1
|
Forastieri C, Romito E, Paplekaj A, Battaglioli E, Rusconi F. Dissecting the Hippocampal Regulation of Approach-Avoidance Conflict: Integrative Perspectives From Optogenetics, Stress Response, and Epigenetics. Hippocampus 2024; 34:753-766. [PMID: 39494726 DOI: 10.1002/hipo.23647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/03/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Psychiatric disorders are multifactorial conditions without clear biomarkers, influenced by genetic, environmental, and developmental factors. Understanding these disorders requires identifying specific endophenotypes that help break down their complexity. Here, we undertake an in-depth analysis of one such endophenotype, namely imbalanced approach-avoidance conflict (AAC), reviewing its significant dependency on the hippocampus. Imbalanced AAC is a transdiagnostic endophenotype, being a feature of many psychiatric conditions in humans. However, it is predominantly examined in preclinical research through paradigms that subject rodents to conflict-laden scenarios. This review offers an original perspective by discussing the AAC through three distinct lights: optogenetic modulation of the AAC, which updates our understanding of the hippocampal contribution to behavioral inhibition; the impact of environmental stress, which exacerbates conflict and strengthens the stress-psychopathology axis; and inherent epigenetic aspects, which uncover crucial molecular underpinnings of environmental (mal) adaptation. By integrating these perspectives, in this review we aim to underline a cross-species causal nexus between heightened hippocampal activity and avoidance behavior. In addition, we suggest a rationale to explore epigenetic pharmacology as a potential strategy to tackle AAC-related psychopathology. This review assumes greater significance when viewed through the lens of advancing AAC-centric diagnostics in human subjects. Unlike traditional questionnaires, which struggle to accurately measure individual differences in AAC-related dimensions, new approaches using virtual reality and computer games show promise in better focusing the magnitude of AAC contribution to psychopathology.
Collapse
Affiliation(s)
- C Forastieri
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Romito
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - A Paplekaj
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - E Battaglioli
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - F Rusconi
- Laboratory of Neuroepigenetics, Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
3
|
Wei X, Li J, Cheng Z, Wei S, Yu G, Olsen ML. Decoding the Epigenetic Landscape: Insights into 5mC and 5hmC Patterns in Mouse Cortical Cell Types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602342. [PMID: 39026756 PMCID: PMC11257419 DOI: 10.1101/2024.07.06.602342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The DNA modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), represent powerful epigenetic regulators of temporal and spatial gene expression. Yet, how the cooperation of these genome-wide, epigenetic marks determine unique transcriptional signatures across different brain cell populations is unclear. Here we applied Nanopore sequencing of native DNA to obtain a complete, genome-wide, single-base resolution atlas of 5mC and 5hmC modifications in neurons, astrocytes and microglia in the mouse cortex (99% genome coverage, 40 million CpG sites). In tandem with RNA sequencing, analysis of 5mC and 5hmC patterns across cell types reveals astrocytes drive uniquely high brain 5hmC levels and support two decades of research regarding methylation patterns, gene expression and alternative splicing, benchmarking this resource. As such, we provide the most comprehensive DNA methylation data in mouse brain as an interactive, online tool (NAM-Me, https://olsenlab.shinyapps.io/NAMME/) to serve as a resource dataset for those interested in the methylome landscape.
Collapse
Affiliation(s)
- Xiaoran Wei
- Biomedical and Veterinary Sciences Graduate Program, Virginia Tech, Blacksburg, VA, the United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| | - Jiangtao Li
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, the United States
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Songtao Wei
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, the United States
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, the United States
| |
Collapse
|
4
|
Lee CC, Park KB, Kim MS, Jeon YD. CBP Expression Contributes to Neuropathic Pain via CREB and MeCP2 Regulation in the Spared Nerve Injury Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:989. [PMID: 38929606 PMCID: PMC11205579 DOI: 10.3390/medicina60060989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury.
Collapse
Affiliation(s)
| | | | | | - Young Dae Jeon
- Department of Orthopedic Surgery, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan 44033, Republic of Korea; (C.-C.L.); (K.-B.P.); (M.S.K.)
| |
Collapse
|
5
|
Feierman ER, Louzon S, Prescott NA, Biaco T, Gao Q, Qiu Q, Choi K, Palozola KC, Voss AJ, Mehta SD, Quaye CN, Lynch KT, Fuccillo MV, Wu H, David Y, Korb E. Histone variant H2BE enhances chromatin accessibility in neurons to promote synaptic gene expression and long-term memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.575103. [PMID: 38352334 PMCID: PMC10862743 DOI: 10.1101/2024.01.29.575103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Regulation of histone proteins affects gene expression through multiple mechanisms including exchange with histone variants. However, widely expressed variants of H2B remain elusive. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. We applied new tools including novel antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE, and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Lastly, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a novel mechanism linking histone variants to chromatin regulation, neuronal function, and memory. This work further identifies the first widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.
Collapse
Affiliation(s)
- Emily R. Feierman
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sean Louzon
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nicholas A. Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Qingzeng Gao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kyuhyun Choi
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katherine C. Palozola
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Anna J. Voss
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Shreya D. Mehta
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Camille N. Quaye
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katherine T. Lynch
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Marc V. Fuccillo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Erica Korb
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
6
|
Begley D, Gabathuler R, Pastores G, Garcia-Cazorla A, Ardigò D, Scarpa M, Tomanin R, Tosi G. Challenges and opportunities in neurometabolic disease treatment with enzyme delivery. Expert Opin Drug Deliv 2024; 21:817-828. [PMID: 38963225 DOI: 10.1080/17425247.2024.2375388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Neurometabolic disorders remain challenging to treat, largely due to the limited availability of drugs that can cross the blood-brain barrier (BBB) and effectively target brain impairment. Key reasons for inadequate treatment include a lack of coordinated knowledge, few studies on BBB status in these diseases, and poorly designed therapies. AREAS COVERED This paper provides an overview of current research on neurometabolic disorders and therapeutic options, focusing on the treatment of neurological involvement. It highlights the limitations of existing therapies, describes innovative protocols recently developed, and explores new opportunities for therapy design and testing, some of which are already under investigation. The goal is to guide researchers toward innovative and potentially more effective treatments. EXPERT OPINION Advancing research on neurometabolic diseases is crucial for designing effective treatment strategies. The field suffers from a lack of collaboration, and a strong collective effort is needed to enhance synergy, increase knowledge, and develop a new therapeutic paradigm for neurometabolic disorders.
