1
|
Vinck M, Uran C, Dowdall JR, Rummell B, Canales-Johnson A. Large-scale interactions in predictive processing: oscillatory versus transient dynamics. Trends Cogn Sci 2024:S1364-6613(24)00256-0. [PMID: 39424521 DOI: 10.1016/j.tics.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
How do the two main types of neural dynamics, aperiodic transients and oscillations, contribute to the interactions between feedforward (FF) and feedback (FB) pathways in sensory inference and predictive processing? We discuss three theoretical perspectives. First, we critically evaluate the theory that gamma and alpha/beta rhythms play a role in classic hierarchical predictive coding (HPC) by mediating FF and FB communication, respectively. Second, we outline an alternative functional model in which rapid sensory inference is mediated by aperiodic transients, whereas oscillations contribute to the stabilization of neural representations over time and plasticity processes. Third, we propose that the strong dependence of oscillations on predictability can be explained based on a biologically plausible alternative to classic HPC, namely dendritic HPC.
Collapse
Affiliation(s)
- Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany; Donders Centre for Neuroscience, Department of Neurophysics, Radboud University, 6525 Nijmegen, The Netherlands.
| | - Jarrod R Dowdall
- Robarts Research Institute, Western University, London, ON, Canada
| | - Brian Rummell
- Ernst Strüngmann Institute (ESI) for Neuroscience, in Cooperation with the Max Planck Society, 60528 Frankfurt am Main, Germany
| | - Andres Canales-Johnson
- Facultad de Ciencias de la Salud, Universidad Catolica del Maule, 3480122 Talca, Chile; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
2
|
Ramamurthy DL, Rodriguez L, Cen C, Li S, Chen A, Feldman DE. Reward history guides focal attention in whisker somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603927. [PMID: 39131281 PMCID: PMC11312476 DOI: 10.1101/2024.07.17.603927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Prior reward is a potent cue for attentional capture, but the underlying neurobiology is largely unknown. In a novel whisker touch detection task, we show that mice flexibly shift attention between specific whiskers on a trial-by-trial timescale, guided by the recent history of stimulus-reward association. Two-photon calcium imaging and spike recordings revealed a robust neurobiological correlate of attention in the somatosensory cortex (S1), boosting sensory responses to the attended whisker in L2/3 and L5, but not L4. Attentional boosting in L2/3 pyramidal cells was topographically precise and whisker-specific, and shifted receptive fields toward the attended whisker. L2/3 VIP interneurons were broadly activated by whisker stimuli, motion, and arousal but did not carry a whisker-specific attentional signal, and thus did not mediate spatially focused tactile attention. Together, these findings establish a new model of focal attention in the mouse whisker tactile system, showing that the history of stimuli and rewards in the recent past can dynamically engage local modulation in cortical sensory maps to guide flexible shifts in ongoing behavior.
Collapse
Affiliation(s)
- Deepa L. Ramamurthy
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Lucia Rodriguez
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Neuroscience PhD Program, UC Berkeley
| | - Celine Cen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Siqian Li
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Andrew Chen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Daniel E. Feldman
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Lead Contact
| |
Collapse
|
3
|
Krystecka K, Stanczyk M, Magnuski M, Szelag E, Szymaszek A. Aperiodic activity differences in individuals with high and low temporal processing efficiency. Brain Res Bull 2024; 215:111010. [PMID: 38871258 DOI: 10.1016/j.brainresbull.2024.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
It is known that Temporal Information Processing (TIP) underpins our cognitive functioning. Previous research has focused on the relationship between TIP efficiency and oscillatory brain activity, especially the gamma rhythm; however, non-oscillatory (aperiodic or 1/f) brain activity has often been missed. Recent studies have identified the 1/f component as being important for the functioning of the brain. Therefore, the current study aimed to verify whether TIP efficiency is associated with specific EEG resting state cortical activity patterns, including oscillatory and non-oscillatory (aperiodic) brain activities. To measure individual TIP efficiency, we used two behavioral tasks in which the participant judges the order of two sounds separated by millisecond intervals. Based on the above procedure, participants were classified into two groups with high and low TIP efficiency. Using cluster-based permutation analyses, we examined between-group differences in oscillatory and non-oscillatory (aperiodic) components across the 1-90 Hz range. The results revealed that the groups differed in the aperiodic component across the 30-80 Hz range in fronto-central topography. In other words, participants with low TIP efficiency exhibited higher levels of aperiodic activity, and thus a flatter frequency spectrum compared to those with high TIP efficiency. We conclude that participants with low TIP efficiency display higher levels of 'neural noise', which is associated with poorer quality and speed of neural processing.
Collapse
Affiliation(s)
- Klaudia Krystecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Stanczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mikolaj Magnuski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Szelag
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Szymaszek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Ai S. STN-PFC circuit related to attentional fluctuations during non-movement decision-making. Neuroscience 2024; 553:110-120. [PMID: 38972448 DOI: 10.1016/j.neuroscience.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Decision-making is a cognitive process, in which participants need to attend to relevant information and ignore the irrelevant information. Previous studies have described a set of cortical areas important for attention. It is unclear whether subcortical areas also serve a role. The subthalamic nucleus (STN), a part of basal ganglia, is traditionally considered a critical node in the cortico-basal ganglia-thalamus-cortico network. Given the location of the STN and its widespread connections with cortical and subcortical brain regions, the STN plays an important role in motor and non-motor cognitive processing. We would like to know if STN is also related to fluctuations in attentional task performance, and how the STN interacts with prefrontal cortical regions during the process. We examined neural activities within STN covaried with lapses of attention (defined as behavior error). We found that decreased neural activities in STN were associated with sustained attention. By examining connectivity across STN and various sub-regions of the prefrontal cortex (PFC), we found that decreased connectivity across areas was associated with sustained attention. Our results indicated that decreased STN activities were associated with sustained attention, and the STN-PFC circuit supported this process.
Collapse
Affiliation(s)
- Shengnan Ai
- Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Lewis CM, Wunderle T, Fries P. Top-down modulation of visual cortical stimulus encoding and gamma independent of firing rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589006. [PMID: 38645050 PMCID: PMC11030389 DOI: 10.1101/2024.04.11.589006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Neurons in primary visual cortex integrate sensory input with signals reflecting the animal's internal state to support flexible behavior. Internal variables, such as expectation, attention, or current goals, are imposed in a top-down manner via extensive feedback projections from higher-order areas. We optogenetically activated a high-order visual area, area 21a, in the lightly anesthetized cat (OptoTD), while recording from neuronal populations in V1. OptoTD induced strong, up to several fold, changes in gamma-band synchronization together with much smaller changes in firing rate, and the two effects showed no correlation. OptoTD effects showed specificity for the features of the simultaneously presented visual stimuli. OptoTD-induced changes in gamma synchronization, but not firing rates, were predictive of simultaneous changes in the amount of encoded stimulus information. Our findings suggest that one important role of top-down signals is to modulate synchronization and the information encoded by populations of sensory neurons.
Collapse
Affiliation(s)
- Christopher M. Lewis
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Thomas Wunderle
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands
| |
Collapse
|
6
|
Lazar A, Klein L, Klon-Lipok J, Bányai M, Orbán G, Singer W. Paying attention to natural scenes in area V1. iScience 2024; 27:108816. [PMID: 38323011 PMCID: PMC10844823 DOI: 10.1016/j.isci.2024.108816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Natural scene responses in the primary visual cortex are modulated simultaneously by attention and by contextual signals about scene statistics stored across the connectivity of the visual processing hierarchy. We hypothesized that attentional and contextual signals interact in V1 in a manner that primarily benefits the representation of natural stimuli, rich in high-order statistical structure. Recording from two macaques engaged in a spatial attention task, we found that attention enhanced the decodability of stimulus identity from population responses evoked by natural scenes, but not by synthetic stimuli lacking higher-order statistical regularities. Population analysis revealed that neuronal responses converged to a low-dimensional subspace only for natural stimuli. Critically, we determined that the attentional enhancement in stimulus decodability was captured by the natural-scene subspace, indicating an alignment between the attentional and natural stimulus variance. These results suggest that attentional and contextual signals interact in V1 in a manner optimized for natural vision.
Collapse
Affiliation(s)
- Andreea Lazar
- Ernst Strüngmann Institute, Frankfurt am Main, Germany
- Max-Planck Institute for Neuroscience, Frankfurt am Main, Germany
| | - Liane Klein
- Ernst Strüngmann Institute, Frankfurt am Main, Germany
- Max-Planck Institute for Neuroscience, Frankfurt am Main, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute, Frankfurt am Main, Germany
- Max-Planck Institute for Neuroscience, Frankfurt am Main, Germany
| | - Mihály Bányai
- HUN-REN Wigner Research Center for Physics, Budapest, Hungary
| | - Gergő Orbán
- HUN-REN Wigner Research Center for Physics, Budapest, Hungary
| | - Wolf Singer
- Ernst Strüngmann Institute, Frankfurt am Main, Germany
- Max-Planck Institute for Neuroscience, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-Gamma Activity Is Coupled to Low-Gamma Oscillations in Precentral Cortices and Modulates with Movement and Speech. eNeuro 2024; 11:ENEURO.0163-23.2023. [PMID: 38242691 PMCID: PMC10867721 DOI: 10.1523/eneuro.0163-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 01/21/2024] Open
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger-flexion or word-reading tasks. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
Affiliation(s)
- Jeffrey Z Nie
- Southern Illinois University School of Medicine, Springfield 62794, Illinois
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Robert D Flint
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Prashanth Prakash
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Jason K Hsieh
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Emily M Mugler
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
| | - Matthew C Tate
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
| | - Joshua M Rosenow
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Neurological Surgery, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
| | - Marc W Slutzky
- Departments of Neurology, Northwestern University, Chicago 60611, Illinois
- Physical Medicine & Rehabilitation, Northwestern University, Chicago 60611, Illinois
- Neuroscience, Northwestern University, Chicago 60611, Illinois
- Shirley Ryan AbilityLab, Chicago 60611, Illinois
- Department of Biomedical Engineering, Northwestern University, Evanston 60201, Illinois
| |
Collapse
|
8
|
Aboutorabi E, Baloni Ray S, Kaping D, Shahbazi F, Treue S, Esghaei M. Phase of neural oscillations as a reference frame for attention-based routing in visual cortex. Prog Neurobiol 2024; 233:102563. [PMID: 38142770 DOI: 10.1016/j.pneurobio.2023.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Selective attention allows the brain to efficiently process the image projected onto the retina, selectively focusing neural processing resources on behaviorally relevant visual information. While previous studies have documented the crucial role of the action potential rate of single neurons in relaying such information, little is known about how the activity of single neurons relative to their neighboring network contributes to the efficient representation of attended stimuli and transmission of this information to downstream areas. Here, we show in the dorsal visual pathway of monkeys (medial superior temporal area) that neurons fire spikes preferentially at a specific phase of the ongoing population beta (∼20 Hz) oscillations of the surrounding local network. This preferred spiking phase shifts towards a later phase when monkeys selectively attend towards (rather than away from) the receptive field of the neuron. This shift of the locking phase is positively correlated with the speed at which animals report a visual change. Furthermore, our computational modeling suggests that neural networks can manipulate the preferred phase of coupling by imposing differential synaptic delays on postsynaptic potentials. This distinction between the locking phase of neurons activated by the spatially attended stimulus vs. that of neurons activated by the unattended stimulus, may enable the neural system to discriminate relevant from irrelevant sensory inputs and consequently filter out distracting stimuli information by aligning the spikes which convey relevant/irrelevant information to distinct phases linked to periods of better/worse perceptual sensitivity for higher cortices. This strategy may be used to reserve the narrow windows of highest perceptual efficacy to the processing of the most behaviorally relevant information, ensuring highly efficient responses to attended sensory events.
