The SPN was labeled with the retrograde tracer, DiI. These neurons demonstrated two classes of firing patterns (delayed and regular) in terms of initiation of firing. Independent of these firing patterns, NA induced inward (56%) or outward (32%) currents in labeled SPN neurons. Phenylephrine, an α1 receptor agonist, induced an inward current, and clonidine, an α2 receptor agonist, induced an outward current, indicating the existence of both α1 and α2 adrenoreceptors in DiI-labeled SPN neurons. NA also modulated synaptic currents according to the firing patterns. In delayed firing neurons, NA inhibited both spontaneous excitatory post-synaptic currents (sEPSCs) and spontaneous inhibitory post-synaptic currents (sIPSCs). Hence, NA facilitated sEPSCs and sIPSCs in about a half of regular firing neurons. Bath application of phenylephrine facilitated sEPSCs and sIPSCs, and clonidine inhibited them. These results support the hypothesis of multiple effects of NA in the SPN, and may suggest functional differences among SPN neurons.
Collapse
Affiliation(s)
| | - Nozomi Akimoto
- Department of Information Physiology, National Institute for Physiological Sciences
| | - Akihiro Yamada
- Department of Information Physiology, National Institute for Physiological Sciences
| | - Hidemasa Furue
- Department of Information Physiology, National Institute for Physiological Sciences
| | | |
Collapse
|
27
|
Delaney AJ, Crane JW, Holmes NM, Fam J, Westbrook RF. Baclofen acts in the central amygdala to reduce synaptic transmission and impair context fear conditioning. Sci Rep 2018; 8:9908. [PMID: 29967489 PMCID: PMC6028433 DOI: 10.1038/s41598-018-28321-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
The two main sub-divisions of the Central amygdala (CeA), the lateral-capsular (CeA-LC) and the medial (CeA-M), contain extensive networks of inhibitory interneurons. We have previously shown that activation of GABAB-receptors reduces excitatory transmission between axons of the pontine parabrachial nucleus and neurons of the CeA-LC by inhibiting glutamate release from presynaptic terminals13. Here we have characterised GABAB-receptor activation on other excitatory and inhibitory projections within the CeA. Using whole-cell, patch-clamp recordings, we found that the GABAB-receptor agonist baclofen significantly reduced excitatory and inhibitory transmission from all tested inputs into the CeA-LC and CeA-M. In all but one of the inputs, reductions in transmission were accompanied by an increase in paired pulse ratio, indicating that presynaptic GABAB-receptors acted to reduce the release probability of synaptic vesicles. To examine the impact of GABAB-receptors in the CeA on contextual fear-conditioning, we infused baclofen into the CeA immediately prior to training. Compared to vehicle-infused rats, baclofen-infused rats displayed significantly less freezing both during the final stages of the training period and at test 24 hours later. The results of this study demonstrate that, by suppressing excitatory and inhibitory transmission, activation of presynaptic GABAB-receptors in the CeA inhibits the development of context conditioned fear.
Collapse
Affiliation(s)
- A J Delaney
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia.
| | - J W Crane
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - N M Holmes
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Fam
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - R F Westbrook
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
28
|
Alford S, Hamm H, Rodriguez S, Zurawski Z. Gβγ SNARE Interactions and Their Behavioral Effects. Neurochem Res 2018; 44:636-649. [PMID: 29752624 DOI: 10.1007/s11064-018-2531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses-GPCRs are present at every studied presynaptic terminal-underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
Collapse
Affiliation(s)
- Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA.
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| | - Shelagh Rodriguez
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| |
Collapse
|
29
|
Abstract
Chronic pain is frequently associated with anxiety, depression, and cognitive dysfunction. This review discusses recent work in rodents that contributes to the understanding of their neurobiological links. Brain regions that contain circuits that mediate persistent changes in behavior that are caused by nerve injury or joint inflammation include the rostral anterior cingulate and other parts of the medial prefrontal cortex, the basolateral and central nucleus of the amygdala, and the nucleus accumbens. Functional changes, including increases in the activity within specific neuronal pathways and in the levels of specific synaptic components, that are associated with the behavior changes, or are in some cases necessary for them, have recently been identified. Broadly projecting modulatory systems and widely expressed factors such as cytokines and growth factors also contribute to pain-associated behavior. Integrating these observations and determining their causal relationships is now critical for the identification of therapeutic targets and the design of appropriate interventions.