Collapse
Affiliation(s)
- David Begley
- Blood-Brain Barrier Group, King's College London, Strand, London, UK
| | | | | | - Angeles Garcia-Cazorla
- Neurometabolic Unit. Department of Neurology, Hospital Sant Joan de Déu, CIBERER and MetabERN, Barcelona, Spain
| | | | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Dept. of Women's and Children's Health, University of Padova, Padova, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giovanni Tosi
- Nanotech Lab, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Xu H, Zhang T, Li L, Qu Y, Li L, Yan Y, Wu L, Yan C. Paeoniflorin exerts anti-PTSD effects in adult rats by modulating hippocampus and amygdala histone acetylation modifications in response to early life stress. Chem Biol Interact 2024; 396:111035. [PMID: 38703807 DOI: 10.1016/j.cbi.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Early life stress (ELS) can cause long-term changes by epigenetic factors, especially histone acetylation modification, playing a crucial role, affect normal cognition, mood, and behavior, and increase susceptibility to post-traumatic stress disorder (PTSD) in adulthood. It has been found that paeoniflorin (PF) can cross the blood-brain barrier to exert anti-PTSD effects on adult PTSD rats. However, whether PF can alleviate the harmful effects caused by ELS in adulthood has not yet been reported. Therefore, to explore the relationship between ELS and PTSD susceptibility in adulthood and its mechanism, in this study, SPS was used as a stressor of ELS, and the mathematical tool Z-normalization was employed as an evaluation criterion of behavioral resilience susceptibility. To investigate the regulatory mechanism of PF on histone acetylation in the hippocampus and amygdala of ELS rats in adulthood, using changes in HATs/HDACs as the entry point, meanwhile, the epigenetic marks (H3K9 and H4K12) in the key brain regions of ELS (hippocampus and amygdala) were evaluated, and the effects of PF on behavioral representation and PTSD susceptibility were observed. This study found that ELS lead to a series of PTSD-like behaviors in adulthood and caused imbalance of HATs/HDACs ratio in the hippocampus and amygdala, which confirms that ELS is an important risk factor for the development of PTSD in adulthood. In addition, paeoniflorin may improve ELS-induced PTSD-like behaviors and reduce the susceptibility of ELS rats to develop PTSD in adulthood by modulating the HATs/HDACs ratio in the hippocampus and amygdala.
Collapse
Affiliation(s)
- Hanfang Xu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| | - Tiange Zhang
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| | - Ling Li
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Yue Qu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Lanxin Li
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Yuqi Yan
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Lili Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| | - Can Yan
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China.
| |
Collapse
|
8
|
Guida N, Serani A, Sanguigno L, Mascolo L, Cuomo O, Fioriniello S, Marano D, Ragione FD, Anzilotti S, Brancaccio P, Molinaro P, Pignataro G, Annunziato L, Formisano L. Stroke Causes DNA Methylation at Ncx1 Heart Promoter in the Brain Via DNMT1/MeCP2/REST Epigenetic Complex. J Am Heart Assoc 2024; 13:e030460. [PMID: 38456444 PMCID: PMC11010005 DOI: 10.1161/jaha.123.030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.
Collapse
Affiliation(s)
- Natascia Guida
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Domenico Marano
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| |
Collapse
|
9
|
Zhang L, Chai R, Tai Z, Miao F, Shi X, Chen Z, Zhu Q. Noval advance of histone modification in inflammatory skin diseases and related treatment methods. Front Immunol 2024; 14:1286776. [PMID: 38235133 PMCID: PMC10792063 DOI: 10.3389/fimmu.2023.1286776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Inflammatory skin diseases are a group of diseases caused by the disruption of skin tissue due to immune system disorders. Histone modification plays a pivotal role in the pathogenesis and treatment of chronic inflammatory skin diseases, encompassing a wide range of conditions, including psoriasis, atopic dermatitis, lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata. Analyzing histone modification as a significant epigenetic regulatory approach holds great promise for advancing our understanding and managing these complex disorders. Additionally, therapeutic interventions targeting histone modifications have emerged as promising strategies for effectively managing inflammatory skin disorders. This comprehensive review provides an overview of the diverse types of histone modification. We discuss the intricate association between histone modification and prevalent chronic inflammatory skin diseases. We also review current and potential therapeutic approaches that revolve around modulating histone modifications. Finally, we investigated the prospects of research on histone modifications in the context of chronic inflammatory skin diseases, paving the way for innovative therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Lichen Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Rongrong Chai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinwei Shi
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Hao M, Jiang Y, Zhang Y, Yang X, Han J. Ferroptosis regulation by methylation in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188972. [PMID: 37634887 DOI: 10.1016/j.bbcan.2023.188972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Epigenetic regulation plays a critical role in cancer development and progression. Methylation is an important epigenetic modification that influences gene expression by adding a methyl group to nucleic acids and proteins. Ferroptosis is a new form of regulated cell death triggered by the accumulation of iron and lipid peroxidation. Emerging evidence have shown that methylation regulation plays a significant role in the regulation of ferroptosis in cancer. This review aims to explore the methylation regulation of ferroptosis in cancer, including reactive oxygen species and iron bio-logical activity, amino acid and lipid metabolism, and drugs interaction. The findings of this review may provide new insights and strategies for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Mengqiu Hao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yixin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Yang Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
12
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Patel PJ, Ren Y, Yan Z. Epigenomic analysis of Alzheimer's disease brains reveals diminished CTCF binding on genes involved in synaptic organization. Neurobiol Dis 2023; 184:106192. [PMID: 37302762 PMCID: PMC10519202 DOI: 10.1016/j.nbd.2023.106192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
Epigenetic aberrations are suggested to play an important role in transcriptional alterations in Alzheimer's disease (AD). One of the key mechanisms of epigenetic regulation of gene expression is through the dynamic organization of chromatin structure via the master genome architecture protein, CCCTC-binding factor (CTCF). By forming chromatin loops, CTCF can influence gene transcription in a complex manner. To find out whether genome-wide DNA binding sites for CTCF are altered in AD, we compared CTCF chromatin immunoprecipitation sequencing (ChIP-Seq) data from frontal cortex of human AD patients and normal controls (n = 9 pairs, all females). We have revealed that CTCF-binding affinity on many genes is significantly reduced in AD patients, and these genes are enriched in synaptic organization, cell adhesion, and actin cytoskeleton, including synaptic scaffolding molecules and receptors, such as SHANK2, HOMER1, NRXN1, CNTNAP2 and GRIN2A, and protocadherin (PCDH) and cadherin (CDH) family members. By comparing transcriptomic data from AD patients, we have discovered that many of the synaptic and adhesion genes with reduced CTCF binding in AD are significantly reduced in their mRNA expression. Moreover, a significant overlap of genes with the diminished CTCF binding and the reduced H3K27ac is identified in AD, with the common genes enriched in synaptic organization. These data suggest that the CTCF-controlled 3D chromatin organization is perturbed in AD, which may be linked to the diminished expression of target genes, probably through changes in histone modification.