Collapse
Affiliation(s)
- Ehsan Aboutorabi
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada
| | - Sonia Baloni Ray
- Indraprastha Institute of Information Technology, New Delhi, India
| | - Daniel Kaping
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Farhad Shahbazi
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty for Biology and Psychology, University of Goettingen, Germany; Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
| | - Moein Esghaei
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Westa Higher Education Center, Karaj, Iran.
| |
Collapse
|
9
|
Sajedin A, Salehi S, Esteky H. Information content and temporal structure of face selective local field potentials frequency bands in IT cortex. Cereb Cortex 2024; 34:bhad411. [PMID: 38011118 DOI: 10.1093/cercor/bhad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Sensory stimulation triggers synchronized bioelectrical activity in the brain across various frequencies. This study delves into network-level activities, specifically focusing on local field potentials as a neural signature of visual category representation. Specifically, we studied the role of different local field potential frequency oscillation bands in visual stimulus category representation by presenting images of faces and objects to three monkeys while recording local field potential from inferior temporal cortex. We found category selective local field potential responses mainly for animate, but not inanimate, objects. Notably, face-selective local field potential responses were evident across all tested frequency bands, manifesting in both enhanced (above mean baseline activity) and suppressed (below mean baseline activity) local field potential powers. We observed four different local field potential response profiles based on frequency bands and face selective excitatory and suppressive responses. Low-frequency local field potential bands (1-30 Hz) were more prodominstaly suppressed by face stimulation than the high-frequency (30-170 Hz) local field potential bands. Furthermore, the low-frequency local field potentials conveyed less face category informtion than the high-frequency local field potential in both enhansive and suppressive conditions. Furthermore, we observed a negative correlation between face/object d-prime values in all the tested local field potential frequency bands and the anterior-posterior position of the recording sites. In addition, the power of low-frequency local field potential systematically declined across inferior temporal anterior-posterior positions, whereas high-frequency local field potential did not exhibit such a pattern. In general, for most of the above-mentioned findings somewhat similar results were observed for body, but not, other stimulus categories. The observed findings suggest that a balance of face selective excitation and inhibition across time and cortical space shape face category selectivity in inferior temporal cortex.
Collapse
Affiliation(s)
- Atena Sajedin
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15875441, Iran
| | - Sina Salehi
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21218, United States
| | - Hossein Esteky
- Brain Science and Technology Group, Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| |
Collapse
|
10
|
Das A, Nandi N, Ray S. Alpha and SSVEP power outperform gamma power in capturing attentional modulation in human EEG. Cereb Cortex 2024; 34:bhad412. [PMID: 37948668 DOI: 10.1093/cercor/bhad412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Attention typically reduces power in the alpha (8-12 Hz) band and increases power in gamma (>30 Hz) band in brain signals, as reported in macaque local field potential (LFP) and human electro/magneto-encephalogram (EEG/MEG) studies. In addition, EEG studies often use flickering stimuli that produce a specific measure called steady-state-visually-evoked-potential (SSVEP), whose power also increases with attention. However, effectiveness of these neural measures in capturing attentional modulation is unknown since stimuli and task paradigms vary widely across studies. In a recent macaque study, attentional modulation was more salient in the gamma band of the LFP, compared to alpha or SSVEP. To compare this with human EEG, we designed an orientation change detection task where we presented both static and counterphasing stimuli of matched difficulty levels to 26 subjects and compared attentional modulation of various measures under similar conditions. We report two main results. First, attentional modulation was comparable for SSVEP and alpha. Second, non-foveal stimuli produced weak gamma despite various stimulus optimizations and showed negligible attentional modulation although full-screen gratings showed robust gamma activity. Our results are useful for brain-machine-interfacing studies where suitable features are used for decoding attention, and also provide clues about spatial scales of neural mechanisms underlying attention.
Collapse
Affiliation(s)
- Aritra Das
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Nilanjana Nandi
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
11
|
Friedenberger Z, Harkin E, Tóth K, Naud R. Silences, spikes and bursts: Three-part knot of the neural code. J Physiol 2023; 601:5165-5193. [PMID: 37889516 DOI: 10.1113/jp281510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Collapse
Affiliation(s)
- Zachary Friedenberger
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| | - Emerson Harkin
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katalin Tóth
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Naud
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| |
Collapse
|
12
|
Hayden DJ, Finnie PSB, Thomazeau A, Li AY, Cooke SF, Bear MF. Electrophysiological Signatures of Visual Recognition Memory across All Layers of Mouse V1. J Neurosci 2023; 43:7307-7321. [PMID: 37714707 PMCID: PMC10621768 DOI: 10.1523/jneurosci.0090-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
In mouse primary visual cortex (V1), familiar stimuli evoke significantly altered responses when compared with novel stimuli. This stimulus-selective response plasticity (SRP) was described originally as an increase in the magnitude of visual evoked potentials (VEPs) elicited in layer 4 (L4) by familiar phase-reversing grating stimuli. SRP is dependent on NMDA receptors (NMDARs) and has been hypothesized to reflect potentiation of thalamocortical (TC) synapses in L4. However, recent evidence indicates that the synaptic modifications that manifest as SRP do not occur on L4 principal cells. To shed light on where and how SRP is induced and expressed in male and female mice, the present study had three related aims: (1) to confirm that NMDAR are required specifically in glutamatergic principal neurons of V1, (2) to investigate the consequences of deleting NMDAR specifically in L6, and (3) to use translaminar electrophysiological recordings to characterize SRP expression in different layers of V1. We find that knock-out (KO) of NMDAR in L6 principal neurons disrupts SRP. Current-source density (CSD) analysis of the VEP depth profile shows augmentation of short latency current sinks in layers 3, 4, and 6 in response to phase reversals of familiar stimuli. Multiunit recordings demonstrate that increased peak firing occurs in response to phase reversals of familiar stimuli across all layers, but that activity between phase reversals is suppressed. Together, these data reveal important aspects of the underlying phenomenology of SRP and generate new hypotheses for the expression of experience-dependent plasticity in V1.SIGNIFICANCE STATEMENT Repeated exposure to stimuli that portend neither reward nor punishment leads to behavioral habituation, enabling organisms to dedicate attention to novel or otherwise significant features of the environment. The neural basis of this process, which is so often dysregulated in neurologic and psychiatric disorders, remains poorly understood. Learning and memory of stimulus familiarity can be studied in mouse visual cortex by measuring electrophysiological responses to simple phase-reversing grating stimuli. The current study advances knowledge of this process by documenting changes in visual evoked potentials (VEPs), neuronal spiking activity, and oscillations in the local field potentials (LFPs) across all layers of mouse visual cortex. In addition, we identify a key contribution of a specific population of neurons in layer 6 (L6) of visual cortex.
Collapse
Affiliation(s)
- Dustin J Hayden
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Peter S B Finnie
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aurore Thomazeau
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alyssa Y Li
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Biochemistry Program, Wellesley College, Wellesley, Massachusetts 02481
| | - Samuel F Cooke
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
13
|
Krishnakumaran R, Ray S. Temporal characteristics of gamma rhythm constrain properties of noise in an inhibition-stabilized network model. Cereb Cortex 2023; 33:10108-10121. [PMID: 37492002 PMCID: PMC10502791 DOI: 10.1093/cercor/bhad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023] Open
Abstract
Gamma rhythm refers to oscillatory neural activity between 30 and 80 Hz, induced in visual cortex by stimuli such as iso-luminant hues or gratings. The power and peak frequency of gamma depend on the properties of the stimulus such as size and contrast. Gamma waveform is typically arch-shaped, with narrow troughs and broad peaks, and can be replicated in a self-oscillating Wilson-Cowan (WC) model operating in an appropriate regime. However, oscillations in this model are infinitely long, unlike physiological gamma that occurs in short bursts. Further, unlike the model, gamma is faster after stimulus onset and slows down over time. Here, we first characterized gamma burst duration in local field potential data recorded from two monkeys as they viewed full screen iso-luminant hues. We then added different types of noise in the inputs to the WC model and tested how that affected duration and temporal dynamics of gamma. While the model failed with the often-used Poisson noise, Ornstein-Uhlenbeck noise applied to both the excitatory and the inhibitory populations replicated the duration and slowing of gamma and replicated the shape and stimulus dependencies. Thus, the temporal dynamics of gamma oscillations put constraints on the type and properties of underlying neural noise.
