1
|
Held RG, Liang J, Esquivies L, Khan YA, Wang C, Azubel M, Brunger AT. In-Situ Structure and Topography of AMPA Receptor Scaffolding Complexes Visualized by CryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619226. [PMID: 39464045 PMCID: PMC11507944 DOI: 10.1101/2024.10.19.619226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Most synapses in the brain transmit information by the presynaptic release of vesicular glutamate, driving postsynaptic depolarization through AMPA-type glutamate receptors (AMPARs). The nanometer-scale topography of synaptic AMPARs regulates response amplitude by controlling the number of receptors activated by synaptic vesicle fusion. The mechanisms controlling AMPAR topography and their interactions with postsynaptic scaffolding proteins are unclear, as is the spatial relationship between AMPARs and synaptic vesicles. Here, we used cryo-electron tomography to map the molecular topography of AMPARs and visualize their in-situ structure. Clustered AMPARs form structured complexes with postsynaptic scaffolding proteins resolved by sub-tomogram averaging. Sub-synaptic topography mapping reveals the presence of AMPAR nanoclusters with exclusion zones beneath synaptic vesicles. Our molecular-resolution maps visualize the predominant information transfer path in the nervous system.
Collapse
Affiliation(s)
- Richard G. Held
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Jiahao Liang
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Yousuf A. Khan
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Maia Azubel
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology; Stanford University, Stanford, United States
- Department of Neurology and Neurological Sciences; Stanford University, Stanford, United States
- Department of Structural Biology; Stanford University, Stanford, United States
- Department of Photon Science; Stanford University, Stanford, United States
- Howard Hughes Medical Institute; Stanford University, Stanford, United States
- Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, United States
| |
Collapse
|
2
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Wang S, Baumert R, Séjourné G, Bindu DS, Dimond K, Sakers K, Vazquez L, Moore J, Tan CX, Takano T, Rodriguez MP, Soderling SH, La Spada AR, Eroglu C. Astrocytic LRRK2 Controls Synaptic Connectivity via Regulation of ERM Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes, a major glial cell type of the brain, regulate synapse numbers and function. However, whether astrocyte dysfunction can cause synaptic pathologies in neurological disorders such as Parkinson's Disease (PD) is unknown. Here, we investigated the impact of the most common PD-linked mutation in the leucine-rich repeat kinase 2 (LRRK2) gene (G2019S) on the synaptic functions of astrocytes. We found that both in human and mouse cortex, the LRRK2 G2019S mutation causes astrocyte morphology deficits and enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), which are important components of perisynaptic astrocyte processes. Reducing ERM phosphorylation in LRRK2 G2019S mouse astrocytes restored astrocyte morphology and corrected excitatory synaptic deficits. Using an in vivo BioID proteomic approach, we found Ezrin, the most abundant astrocytic ERM protein, interacts with the Autophagy-Related 7 (Atg7), a master regulator of catabolic processes. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in the LRRK2 G2019S astrocytes. Importantly, Atg7 function is required to maintain proper astrocyte morphology. These studies reveal an astrocytic molecular mechanism that could serve as a therapeutic target in PD.