Collapse
Affiliation(s)
- Prachetas J Patel
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Yong Ren
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
14
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Involvement of the H3.3 Histone Variant in the Epigenetic Regulation of Gene Expression in the Nervous System, in Both Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:11028. [PMID: 37446205 DOI: 10.3390/ijms241311028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
All the cells of an organism contain the same genome. However, each cell expresses only a minor fraction of its potential and, in particular, the genes encoding the proteins necessary for basal metabolism and the proteins responsible for its specific phenotype. The ability to use only the right and necessary genes involved in specific functions depends on the structural organization of the nuclear chromatin, which in turn depends on the epigenetic history of each cell, which is stored in the form of a collection of DNA and protein modifications. Among these modifications, DNA methylation and many kinds of post-translational modifications of histones play a key role in organizing the complex indexing of usable genes. In addition, non-canonical histone proteins (also known as histone variants), the synthesis of which is not directly linked with DNA replication, are used to mark specific regions of the genome. Here, we will discuss the role of the H3.3 histone variant, with particular attention to its loading into chromatin in the mammalian nervous system, both in physiological and pathological conditions. Indeed, chromatin modifications that mark cell memory seem to be of special importance for the cells involved in the complex processes of learning and memory.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
15
|
Cabej NR. On the origin and nature of nongenetic information in eumetazoans. Ann N Y Acad Sci 2023. [PMID: 37154677 DOI: 10.1111/nyas.15001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nongenetic information implies all the forms of biological information not related to genes and DNA in general. Despite the deep scientific relevance of the concept, we currently lack reliable knowledge about its carriers and origins; hence, we still do not understand its true nature. Given that genes are the targets of nongenetic information, it appears that a parsimonious approach to find the ultimate source of that information is to trace back the sequential steps of the causal chain upstream of the target genes up to the ultimate link as the source of the nongenetic information. From this perspective, I examine seven nongenetically determined phenomena: placement of locus-specific epigenetic marks on DNA and histones, changes in snRNA expression patterns, neural induction of gene expression, site-specific alternative gene splicing, predator-induced morphological changes, and cultural inheritance. Based on the available evidence, I propose a general model of the common neural origin of all these forms of nongenetic information in eumetazoans.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania
| |
Collapse
|
16
|
Finkin-Groner E, Al-Kachak A, Agustinus A, Bastle R, Lepack A, Lyu Y, Maze I, David Y. Flexible and site-specific manipulation of histones in live animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533378. [PMID: 36993231 PMCID: PMC10055299 DOI: 10.1101/2023.03.19.533378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Recent advances in protein engineering have provided a wealth of methods that allow for the site-specific manipulation of proteins in vitro and in cells. However, the efforts to expand these toolkits for use in live animals has been limited. Here, we report a new method for the semi-synthesis of site-specifically modified and chemically defined proteins in live animals. Importantly, we illustrate the usefulness of this methodology in the context of a challenging, chromatin bound N-terminal histone tail within rodent postmitotic neurons located in ventral striatum (Nucleus Accumbens/NAc). This approach provides the field with a precise and broadly applicable methodology for manipulating histones in vivo, thereby serving as a unique template towards examining chromatin phenomena that may mediate transcriptomic and physiological plasticity within mammals.
Collapse
Affiliation(s)
| | - Amni Al-Kachak
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Albert Agustinus
- Chemical Biology Program, Memorial Sloan Kettering, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Ryan Bastle
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Ashley Lepack
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Yang Lyu
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Ian Maze
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY
- Department of Pharmacological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY
| |
Collapse
|
17
|
Warhaftig G, Almeida D, Turecki G. Early life adversity across different cell- types in the brain. Neurosci Biobehav Rev 2023; 148:105113. [PMID: 36863603 DOI: 10.1016/j.neubiorev.2023.105113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Early life adversity (ELA)- which includes physical, psychological, emotional, and sexual abuse is one of the most common predictors to diverse psychopathologies later in adulthood. As ELA has a lasting impact on the brain at a developmental stage, recent findings from the field highlighted the specific contributions of different cell types to ELA and their association with long lasting consequences. In this review we will gather recent findings describing morphological, transcriptional and epigenetic alterations within neurons, glia and perineuronal nets and their associated cellular subpopulation. The findings reviewed and summarized here highlight important mechanisms underlying ELA and point to therapeutic approaches for ELA and related psychopathologies later in life.
Collapse
Affiliation(s)
- Gal Warhaftig
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal QC H3A 1A1, Canada.
| |
Collapse
|
18
|
Preventing incubation of drug craving to treat drug relapse: from bench to bedside. Mol Psychiatry 2023; 28:1415-1429. [PMID: 36646901 DOI: 10.1038/s41380-023-01942-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In 1986, Gawin and Kleber reported a progressive increase in cue-induced drug craving in individuals with cocaine use disorders during prolonged abstinence. After years of controversy, as of 2001, this phenomenon was confirmed in rodent studies using self-administration model, and defined as the incubation of drug craving. The intensification of cue-induced drug craving after withdrawal exposes abstinent individuals to a high risk of relapse, which urged us to develop effective interventions to prevent incubated craving. Substantial achievements have been made in deciphering the neural mechanisms, with potential implications for reducing drug craving and preventing the relapse. The present review discusses promising drug targets that have been well investigated in animal studies, including some neurotransmitters, neuropeptides, neurotrophic factors, and epigenetic markers. We also discuss translational exploitation and challenges in the field of the incubation of drug craving, providing insights into future investigations and highlighting the potential of pharmacological interventions, environment-based interventions, and neuromodulation techniques.
Collapse
|
19
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Environmental enrichment mitigates PTSD-like behaviors in adult male rats exposed to early life stress by regulating histone acetylation in the hippocampus and amygdala. J Psychiatr Res 2022; 155:120-136. [PMID: 36029624 DOI: 10.1016/j.jpsychires.2022.07.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Early life stress (ELS) can cause long-term changes in gene expression, affect cognition, mood, and behavior, and increase susceptibility to post-traumatic stress disorder (PTSD) in adulthood, in which the histone acetylation plays a crucial role. Studies have found that environmental enrichment (EE) mitigated the unfavorable outcomes of ELS. However, the underlying mechanism of the histone acetylation is not yet completely clear. The purpose of this study was to explore the effect of EE on the histone acetylation after ELS. In this study, using single prolonged stress (SPS) paradigm in early adolescent rats explored the long-term effects of ELS on behavior, the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), as well as the acetylation levels of the lysine 9 site of histone H3 (H3K9) and lysine 12 site of histone H4 (H4K12) in the hippocampus and amygdala. Meanwhile, the protective effects of EE intervention were examined. We found that adult male rats exposed to ELS showed behavioral changes, including reduced locomotor activity, increased anxiety-like behaviors, impaired spatial learning and memory, enhanced contextual and cued fear memory, and the HATs/HDACs ratio and acetyl H3K9 (Ac-H3K9) and acetyl H4K12 (Ac-H4K12) were increased in the hippocampus and decreased in the amygdala. Furthermore, EE attenuated the behavioral abnormalities from ELS, possibly through down-regulating the activity of HATs in the hippocampus and up-regulating HDACs activities in the amygdala. These finding suggested that EE could ameliorate ELS-induced PTSD-like behaviors by regulating histone acetylation in the hippocampus and amygdala, reducing the susceptibility to PTSD in adulthood.