Collapse
Affiliation(s)
- Ted B Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Eugene L Dimitrov
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
30
|
Ohshima M, Itami C, Kimura F. The α 2A -adrenoceptor suppresses excitatory synaptic transmission to both excitatory and inhibitory neurons in layer 4 barrel cortex. J Physiol 2017; 595:6923-6937. [PMID: 28948610 DOI: 10.1113/jp275142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The effects of noradrenaline on excitatory synaptic transmission to regular spiking (excitatory) cells as well as regular spiking non-pyramidal and fast spiking (both inhibitory) cells in cortical layer 4 were studied in thalamocortical slice preparations, focusing on vertical input from thalamus and layer 2/3 in the mouse barrel cortex. Excitatory synaptic responses were suppressed by noradrenaline. However, currents induced by iontophoretically applied glutamate were not suppressed. Further, paired pulse ratio and coefficient of variation analysis indicated the site of action was presynaptic. Pharmacological studies indicated that the suppression was mediated by the α2- adrenoceptor. Consistent with this, involvement of α2A -adrenoceptor activation in the synaptic suppression in excitatory and inhibitory cells was confirmed by the use of α2A -adrenoceptor knockout mice. ABSTRACT The mammalian neocortex is widely innervated by noradrenergic (NA) fibres from the locus coeruleus. To determine the effects of NA on vertical synaptic inputs to layer 4 (L4) cells from the ventrobasal thalamus and layer 2/3 (L2/3), thalamocortical slices were prepared and whole-cell recordings were made from L4 cells. Excitatory synaptic responses were evoked by electrical stimulation of the thalamus or L2/3 immediately above. Recorded cells were identified as regular spiking, regular spiking non-pyramidal or fast spiking cells through their firing patterns in response to current injections. NA suppressed (∼50% of control) excitatory vertical inputs to all cell types in a dose-dependent manner. The presynaptic site of action of NA was suggested by three independent studies. First, responses caused by iontophoretically applied glutamate were not suppressed by NA. Second, the paired pulse ratio was increased during NA suppression. Finally, a coefficient of variation (CV) analysis was performed and the resultant diagonal alignment of the ratio of CV-2 plotted against the ratio of the amplitude of postsynaptic responses suggests a presynaptic mechanism for the suppression. Experiments with phenylephrine (an α1 -agonist), prazosin (an α1 -antagonist), yohimbine (an α2 -antagonist) and propranolol (a β-antagonist) indicated that suppression was mediated by the α2 -adrenoceptor. To determine whether the α2A -adrenoceptor subtype was involved, α2A -adrenoceptor knockout mice were used. NA failed to suppress EPSCs in all cell types, suggesting an involvement of the α2A -adrenoceptor. Altogether, we concluded that NA suppresses vertical excitatory synaptic connections in L4 excitatory and inhibitory cells through the presynaptic α2A -adrenoceptor.
Collapse
Affiliation(s)
- Minoru Ohshima
- Department of Physiology, Kansai University of Health Sciences, Kumatori, 590-0482, Japan
| | - Chiaki Itami
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, 350-0495, Japan
| | - Fumitaka Kimura
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| |
Collapse
|
31
|
Holmes NM, Crane JW, Tang M, Fam J, Westbrook RF, Delaney AJ. α 2-adrenoceptor-mediated inhibition in the central amygdala blocks fear-conditioning. Sci Rep 2017; 7:11712. [PMID: 28916748 PMCID: PMC5601913 DOI: 10.1038/s41598-017-12115-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022] Open
Abstract
The central amygdala is critical for the acquisition and expression of fear memories. This region receives a dense innervation from brainstem noradrenergic cell groups and has a high level of α2-adrenoceptor expression. Using whole-cell electrophysiological recordings from rat brain slices, we characterise the role of pre-synaptic α2-adrenoceptor in modulating discrete inhibitory and excitatory connections within both the lateral and medial division of the central amygdala. The selective α2-adrenoceptor agonist clonidine blocked the excitatory input from the pontine parabrachial neurons onto neurons of the lateral central amygdala. In addition, clonidine blocked inhibitory connections from the medial paracapsular intercalated cell mass onto both lateral and medial central amygdala neurons. To examine the behavioural consequence of α2-adrenoceptor-mediated inhibition of these inputs, we infused clonidine into the central amygdala prior to contextual fear-conditioning. In contrast to vehicle-infused rats, clonidine-infused animals displayed reduced levels of freezing 24 hours after training, despite showing no difference in freezing during the training session. These results reveal a role for α2-adrenoceptors within the central amygdala in the modulation of synaptic transmission and the formation of fear-memories. In addition, they provide further evidence for a role of the central amygdala in fear-memory formation.
Collapse
Affiliation(s)
- N M Holmes
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J W Crane
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia
| | - M Tang
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J Fam
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - R F Westbrook
- School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - A J Delaney
- School of Biomedical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
32
|
Zurawski Z, Page B, Chicka MC, Brindley RL, Wells CA, Preininger AM, Hyde K, Gilbert JA, Cruz-Rodriguez O, Currie KPM, Chapman ER, Alford S, Hamm HE. Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes. J Biol Chem 2017; 292:12165-12177. [PMID: 28515322 DOI: 10.1074/jbc.m116.773523] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/10/2017] [Indexed: 01/11/2023] Open
Abstract
Gi/o-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to Gβγ-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of Gβγ subunits with the soluble N-ethylmaleimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that Gβγ binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, Gβγ, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled Gβγ interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with Gβγ for SNARE-binding sites in lipid environments. Mutant Gβγ subunits that were previously shown to be more efficacious at inhibiting Ca2+-triggered exocytotic release than wild-type Gβγ were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant Gβγ subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on Gβ and Gγ shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In in vitro fusion assays using full-length t- and v-SNAREs embedded in liposomes, Gβγ inhibited Ca2+/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the Gβγ-SNARE interaction and show that the target of Gβγ, downstream of VGCC, is the membrane-embedded SNARE complex.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612-7308
| | - Michael C Chicka
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | - Rebecca L Brindley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Christopher A Wells
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Anita M Preininger
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - James A Gilbert
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Osvaldo Cruz-Rodriguez
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Kevin P M Currie
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612-7308
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600.