Collapse
Affiliation(s)
- R Krishnakumaran
- IISc Mathematics Initiative, Department of Mathematics, Indian Institute of Science, C V Raman road, Bangalore 560012, Karnataka, India
| | - Supratim Ray
- IISc Mathematics Initiative, Department of Mathematics, Indian Institute of Science, C V Raman road, Bangalore 560012, Karnataka, India
- Centre for Neuroscience, Indian Institute of Science, C V Raman road, Bangalore 560012, Karnataka, India
| |
Collapse
|
14
|
Wang P, Wang X, Wang Q, Jiao Y, Wang X, Chen C, Chen H, Song T. Cognitive improvement via a modulated rhythmic pulsed magnetic field in D-galactose-induced accelerated aging mice. Brain Res 2023; 1810:148372. [PMID: 37094765 DOI: 10.1016/j.brainres.2023.148372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Rhythmic physical stimulations have emerged as effective noninvasive intervention strategies in the treatment of pathological cognitive deficits. Transcranial magnetic stimulation (TMS) can regulate neural firing and improve the learning and memory abilities of rodents or patients with cognitive deterioration. However, the effects of elaborate magnetic stimulation with low intensity during aging or other neurological disordering processes on cognitive decline remain unclear. In this study, we developed an elaborate modulated pulsed magnetic field (PMF) stimulation with a complex pattern in the theta repeated frequency and gamma carrier frequency and then determined the effects of this rhythmic PMF on the cognitive function of accelerated aging mice established by chronic subcutaneous injection of D-galactose (D-gal). The results of the Morris water maze (MWM) test showed that mice treated with modulated PMF displayed shorter swimming distance and latency time in the spatial exploration acquisition trial and exhibited a significant preference in the target presumptive platform area in the probe trial, all of which indicated the enhancement in spatial learning and memory abilities upon PMF stimulation of the accelerated aging mice. The novel object recognition (NOR) test results showed a similar tendency as the MWM results although without statistical significance. Further determination of histological structures demonstrated that the cognitive function-related hippocampal CA3 neurons degenerated upon D-gal injection, which could also be partially rescued by PMF application. In comparison with the high-intensity TMS approach, low-intensity magnetic stimulation could be much safer and allow deeper penetration without adverse effects such as seizure. In summary, modulated PMF, even with low intensity, could effectively improve rodent cognitive functions impaired by D-gal-induced accelerated aging, which might provide a new safe therapeutic strategy for cognitive deficits as well as other neurological disorders.
Collapse
Affiliation(s)
- Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Zeraati R, Shi YL, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Levina A, Engel TA. Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity. Nat Commun 2023; 14:1858. [PMID: 37012299 PMCID: PMC10070246 DOI: 10.1038/s41467-023-37613-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Intrinsic timescales characterize dynamics of endogenous fluctuations in neural activity. Variation of intrinsic timescales across the neocortex reflects functional specialization of cortical areas, but less is known about how intrinsic timescales change during cognitive tasks. We measured intrinsic timescales of local spiking activity within columns of area V4 in male monkeys performing spatial attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales, fast and slow. The slow timescale increased when monkeys attended to the receptive fields location and correlated with reaction times. By evaluating predictions of several network models, we found that spatiotemporal correlations in V4 activity were best explained by the model in which multiple timescales arise from recurrent interactions shaped by spatially arranged connectivity, and attentional modulation of timescales results from an increase in the efficacy of recurrent interactions. Our results suggest that multiple timescales may arise from the spatial connectivity in the visual cortex and flexibly change with the cognitive state due to dynamic effective interactions between neurons.
Collapse
Affiliation(s)
- Roxana Zeraati
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yan-Liang Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Marc A Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Anna Levina
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- Department of Computer Science, University of Tübingen, Tübingen, Germany.
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany.
| | - Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Sachse EM, Snyder AC. Dynamic attention signalling in V4: Relation to fast-spiking/non-fast-spiking cell class and population coupling. Eur J Neurosci 2023; 57:918-939. [PMID: 36732934 PMCID: PMC11521100 DOI: 10.1111/ejn.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
The computational role of a neuron during attention depends on its firing properties, neurotransmitter expression and functional connectivity. Neurons in the visual cortical area V4 are reliably engaged by selective attention but exhibit diversity in the effect of attention on firing rates and correlated variability. It remains unclear what specific neuronal properties shape these attention effects. In this study, we quantitatively characterised the distribution of attention modulation of firing rates across populations of V4 neurons. Neurons exhibited a continuum of time-varying attention effects. At one end of the continuum, neurons' spontaneous firing rates were slightly depressed with attention (compared to when unattended), whereas their stimulus responses were enhanced with attention. The other end of the continuum showed the converse pattern: attention depressed stimulus responses but increased spontaneous activity. We tested whether the particular pattern of time-varying attention effects that a neuron exhibited was related to the shape of their actions potentials (so-called 'fast-spiking' [FS] neurons have been linked to inhibition) and the strength of their coupling to the overall population. We found an interdependence among neural attention effects, neuron type and population coupling. In particular, we found neurons for which attention enhanced spontaneous activity but suppressed stimulus responses were less likely to be fast-spiking (more likely to be non-fast-spiking) and tended to have stronger population coupling, compared to neurons with other types of attention effects. These results add important information to our understanding of visual attention circuits at the cellular level.
Collapse
Affiliation(s)
| | - Adam C. Snyder
- Brain and Cognitive Sciences, University of Rochester, Neuroscience, University of Rochester; Center for Visual Sciences, University of Rochester
| |
Collapse
|
17
|
Nie JZ, Flint RD, Prakash P, Hsieh JK, Mugler EM, Tate MC, Rosenow JM, Slutzky MW. High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528325. [PMID: 36824850 PMCID: PMC9949043 DOI: 10.1101/2023.02.13.528325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Planning and executing motor behaviors requires coordinated neural activity among multiple cortical and subcortical regions of the brain. Phase-amplitude coupling between the high-gamma band amplitude and the phase of low frequency oscillations (theta, alpha, beta) has been proposed to reflect neural communication, as has synchronization of low-gamma oscillations. However, coupling between low-gamma and high-gamma bands has not been investigated. Here, we measured phase-amplitude coupling between low- and high-gamma in monkeys performing a reaching task and in humans either performing finger movements or speaking words aloud. We found significant coupling between low-gamma phase and high-gamma amplitude in multiple sensorimotor and premotor cortices of both species during all tasks. This coupling modulated with the onset of movement. These findings suggest that interactions between the low and high gamma bands are markers of network dynamics related to movement and speech generation.
Collapse
|
18
|
Orekhova EV, Manyukhina VO, Galuta IA, Prokofyev AO, Goiaeva DE, Obukhova TS, Fadeev KA, Schneiderman JF, Stroganova TA. Gamma oscillations point to the role of primary visual cortex in atypical motion processing in autism. PLoS One 2023; 18:e0281531. [PMID: 36780507 PMCID: PMC9925089 DOI: 10.1371/journal.pone.0281531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.
Collapse
Affiliation(s)
- Elena V. Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- * E-mail:
| | - Viktoriya O. Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ilia A. Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey O. Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E. Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S. Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Kirill A. Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F. Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
19
|
Ye Z, Ding J, Tu Y, Zhang Q, Chen S, Yu H, Sun Q, Hua T. Suppression of top-down influence decreases both behavioral and V1 neuronal response sensitivity to stimulus orientations in cats. Front Behav Neurosci 2023; 17:1061980. [PMID: 36844652 PMCID: PMC9944033 DOI: 10.3389/fnbeh.2023.1061980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
How top-down influence affects behavioral detection of visual signals and neuronal response sensitivity in the primary visual cortex (V1) remains poorly understood. This study examined both behavioral performance in stimulus orientation identification and neuronal response sensitivity to stimulus orientations in the V1 of cat before and after top-down influence of area 7 (A7) was modulated by non-invasive transcranial direct current stimulation (tDCS). Our results showed that cathode (c) but not sham (s) tDCS in A7 significantly increased the behavioral threshold in identifying stimulus orientation difference, which effect recovered after the tDCS effect vanished. Consistently, c-tDCS but not s-tDCS in A7 significantly decreased the response selectivity bias of V1 neurons for stimulus orientations, which effect could recover after withdrawal of the tDCS effect. Further analysis showed that c-tDCS induced reduction of V1 neurons in response selectivity was not resulted from alterations of neuronal preferred orientation, nor of spontaneous activity. Instead, c-tDCS in A7 significantly lowered the visually-evoked response, especially the maximum response of V1 neurons, which caused a decrease in response selectivity and signal-to-noise ratio. By contrast, s-tDCS exerted no significant effect on the responses of V1 neurons. These results indicate that top-down influence of A7 may enhance behavioral identification of stimulus orientations by increasing neuronal visually-evoked response and response selectivity in the V1.
Collapse
Affiliation(s)
- Zheng Ye
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Ding
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,School of Basic Medical, Wannan Medical College, Wuhu, Anhui, China
| | - Yanni Tu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qiuyu Zhang
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shunshun Chen
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hao Yu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingyan Sun
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Tianmiao Hua
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,*Correspondence: Tianmiao Hua,
| |
Collapse
|
20
|
Veit J, Handy G, Mossing DP, Doiron B, Adesnik H. Cortical VIP neurons locally control the gain but globally control the coherence of gamma band rhythms. Neuron 2023; 111:405-417.e5. [PMID: 36384143 PMCID: PMC9898108 DOI: 10.1016/j.neuron.2022.10.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/12/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Gamma band synchronization can facilitate local and long-range neural communication. In the primary visual cortex, visual stimulus properties within a specific location determine local synchronization strength, while the match of stimulus properties between distant locations controls long-range synchronization. The neural basis for the differential control of local and global gamma band synchronization is unknown. Combining electrophysiology, optogenetics, and computational modeling, we found that VIP disinhibitory interneurons in mouse cortex linearly scale gamma power locally without changing its stimulus tuning. Conversely, they suppress long-range synchronization when two regions process non-matched stimuli, tuning gamma coherence globally. Modeling shows that like-to-like connectivity across space and specific VIP→SST inhibition capture these opposing effects. VIP neurons thus differentially impact local and global properties of gamma rhythms depending on visual stimulus statistics. They may thereby construct gamma-band filters for spatially extended but continuous image features, such as contours, facilitating the downstream generation of coherent visual percepts.