Collapse
Affiliation(s)
- Shiyi Wang
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Ryan Baumert
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Gabrielle Séjourné
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Dhanesh Sivadasan Bindu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neonatology, Children’s Mercy Hospital, Kansas City, MO, USA
| | - Kylie Dimond
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Kristina Sakers
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Leslie Vazquez
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Jessica Moore
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | | | - Tetsuya Takano
- Division of Molecular Systems for Brain Function, Kyushu University Institute for Advanced Study, Medical Institute of Bioregulation, Japan
- Japan Science and Technology Agency, PRESTO, Japan
| | - Maria Pia Rodriguez
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Scott H. Soderling
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Albert R. La Spada
- The Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, CA, USA
- UCI Center for Neurotherapeutics, University of California, Irvine, CA, USA
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
4
|
Kolotuev I. Work smart, not hard: How array tomography can help increase the ultrastructure data output. J Microsc 2024; 295:42-60. [PMID: 37626455 DOI: 10.1111/jmi.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Transmission electron microscopy has been essential for understanding cell biology for over six decades. Volume electron microscopy tools, such as serial block face and focused ion beam scanning electron microscopy acquisition, brought a new era to ultrastructure analysis. 'Array Tomography' (AT) refers to sequential image acquisition of resin-embedded sample sections on a large support (coverslip, glass slide, silicon wafers) for immunolabelling with multiple fluorescent labels, occasionally combined with ultrastructure observation. Subsequently, the term was applied to generating and imaging a series of sections to acquire a 3D representation of a structure using scanning electron microscopy (SEM). Although this is a valuable application, the potential of AT is to facilitate many tasks that are difficult or even impossible to obtain by Transmission Electron Microscopy (TEM). Due to the straightforward nature and versatility of AT sample preparation and image acquisition, the technique can be applied practically to any biological sample for selected sections or volume electron microscopy analysis. Furthermore, in addition to the benefits described here, AT is compatible with morphological analysis, multiplex immunolabelling, immune-gold labelling, and correlative light and electron microscopy workflow applicable for single cells, tissue and small organisms. This versatility makes AT attractive not only for basic research but as a diagnostic tool with a simplified routine.
Collapse
Affiliation(s)
- Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Jones G, Akter Y, Shifflett V, Hruska M. Nanoscale analysis of functionally diverse glutamatergic synapses in the neocortex reveals input and layer-specific organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592008. [PMID: 38746319 PMCID: PMC11092571 DOI: 10.1101/2024.05.01.592008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Discovery of synaptic nanostructures suggests a molecular logic for the flexibility of synaptic function. We still have little understanding of how functionally diverse synapses in the brain organize their nanoarchitecture due to challenges associated with super-resolution imaging in complex brain tissue. Here, we characterized single-domain camelid nanobodies for the 3D quantitative multiplex imaging of synaptic nano-organization in 6 µm brain cryosections using STED nanoscopy. We focused on thalamocortical (TC) and corticocortical (CC) synapses along the apical-basal axis of layer 5 pyramidal neurons as models of functionally diverse glutamatergic synapses in the brain. Spines receiving TC input were larger than CC spines in all layers examined. However, TC synapses on apical and basal dendrites conformed to different organizational principles. TC afferents on apical dendrites frequently contacted spines with multiple aligned PSD-95/Bassoon nanomodules, which are larger. TC spines on basal dendrites contained mostly one aligned PSD-95/Bassoon nanocluster. However, PSD-95 nanoclusters were larger and scaled with spine volume. The nano-organization of CC synapses did not change across cortical layers. These results highlight striking nanoscale diversity of functionally distinct glutamatergic synapses, relying on afferent input and sub-cellular localization of individual synaptic connections.
Collapse
|
6
|
Delhaye M, LeDue J, Robinson K, Xu Q, Zhang Q, Oku S, Zhang P, Craig AM. Adaptation of Magnified Analysis of the Proteome for Excitatory Synaptic Proteins in Varied Samples and Evaluation of Cell Type-Specific Distributions. J Neurosci 2024; 44:e1291232024. [PMID: 38360747 PMCID: PMC10993037 DOI: 10.1523/jneurosci.1291-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Growing evidence suggests a remarkable diversity and complexity in the molecular composition of synapses, forming the basis for the brain to execute complex behaviors. Hence, there is considerable interest in visualizing the spatial distribution of such molecular diversity at individual synapses within intact brain circuits. Yet this task presents significant technical challenges. Expansion microscopy approaches have revolutionized our view of molecular anatomy. However, their use to study synapse-related questions outside of the labs developing them has been limited. Here we independently adapted a version of Magnified Analysis of the Proteome (MAP) and present a step-by-step protocol for visualizing over 40 synaptic proteins in brain circuits. Surprisingly, our findings show that the advantage of MAP over conventional immunolabeling was primarily due to improved antigen recognition and secondarily physical expansion. Furthermore, we demonstrated the versatile use of MAP in brains perfused with paraformaldehyde or fresh-fixed with formalin and in formalin-fixed paraffin-embedded tissue. These tests expand the potential applications of MAP to combinations with slice electrophysiology or clinical pathology specimens. Using male and female mice expressing YFP-ChR2 exclusively in interneurons, we revealed a distinct composition of AMPA and NMDA receptors and Shank family members at synapses on hippocampal interneurons versus on pyramidal neurons. Quantitative single synapse analyses yielded comprehensive cell type distributions of synaptic proteins and their relationships. These findings exemplify the value of the versatile adapted MAP procedure presented here as an accessible tool for the broad neuroscience community to unravel the complexity of the "synaptome" across brain circuits and disease states.