Collapse
|
21
|
Giacoman-Lozano M, Meléndez-Ramírez C, Martinez-Ledesma E, Cuevas-Diaz Duran R, Velasco I. Epigenetics of neural differentiation: Spotlight on enhancers. Front Cell Dev Biol 2022; 10:1001701. [PMID: 36313573 PMCID: PMC9606577 DOI: 10.3389/fcell.2022.1001701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neural induction, both in vivo and in vitro, includes cellular and molecular changes that result in phenotypic specialization related to specific transcriptional patterns. These changes are achieved through the implementation of complex gene regulatory networks. Furthermore, these regulatory networks are influenced by epigenetic mechanisms that drive cell heterogeneity and cell-type specificity, in a controlled and complex manner. Epigenetic marks, such as DNA methylation and histone residue modifications, are highly dynamic and stage-specific during neurogenesis. Genome-wide assessment of these modifications has allowed the identification of distinct non-coding regulatory regions involved in neural cell differentiation, maturation, and plasticity. Enhancers are short DNA regulatory regions that bind transcription factors (TFs) and interact with gene promoters to increase transcriptional activity. They are of special interest in neuroscience because they are enriched in neurons and underlie the cell-type-specificity and dynamic gene expression profiles. Classification of the full epigenomic landscape of neural subtypes is important to better understand gene regulation in brain health and during diseases. Advances in novel next-generation high-throughput sequencing technologies, genome editing, Genome-wide association studies (GWAS), stem cell differentiation, and brain organoids are allowing researchers to study brain development and neurodegenerative diseases with an unprecedented resolution. Herein, we describe important epigenetic mechanisms related to neurogenesis in mammals. We focus on the potential roles of neural enhancers in neurogenesis, cell-fate commitment, and neuronal plasticity. We review recent findings on epigenetic regulatory mechanisms involved in neurogenesis and discuss how sequence variations within enhancers may be associated with genetic risk for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mayela Giacoman-Lozano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | - César Meléndez-Ramírez
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, NL, Mexico
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- *Correspondence: Raquel Cuevas-Diaz Duran, ; Iván Velasco,
| |
Collapse
|
22
|
Thudium S, Palozola K, L'Her É, Korb E. Identification of a transcriptional signature found in multiple models of ASD and related disorders. Genome Res 2022; 32:1642-1654. [PMID: 36104286 PMCID: PMC9528985 DOI: 10.1101/gr.276591.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Epigenetic regulation plays a critical role in many neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). In particular, many such disorders are the result of mutations in genes that encode chromatin-modifying proteins. However, although these disorders share many features, it is unclear whether they also share gene expression disruptions resulting from the aberrant regulation of chromatin. We examined five chromatin modifiers that are all linked to ASD despite their different roles in regulating chromatin. Specifically, we depleted ASH1L, CHD8, CREBBP, EHMT1, and NSD1 in parallel in a highly controlled neuronal culture system. We then identified sets of shared genes, or transcriptional signatures, that are differentially expressed following loss of multiple ASD-linked chromatin modifiers. We examined the functions of genes within the transcriptional signatures and found an enrichment in many neurotransmitter transport genes and activity-dependent genes. In addition, these genes are enriched for specific chromatin features such as bivalent domains that allow for highly dynamic regulation of gene expression. The down-regulated transcriptional signature is also observed within multiple mouse models of NDDs that result in ASD, but not those only associated with intellectual disability. Finally, the down-regulated transcriptional signature can distinguish between control and idiopathic ASD patient iPSC-derived neurons as well as postmortem tissue, demonstrating that this gene set is relevant to the human disorder. This work identifies a transcriptional signature that is found within many neurodevelopmental syndromes, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in ASD.
Collapse
Affiliation(s)
- Samuel Thudium
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katherine Palozola
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Éloïse L'Her
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
SMN controls neuromuscular junction integrity through U7 snRNP. Cell Rep 2022; 40:111393. [PMID: 36130491 PMCID: PMC9533342 DOI: 10.1016/j.celrep.2022.111393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023] Open
Abstract
The neuromuscular junction (NMJ) is an essential synapse whose loss is a key hallmark of the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that activity of the SMA-determining SMN protein in the assembly of U7 small nuclear ribonucleoprotein (snRNP)—which functions in the 3′-end processing of replication-dependent histone mRNAs—is required for NMJ integrity. Co-expression of U7-specific Lsm10 and Lsm11 proteins selectively enhances U7 snRNP assembly, corrects histone mRNA processing defects, and rescues key structural and functional abnormalities of neuromuscular pathology in SMA mice—including NMJ denervation, decreased synaptic transmission, and skeletal muscle atrophy. Furthermore, U7 snRNP dysfunction drives selective loss of the synaptic organizing protein Agrin at NMJs innervating vulnerable muscles of SMA mice. These findings reveal a direct contribution of U7 snRNP dysfunction to neuromuscular pathology in SMA and suggest a role for histone gene regulation in maintaining functional synaptic connections between motor neurons and muscles. NMJ denervation is a hallmark of SMA. Through selective restoration of U7 snRNP biogenesis in SMA mice, Tisdale et al. reveal a role for SMN-mediated U7 snRNP assembly and histone mRNA processing in controlling NMJ integrity through Agrin expression, uncovering RNA-mediated disease mechanisms and linking U7 function to neuromuscular development.
Collapse
|
24
|
Maity S, Abbaspour R, Nahabedian D, Connor SA. Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory. Int J Mol Sci 2022; 23:ijms23179916. [PMID: 36077313 PMCID: PMC9456295 DOI: 10.3390/ijms23179916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The noradrenergic system is implicated in neuropathologies contributing to major disorders of the memory, including post-traumatic stress disorder and Alzheimer’s disease. Determining the impact of norepinephrine on cellular function and plasticity is thus essential for making inroads into our understanding of these brain conditions, while expanding our capacity for treating them. Norepinephrine is a neuromodulator within the mammalian central nervous system which plays important roles in cognition and associated synaptic plasticity. Specifically, norepinephrine regulates the formation of memory through the stimulation of β-ARs, increasing the dynamic range of synaptic modifiability. The mechanisms through which NE influences neural circuit function have been extended to the level of the epigenome. This review focuses on recent insights into how the noradrenergic recruitment of epigenetic modifications, including DNA methylation and post-translational modification of histones, contribute to homo- and heterosynaptic plasticity. These advances will be placed in the context of synaptic changes associated with memory formation and linked to brain disorders and neurotherapeutic applications.
Collapse
Affiliation(s)
- Sabyasachi Maity
- Department of Physiology, Neuroscience, and Behavioral Sciences, St. George’s University School of Medicine, True Blue FZ818, Grenada
| | - Raman Abbaspour
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - David Nahabedian
- The Center for Biomedical Visualization, Department of Anatomical Sciences, St. George’s University School of Medicine, True Blue FZ818, Grenada
| | - Steven A. Connor
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Correspondence: ; Tel.: +1-(416)-736-2100 (ext. 33803)
| |
Collapse
|
25
|
Magnon V, Corbara B. When the "satisficing" is the new "fittest": how a proscriptive definition of adaptation can change our view of cognition and culture. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2022; 109:42. [PMID: 35960360 PMCID: PMC9372954 DOI: 10.1007/s00114-022-01814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Since Darwin's theory of evolution, adaptationism is frequently invoked to explain cognition and cultural processes. Adaptationism can be described as a prescriptive view, as phenotypes that do not optimize fitness should not be selected by natural selection. From an epistemological perspective, the principle of a prescriptive definition of adaptation seems incompatible with recent advances in epigenetics, evolutionary developmental biology, ethology, and genomics. From these challenges, a proscriptive view of adaptation has emerged, postulating that phenotypes that are not deleterious will be evolutionary maintained. In this epistemological investigation, we examine how the shift from adaptationism to a proscriptive view changes our view of cognition and culture. We argue that, while adaptationism leads to cognitivism and a view of culture as strategies to optimize overall fitness, the proscriptive definition favors embodied theories of cognition and a view of culture as the cumulative diffusion of behaviors allowed by the constraints of reproduction.