Collapse
Affiliation(s)
- Julia Veit
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Gregory Handy
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA; Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Daniel P Mossing
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL, USA; Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
21
|
Hayden DJ, Finnie PSB, Thomazeau A, Li AY, Cooke SF, Bear MF. Electrophysiological signatures of visual recognition memory across all layers of mouse V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.524429. [PMID: 36747661 PMCID: PMC9900851 DOI: 10.1101/2023.01.25.524429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In mouse primary visual cortex (V1), familiar stimuli evoke significantly altered responses when compared to novel stimuli. This stimulus-selective response plasticity (SRP) was described originally as an increase in the magnitude of visual evoked potentials (VEPs) elicited in layer (L) 4 by familiar phase-reversing grating stimuli. SRP is dependent on NMDA receptors (NMDAR) and has been hypothesized to reflect potentiation of thalamocortical synapses in L4. However, recent evidence indicates that the synaptic modifications that manifest as SRP do not occur on L4 principal cells. To shed light on where and how SRP is induced and expressed, the present study had three related aims: (1) to confirm that NMDAR are required specifically in glutamatergic principal neurons of V1, (2) to investigate the consequences of deleting NMDAR specifically in L6, and (3) to use translaminar electrophysiological recordings to characterize SRP expression in different layers of V1. We find that knockout of NMDAR in L6 principal neurons disrupts SRP. Current-source density analysis of the VEP depth profile shows augmentation of short latency current sinks in layers 3, 4 and 6 in response to phase reversals of familiar stimuli. Multiunit recordings demonstrate that increased peak firing occurs to in response to phase reversals of familiar stimuli across all layers, but that activity between phase reversals is suppressed. Together, these data reveal important aspects of the underlying phenomenology of SRP and generate new hypotheses for the expression of experience-dependent plasticity in V1. Significance Statement Repeated exposure to stimuli that portend neither reward nor punishment leads to behavioral habituation, enabling organisms to dedicate attention to novel or otherwise significant features of the environment. The neural basis of this process, which is so often dysregulated in neurological and psychiatric disorders, remains poorly understood. Learning and memory of stimulus familiarity can be studied in mouse visual cortex by measuring electrophysiological responses to simple phase-reversing grating stimuli. The current study advances knowledge of this process by documenting changes in visual evoked potentials, neuronal spiking activity, and oscillations in the local field potentials across all layers of mouse visual cortex. In addition, we identify a key contribution of a specific population of neurons in layer 6 of visual cortex.
Collapse
|
22
|
Pattisapu S, Ray S. Stimulus-induced narrow-band gamma oscillations in humans can be recorded using open-hardware low-cost EEG amplifier. PLoS One 2023; 18:e0279881. [PMID: 36689427 PMCID: PMC9870151 DOI: 10.1371/journal.pone.0279881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/17/2022] [Indexed: 01/24/2023] Open
Abstract
Stimulus-induced narrow-band gamma oscillations (30-70 Hz) in human electro-encephalograph (EEG) have been linked to attentional and memory mechanisms and are abnormal in mental health conditions such as autism, schizophrenia and Alzheimer's Disease. However, since the absolute power in EEG decreases rapidly with increasing frequency following a "1/f" power law, and the gamma band includes line noise frequency, these oscillations are highly susceptible to instrument noise. Previous studies that recorded stimulus-induced gamma oscillations used expensive research-grade EEG amplifiers to address this issue. While low-cost EEG amplifiers have become popular in Brain Computer Interface applications that mainly rely on low-frequency oscillations (< 30 Hz) or steady-state-visually-evoked-potentials, whether they can also be used to measure stimulus-induced gamma oscillations is unknown. We recorded EEG signals using a low-cost, open-source amplifier (OpenBCI) and a traditional, research-grade amplifier (Brain Products GmbH), both connected to the OpenBCI cap, in male (N = 6) and female (N = 5) subjects (22-29 years) while they viewed full-screen static gratings that are known to induce two distinct gamma oscillations: slow and fast gamma, in a subset of subjects. While the EEG signals from OpenBCI were considerably noisier, we found that out of the seven subjects who showed a gamma response in Brain Products recordings, six showed a gamma response in OpenBCI as well. In spite of the noise in the OpenBCI setup, the spectral and temporal profiles of these responses in alpha (8-13 Hz) and gamma bands were highly correlated between OpenBCI and Brain Products recordings. These results suggest that low-cost amplifiers can potentially be used in stimulus-induced gamma response detection.
Collapse
Affiliation(s)
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
23
|
Kanamori T, Mrsic-Flogel TD. Independent response modulation of visual cortical neurons by attentional and behavioral states. Neuron 2022; 110:3907-3918.e6. [PMID: 36137550 DOI: 10.1016/j.neuron.2022.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Sensory processing is influenced by cognitive and behavioral states, but how these states interact to modulate responses of individual neurons is unknown. We trained mice in a visual discrimination task wherein they attended to different locations within a hemifield while running or sitting still, enabling us to examine how visual responses are modulated by spatial attention and running behavior. We found that spatial attention improved discrimination performance and strengthened visual responses of excitatory neurons in the primary visual cortex whose receptive fields overlapped with the attended location. Although individual neurons were modulated by both spatial attention and running, the magnitudes of these influences were not correlated. While running-dependent modulation was stable across days, attentional modulation was dynamic, influencing individual neurons to different degrees after repeated changes in attentional states. Thus, despite similar effects on neural responses, spatial attention and running act independently with different dynamics, implying separable mechanisms for their implementation.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
24
|
Hou B, Chen K, Jia A, Liu S, Bao X, Liao B, Zhao YL, Guo D, Xia Y, Yao D. Visually induced γ band rhythm in spatial summation beyond the receptive field in mouse primary visual cortex. Cereb Cortex 2022; 33:4350-4359. [PMID: 36124829 DOI: 10.1093/cercor/bhac347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies in many kinds of mammals have established the existence of multiple γ rhythms in the cerebral cortex subserving different functions. In the primary visual cortex (V1), visually induced γ rhythms are dependent on stimulus features. However, experimental findings of γ power induced by varying the size of the drifting grating are inconsistent. Here, we reinvestigated the spatial summation properties of visually induced spike and γ rhythm activities in mouse V1. Our results show that drifting sinusoidal grating stimuli mainly induce 2 γ band rhythms, including a low-frequency band (25-45 Hz) and a high-frequency band (55-75 Hz). Unlike previous findings, we discovered that visually induced γ power could also exhibit extrareceptive field (ERF) modulatory properties. The modulation by ERF stimulation could be either suppressive, countersuppressive, or nonsuppressive, mostly similar to the local spike activity. Moreover, further analysis of the neuron group exhibiting surround suppression in both spike and γ activity revealed that the strength of the surround suppression and the receptive field size showed moderate correlations between measurements by spike and γ rhythm activity. Our findings improve the understanding of the characteristics and neural mechanisms of induced γ rhythms in visual spatial summation.
Collapse
Affiliation(s)
- BoJun Hou
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ang Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shanshan Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaojing Bao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baitao Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Lei Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Xia
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Xiyuan road 2006, Chengdu 611731, China
| |
Collapse
|
25
|
Ray S. Spike-Gamma Phase Relationship in the Visual Cortex. Annu Rev Vis Sci 2022; 8:361-381. [PMID: 35667158 DOI: 10.1146/annurev-vision-100419-104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gamma oscillations (30-70 Hz) have been hypothesized to play a role in cortical function. Most of the proposed mechanisms involve rhythmic modulation of neuronal excitability at gamma frequencies, leading to modulation of spike timing relative to the rhythm. I first show that the gamma band could be more privileged than other frequencies in observing spike-field interactions even in the absence of genuine gamma rhythmicity and discuss several biases in spike-gamma phase estimation. I then discuss the expected spike-gamma phase according to several hypotheses. Inconsistent with the phase-coding hypothesis (but not with others), the spike-gamma phase does not change with changes in stimulus intensity or attentional state, with spikes preferentially occurring 2-4 ms before the trough, but with substantial variability. However, this phase relationship is expected even when gamma is a byproduct of excitatory-inhibitory interactions. Given that gamma occurs in short bursts, I argue that the debate over the role of gamma is a matter of semantics. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India 560012;
| |
Collapse
|
26
|
Liza K, Ray S. Local Interactions between Steady-State Visually Evoked Potentials at Nearby Flickering Frequencies. J Neurosci 2022; 42:3965-3974. [PMID: 35396325 PMCID: PMC9097591 DOI: 10.1523/jneurosci.0180-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Steady-state visually evoked potentials (SSVEPs) are widely used to index top-down cognitive processing in human electroencephalogram (EEG) studies. Typically, two stimuli flickering at different temporal frequencies (TFs) are presented, each producing a distinct response in the EEG at its flicker frequency. However, how SSVEP responses in EEGs are modulated in the presence of a competing flickering stimulus just because of sensory interactions is not well understood. We have previously shown in local field potentials (LFPs) recorded from awake monkeys that when two overlapping full-screen gratings are counterphased at different TFs, there is an asymmetric SSVEP response suppression, with greater suppression from lower TFs, which further depends on the relative orientations of the gratings (stronger suppression and asymmetry for parallel compared with orthogonal gratings). Here, we first confirmed these effects in both male and female human EEG recordings. Then, we mapped the response suppression of one stimulus (target) by a competing stimulus (mask) over a much wider range than the previous study. Surprisingly, we found that the suppression was not stronger at low frequencies in general, but systematically varied depending on the target TF, indicating local interactions between the two competing stimuli. These results were confirmed in both human EEG and monkey LFP and electrocorticogram (ECoG) data. Our results show that sensory interactions between multiple SSVEPs are more complex than shown previously and are influenced by both local and global factors, underscoring the need to cautiously interpret the results of studies involving SSVEP paradigms.SIGNIFICANCE STATEMENT Steady-state visually evoked potentials (SSVEPs) are extensively used in human cognitive studies and brain-computer interfacing applications where multiple stimuli flickering at distinct frequencies are concurrently presented in the visual field. We recently characterized interactions between competing flickering stimuli in animal recordings and found that stimuli flickering slowly produce larger suppression. Here, we confirmed these in human EEGs, and further characterized the interactions by using a much wider range of target and competing (mask) frequencies in both human EEGs and invasive animal recordings. These revealed a new "local" component, whereby the suppression increased when competing stimuli flickered at nearby frequencies. Our results highlight the complexity of sensory interactions among multiple SSVEPs and underscore the need to cautiously interpret studies involving SSVEP paradigms.