Collapse
Affiliation(s)
- Mathias Delhaye
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Jeffrey LeDue
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaylie Robinson
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Qin Xu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Shinichiro Oku
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Peng Zhang
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
7
|
Patiño M, Lagos WN, Patne NS, Miyazaki PA, Bhamidipati SK, Collman F, Callaway EM. Postsynaptic cell type and synaptic distance do not determine efficiency of monosynaptic rabies virus spread measured at synaptic resolution. eLife 2023; 12:e89297. [PMID: 38096019 PMCID: PMC10721217 DOI: 10.7554/elife.89297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Retrograde monosynaptic tracing using glycoprotein-deleted rabies virus is an important component of the toolkit for investigation of neural circuit structure and connectivity. It allows for the identification of first-order presynaptic connections to cell populations of interest across both the central and peripheral nervous system, helping to decipher the complex connectivity patterns of neural networks that give rise to brain function. Despite its utility, the factors that influence the probability of transsynaptic rabies spread are not well understood. While it is well established that expression levels of rabies glycoprotein used to trans-complement G-deleted rabies can result in large changes in numbers of inputs labeled per starter cell (convergence index [CI]), it is not known how typical values of CI relate to the proportions of synaptic contacts or input neurons labeled. And it is not known whether inputs to different cell types, or synaptic contacts that are more proximal or distal to the cell body, are labeled with different probabilities. Here, we use a new rabies virus construct that allows for the simultaneous labeling of pre- and postsynaptic specializations to quantify the proportion of synaptic contacts labeled in mouse primary visual cortex. We demonstrate that with typical conditions about 40% of first-order presynaptic excitatory synapses to cortical excitatory and inhibitory neurons are labeled. We show that using matched tracing conditions there are similar proportions of labeled contacts onto L4 excitatory pyramidal, somatostatin (Sst) inhibitory, and vasoactive intestinal peptide (Vip) starter cell types. Furthermore, we find no difference in the proportions of labeled excitatory contacts onto postsynaptic sites at different subcellular locations.
Collapse
Affiliation(s)
- Maribel Patiño
- Systems Neurobiology Laboratories, The Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoLa JollaUnited States
- Medical Scientist Training Program, University of California, San DiegoLa JollaUnited States
| | - Willian N Lagos
- Systems Neurobiology Laboratories, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Neelakshi S Patne
- Systems Neurobiology Laboratories, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Paula A Miyazaki
- Systems Neurobiology Laboratories, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Sai Krishna Bhamidipati
- Systems Neurobiology Laboratories, The Salk Institute for Biological StudiesLa JollaUnited States
| | | | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
8
|
Micheva KD, Gong B, Collman F, Weinberg RJ, Smith SJ, Trimmer JS, Murray KD. Developing a Toolbox of Antibodies Validated for Array Tomography-Based Imaging of Brain Synapses. eNeuro 2023; 10:ENEURO.0290-23.2023. [PMID: 37945352 PMCID: PMC10748464 DOI: 10.1523/eneuro.0290-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Antibody (Ab)-based imaging techniques rely on reagents whose performance may be application specific. Because commercial antibodies are validated for only a few purposes, users interested in other applications may have to perform extensive in-house antibody testing. Here, we present a novel application-specific proxy screening step to efficiently identify candidate antibodies for array tomography (AT), a serial section volume microscopy technique for high-dimensional quantitative analysis of the cellular proteome. To identify antibodies suitable for AT-based analysis of synapses in mammalian brain, we introduce a heterologous cell-based assay that simulates characteristic features of AT, such