| |
Collapse
|
33
|
Rovira-Esteban L, Péterfi Z, Vikór A, Máté Z, Szabó G, Hájos N. Morphological and physiological properties of CCK/CB1R-expressing interneurons in the basal amygdala. Brain Struct Funct 2017; 222:3543-3565. [PMID: 28391401 DOI: 10.1007/s00429-017-1417-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022]
Abstract
Principal neurons in cortical regions including the basal nucleus of the amygdala (BA) are innervated by several types of inhibitory cells, one of which expresses the neuropeptide cholecystokinin (CCK) and the type 1 cannabinoid receptor (CB1R). CCK/CB1R-expressing interneurons may have a profound impact on amygdalar function by controlling its output. However, very little is known about their properties, and therefore their role in circuit operation cannot be predicted. To characterize the CCK/CB1R-expressing interneurons in the BA, we combined in vitro electrophysiological recordings and neuroanatomical techniques in a transgenic mouse that expresses DsRed fluorescent protein under the control of the CCK promoter. We found that the majority of CCK/CB1R-positive interneurons expressed either the type 3 vesicular glutamate transporter (VGluT3) or the Ca2+ binding protein calbindin (Calb). VGluT3+ CCK/CB1R-expressing interneurons targeted the soma of principal neurons more often than Calb+ CCK/CB1R-expressing interneurons, but the dendritic morphology and membrane properties of these two neurochemically distinct interneuron types were not significantly different. The results of paired recordings showed that the unitary IPSC properties of VGluT3+ or Calb+ CCK/CB1R-expressing interneurons recorded in principal neurons were indistinguishable. We verified that endocannabinoids at the output synapses of CCK/CB1R-expressing interneurons could potently reduce the unitary IPSC magnitude. In summary, independent of the neurochemical content, CCK/CB1R-expressing interneurons have similar physiological and morphological properties, providing an endocannabinoid-sensitive synaptic inhibition onto the amygdalar principal neurons.
Collapse
Affiliation(s)
- Laura Rovira-Esteban
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Péterfi
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Vikór
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Máté
- Division of Medical Gene Technology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Division of Medical Gene Technology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Hájos
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
34
|
A Presynaptic Group III mGluR Recruits Gβγ/SNARE Interactions to Inhibit Synaptic Transmission by Cone Photoreceptors in the Vertebrate Retina. J Neurosci 2017; 37:4618-4634. [PMID: 28363980 DOI: 10.1523/jneurosci.2948-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission.SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system.
Collapse
|
35
|
McDougall SJ, Guo H, Andresen MC. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala. J Physiol 2016; 595:901-917. [PMID: 27616729 DOI: 10.1113/jp272898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Emotions are accompanied by concordant changes in visceral function, including cardiac output, respiration and digestion. One major forebrain integrator of emotional responses, the amygdala, is considered to rely on embedded visceral afferent information, although few details are known. In the present study, we retrogradely transported dye from the central nucleus of the amygdala (CeA) to identify CeA-projecting nucleus of the solitary tract (NTS) neurons for synaptic characterization and compared them with unlabelled, near-neighboor NTS neurons. Solitary tract (ST) afferents converged onto NTS-CeA second-order sensory neurons in greater numbers, as well as indirectly via polysynaptic pathways. Unexpectedly, all mono- and polysynaptic ST afferent pathways to NTS-CeA neurons were organized exclusively as either transient receptor potential cation channel subfamily V member 1 (TRPV1)-sensitive or TRPV1-resistant, regardless of whether intervening neurons were excitatory or inhibitory. This strict sorting provides viscerosensory signals to CeA about visceral conditions with respect to being either 'normal' via A-fibres or 'alarm' via TRPV1 expressing C-fibres and, accordingly, this pathway organization probably encodes interoceptive status. ABSTRACT Emotional state is impacted by changes in visceral function, including blood pressure, breathing and digestion. A main line of viscerosensory information processing occurs first in the nucleus of the solitary tract (NTS). In the present study conducted in rats, we examined the synaptic characteristics of visceral afferent pathways to the central nucleus of the amygdala (CeA) in brainstem slices by recording from retrogradely labelled NTS projection neurons. We simultaneously recorded neuron pairs: one dye positive (i.e. NTS-CeA) and a second unlabelled neighbour. Graded shocks to the solitary tract (ST) always (93%) triggered EPSCs at CeA projecting NTS neurons. Half of the NTS-CeA neurons received at least one primary afferent input (classed 'second order') indicating that viscerosensory information arrives at the CeA conveyed via a pathway involving as few as two synapses. The remaining NTS-CeA neurons received viscerosensory input only via polysynaptic pathways. By contrast, ∼3/4 of unlabelled neighbouring neurons were directly connected to ST. NTS-CeA neurons received greater numbers of ST-related inputs compared to unlabelled NTS neurons, indicating that highly convergent viscerosensory signals reach the CeA. Remarkably, despite multifibre convergence, all single NTS-CeA neurons received inputs derived from only unmyelinated afferents [transient receptor potential cation channel subfamily V member 1 (TRPV1) expressing C-fibres] or only non-TRPV1 ST afferent inputs, and never a combination of both. Such segregation means that visceral afferent information followed separate lines to reach the CeA. Their very different physiological activation profiles mean that these parallel visceral afferent pathways encode viscerosensory signals to the amygdala that may provide interoceptive assessments to impact on behaviours.