Collapse
Affiliation(s)
- Kumari Liza
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Shah S, Mancarella M, Hembrook-Short JR, Mock VL, Briggs F. Attention differentially modulates multiunit activity in the lateral geniculate nucleus and V1 of macaque monkeys. J Comp Neurol 2022; 530:1064-1080. [PMID: 33950555 PMCID: PMC8568737 DOI: 10.1002/cne.25168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
Attention promotes the selection of behaviorally relevant sensory signals from the barrage of sensory information available. Visual attention modulates the gain of neuronal activity in all visual brain areas examined, although magnitudes of gain modulations vary across areas. For example, attention gain magnitudes in the dorsal lateral geniculate nucleus (LGN) and primary visual cortex (V1) vary tremendously across fMRI measurements in humans and electrophysiological recordings in behaving monkeys. We sought to determine whether these discrepancies are due simply to differences in species or measurement, or more nuanced properties unique to each visual brain area. We also explored whether robust and consistent attention effects, comparable to those measured in humans with fMRI, are observable in the LGN or V1 of monkeys. We measured attentional modulation of multiunit activity in the LGN and V1 of macaque monkeys engaged in a contrast change detection task requiring shifts in covert visual spatial attention. Rigorous analyses of LGN and V1 multiunit activity revealed robust and consistent attentional facilitation throughout V1, with magnitudes comparable to those observed with fMRI. Interestingly, attentional modulation in the LGN was consistently negligible. These findings demonstrate that discrepancies in attention effects are not simply due to species or measurement differences. We also examined whether attention effects correlated with the feature selectivity of recorded multiunits. Distinct relationships suggest that attentional modulation of multiunit activity depends upon the unique structure and function of visual brain areas.
Collapse
Affiliation(s)
- Shraddha Shah
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Marc Mancarella
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | | | - Vanessa L. Mock
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester Medical Center, Rochester NY 14642 USA
- Department of Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester NY 14642 USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester NY 14627 USA
- Center for Visual Science, University of Rochester, Rochester NY 14627 USA
| |
Collapse
|
28
|
Uran C, Peter A, Lazar A, Barnes W, Klon-Lipok J, Shapcott KA, Roese R, Fries P, Singer W, Vinck M. Predictive coding of natural images by V1 firing rates and rhythmic synchronization. Neuron 2022; 110:1240-1257.e8. [PMID: 35120628 PMCID: PMC8992798 DOI: 10.1016/j.neuron.2022.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 01/12/2023]
Abstract
Predictive coding is an important candidate theory of self-supervised learning in the brain. Its central idea is that sensory responses result from comparisons between bottom-up inputs and contextual predictions, a process in which rates and synchronization may play distinct roles. We recorded from awake macaque V1 and developed a technique to quantify stimulus predictability for natural images based on self-supervised, generative neural networks. We find that neuronal firing rates were mainly modulated by the contextual predictability of higher-order image features, which correlated strongly with human perceptual similarity judgments. By contrast, V1 gamma (γ)-synchronization increased monotonically with the contextual predictability of low-level image features and emerged exclusively for larger stimuli. Consequently, γ-synchronization was induced by natural images that are highly compressible and low-dimensional. Natural stimuli with low predictability induced prominent, late-onset beta (β)-synchronization, likely reflecting cortical feedback. Our findings reveal distinct roles of synchronization and firing rates in the predictive coding of natural images.
Collapse
Affiliation(s)
- Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 AJ Nijmegen, the Netherlands.
| | - Alina Peter
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Andreea Lazar
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - William Barnes
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Johanna Klon-Lipok
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Katharine A Shapcott
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Rasmus Roese
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Department of Biophysics, Radboud University Nijmegen, 6525 AJ Nijmegen, the Netherlands
| | - Wolf Singer
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Max Planck Institute for Brain Research, 60438 Frankfurt, Germany; Frankfurt Institute for Advanced Studies, 60438 Frankfurt, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Murty DVPS, Ray S. Stimulus-induced Robust Narrow-band Gamma Oscillations in Human EEG Using Cartesian Gratings. Bio Protoc 2022; 12:e4379. [PMID: 35530517 PMCID: PMC9018439 DOI: 10.21769/bioprotoc.4379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 10/31/2021] [Accepted: 02/11/2022] [Indexed: 12/29/2022] Open
Abstract
Stimulus-induced narrow-band gamma oscillations (20-70 Hz) are induced in the visual areas of the brain when particular visual stimuli, such as bars, gratings, or full-screen hue, are shown to the subject. Such oscillations are modulated by higher cognitive functions, like attention, and working memory, and have been shown to be abnormal in certain neuropsychiatric disorders, such as schizophrenia, autism, and Alzheimer's disease. However, although electroencephalogram (EEG) remains one of the most non-invasive, inexpensive, and accessible methods to record brain signals, some studies have failed to observe discernable gamma oscillations in human EEG. In this manuscript, we have described in detail a protocol to elicit robust gamma oscillations in human EEG. We believe that our protocol could help in developing non-invasive gamma-based biomarkers in human EEG, for the early detection of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
30
|
Liu W, Wang X, Hamalainen T, Cong F. Exploring Oscillatory Dysconnectivity Networks in Major Depression during Resting State Using Coupled Tensor Decomposition. IEEE Trans Biomed Eng 2022; 69:2691-2700. [PMID: 35180074 DOI: 10.1109/tbme.2022.3152413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dysconnectivity of large-scale brain networks has been linked to major depression disorder (MDD) during resting state. Recent researches show that the temporal evolution of brain networks regulated by oscillations reveals novel mechanisms and neural characteristics of MDD. Our study applied a novel coupled tensor decomposition model to investigate the dysconnectivity networks characterized by spatio-temporal-spectral modes of covariation in MDD using resting electroencephalography. The phase lag index is used to calculate the functional connectivity within each time window at each frequency bin. Then, two adjacency tensors with the dimension of time frequency connectivity subject are constructed for the healthy group and the major depression group. We assume that the two groups share the same features for group similarity and retain individual characteristics for group differences. Considering that the constructed tensors are nonnegative and the components in spectral and adjacency modes are partially consistent among the two groups, we formulate a double-coupled nonnegative tensor decomposition model. To reduce computational complexity, we introduce the lowrank approximation. Then, the fast hierarchical alternative least squares algorithm is applied for model optimization. After clustering analysis, we summarize four oscillatory networks characterizing the healthy group and four oscillatory networks characterizing the major depression group, respectively. The proposed model may reveal novel mechanisms of pathoconnectomics in MDD during rest, and it can be easily extended to other psychiatric disorders.
Collapse
|
31
|
Krishnakumaran R, Raees M, Ray S. Shape analysis of gamma rhythm supports a superlinear inhibitory regime in an inhibition-stabilized network. PLoS Comput Biol 2022; 18:e1009886. [PMID: 35157699 PMCID: PMC8880865 DOI: 10.1371/journal.pcbi.1009886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/25/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Visual inspection of stimulus-induced gamma oscillations (30–70 Hz) often reveals a non-sinusoidal shape. Such distortions are a hallmark of non-linear systems and are also observed in mean-field models of gamma oscillations. A thorough characterization of the shape of the gamma cycle can therefore provide additional constraints on the operating regime of such models. However, the gamma waveform has not been quantitatively characterized, partially because the first harmonic of gamma, which arises because of the non-sinusoidal nature of the signal, is typically weak and gets masked due to a broadband increase in power related to spiking. To address this, we recorded local field potential (LFP) from the primary visual cortex (V1) of two awake female macaques while presenting full-field gratings or iso-luminant chromatic hues that produced huge gamma oscillations with prominent peaks at harmonic frequencies in the power spectra. We found that gamma and its first harmonic always maintained a specific phase relationship, resulting in a distinctive shape with a sharp trough and a shallow peak. Interestingly, a Wilson-Cowan (WC) model operating in an inhibition stabilized mode could replicate this shape, but only when the inhibitory population operated in the super-linear regime, as predicted recently. However, another recently developed model of gamma that operates in a linear regime driven by stochastic noise failed to produce salient harmonics or the observed shape. Our results impose additional constraints on models that generate gamma oscillations and their operating regimes. Gamma rhythm is not sinusoidal. Understanding these distortions could provide clues about the cortical network that generates the rhythm. Here, we use harmonic phase analysis to describe these waveforms quantitatively and show that gamma rhythm recorded from the primary visual cortex of macaques has a signature arch shaped waveform, with a sharp trough and a shallow peak, when visual stimuli such as full-screen plain hues and achromatic gratings are presented. This arch shaped waveform is observed over a wide range of stimuli, despite the variation in power and frequency of the rhythm. We then compare two population rate models that have been used to accurately describe the stimulus dependencies of gamma rhythm and show that this arch shaped waveform is obtained only in one of those models. Further, the waveform shape is dependent on the operating domain of the system. Therefore, shape analysis provides additional constraints on cortical models and their operating regimes.