as chemical fixation and resin embedding that are likely to influence antibody binding. The assay was included into an initial screening strategy to generate monoclonal antibodies that can be used for AT. This approach simplifies the screening of candidate antibodies and has high predictive value for identifying antibodies suitable for AT analyses. In addition, we have created a comprehensive database of AT-validated antibodies with a neuroscience focus and show that these antibodies have a high likelihood of success for postembedding applications in general, including immunogold electron microscopy. The generation of a large and growing toolbox of AT-compatible antibodies will further enhance the value of this imaging technique.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Cellular and Molecular Physiology, Stanford School of Medicine, Stanford, 94305, CA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
| | | | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, 27514, NC
| | | | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, 95618, CA
| |
Collapse
|
9
|
Micheva KD, Gong B, Collman F, Weinberg RJ, Smith SJ, Trimmer JS, Murray KD. Developing a Toolbox of Antibodies Validated for Array Tomography-Based Imaging of Brain Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546920. [PMID: 37425759 PMCID: PMC10327040 DOI: 10.1101/2023.06.28.546920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Antibody-based imaging techniques rely on reagents whose performance may be application-specific. Because commercial antibodies are validated for only a few purposes, users interested in other applications may have to perform extensive in-house antibody testing. Here we present a novel application-specific proxy screening step to efficiently identify candidate antibodies for array tomography (AT), a serial section volume microscopy technique for high-dimensional quantitative analysis of the cellular proteome. To identify antibodies suitable for AT-based analysis of synapses in mammalian brain, we introduce a heterologous cell-based assay that simulates characteristic features of AT, such as chemical fixation and resin embedding that are likely to influence antibody binding. The assay was included into an initial screening strategy to generate monoclonal antibodies that can be used for AT. This approach simplifies the screening of candidate antibodies and has high predictive value for identifying antibodies suitable for AT analyses. In addition, we have created a comprehensive database of AT-validated antibodies with a neuroscience focus and show that these antibodies have a high likelihood of success for postembedding applications in general, including immunogold electron microscopy. The generation of a large and growing toolbox of AT-compatible antibodies will further enhance the value of this imaging technique.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Cellular and Molecular Physiology, Stanford School of Medicine, Stanford, CA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | | | - Richard J. Weinberg
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC
| | | | - James S. Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Karl D. Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA
| |
Collapse
|
10
|
Monteith S, Glenn T, Geddes JR, Achtyes ED, Whybrow PC, Bauer M. Challenges and Ethical Considerations to Successfully Implement Artificial Intelligence in Clinical Medicine and Neuroscience: a Narrative Review. PHARMACOPSYCHIATRY 2023; 56:209-213. [PMID: 37643732 DOI: 10.1055/a-2142-9325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
This narrative review discusses how the safe and effective use of clinical artificial intelligence (AI) prediction tools requires recognition of the importance of human intelligence. Human intelligence, creativity, situational awareness, and professional knowledge, are required for successful implementation. The implementation of clinical AI prediction tools may change the workflow in medical practice resulting in new challenges and safety implications. Human understanding of how a clinical AI prediction tool performs in routine and exceptional situations is fundamental to successful implementation. Physicians must be involved in all aspects of the selection, implementation, and ongoing product monitoring of clinical AI prediction tools.