Collapse
Affiliation(s)
- Stuart J McDougall
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Haoyao Guo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael C Andresen
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
36
|
Sugimura YK, Takahashi Y, Watabe AM, Kato F. Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala. J Neurophysiol 2016; 115:2721-39. [PMID: 26888105 PMCID: PMC4922599 DOI: 10.1152/jn.00946.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/15/2016] [Indexed: 01/04/2023] Open
Abstract
A large majority of neurons in the superficial layer of the dorsal horn projects to the lateral parabrachial nucleus (LPB). LPB neurons then project to the capsular part of the central amygdala (CeA; CeC), a key structure underlying the nociception-emotion link. LPB-CeC synaptic transmission is enhanced in various pain models by using electrical stimulation of putative fibers of LPB origin in brain slices. However, this approach has limitations for examining direct monosynaptic connections devoid of directly stimulating fibers from other structures and local GABAergic neurons. To overcome these limitations, we infected the LPB of rats with an adeno-associated virus vector expressing channelrhodopsin-2 and prepared coronal and horizontal brain slices containing the amygdala. We found that blue light stimulation resulted in monosynaptic excitatory postsynaptic currents (EPSCs), with very small latency fluctuations, followed by a large polysynaptic inhibitory postsynaptic current in CeC neurons, regardless of the firing pattern type. Intraplantar formalin injection at 24 h before slice preparation significantly increased EPSC amplitude in late firing-type CeC neurons. These results indicate that direct monosynaptic glutamatergic inputs from the LPB not only excite CeC neurons but also regulate CeA network signaling through robust feed-forward inhibition, which is under plastic modulation in response to persistent inflammatory pain.
Collapse
Affiliation(s)
- Yae K Sugimura
- Department of Neuroscience, The Jikei University School of Medicine, Minato, Tokyo, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, The Jikei University School of Medicine, Minato, Tokyo, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato, Tokyo, Japan
| | - Ayako M Watabe
- Department of Neuroscience, The Jikei University School of Medicine, Minato, Tokyo, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato, Tokyo, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan; and Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Minato, Tokyo, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Minato, Tokyo, Japan; Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
37
|
Delaney AJ, Crane JW. Presynaptic GABAB receptors reduce transmission at parabrachial synapses in the lateral central amygdala by inhibiting N-type calcium channels. Sci Rep 2016; 6:19255. [PMID: 26755335 PMCID: PMC4709695 DOI: 10.1038/srep19255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/07/2015] [Indexed: 11/20/2022] Open
Abstract
The nocioceptive information carried by neurons of the pontine parabrachial nucleus to neurons of the lateral division of the central amydala (CeA-L) is thought to contribute to the affective components of pain and is required for the formation of conditioned-fear memories. Importantly, excitatory transmission between parabrachial axon terminals and CeA-L neurons can be inhibited by a number of presynaptic receptors linked to Gi/o-type G-proteins, including α2-adrenoceptors and GABAB receptors. While the intracellular signalling pathway responsible for α2-adrenoceptor inhibition of synaptic transmission at this synapse is known, the mechanism by which GABAB receptors inhibits transmission has not been determined. The present study demonstrates that activation of presynaptic GABAB receptors reduces excitatory transmission between parabrachial axon terminals and CeA-L neurons by inhibiting N-type calcium channels. While the involvement of Gβγ subunits in mediating the inhibitory effects of GABAB receptors on N-type calcium channels is unclear, this inhibition does not involve Gβγ-independent activation of pp60C-src tyrosine kinase. The results of this study further enhance our understanding of the modulation of the excitatory input from parabrachial axon terminals to CeA-L neurons and indicate that presynaptic GABAB receptors at this synapse could be valuable therapeutic targets for the treatment of fear- and pain-related disorders.