Collapse
Affiliation(s)
- Valentin Magnon
- University Clermont Auvergne, CNRS, LaPSCo, Clermont-Ferrand, France.
| | - Bruno Corbara
- University Clermont Auvergne, CNRS, LMGE, Clermont-Ferrand, France
| |
Collapse
|
26
|
Sanchez-Priego C, Hu R, Boshans LL, Lalli M, Janas JA, Williams SE, Dong Z, Yang N. Mapping cis-regulatory elements in human neurons links psychiatric disease heritability and activity-regulated transcriptional programs. Cell Rep 2022; 39:110877. [PMID: 35649373 PMCID: PMC9219592 DOI: 10.1016/j.celrep.2022.110877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with psychiatric diseases, yet there is a lack of understanding of disease pathophysiology. Common risk variants can shed light on the underlying molecular mechanisms; however, identifying causal variants remains challenging. We map cis-regulatory elements in human neurons derived from pluripotent stem cells. This system allows us to determine enhancers that activate the transcription of neuronal activity-regulated gene programs, which are thought to be critical for synaptic plasticity and are not possible to identify from postmortem tissues. Using the activity-by-contact model, we create variant-to-gene maps to interpret the function of GWAS variants. Our work nominates a subset of variants to elucidate the molecular mechanisms involving GWAS-significant loci. It also highlights that in vitro human cellular models are a powerful platform for identifying and mechanistic studies of human trait-associated genetic variants in cell states that are inaccessible from other types of human samples.
Collapse
Affiliation(s)
- Carlos Sanchez-Priego
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linda L Boshans
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Lalli
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Justyna A Janas
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah E Williams
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Nan Yang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
27
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
28
|
Nobile V, Giardina S, Puoci F. The Effect of a Probiotic Complex on the Gut-Brain Axis: A Translational Study. Neuropsychobiology 2022; 81:116-126. [PMID: 34515196 DOI: 10.1159/000518385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The gut-brain axis refers to the network of connections that involve multiple biologic systems, allowing bidirectional communication between the gut and the brain. This communication is mainly mediated by gut microbiota, thanks to its ability to modulate several processes like the production of neurotransmitters. As such, keeping a balanced gut microbiota through probiotic intake could be a valid solution in supporting the right gut-brain communications. METHODS A two-step in vitro screening of five different probiotic strains was carried out to select the best performers in the modulation of stress markers. A first selection on SK-N-DZ neuronal cell lines was performed to evaluate the inhibition of the epigenetic enzyme LSD1, promotion of GABA, and expression of serotonin. Three out of five strains were tested for their ability to promote serotonin synthesis in the Caco2 cell line. As a result, Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 were selected as the best performing strains. To confirm their effects in humans, a proof-of-concept trial was carried out to evaluate stress-related parameters for 28 days of product intake in a group of 30 stressed students. RESULTS A significant improvement of cognitive functions, in terms of short-term memory, attention, and executive performance, as well as of psychophysiological markers, such as salivary cortisol level, skin conductance, sleep quality, and anxiety, were observed. CONCLUSIONS According to the results, L. reuteri PBS072 and B. breve BB077 are potential probiotic candidates for improving stress resilience, cognitive functions, and sleep quality.
Collapse
Affiliation(s)
| | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Cosenza, Italy
| |
Collapse
|
29
|
An epigenetic mechanism for over-consolidation of fear memories. Mol Psychiatry 2022; 27:4893-4904. [PMID: 36127428 PMCID: PMC9763112 DOI: 10.1038/s41380-022-01758-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.
Collapse
|
30
|
Pribut HJ, Vázquez D, Wei AD, Tennyson SS, Davis IR, Roesch MR, Li X. Overexpressing Histone Deacetylase 5 in Rat Dorsal Striatum Alters Reward-Guided Decision-Making and Associated Neural Encoding. J Neurosci 2021; 41:10080-10090. [PMID: 34716230 PMCID: PMC8660049 DOI: 10.1523/jneurosci.0916-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence in the past decade implicates histone-modifying enzymes, such as class I histone deacetylases (HDACs), in learning and memory and, recently, habit formation. However, it is unclear whether HDACs play roles in complex cognitive function. To address this issue, we examined the role of dorsal striatal HDAC5, a class II HDAC, in reward-guided decision-making and associated neural encoding in rats. We first injected adeno-associated virus to overexpress a nuclear-localized HDAC5 in dorsal striatum (DS). We then recorded neural correlates from dorsolateral striatum (DLS) as rats performed two reward-guided choice tasks, in which we manipulated either the size of or delay to reward. During these tasks, rats first learned which of two options led to the better reward and then reversed those contingencies in a second block of trials. We found that rats with HDAC5 overexpression in DS responded faster and chose higher value reward more often during the first block of trials but were less able to reverse those contingencies in the second block of trials. At the neural level, HDAC5 overexpression in DS elevated and reduced the number of cells in DLS that increased firing to stimuli and reward, respectively, and shifted encoding toward cues that predicted more immediate reward. These results suggest that the HDAC5 overexpression in DS contributes to inflexible decision-making, demonstrating a role of histone-modifying enzymes in complex cognitive function.SIGNIFICANCE STATEMENT HDACs are important for learning and habit formation. Here, we expanded on these functions and found that overexpression of HDAC5 produced faster and more automatic behavior, and related changes in dorsolateral striatal neural firing in rats performing a value-based decision-making task. These results implicate HDAC5 as a potential therapeutic target for psychiatric conditions that impair decision-making and executive function.
Collapse
Affiliation(s)
- Heather J Pribut
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Alice D Wei
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Stephen S Tennyson
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Ian R Davis
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| | - Xuan Li
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
31
|
Linking Depression to Epigenetics: Role of the Circadian Clock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:43-53. [PMID: 34773225 DOI: 10.1007/978-3-030-81147-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The circadian clock governs multiple biological functions at the molecular level and plays an essential role in providing temporal diversity of behavior and physiology including neuronal activity. Studies spanning the past two decades have deciphered the molecular mechanisms of the circadian clock, which appears to operate as an essential interface in linking cellular metabolism to epigenetic control. Accumulating evidence illustrates that disruption of circadian rhythms through jet lag, shift work, and temporary irregular life-style could lead to depression-like symptoms. Remarkably, abnormal neuronal activity and depression-like behavior appear in animals lacking elements of the molecular clock. Recent studies demonstrate that neuronal and synaptic gene induction is under epigenetic control, and robust epigenetic remodeling is observed under depression and related psychiatric disorders. Thus, the intertwined links between the circadian clock and epigenetics may point to novel approaches for antidepressant treatments, epigenetic therapy, and chronotherapy. In this chapter we summarize how the circadian clock is involved in neuronal functions and depressive-like behavior and propose that potential strategies for antidepressant therapy by incorporating circadian genomic and epigenetic rewiring of neuronal signaling pathways.