Collapse
Affiliation(s)
- R Krishnakumaran
- IISc Mathematics Initiative, Department of Mathematics, Indian Institute of Science, Bangalore, India
| | - Mohammed Raees
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Supratim Ray
- IISc Mathematics Initiative, Department of Mathematics, Indian Institute of Science, Bangalore, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
32
|
Ding J, Ye Z, Xu F, Hu X, Yu H, Zhang S, Tu Y, Zhang Q, Sun Q, Hua T, Lu ZL. Effects of top-down influence suppression on behavioral and V1 neuronal contrast sensitivity functions in cats. iScience 2022; 25:103683. [PMID: 35059603 PMCID: PMC8760559 DOI: 10.1016/j.isci.2021.103683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 02/09/2023] Open
Abstract
To explore the relative contributions of higher-order and primary visual cortex (V1) to visual perception, we compared cats' behavioral and V1 neuronal contrast sensitivity functions (CSF) and threshold versus external noise contrast (TvC) functions before and after top-down influence of area 7 (A7) was modulated with transcranial direct current stimulation (tDCS). We found that suppressing top-down influence of A7 with cathode-tDCS, but not sham-tDCS, reduced behavioral and neuronal contrast sensitivity in the same range of spatial frequencies and increased behavioral and neuronal contrast thresholds in the same range of external noise levels. The neuronal CSF and TvC functions were highly correlated with their behavioral counterparts both before and after the top-down suppression. Analysis of TvC functions using the Perceptual Template Model (PTM) indicated that top-down influence of A7 increased both behavioral and V1 neuronal contrast sensitivity by reducing internal additive noise and the impact of external noise. Top-down suppression lowers both behavioral and V1 neuronal CSF functions Top-down suppression raises both behavioral and V1 neuronal TvC functions The neuronal CSFs and TvCs are highly correlated with their behavioral counterparts Top-down influence lowers internal additive noise and impact of external noise in V1
Collapse
Affiliation(s)
- Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fei Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiangmei Hu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yanni Tu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiuyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhong-Lin Lu
- Divison of Arts and Sciences, NYU Shanghai, Shanghai 200122, China.,Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.,NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
33
|
Singer W. Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge. Proc Natl Acad Sci U S A 2021; 118:e2101043118. [PMID: 34362837 PMCID: PMC8379985 DOI: 10.1073/pnas.2101043118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current concepts of sensory processing in the cerebral cortex emphasize serial extraction and recombination of features in hierarchically structured feed-forward networks in order to capture the relations among the components of perceptual objects. These concepts are implemented in convolutional deep learning networks and have been validated by the astounding similarities between the functional properties of artificial systems and their natural counterparts. However, cortical architectures also display an abundance of recurrent coupling within and between the layers of the processing hierarchy. This massive recurrence gives rise to highly complex dynamics whose putative function is poorly understood. Here a concept is proposed that assigns specific functions to the dynamics of cortical networks and combines, in a unifying approach, the respective advantages of recurrent and feed-forward processing. It is proposed that the priors about regularities of the world are stored in the weight distributions of feed-forward and recurrent connections and that the high-dimensional, dynamic space provided by recurrent interactions is exploited for computations. These comprise the ultrafast matching of sensory evidence with the priors covertly represented in the correlation structure of spontaneous activity and the context-dependent grouping of feature constellations characterizing natural objects. The concept posits that information is encoded not only in the discharge frequency of neurons but also in the precise timing relations among the discharges. Results of experiments designed to test the predictions derived from this concept support the hypothesis that cerebral cortex exploits the high-dimensional recurrent dynamics for computations serving predictive coding.
Collapse
Affiliation(s)
- Wolf Singer
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60438, Germany;
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main 60438, Germany
| |
Collapse
|
34
|
Hayden DJ, Montgomery DP, Cooke SF, Bear MF. Visual Recognition Is Heralded by Shifts in Local Field Potential Oscillations and Inhibitory Networks in Primary Visual Cortex. J Neurosci 2021; 41:6257-6272. [PMID: 34103358 PMCID: PMC8287992 DOI: 10.1523/jneurosci.0391-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Learning to recognize and filter familiar, irrelevant sensory stimuli eases the computational burden on the cerebral cortex. Inhibition is a candidate mechanism in this filtration process, and oscillations in the cortical local field potential (LFP) serve as markers of the engagement of different inhibitory neurons. We show here that LFP oscillatory activity in visual cortex is profoundly altered as male and female mice learn to recognize an oriented grating stimulus-low-frequency (∼15 Hz peak) power sharply increases, whereas high-frequency (∼65 Hz peak) power decreases. These changes report recognition of the familiar pattern as they disappear when the stimulus is rotated to a novel orientation. Two-photon imaging of neuronal activity reveals that parvalbumin-expressing inhibitory neurons disengage with familiar stimuli and reactivate to novelty, whereas somatostatin-expressing inhibitory neurons show opposing activity patterns. We propose a model in which the balance of two interacting interneuron circuits shifts as novel stimuli become familiar.SIGNIFICANCE STATEMENT Habituation, familiarity, and novelty detection are fundamental cognitive processes that enable organisms to adaptively filter meaningless stimuli and focus attention on potentially important elements of their environment. We have shown that this process can be studied fruitfully in the mouse primary visual cortex by using simple grating stimuli for which novelty and familiarity are defined by orientation and by measuring stimulus-evoked and continuous local field potentials. Altered event-related and spontaneous potentials, and deficient habituation, are well-documented features of several neurodevelopmental psychiatric disorders. The paradigm described here will be valuable to interrogate the origins of these signals and the meaning of their disruption more deeply.
Collapse
Affiliation(s)
- Dustin J Hayden
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Daniel P Montgomery
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Samuel F Cooke
- Medical Research Council Centre for Neurodevelopmental Disorders, Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 9RT, England
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
35
|
Cortical control of behavior and attention from an evolutionary perspective. Neuron 2021; 109:3048-3054. [PMID: 34297915 DOI: 10.1016/j.neuron.2021.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
For animals to survive, they must interact with their environment, taking in sensory information and making appropriate motor responses. Early on during vertebrate evolution, this was accomplished with neural circuits located mostly within the spinal cord and brainstem. As the cerebral cortex evolved, it provided additional and powerful advantages for assessing environmental cues and guiding appropriate responses. Importantly, the cerebral cortex was added onto an already functional nervous system. Moreover, every cortical area, including areas traditionally considered sensory, provides input to the subcortical motor structures that are bottlenecks for driving action. These facts have important ramifications for cognitive aspects of motor control. Here we consider the evolution of cortical mechanisms for attention from the perspective of having to work through these subcortical bottlenecks. From this perspective, many features of attention can be explained, including the preferential engagement of some cortical areas at the cost of disengagement from others to improve appropriate behavioral responses.
Collapse
|
36
|
Murty DVPS, Manikandan K, Kumar WS, Ramesh RG, Purokayastha S, Nagendra B, ML A, Balakrishnan A, Javali M, Rao NP, Ray S. Stimulus-induced gamma rhythms are weaker in human elderly with mild cognitive impairment and Alzheimer's disease. eLife 2021; 10:e61666. [PMID: 34099103 PMCID: PMC8238507 DOI: 10.7554/elife.61666] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 05/23/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) in elderly adds substantially to socioeconomic burden necessitating early diagnosis. While recent studies in rodent models of AD have suggested diagnostic and therapeutic value for gamma rhythms in brain, the same has not been rigorously tested in humans. In this case-control study, we recruited a large population (N = 244; 106 females) of elderly (>49 years) subjects from the community, who viewed large gratings that induced strong gamma oscillations in their electroencephalogram (EEG). These subjects were classified as healthy (N = 227), mild cognitively impaired (MCI; N = 12), or AD (N = 5) based on clinical history and Clinical Dementia Rating scores. Surprisingly, stimulus-induced gamma rhythms, but not alpha or steady-state visually evoked responses, were significantly lower in MCI/AD subjects compared to their age- and gender-matched controls. This reduction was not due to differences in eye movements or baseline power. Our results suggest that gamma could be used as a potential screening tool for MCI/AD in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Abhishek ML
- Centre for Neuroscience, Indian Institute of ScienceBengaluruIndia
| | | | - Mahendra Javali
- MS Ramaiah Medical College & Memorial HospitalBengaluruIndia
| | | | - Supratim Ray
- Centre for Neuroscience, Indian Institute of ScienceBengaluruIndia
| |
Collapse
|
37
|
Prakash SS, Das A, Kanth ST, Mayo JP, Ray S. Decoding of Attentional State Using High-Frequency Local Field Potential Is As Accurate As Using Spikes. Cereb Cortex 2021; 31:4314-4328. [PMID: 33866366 DOI: 10.1093/cercor/bhab088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
Local field potentials (LFPs) in visual cortex are reliably modulated when the subject's focus of attention is cued into versus out of the receptive field of the recorded sites, similar to modulation of spikes. However, human psychophysics studies have used an additional attention condition, neutral cueing, for decades. The effect of neutral cueing on spikes was examined recently and found to be intermediate between cued and uncued conditions. However, whether LFPs are also precise enough to represent graded states of attention is unknown. We found in rhesus monkeys that LFPs during neutral cueing were also intermediate between cued and uncued conditions. For a single electrode, attention was more discriminable using high frequency (>30 Hz) LFP power than spikes, which is expected because LFP represents a population signal and therefore is expected to be less noisy than spikes. However, previous studies have shown that when multiple electrodes are used, spikes can outperform LFPs. Surprisingly, in our study, spikes did not outperform LFPs when discriminability was computed using multiple electrodes, even though the LFP activity was highly correlated across electrodes compared with spikes. These results constrain the spatial scale over which attention operates and highlight the usefulness of LFPs in studying attention.