Collapse
Affiliation(s)
- A J Delaney
- School of Biomedical Sciences, Charles Sturt University, NSW, Australia
| | - J W Crane
- School of Biomedical Sciences, Charles Sturt University, NSW, Australia
| |
Collapse
|
38
|
Nowak P. Selective Lifelong Destruction of Brain Monoaminergic Nerves Through Perinatal DSP-4 Treatment. Curr Top Behav Neurosci 2016; 29:51-71. [PMID: 26427851 DOI: 10.1007/7854_2015_398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) is a highly selective neurotoxin for noradrenergic projections originating from the locus coeruleus (LC). The outcome of the systemic DSP-4 treatment of newborn rats is an alteration in postnatal development of the noradrenergic system, involving the permanent denervation of distal noradrenergic projection areas (neocortex, hippocampus, spinal cord), accompanied by noradrenergic hyperinnervation in regions proximal to the LC cell bodies (cerebellum, pons-medulla). DSP-4 is well tolerated by developing rats and does not increase the mortality rate. Permanent noradrenergic denervation in the cerebral cortex and spinal cord is present at all developmental stages, although this effect is more pronounced in rats treated with DSP-4 at an early age, i.e., up to postnatal day 5 (PND 5). Notably, regional hyperinnervation is a hallmark of neonatal DSP-4 treatment, which is not observed after either prenatal or adult DSP-4 application. In contrast to robust biochemical changes in the brain, DSP-4 treatment of newborn rats has a marginal effect on arousal and cognition functions assessed in adulthood, and these processes are critically influenced by the action of the noradrenergic neurotransmitter, norepinephrine (NE). Conversely, neonatal DSP-4 does not significantly affect 5-hydroxytryptamine (serotonin; 5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and histamine levels in brain. However, as a consequence of altering the functional efficacy of 5-HT1A, 5-HT1B, DA, and GABA receptors, these neurotransmitter systems are profoundly affected in adulthood. Thus, the noradrenergic lesion obtained with neonatal DSP-4 treatment represents a unique neurobiological technique for exploring the interplay between various neuronal phenotypes and examining the pathomechanism of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Przemysław Nowak
- Department of Toxicology and Addiction, Department of Toxicology and Health Protection, School of Public Health in Bytom, Medical University of Silesia, Medyków 18 Street, 40-752, Katowice, Poland.
| |
Collapse
|
39
|
Zurawski Z, Rodriguez S, Hyde K, Alford S, Hamm HE. Gβγ Binds to the Extreme C Terminus of SNAP25 to Mediate the Action of Gi/o-Coupled G Protein-Coupled Receptors. Mol Pharmacol 2015; 89:75-83. [PMID: 26519224 DOI: 10.1124/mol.115.101600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Gi/o-coupled G protein-coupled receptors can exert an inhibitory effect on vesicle release through several G protein-driven mechanisms, more than one of which may be concurrently present in individual presynaptic terminals. The synaptosomal-associated protein of 25 kDa (SNAP25) is a key downstream effector of Gβγ subunits. It has previously been shown that proteolytic cleavage of SNAP25 by botulinum toxin A reduces the ability of Gβγ to compete with the calcium sensor synaptotagmin 1 (Syt1) for binding to SNAP25 in a calcium-dependent manner. These truncated SNAP25 proteins sustain a low level of exocytosis but are unable to support serotonin-mediated inhibition of exocytosis in lamprey spinal neurons. Here, we generate a SNAP25 extreme C-terminal mutant that is deficient in its ability to bind Gβγ while retaining normal calcium-dependent Syt1 binding to soluble N-ethylmaleimide attachment protein receptor (SNARE) and vesicle release. The SNAP25Δ3 mutant, in which residue G204 is replaced by a stop codon, features a partial reduction in Gβ1γ2 binding in vitro as well as a partial reduction in the ability of the lamprey 5-hydroxytryptamine1b-type serotonin receptor to reduce excitatory postsynaptic current amplitudes, an effect previously shown to be mediated through the interaction of Gβγ with SNAP25. Syt1 calcium-dependent binding to SNAP25Δ3 was reduced by a small extent compared with the wild type. We conclude that the extreme C terminus of SNAP25 is a critical region for the Gβγ-SNARE interaction.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Shelagh Rodriguez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Simon Alford
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| |
Collapse
|
40
|
Sun Y, Hunt S, Sah P. Norepinephrine and Corticotropin-Releasing Hormone: Partners in the Neural Circuits that Underpin Stress and Anxiety. Neuron 2015; 87:468-70. [PMID: 26247856 DOI: 10.1016/j.neuron.2015.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Norepinephrine and corticotropin-releasing hormone (CRH) have long been implicated in the response to stress. In this issue of Neuron, McCall et al. (2015) show that CRH projections from the central amygdala drive tonic locus coeruleus activity that evokes acute anxiety responses and place aversion.