Collapse
|
32
|
Critical Period After Stroke Study (CPASS): A phase II clinical trial testing an optimal time for motor recovery after stroke in humans. Proc Natl Acad Sci U S A 2021; 118:2026676118. [PMID: 34544853 PMCID: PMC8488696 DOI: 10.1073/pnas.2026676118] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Restoration of postinjury brain function is a signal neuroscience challenge. Animal models of stroke recovery demonstrate time-limited windows of heightened motor recovery, similar to developmental neuroplasticity. However, no equivalent windows have been demonstrated in humans. We report a randomized controlled trial applying essential elements of animal motor training paradigms to humans, to determine the existence of an analogous sensitive period in adults. We found a similar sensitive or optimal period 60 to 90 d after stroke, with lesser effects ≤30 d and no effect 6 mo or later after stroke. These findings prospectively demonstrated the existence of a sensitive period in adult humans. We urge the provision of more intensive motor rehabilitation within 60 to 90 d after stroke onset. Restoration of human brain function after injury is a signal challenge for translational neuroscience. Rodent stroke recovery studies identify an optimal or sensitive period for intensive motor training after stroke: near-full recovery is attained if task-specific motor training occurs during this sensitive window. We extended these findings to adult humans with stroke in a randomized controlled trial applying the essential elements of rodent motor training paradigms to humans. Stroke patients were adaptively randomized to begin 20 extra hours of self-selected, task-specific motor therapy at ≤30 d (acute), 2 to 3 mo (subacute), or ≥6 mo (chronic) after stroke, compared with controls receiving standard motor rehabilitation. Upper extremity (UE) impairment assessed by the Action Research Arm Test (ARAT) was measured at up to five time points. The primary outcome measure was ARAT recovery over 1 y after stroke. By 1 y we found significantly increased UE motor function in the subacute group compared with controls (ARAT difference = +6.87 ± 2.63, P = 0.009). The acute group compared with controls showed smaller but significant improvement (ARAT difference = +5.25 ± 2.59 points, P = 0.043). The chronic group showed no significant improvement compared with controls (ARAT = +2.41 ± 2.25, P = 0.29). Thus task-specific motor intervention was most effective within the first 2 to 3 mo after stroke. The similarity to rodent model treatment outcomes suggests that other rodent findings may be translatable to human brain recovery. These results provide empirical evidence of a sensitive period for motor recovery in humans.
Collapse
|
33
|
Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front Cell Infect Microbiol 2021; 11:696554. [PMID: 34595127 PMCID: PMC8476957 DOI: 10.3389/fcimb.2021.696554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
34
|
Li J, Zhou Y, Wang H, Lou J, Lenahan C, Gao S, Wang X, Deng Y, Chen H, Shao A. Oxidative Stress-Induced Ferroptosis in Cardiovascular Diseases and Epigenetic Mechanisms. Front Cell Dev Biol 2021; 9:685775. [PMID: 34490241 PMCID: PMC8416916 DOI: 10.3389/fcell.2021.685775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
The recently discovered ferroptosis is a new kind of iron-regulated cell death that differs from apoptosis and necrosis. Ferroptosis can be induced by an oxidative stress response, a crucial pathological process implicated in cardiovascular diseases (CVDs). Accordingly, mounting evidence shows that oxidative stress-induced ferroptosis plays a pivotal role in angio-cardiopathy. To date, the inhibitors and activators of ferroptosis, as well as the many involved signaling pathways, have been widely explored. Among which, epigenetic regulators, molecules that modify the package of DNA without altering the genome, emerge as a highly targeted, effective option to modify the signaling pathway of ferroptosis and oxidative stress, representing a novel and promising therapeutic potential target for CVDs. In this review, we will briefly summarize the mechanisms of ferroptosis, as well as the role that ferroptosis plays in various CVDs. We will also expound the epigenetic regulators of oxidative stress-induced ferroptosis, and the promise that these molecules hold for treating the intractable CVDs.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Chen
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
36
|
Juruena MF, Gadelrab R, Cleare AJ, Young AH. Epigenetics: A missing link between early life stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110231. [PMID: 33383101 DOI: 10.1016/j.pnpbp.2020.110231] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
Research has suggested a relationship between early life stress, and depression in particular longer episodes of depression with treatment resistant outcomes. However, the underlying mechanisms for this association remain poorly understood. Molecular studies indicate that, in general, the hereditary character of psychiatric disorders are polygenic, multifactorial and highly complex, with innumerable low-effect genetic variants interacting with each other. In addition, the importance of the environment and its interaction with genes has pointed to a fundamental role of epigenetic mechanisms in psychiatric disorders, such as methylation of deoxyribonucleic acid (DNA), alterations, histone actions and regulation of gene expression by non-coding ribonucleic acids (RNAs). This article provides an overview of the interplay of epigenetics, the HPA axis, early life stress and the development of depression. Advances in our knowledge of epigenetics in the context of early life stress and depression provide a new understanding of the genetic influence on psychopathology and could lead to the identification of new targets for clinical intervention.
Collapse
Affiliation(s)
- Mario F Juruena
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK.
| | | | - Anthony J Cleare
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Denmark Hill, London SE5 8AF, UK; South London and Maudsley NHS Foundation Trust (SLaM), UK
| |
Collapse
|
37
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
38
|
Branca JJV, Carrino D, Gulisano M, Ghelardini C, Di Cesare Mannelli L, Pacini A. Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect. Front Mol Biosci 2021; 8:643824. [PMID: 34026827 PMCID: PMC8138476 DOI: 10.3389/fmolb.2021.643824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
In the most recent decades, oxaliplatin has been used as a chemotherapeutic agent for colorectal cancer and other malignancies as well. Oxaliplatin interferes with tumor growth predominantly exerting its action in DNA synthesis inhibition by the formation of DNA-platinum adducts that, in turn, leads to cancer cell death. On the other hand, unfortunately, this interaction leads to a plethora of systemic side effects, including those affecting the peripheral and central nervous system. Oxaliplatin therapy has been associated with acute and chronic neuropathic pain that induces physicians to reduce the dose of medication or discontinue treatment. Recently, the capability of oxaliplatin to alter the genetic and epigenetic profiles of the nervous cells has been documented, and the understanding of gene expression and transcriptional changes may help to find new putative treatments for neuropathy. The present article is aimed to review the effects of oxaliplatin on genetic and epigenetic mechanisms to better understand how to ameliorate neuropathic pain in order to enhance the anti-cancer potential and improve patients’ quality of life.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Donatello Carrino
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
39
|
ABDULATEEF SM, ATALLA OK, A L-ANI MQ, MOHAMMED THT, ABDULATEEF FM, ABDULMAJEED OM. Impact of the electric shock on the embryonic development and physiological traits in chicks embryo. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i11.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the impact of stimulating the embryo during the dormancy in the incubation period. 450 eggs (Ross 308) were allocated in four treatments each with three replicates. The treatments were as follows: T1 control (without shock), T2 Shocked (40) Millivolts (mV), T3 Shocked (50) (mV), T4 Shocked (75) (mV). A different voltage device was used to shock the egg, after marking the eggs with a line of iron filings to ensure electrical conductivity, eggs were shocked at different times three times a day. The results showed that the percentage of embryonic weight increased significantly and the percentage of albumin decreased significantly and the percentage of shells for experimental treatments during the seven days of incubation compared to the control treatment. The significant increase in the percentage of embryonic weight and amniotic sac and liquid and a significant decrease in the percentage of albumin and yolk compared to the control treatment at 14 and 17 days of incubation for experimental treatment. Significant increase in neurophysiological traits of neurons, brain weight for T2, T3 and especially T4 concluded that electrical stimulation had a positive effect on the embryo.