Collapse
Affiliation(s)
- Surya S Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Aritra Das
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sidrat Tasawoor Kanth
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.,IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.,IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
38
|
Ferro D, van Kempen J, Boyd M, Panzeri S, Thiele A. Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention. Proc Natl Acad Sci U S A 2021; 118:e2022097118. [PMID: 33723059 PMCID: PMC8000025 DOI: 10.1073/pnas.2022097118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Achieving behavioral goals requires integration of sensory and cognitive information across cortical laminae and cortical regions. How this computation is performed remains unknown. Using local field potential recordings and spectrally resolved conditional Granger causality (cGC) analysis, we mapped visual information flow, and its attentional modulation, between cortical layers within and between macaque brain areas V1 and V4. Stimulus-induced interlaminar information flow within V1 dominated upwardly, channeling information toward supragranular corticocortical output layers. Within V4, information flow dominated from granular to supragranular layers, but interactions between supragranular and infragranular layers dominated downwardly. Low-frequency across-area communication was stronger from V4 to V1, with little layer specificity. Gamma-band communication was stronger in the feedforward V1-to-V4 direction. Attention to the receptive field of V1 decreased communication between all V1 layers, except for granular-to-supragranular layer interactions. Communication within V4, and from V1 to V4, increased with attention across all frequencies. While communication from V4 to V1 was stronger in lower-frequency bands (4 to 25 Hz), attention modulated cGCs from V4 to V1 across all investigated frequencies. Our data show that top-down cognitive processes result in reduced communication within cortical areas, increased feedforward communication across all frequency bands, and increased gamma-band feedback communication.
Collapse
Affiliation(s)
- Demetrio Ferro
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
- Center for Mind and Brain Sciences, University of Trento, 38068 Rovereto, Italy
- Center for Brain and Cognition, Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Jochem van Kempen
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Michael Boyd
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Stefano Panzeri
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy;
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| |
Collapse
|
39
|
Li Z, Li J, Wang S, Wang X, Chen J, Qin L. Laminar Profile of Auditory Steady-State Response in the Auditory Cortex of Awake Mice. Front Syst Neurosci 2021; 15:636395. [PMID: 33815073 PMCID: PMC8017131 DOI: 10.3389/fnsys.2021.636395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Auditory steady-state response (ASSR) is a gamma oscillation evoked by periodic auditory stimuli, which is commonly used in clinical electroencephalographic examination to evaluate the neurological functions. Though it has been suggested that auditory cortex is the origin of ASSR, how the laminar architecture of the neocortex contributes to the ASSR recorded from the brain surface remains unclear. Methods We used a 16-channel silicon probe to record the local field potential and the single-unit spike activity in the different layers of the auditory cortex of unanesthetized mice. Click-trains with a repetition rate at 40-Hz were present as sound stimuli to evoke ASSR. Results We found that the LFPs of all cortical layers showed a stable ASSR synchronizing to the 40-Hz click stimuli, while the ASSR was strongest in the granular (thalamorecipient) layer. Furthermore, time-frequency analyses also revealed the strongest coherence between the signals recorded from the granular layer and pial surface. Conclusion Our results reveal that the 40-Hz ASSR primarily shows the evoked gamma oscillation of thalamorecipient layers in the neocortex, and that the ASSR may be a biomarker to detect the cognitive deficits associated with impaired thalamo-cortical connection.
Collapse
Affiliation(s)
- Zijie Li
- Department of Physiology, China Medical University, Shenyang, China
| | - Jinhong Li
- Department of Physiology, China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Physiology, China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang, China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, China
| |
Collapse
|
40
|
Wild B, Treue S. Primate extrastriate cortical area MST: a gateway between sensation and cognition. J Neurophysiol 2021; 125:1851-1882. [PMID: 33656951 DOI: 10.1152/jn.00384.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Primate visual cortex consists of dozens of distinct brain areas, each providing a highly specialized component to the sophisticated task of encoding the incoming sensory information and creating a representation of our visual environment that underlies our perception and action. One such area is the medial superior temporal cortex (MST), a motion-sensitive, direction-selective part of the primate visual cortex. It receives most of its input from the middle temporal (MT) area, but MST cells have larger receptive fields and respond to more complex motion patterns. The finding that MST cells are tuned for optic flow patterns has led to the suggestion that the area plays an important role in the perception of self-motion. This hypothesis has received further support from studies showing that some MST cells also respond selectively to vestibular cues. Furthermore, the area is part of a network that controls the planning and execution of smooth pursuit eye movements and its activity is modulated by cognitive factors, such as attention and working memory. This review of more than 90 studies focuses on providing clarity of the heterogeneous findings on MST in the macaque cortex and its putative homolog in the human cortex. From this analysis of the unique anatomical and functional position in the hierarchy of areas and processing steps in primate visual cortex, MST emerges as a gateway between perception, cognition, and action planning. Given this pivotal role, this area represents an ideal model system for the transition from sensation to cognition.
Collapse
Affiliation(s)
- Benedict Wild
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Goettingen, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany.,Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany.,Bernstein Center for Computational Neuroscience, Goettingen, Germany
| |
Collapse
|
41
|
De Sousa C, Gaillard C, Di Bello F, Ben Hadj Hassen S, Ben Hamed S. Behavioral validation of novel high resolution attention decoding method from multi-units & local field potentials. Neuroimage 2021; 231:117853. [PMID: 33582274 DOI: 10.1016/j.neuroimage.2021.117853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/28/2022] Open
Abstract
The ability to access brain information in real-time is crucial both for a better understanding of cognitive functions and for the development of therapeutic applications based on brain-machine interfaces. Great success has been achieved in the field of neural motor prosthesis. Progress is still needed in the real-time decoding of higher-order cognitive processes such as covert attention. Recently, we showed that we can track the location of the attentional spotlight using classification methods applied to prefrontal multi-unit activity (MUA) in the non-human primates. Importantly, we demonstrated that the decoded (x,y) attentional spotlight parametrically correlates with the behavior of the monkeys thus validating our decoding of attention. We also demonstrate that this spotlight is extremely dynamic. Here, in order to get closer to non-invasive decoding applications, we extend our previous work to local field potential signals (LFP). Specifically, we achieve, for the first time, high decoding accuracy of the (x,y) location of the attentional spotlight from prefrontal LFP signals, to a degree comparable to that achieved from MUA signals, and we show that this LFP content is predictive of behavior. This LFP attention-related information is maximal in the gamma band (30-250 Hz), peaking between 60 to 120 Hz. In addition, we introduce a novel two-step decoding procedure based on the labelling of maximally attention-informative trials during the decoding procedure. This procedure strongly improves the correlation between our real-time MUA and LFP based decoding and behavioral performance, thus further refining the functional relevance of this real-time decoding of the (x,y) locus of attention. This improvement is more marked for LFP signals than for MUA signals. Overall, this study demonstrates that the attentional spotlight can be accessed from LFP frequency content, in real-time, and can be used to drive high-information content cognitive brain-machine interfaces for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Carine De Sousa
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France.
| | - C Gaillard
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France
| | - F Di Bello
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France
| | - S Ben Hadj Hassen
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France
| | - S Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, 67 Boulevard Pinel, 69675 Bron Cedex, France.
| |
Collapse
|
42
|
Das A, Ray S. Effect of Cross-Orientation Normalization on Different Neural Measures in Macaque Primary Visual Cortex. Cereb Cortex Commun 2021; 2:tgab009. [PMID: 34095837 PMCID: PMC8152940 DOI: 10.1093/texcom/tgab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/14/2022] Open
Abstract
Divisive normalization is a canonical mechanism that can explain a variety of sensory phenomena. While normalization models have been used to explain spiking activity in response to different stimulus/behavioral conditions in multiple brain areas, it is unclear whether similar models can also explain modulation in population-level neural measures such as power at various frequencies in local field potentials (LFPs) or steady-state visually evoked potential (SSVEP) that is produced by flickering stimuli and popular in electroencephalogram studies. To address this, we manipulated normalization strength by presenting static as well as flickering orthogonal superimposed gratings (plaids) at varying contrasts to 2 female monkeys while recording multiunit activity (MUA) and LFP from the primary visual cortex and quantified the modulation in MUA, gamma (32-80 Hz), high-gamma (104-248 Hz) power, as well as SSVEP. Even under similar stimulus conditions, normalization strength was different for the 4 measures and increased as: spikes, high-gamma, SSVEP, and gamma. However, these results could be explained using a normalization model that was modified for population responses, by varying the tuned normalization parameter and semisaturation constant. Our results show that different neural measures can reflect the effect of stimulus normalization in different ways, which can be modeled by a simple normalization model.
Collapse
Affiliation(s)
- Aritra Das
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
43
|
Pan H, Zhang S, Pan D, Ye Z, Yu H, Ding J, Wang Q, Sun Q, Hua T. Characterization of Feedback Neurons in the High-Level Visual Cortical Areas That Project Directly to the Primary Visual Cortex in the Cat. Front Neuroanat 2021; 14:616465. [PMID: 33488364 PMCID: PMC7820340 DOI: 10.3389/fnana.2020.616465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Previous studies indicate that top-down influence plays a critical role in visual information processing and perceptual detection. However, the substrate that carries top-down influence remains poorly understood. Using a combined technique of retrograde neuronal tracing and immunofluorescent double labeling, we characterized the distribution and cell type of feedback neurons in cat's high-level visual cortical areas that send direct connections to the primary visual cortex (V1: area 17). Our results showed: (1) the high-level visual cortex of area 21a at the ventral stream and PMLS area at the dorsal stream have a similar proportion of feedback neurons back projecting to the V1 area, (2) the distribution of feedback neurons in the higher-order visual area 21a and PMLS was significantly denser than in the intermediate visual cortex of area 19 and 18, (3) feedback neurons in all observed high-level visual cortex were found in layer II-III, IV, V, and VI, with a higher proportion in layer II-III, V, and VI than in layer IV, and (4) most feedback neurons were CaMKII-positive excitatory neurons, and few of them were identified as inhibitory GABAergic neurons. These results may argue against the segregation of ventral and dorsal streams during visual information processing, and support "reverse hierarchy theory" or interactive model proposing that recurrent connections between V1 and higher-order visual areas constitute the functional circuits that mediate visual perception. Also, the corticocortical feedback neurons from high-level visual cortical areas to the V1 area are mostly excitatory in nature.