Collapse
Affiliation(s)
- Yajie Sun
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sarah Hunt
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
41
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|
42
|
Yang YC, Hu CC, Lai YC. Non-additive modulation of synaptic transmission by serotonin, adenosine, and cholinergic modulators in the sensory thalamus. Front Cell Neurosci 2015; 9:60. [PMID: 25852468 PMCID: PMC4360759 DOI: 10.3389/fncel.2015.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/09/2015] [Indexed: 11/13/2022] Open
Abstract
The thalamus relays sensory information to the cortex. Oscillatory activities of the thalamocortical network are modulated by monoamines, acetylcholine, and adenosine, and could be the key features characteristic of different vigilance states. Although the thalamus is almost always subject to the actions of more than just one neuromodulators, reports on the modulatory effect of coexisting neuromodulators on thalamic synaptic transmission are unexpectedly scarce. We found that, if present alone, monoamine or adenosine decreases retinothalamic synaptic strength and short-term depression, whereas cholinergic modulators generally enhance postsynaptic response to presynaptic activity. However, coexistence of different modulators tends to produce non-additive effect, not predictable based on the action of individual modulators. Acetylcholine, acting via nicotinic receptors, can interact with either serotonin or adenosine to abolish most short-term synaptic depression. Moreover, the coexistence of adenosine and monoamine, with or without acetylcholine, results in robustly decreased synaptic strength and transforms short-term synaptic depression to facilitation. These findings are consistent with a view that acetylcholine is essential for an "enriched" sensory flow through the thalamus, and the flow is trimmed down by concomitant monoamine or adenosine (presumably for the wakefulness and rapid-eye movement, or REM, sleep states, respectively). In contrast, concomitant adenosine and monoamine would lead to a markedly "deprived" (and high-pass filtered) sensory flow, and thus the dramatic decrease of monoamine may constitute the basic demarcation between non-REM and REM sleep. The collective actions of different neuromodulators on thalamic synaptic transmission thus could be indispensable for the understanding of network responsiveness in different vigilance states.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan ; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| | - Chun-Chang Hu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan ; Department of Neurosurgery, Chang-Gung Memorial Hospital Linkou, Taiwan
| | - Yi-Chen Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University Tao-Yuan, Taiwan
| |
Collapse
|
43
|
Sato M, Ito M, Nagase M, Sugimura YK, Takahashi Y, Watabe AM, Kato F. The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice. Mol Brain 2015; 8:22. [PMID: 25888401 PMCID: PMC4377188 DOI: 10.1186/s13041-015-0108-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Background Pavlovian fear conditioning is a form of learning accomplished by associating a conditioned stimulus (CS) and an unconditioned stimulus (US). While CS–US associations are generally thought to occur in the amygdala, the pathway mediating US signal processing has only been partially identified. The external part of the pontine lateral parabrachial nucleus (elPB) is well situated for providing US nociceptive information to the central amygdala (CeA), which was recently revealed to play a primary role in fear acquisition. Therefore, we manipulated the elPB activity to examine its role in the regulation of fear learning. Results First, we transiently inactivate the elPB during the acquisition of fear memory. Mice received bilateral elPB injections of the GABAA agonist muscimol (MUS) or phosphate-buffered saline (drug control), with bilateral misplacement of MUS defined as a placement control group. After the injection, mice were conditioned with a pure tone and foot-shock. On a memory retrieval test on day 2, the freezing ratio was significantly lower in the MUS group compared with that in the drug control or placement control groups. A second retrieval test using a pip tone on day 4 following de novo training on day 3, resulted in significant freezing with no group differences, indicating integrity of fear learning and a temporary limited effect of MUS. Next, we examined whether selectively activating the elPB-CeC pathway is sufficient to induce fear learning when paired with CS. Mice with channelrhodopsin2 (ChR2) expressed in the elPB received a pure tone (CS) in association with optical stimulation in the CeA (CS-LED paired group). On the retrieval test, CS-LED paired mice exhibited significantly higher freezing ratios evoked by CS presentation compared with both control mice receiving optical stimulation immediately after being placed in the shock chamber and exposed to the CS much later (immediate shock group) and those expressing only GFP (GFP control group). These results suggest that selective stimulation of the elPB-CeC pathway substitutes for the US to induce fear learning. Conclusions The elPB activity is necessary and sufficient to trigger fear learning, likely as a part of the pathway transmitting aversive signals to the CeA.