Collapse
|
40
|
Boniolo G. Demented patients and the quandaries of identity: setting the problem, advancing a proposal. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:21. [PMID: 33587205 PMCID: PMC7884352 DOI: 10.1007/s40656-021-00365-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/01/2021] [Indexed: 05/19/2023]
Abstract
In the paper, after clarifying terms such as 'identity', 'self' and 'personhood', I propose an empirical account of identity based on the notion of "whole phenotype". This move allows one to claim the persistence of the individuals before and after their being affected by dementia. Furthermore, I show how this account permits us to address significant questions related to demented individuals' loss of the capacity of moral decisions.
Collapse
Affiliation(s)
- Giovanni Boniolo
- Dipartimento di Neuroscienze e Riabilitazione, University of Ferrara, Ferrara, Italy.
- Civitas Vitae Research Centre at Fondazione OIC onlus, Padova, Italy.
| |
Collapse
|
41
|
Seo MK, Choi AJ, Seog DH, Lee JG, Park SW. Early Enriched Environment Prevents Epigenetic p11 Gene Changes Induced by Adulthood Stress in Mice. Int J Mol Sci 2021; 22:ijms22041928. [PMID: 33672075 PMCID: PMC7919643 DOI: 10.3390/ijms22041928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Positive experiences in early life may improve the capacity to cope with adulthood stress through epigenetic modification. We investigated whether an enriched environment (EE) in the postnatal period affected epigenetic changes in the p11 gene induced by chronic unpredictable stress (CUS) in adult C57BL/6J mice. EE was introduced for 5 weeks during postnatal days 21–55. After EE, the mice were subjected to CUS for 4 weeks. EE prevented depression-like behavior induced by adult CUS. EE prevented a decrease in p11 mRNA and histone H3 acetylation induced by CUS, with changes in the expression of histone deacetylase 5. Moreover, EE prevented changes in trimethylation of histone H3 lysine 4 (H3K4) and H3K27 induced by CUS. Furthermore, EE had positive effects on behavior and epigenetic alterations in adult mice without CUS. These results suggest that one of the underlying mechanisms of early-life EE may involve epigenetic modification of the hippocampal p11 gene promoter.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
| | | | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea;
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan 48108, Korea
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| |
Collapse
|
42
|
Helbling JC, Kinouchi K, Trifilieff P, Sassone-Corsi P, Moisan MP. Combined Gene Expression and Chromatin Immunoprecipitation From a Single Mouse Hippocampus. Curr Protoc 2021; 1:e33. [PMID: 33566459 DOI: 10.1002/cpz1.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
All neuronal cells hold the same genetic information but vary by their structural and functional plasticity depending on the brain area and environmental influences. Such variability involves specific gene regulation, which is driven by transcription factors (TFs). In the field of neuroscience, epigenetics is the main mechanism that has been investigated to understand the dynamic modulation of gene expression by behavioral responses, stress responses, memory processes, etc. Nowadays, gene expression analyzed by real-time quantitative PCR and TF binding estimated by chromatin immunoprecipitation (ChIP) enables one to dissect this regulation. Because of the wide range of transgenic models, as well as cost-effective aspects, mouse models are widely used neuroscience. Thus, we have set up a protocol that allows extraction of both RNA for gene expression analysis and chromatin for ChIP experiment from a single mouse hippocampus. Using such protocols, information regarding gene expression and regulatory molecular mechanisms from the same animal can be integrated and correlated with neurobiological and behavioral outcomes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Hippocampus isolation from mouse brain Basic Protocol 2: RNA extraction and gene expression analysis from a mouse half hippocampus Basic Protocol 3: ChIP from one hemisphere side mouse hippocampus.
Collapse
Affiliation(s)
| | - Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California Irvine, Irvine, California
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan
| | - Pierre Trifilieff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California Irvine, Irvine, California
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, California
| | - Marie-Pierre Moisan
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
43
|
Abstract
This review explores how different classes of drugs, including those with therapeutic and abuse potential, alter brain functions and behavior via the epigenome. Epigenetics, in its simplest interpretation, is the study of the regulation of a genes' transcriptional potential. The epigenome is established during development but is malleable throughout life by a wide variety of drugs, with both clinical utility and abuse potential. An epigenetic effect can be central to the drug's therapeutic or abuse potential, or it can be independent from the main effect but nevertheless produce beneficial or adverse side effects. Here, I discuss the various epigenetic effects of main pharmacological drug classes, including antidepressants, antiepileptics, and drugs of abuse.
Collapse
Affiliation(s)
- Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA;
| |
Collapse
|
44
|
Johnstone AL, Andrade NS, Barbier E, Khomtchouk BB, Rienas CA, Lowe K, Van Booven DJ, Domi E, Esanov R, Vilca S, Tapocik JD, Rodriguez K, Maryanski D, Keogh MC, Meinhardt MW, Sommer WH, Heilig M, Zeier Z, Wahlestedt C. Dysregulation of the histone demethylase KDM6B in alcohol dependence is associated with epigenetic regulation of inflammatory signaling pathways. Addict Biol 2021; 26:e12816. [PMID: 31373129 PMCID: PMC7757263 DOI: 10.1111/adb.12816] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/28/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022]
Abstract
Epigenetic enzymes oversee long‐term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol‐dependent rats compared with controls. Follow‐up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region‐specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol‐dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol‐dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]–sequencing) analysis showed that alcohol‐induced changes in H3K27me3 were significantly enriched at genes in the IL‐6 signaling pathway, consistent with the well‐characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL‐6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B‐mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.