Collapse
Affiliation(s)
- Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qin Wang
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
44
|
Pan D, Pan H, Zhang S, Yu H, Ding J, Ye Z, Hua T. Top-down influence affects the response adaptation of V1 neurons in cats. Brain Res Bull 2020; 167:89-98. [PMID: 33333174 DOI: 10.1016/j.brainresbull.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
The visual system lowers its perceptual sensitivity to a prolonged presentation of the same visual signal. This brain plasticity, called visual adaptation, is generally attributed to the response adaptation of neurons in the visual cortex. Although well-studied in the neurons of the primary visual cortex (V1), the contribution of high-level visual cortical regions to the response adaptation of V1 neurons is unclear. In the present study, we measured the response adaptation strength of V1 neurons before and after the top-down influence of the area 21a (A21a), a higher-order visual cortex homologous to the primate V4 area, was modulated with a noninvasive tool of transcranial direct current stimulation (tDCS). Our results showed that the response adaptation of V1 neurons enhanced significantly after applying anode (a-) tDCS in A21a when compared with that before a-tDCS, whereas the response adaptation of V1 neurons weakened after cathode (c-) tDCS relative to before c-tDCS in A21a. By contrast, sham (s-) tDCS in A21a had no significant impact on the response adaptation of V1 neurons. Further analysis indicated that a-tDCS in A21a significantly increased both the initial response (IR) of V1 neurons to the first several (five) trails of visual stimulation and the plateau response (PR) to the prolonged visual stimulation; the increase in PR was lower than in IR, which caused an enhancement in response adaptation. Conversely, c-tDCS significantly decreased both IR and PR of V1 neurons; the reduction in PR was smaller than in IR, which resulted in a weakness in response adaptation. Furthermore, the tDCS-induced changes of V1 neurons in response and response adaptation could recover after tDCS effect vanished, but did not occur after the neuronal activity in A21a was silenced by electrolytic lesions. These results suggest that the top-down influence of A21a may alter the response adaptation of V1 neurons through activation of local inhibitory circuitry, which enhances network inhibition in the V1 area upon an increased top-down input, weakens inhibition upon a decreased top-down input, and thus maintains homeostasis of V1 neurons in response to the long-presenting visual signals.
Collapse
Affiliation(s)
- Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
45
|
Heeger DJ, Zemlianova KO. A recurrent circuit implements normalization, simulating the dynamics of V1 activity. Proc Natl Acad Sci U S A 2020; 117:22494-22505. [PMID: 32843341 PMCID: PMC7486719 DOI: 10.1073/pnas.2005417117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The normalization model has been applied to explain neural activity in diverse neural systems including primary visual cortex (V1). The model's defining characteristic is that the response of each neuron is divided by a factor that includes a weighted sum of activity of a pool of neurons. Despite the success of the normalization model, there are three unresolved issues. 1) Experimental evidence supports the hypothesis that normalization in V1 operates via recurrent amplification, i.e., amplifying weak inputs more than strong inputs. It is unknown how normalization arises from recurrent amplification. 2) Experiments have demonstrated that normalization is weighted such that each weight specifies how one neuron contributes to another's normalization pool. It is unknown how weighted normalization arises from a recurrent circuit. 3) Neural activity in V1 exhibits complex dynamics, including gamma oscillations, linked to normalization. It is unknown how these dynamics emerge from normalization. Here, a family of recurrent circuit models is reported, each of which comprises coupled neural integrators to implement normalization via recurrent amplification with arbitrary normalization weights, some of which can recapitulate key experimental observations of the dynamics of neural activity in V1.
Collapse
Affiliation(s)
- David J Heeger
- Department of Psychology, New York University, New York, NY 10003;
- Center for Neural Science, New York University, New York, NY 10003
| | | |
Collapse
|
46
|
Rezaei H, Aertsen A, Kumar A, Valizadeh A. Facilitating the propagation of spiking activity in feedforward networks by including feedback. PLoS Comput Biol 2020; 16:e1008033. [PMID: 32776924 PMCID: PMC7444537 DOI: 10.1371/journal.pcbi.1008033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Transient oscillations in network activity upon sensory stimulation have been reported in different sensory areas of the brain. These evoked oscillations are the generic response of networks of excitatory and inhibitory neurons (EI-networks) to a transient external input. Recently, it has been shown that this resonance property of EI-networks can be exploited for communication in modular neuronal networks by enabling the transmission of sequences of synchronous spike volleys (’pulse packets’), despite the sparse and weak connectivity between the modules. The condition for successful transmission is that the pulse packet (PP) intervals match the period of the modules’ resonance frequency. Hence, the mechanism was termed communication through resonance (CTR). This mechanism has three severe constraints, though. First, it needs periodic trains of PPs, whereas single PPs fail to propagate. Second, the inter-PP interval needs to match the network resonance. Third, transmission is very slow, because in each module, the network resonance needs to build up over multiple oscillation cycles. Here, we show that, by adding appropriate feedback connections to the network, the CTR mechanism can be improved and the aforementioned constraints relaxed. Specifically, we show that adding feedback connections between two upstream modules, called the resonance pair, in an otherwise feedforward modular network can support successful propagation of a single PP throughout the entire network. The key condition for successful transmission is that the sum of the forward and backward delays in the resonance pair matches the resonance frequency of the network modules. The transmission is much faster, by more than a factor of two, than in the original CTR mechanism. Moreover, it distinctly lowers the threshold for successful communication by synchronous spiking in modular networks of weakly coupled networks. Thus, our results suggest a new functional role of bidirectional connectivity for the communication in cortical area networks. The cortex is organized as a modular system, with the modules (cortical areas) communicating via weak long-range connections. It has been suggested that the intrinsic resonance properties of population activities in these areas might contribute to enabling successful communication. A module’s intrinsic resonance appears in the damped oscillatory response to an incoming spike volley, enabling successful communication during the peaks of the oscillation. Such communication can be exploited in feedforward networks, provided the participating networks have similar resonance frequencies. This, however, is not necessarily true for cortical networks. Moreover, the communication is slow, as it takes several oscillation cycles to build up the response in the downstream network. Also, only periodic trains of spikes volleys (and not single volleys) with matching intervals can propagate. Here, we present a novel mechanism that alleviates these shortcomings and enables propagation of synchronous spiking across weakly connected networks with not necessarily identical resonance frequencies. In this framework, an individual spike volley can propagate by local amplification through reverberation in a loop between two successive networks, connected by feedforward and feedback connections: the resonance pair. This overcomes the need for activity build-up in downstream networks, causing the volley to propagate distinctly faster and more reliably.
Collapse
Affiliation(s)
- Hedyeh Rezaei
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ad Aertsen
- Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Arvind Kumar
- Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Dept. of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail: (AK); (AV)
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran, Tehran, Iran
- * E-mail: (AK); (AV)
| |
Collapse
|
47
|
Zhang R, Ballard DH. Parallel Neural Multiprocessing with Gamma Frequency Latencies. Neural Comput 2020; 32:1635-1663. [PMID: 32687771 DOI: 10.1162/neco_a_01301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The Poisson variability in cortical neural responses has been typically modeled using spike averaging techniques, such as trial averaging and rate coding, since such methods can produce reliable correlates of behavior. However, mechanisms that rely on counting spikes could be slow and inefficient and thus might not be useful in the brain for computations at timescales in the 10 millisecond range. This issue has motivated a search for alternative spike codes that take advantage of spike timing and has resulted in many studies that use synchronized neural networks for communication. Here we focus on recent studies that suggest that the gamma frequency may provide a reference that allows local spike phase representations that could result in much faster information transmission. We have developed a unified model (gamma spike multiplexing) that takes advantage of a single cycle of a cell's somatic gamma frequency to modulate the generation of its action potentials. An important consequence of this coding mechanism is that it allows multiple independent neural processes to run in parallel, thereby greatly increasing the processing capability of the cortex. System-level simulations and preliminary analysis of mouse cortical cell data are presented as support for the proposed theoretical model.
Collapse
Affiliation(s)
- Ruohan Zhang
- Department of Computer Science, University of Texas at Austin, Austin, TX 78712, U.S.A.
| | - Dana H Ballard
- Department of Computer Science, University of Texas at Austin, Austin, TX 78712, U.S.A.
| |
Collapse
|
48
|
Murty DV, Manikandan K, Santosh Kumar W, Garani Ramesh R, Purokayastha S, Javali M, Prahalada Rao N, Ray S. Gamma oscillations weaken with age in healthy elderly in human EEG. Neuroimage 2020. [PMID: 32276055 PMCID: PMC7299665 DOI: 10.1016/j.neuroimage.2020.11682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gamma rhythms (~20-70 Hz) are abnormal in mental disorders such as autism and schizophrenia in humans, and Alzheimer's disease (AD) models in rodents. However, the effect of normal aging on these oscillations is unknown, especially for elderly subjects in whom AD is most prevalent. In a first large-scale (236 subjects; 104 females) electroencephalogram (EEG) study on gamma oscillations in elderly subjects (aged 50-88 years), we presented full-screen visual Cartesian gratings that induced two distinct gamma oscillations (slow: 20-34 Hz and fast: 36-66 Hz). Power decreased with age for gamma, but not alpha (8-12 Hz). Reduction was more salient for fast gamma than slow. Center frequency also decreased with age for both gamma rhythms. The results were independent of microsaccades, pupillary reactivity to stimulus, and variations in power spectral density with age. Steady-state visual evoked potentials (SSVEPs) at 32 Hz also reduced with age. These results are crucial for developing gamma/SSVEP-based biomarkers of cognitive decline in elderly.
Collapse
Affiliation(s)
| | | | | | | | - Simran Purokayastha
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Mahendra Javali
- MS Ramaiah Medical College & Memorial Hospital, Bangalore, 560054, India
| | - Naren Prahalada Rao
- National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India,Corresponding author. (S. Ray)
| |
Collapse
|
49
|
Murty DV, Manikandan K, Kumar WS, Ramesh RG, Purokayastha S, Javali M, Rao NP, Ray S. Gamma oscillations weaken with age in healthy elderly in human EEG. Neuroimage 2020; 215:116826. [DOI: 10.1016/j.neuroimage.2020.116826] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022] Open
|
50
|
Neuronal population correlates of target selection and distractor filtering. Neuroimage 2020; 209:116517. [DOI: 10.1016/j.neuroimage.2020.116517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 01/01/2020] [Indexed: 11/23/2022] Open
|