Collapse
Affiliation(s)
- Masaru Sato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, 105-8461, Japan. .,Department of Anesthesiology, Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Mariko Ito
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, 105-8461, Japan. .,Department of Anesthesiology, Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Masashi Nagase
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Yae K Sugimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Ayako M Watabe
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, 105-8461, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan. .,Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, 105-8461, Japan. .,Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
44
|
Park PE, Schlosburg JE, Vendruscolo LF, Schulteis G, Edwards S, Koob GF. Chronic CRF1 receptor blockade reduces heroin intake escalation and dependence-induced hyperalgesia. Addict Biol 2015; 20:275-84. [PMID: 24330252 DOI: 10.1111/adb.12120] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Opioids represent effective drugs for the relief of pain, yet chronic opioid use often leads to a state of increased sensitivity to pain that is exacerbated during withdrawal. A sensitization of pain-related negative affect has been hypothesized to closely interact with addiction mechanisms. Neuro-adaptive changes occur as a consequence of excessive opioid exposure, including a recruitment of corticotropin-releasing factor (CRF) and norepinephrine (NE) brain stress systems. To better understand the mechanisms underlying the transition to dependence, we determined the effects of functional antagonism within these two systems on hyperalgesia-like behavior during heroin withdrawal utilizing models of both acute and chronic dependence. We found that passive or self-administered heroin produced a significant mechanical hypersensitivity. During acute opioid dependence, systemic administration of the CRF1 receptor antagonist MPZP (20 mg/kg) alleviated withdrawal-induced mechanical hypersensitivity. In contrast, several functional adrenergic system antagonists (clonidine, prazosin, propranolol) failed to alter mechanical hypersensitivity in this state. We then determined the effects of chronic MPZP or clonidine treatment on extended access heroin self-administration and found that MPZP, but not clonidine, attenuated escalation of heroin intake, whereas both drugs alleviated chronic dependence-associated hyperalgesia. These findings suggest that an early potentiation of CRF signaling occurs following opioid exposure that begins to drive both opioid-induced hyperalgesia and eventually intake escalation.
Collapse
Affiliation(s)
- Paula E. Park
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California; La Jolla CA USA
| | - Joel E. Schlosburg
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Leandro F. Vendruscolo
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| | - Gery Schulteis
- Research Service; VA San Diego Healthcare System; San Diego CA USA
- Department of Anesthesiology; San Diego School of Medicine; University of California; San Diego CA USA
| | - Scott Edwards
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
- Department of Physiology; LSU Health Sciences Center; New Orleans LA USA
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute; La Jolla CA USA
| |
Collapse
|
45
|
Presynaptic inhibition by α2 receptor/adenylate cyclase/PDE4 complex at retinal rod bipolar synapse. J Neurosci 2014; 34:9432-40. [PMID: 25009274 DOI: 10.1523/jneurosci.0766-14.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptor (GPCR)-mediated presynaptic inhibition is a fundamental mechanism regulating synaptic transmission in the CNS. The classical GPCR-mediated presynaptic inhibition in the CNS is produced by direct interactions between the G(βγ) subunits of the G-protein and presynaptic Ca(2+) channels, K(+) channels, or synaptic proteins that affect transmitter release. This mode of action is shared by well known GPCRs such as the α2, GABA(B), and CB1 receptors. We report that the α2 receptor-mediated inhibition of presynaptic Ca(2+) channel and transmitter release in rat retinal rod bipolar cells depends on the G(α) subunit via a G(α)-adenylate cyclase-cAMP cascade and requires participation of the type 4 phosphodiesterase (PDE4), a new role for phosphodiesterase in neural signaling. By using the G(α) instead of the G(βγ) subunits, this mechanism is able to use a cyclase/PDE enzyme pair to dynamically control a cyclic nucleotide second messenger (i.e., cAMP) for the regulation of synaptic transmission, an operating strategy that shows remarkable similarity to that of dynamic control of cGMP and transmitter release from photoreceptors by the guanylate cyclase/PDE6 pair in phototransduction. Our results demonstrate a new paradigm of GPCR-mediated presynaptic inhibition in the CNS and add a new regulatory mechanism at a critical presynaptic site in the visual pathway that controls the transmission of scotopic information. They also provide a presynaptic mechanism that could contribute to neuroprotection of retinal ganglion cells by α2 agonists, such as brimonidine, in animal models of glaucoma and retinal ischemia and in glaucoma patients.
Collapse
|
46
|
α(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis. J Neurosci 2014; 34:9319-31. [PMID: 25009265 DOI: 10.1523/jneurosci.0822-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs.
Collapse
|
47
|
Octopamine neuromodulation regulates Gr32a-linked aggression and courtship pathways in Drosophila males. PLoS Genet 2014; 10:e1004356. [PMID: 24852170 PMCID: PMC4031044 DOI: 10.1371/journal.pgen.1004356] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/24/2014] [Indexed: 01/08/2023] Open
Abstract
Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway. To mate or fight? When meeting other members of their species, male fruit flies must determine whether a second fly is male or female and proceed with the appropriate behavioral patterns. The taste receptor, Gr32a, has been reported to respond to chemical messages (pheromones) that are important for gender recognition, as eliminating Gr32a function impairs both male courtship and aggressive behavior. Here we demonstrate that different subsets of Gr32a-expressing neuron populations mediate these mutually exclusive behaviors and the male Gr32a-mediated behavioral response is amplified through neurons that contain the neuromodulator octopamine (OA, an invertebrate equivalent of norepinephrine). Gr32a-expressing neurons connect functionally and synaptically with distinct OA neurons indicating these amine neurons may function as early as a second-order step in a chemosensory-driven circuit. Our results contribute to understanding how an organism selects an appropriate behavioral response upon receiving external sensory signals.