Collapse
Affiliation(s)
- Andrea L. Johnstone
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | - Nadja S. Andrade
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Estelle Barbier
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Bohdan B. Khomtchouk
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
- Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology University of Chicago Chicago IL USA
| | - Christopher A. Rienas
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Kenneth Lowe
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics University of Miami Miller School of Medicine Miami Florida USA
| | - Esi Domi
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Rustam Esanov
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Samara Vilca
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Jenica D. Tapocik
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda Maryland USA
| | - Keli Rodriguez
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | - Danielle Maryanski
- Division of Product Development EpiCypher, Inc Durham North Carolina USA
| | | | - Marcus W. Meinhardt
- Department of Psychopharmacology Central Institute of Mental Health, Heidelberg University Mannheim Germany
| | - Wolfgang H. Sommer
- Department of Psychopharmacology Central Institute of Mental Health, Heidelberg University Mannheim Germany
| | - Markus Heilig
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Sciences Linköping University Linköping Sweden
| | - Zane Zeier
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation University of Miami Miller School of Medicine Miami Florida USA
- Department of Psychiatry and Behavioral Sciences University of Miami Miller School of Medicine Miami Florida USA
| |
Collapse
|
45
|
Dudek KA, Kaufmann FN, Lavoie O, Menard C. Central and peripheral stress-induced epigenetic mechanisms of resilience. Curr Opin Psychiatry 2021; 34:1-9. [PMID: 33141775 DOI: 10.1097/yco.0000000000000664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Resilience is an adaptation process presented by an individual despite facing adversities. Epigenetic changes, such as histone acetylation/methylation and DNA methylation, have been demonstrated to mediate stress response. In this review, we summarize recent findings on epigenetic mechanisms contributing to stress resilience. RECENT FINDINGS Epigenetic modifications of genes involved in synaptic plasticity, endocrine, immune, and vascular systems are linked to resilience. For instance, increased DNA methylation of the nonneuronal growth factor Gdnf in specific brain regions promotes stress resilience. Additionally, high DNA methylation at the glucocorticoid receptor gene was associated with resilience in both rodents and humans. At the immune level, chronic stress induces increased DNA methylation at IL6 gene, a mediator of stress vulnerability. Moreover, epigenetic adaptations of the blood--brain barrier have been recently associated with stress resilience, which could lead to innovative therapeutic approaches to treat depression. SUMMARY Identification of both central and peripheral epigenetic changes promoting stress resilience represent promising novel targets in the development of preventive and personalized medicine. Nevertheless, more research is needed to establish sex specific differences and to identify novel epigenetic mechanisms, such as serotonylation and dopaminylation, that hold great promises for the field of psychiatry.
Collapse
Affiliation(s)
- Katarzyna Anna Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | | | | | | |
Collapse
|
46
|
Conboy K, Henshall DC, Brennan GP. Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiol Dis 2020; 148:105179. [PMID: 33181318 DOI: 10.1016/j.nbd.2020.105179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a network disorder driven by fundamental changes in the function of the cells which compose these networks. Driving this aberrant cellular function are large scale changes in gene expression and gene expression regulation. Recent studies have revealed rapid and persistent changes in epigenetic control of gene expression as a critical regulator of the epileptic transcriptome. Epigenetic-mediated gene output regulates many aspects of cellular physiology including neuronal structure, neurotransmitter assembly and abundance, protein abundance of ion channels and other critical neuronal processes. Thus, understanding the contribution of epigenetic-mediated gene regulation could illuminate novel regulatory mechanisms which may form the basis of novel therapeutic approaches to treat epilepsy. In this review we discuss the effects of epileptogenic brain insults on epigenetic regulation of gene expression, recent efforts to target epigenetic processes to block epileptogenesis and the prospects of an epigenetic-based therapy for epilepsy, and finally we discuss technological advancements which have facilitated the interrogation of the epigenome.
Collapse
Affiliation(s)
- Karen Conboy
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Gary P Brennan
- FutureNeuro, the SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Aggarwal A, Sharma N, Khera A, Sandhir R, Rishi V. Quercetin alleviates cognitive decline in ovariectomized mice by potentially modulating histone acetylation homeostasis. J Nutr Biochem 2020; 84:108439. [DOI: 10.1016/j.jnutbio.2020.108439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
|
48
|
Shepard RD, Nugent FS. Early Life Stress- and Drug-Induced Histone Modifications Within the Ventral Tegmental Area. Front Cell Dev Biol 2020; 8:588476. [PMID: 33102491 PMCID: PMC7554626 DOI: 10.3389/fcell.2020.588476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.
Collapse
Affiliation(s)
- Ryan D Shepard
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
49
|
Effects of Early Life Stress on Epigenetic Changes of the Glucocorticoid Receptor 1 7 Promoter during Adulthood. Int J Mol Sci 2020; 21:ijms21176331. [PMID: 32878311 PMCID: PMC7503815 DOI: 10.3390/ijms21176331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
Growing evidence suggests that early life stress (ELS) has long-lasting effects on glucocorticoid receptor (GR) expression and behavior via epigenetic changes of the GR exon 17 promoter. However, it remains unclear whether ELS regulates histone modifications of the GR exon 17 promoter across the life span. We investigated the effects of maternal separation (MS) on histone acetylation and methylation of GR exon 17 promoter in the hippocampus, according to the age of adults. Depression-like behavior and epigenetic regulation of GR expression were examined at young and middle adulthood in mice subjected to MS from postnatal day 1 to 21. In the forced swimming test, young adult MS mice showed no effect on immobility time, but middle-aged MS mice significantly increased immobility time. Young adult and middle-aged MS mice showed decreased GR expression. Their two ages showed decreased histone acetylation with increased histone deacetylases (HDAC5) levels, decreased permissive methylation, and increased repressive methylation at the GR exon 17 promoter. The extent of changes in gene expression and histone modification in middle adulthood was greater than in young adulthood. These results indicate that MS in early life causes long-term negative effects on behavior via histone modification of the GR gene across the life span.
Collapse
|
50
|
Endocannabinoid-Epigenetic Cross-Talk: A Bridge toward Stress Coping. Int J Mol Sci 2020; 21:ijms21176252. [PMID: 32872402 PMCID: PMC7504015 DOI: 10.3390/ijms21176252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
There is no argument with regard to the physical and psychological stress-related nature of neuropsychiatric disorders. Yet, the mechanisms that facilitate disease onset starting from molecular stress responses are elusive. Environmental stress challenges individuals’ equilibrium, enhancing homeostatic request in the attempt to steer down arousal-instrumental molecular pathways that underlie hypervigilance and anxiety. A relevant homeostatic pathway is the endocannabinoid system (ECS). In this review, we summarize recent discoveries unambiguously listing ECS as a stress coping mechanism. As stress evokes huge excitatory responses in emotional-relevant limbic areas, the ECS limits glutamate release via 2-arachydonilglycerol (2-AG) stress-induced synthesis and retrograde cannabinoid 1 (CB1)-receptor activation at the synapse. However, ECS shows intrinsic vulnerability as 2-AG overstimulation by chronic stress rapidly leads to CB1-receptor desensitization. In this review, we emphasize the protective role of 2-AG in stress-response termination and stress resiliency. Interestingly, we discuss ECS regulation with a further nuclear homeostatic system whose nature is exquisitely epigenetic, orchestrated by Lysine Specific Demethylase 1. We here emphasize a remarkable example of stress-coping network where transcriptional homeostasis subserves synaptic and behavioral adaptation, aiming at reducing psychiatric effects of traumatic experiences.
Collapse
|