Collapse
|
48
|
Strobel C, Hunt S, Sullivan R, Sun J, Sah P. Emotional regulation of pain: the role of noradrenaline in the amygdala. SCIENCE CHINA-LIFE SCIENCES 2014; 57:384-90. [PMID: 24643418 DOI: 10.1007/s11427-014-4638-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
The perception of pain involves the activation of the spinal pathway as well as the supra-spinal pathway, which targets brain regions involved in affective and cognitive processes. Pain and emotions have the capacity to influence each other reciprocally; negative emotions, such as depression and anxiety, increase the risk for chronic pain, which may lead to anxiety and depression. The amygdala is a key-player in the expression of emotions, receives direct nociceptive information from the parabrachial nucleus, and is densely innervated by noradrenergic brain centers. In recent years, the amygdala has attracted increasing interest for its role in pain perception and modulation. In this review, we will give a short overview of structures involved in the pain pathway, zoom in to afferent and efferent connections to and from the amygdala, with emphasis on the direct parabrachio-amygdaloid pathway and discuss the evidence for amygdala's role in pain processing and modulation. In addition to the involvement of the amygdala in negative emotions during the perception of pain, this brain structure is also a target site for many neuromodulators to regulate the perception of pain. We will end this article with a short review on the effects of noradrenaline and its role in hypoalgesia and analgesia.
Collapse
Affiliation(s)
- Cornelia Strobel
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
49
|
Ramikie TS, Nyilas R, Bluett RJ, Gamble-George JC, Hartley ND, Mackie K, Watanabe M, Katona I, Patel S. Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses. Neuron 2014; 81:1111-1125. [PMID: 24607231 PMCID: PMC3955008 DOI: 10.1016/j.neuron.2014.01.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2013] [Indexed: 11/26/2022]
Abstract
The central amygdala (CeA) is a key structure at the limbic-motor interface regulating stress responses and emotional learning. Endocannabinoid (eCB) signaling is heavily implicated in the regulation of stress-response physiology and emotional learning processes; however, the role of eCBs in the modulation of synaptic efficacy in the CeA is not well understood. Here we describe the subcellular localization of CB1 cannabinoid receptors and eCB synthetic machinery at glutamatergic synapses in the CeA and find that CeA neurons exhibit multiple mechanistically and temporally distinct modes of postsynaptic eCB mobilization. These data identify a prominent role for eCBs in the modulation of excitatory drive to CeA neurons and provide insight into the mechanisms by which eCB signaling and exogenous cannabinoids could regulate stress responses and emotional learning.
Collapse
Affiliation(s)
- Teniel S Ramikie
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Rita Nyilas
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rebecca J Bluett
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Joyonna C Gamble-George
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Nolan D Hartley
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA
| | - Ken Mackie
- Gill Institute and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sachin Patel
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37212, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| |
Collapse
|
50
|
Modulation of neurotransmission by GPCRs is dependent upon the microarchitecture of the primed vesicle complex. J Neurosci 2014; 34:260-74. [PMID: 24381287 DOI: 10.1523/jneurosci.3633-12.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G(i/o)-protein-coupled receptors (GPCRs) ubiquitously inhibit neurotransmission, principally via Gβγ, which acts via a number of possible effectors. GPCR effector specificity has traditionally been attributed to Gα, based on Gα's preferential effector targeting in vitro compared with Gβγ's promiscuous targeting of various effectors. In synapses, however, Gβγ clearly targets unique effectors in a receptor-dependent way to modulate synaptic transmission. It remains unknown whether Gβγ specificity in vivo is due to specific Gβγ isoform-receptor associations or to spatial separation of distinct Gβγ pathways through macromolecular interactions. We thus sought to determine how Gβγ signaling pathways within axons remain distinct from one another. In rat hippocampal CA1 axons, GABA(B) receptors (GABA(B)Rs) inhibit presynaptic Ca(2+) entry, and we have now demonstrated that 5-HT(1B) receptors (5-HT(1B)Rs) liberate Gβγ to interact with SNARE complex C terminals with no effect on Ca(2+) entry. Both GABA(B)Rs and 5-HT(1B)Rs inhibit Ca(2+)-evoked neurotransmitter release, but 5-HT(1B)Rs have no effect on Sr(2+)-evoked release. Sr(2+), unlike Ca(2+), does not cause synaptotagmin to compete with Gβγ binding to SNARE complexes. 5-HT(1B)Rs also fail to inhibit release following cleavage of the C terminus of the SNARE complex protein SNAP-25 with botulinum A toxin. Thus, GABA(B)Rs and 5-HT(1B)Rs both localize to presynaptic terminals, but target distinct effectors. We demonstrate that disruption of SNARE complexes and vesicle priming with botulinum C toxin eliminates this selectivity, allowing 5-HT(1B)R inhibition of Ca(2+) entry. We conclude that receptor-effector specificity requires a microarchitecture provided by the SNARE complex during vesicle priming.
Collapse
|