Collapse
Affiliation(s)
- Scott Monteith
- Department of Psychiatry, Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - John R Geddes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Eric D Achtyes
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Česká K, Papež J, Ošlejšková H, Slabý O, Radová L, Loja T, Libá Z, Svěráková A, Brázdil M, Aulická Š. CCL2/MCP-1, interleukin-8, and fractalkine/CXC3CL1: Potential biomarkers of epileptogenesis and pharmacoresistance in childhood epilepsy. Eur J Paediatr Neurol 2023; 46:48-54. [PMID: 37429062 DOI: 10.1016/j.ejpn.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
OBJECTIVE The pathophysiological processes leading to epileptogenesis and pharmacoresistance in epilepsy have been the subject of extensive preclinical and clinical research. The main impact on clinical practice is the development of new targeted therapies for epilepsy. We studied the importance of neuroinflammation in the development of epileptogenesis and pharmacoresistance in childhood epilepsy patients. METHODS A cross-sectional study conducted at two epilepsy centers in the Czech Republic compared 22 pharmacoresistant patients and 4 pharmacodependent patients to 9 controls. We analyzed the ProcartaPlex™ 9-Plex immunoassay panel consisting of interleukin (IL)-6, IL-8, IL-10, IL-18, CXCL10/IP-10, monocyte chemoattractant protein 1 (CCL2/MCP-1), B lymphocyte chemoattractant (BLC), tumor necrosis factor-alpha (TNF-α), and chemokine (C-X3-X motif) ligand 1 (fractalkine/CXC3CL1) to determine their alterations in cerebrospinal fluid (CSF) and blood plasma, concurrently. RESULTS The analysis of 21 paired CSF and plasma samples in pharmacoresistant patients compared to controls revealed a significant elevation of CCL2/MCP-1 in CSF (p < 0.000512) and plasma (p < 0.00.017). Higher levels of fractalkine/CXC3CL1 were revealed in the plasma of pharmacoresistant patients than in controls (p < 0.0704), and we determined an upward trend in CSF IL-8 levels (p < 0.08). No significant differences in CSF and plasma levels were detected between pharmacodependent patients and controls. CONCLUSION Elevated CCL2/MCP-1 in CSF and plasma, elevated levels of fractalkine/CXC3CL1 in CSF, and a trend toward elevated IL-8 in the CSF of patients with pharmacoresistant epilepsy indicate these cytokines as potential biomarkers of epileptogenesis and pharmacoresistance. CCL2/MCP-1was detected in blood plasma; this assessment may be easily achieved in clinical practice without the invasiveness of a spinal tap. However, due to the complexity of neuroinflammation in epilepsy, further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Katarína Česká
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Papež
- Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Ošlejšková
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Slabý
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Lenka Radová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomáš Loja
- Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic
| | - Zuzana Libá
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Anna Svěráková
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Full-member of ERN, EpiCARE, Brno, Czech Republic
| | - Štefánia Aulická
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Ondrej Slaby Research Group, Central European Institute of Technology, Brno, Czech Republic; Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Ji F, Hur M, Hur S, Wang S, Sarkar P, Shao S, Aispuro D, Cong X, Hu Y, Li Z, Xue M. Multiplex Protein Imaging through PACIFIC: Photoactive Immunofluorescence with Iterative Cleavage. ACS BIO & MED CHEM AU 2023; 3:283-294. [PMID: 37363079 PMCID: PMC10288499 DOI: 10.1021/acsbiomedchemau.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2023]
Abstract
Multiplex protein imaging technologies enable deep phenotyping and provide rich spatial information about biological samples. Existing methods have shown great success but also harbored trade-offs between various pros and cons, underscoring the persisting necessity to expand the imaging toolkits. Here we present PACIFIC: photoactive immunofluorescence with iterative cleavage, a new modality of multiplex protein imaging methods. PACIFIC achieves iterative multiplexing by implementing photocleavable fluorophores for antibody labeling with one-step spin-column purification. PACIFIC requires no specialized instrument, no DNA encoding, or chemical treatments. We demonstrate that PACIFIC can resolve cellular heterogeneity in both formalin-fixed paraffin-embedded (FFPE) samples and fixed cells. To further highlight how PACIFIC assists discovery, we integrate PACIFIC with live-cell tracking and identify phosphor-p70S6K as a critical driver that governs U87 cell mobility. Considering the cost, flexibility, and compatibility, we foresee that PACIFIC can confer deep phenotyping capabilities to anyone with access to traditional immunofluorescence platforms.
Collapse
Affiliation(s)
- Fei Ji
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Moises Hur
- Martin
Luther King Jr High School, Riverside, California 92508, United States
| | - Sungwon Hur
- Martin
Luther King Jr High School, Riverside, California 92508, United States
| | - Siwen Wang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Priyanka Sarkar
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Shiqun Shao
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Desiree Aispuro
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Xu Cong
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Yanhao Hu
- Diamond
Bar High School, Diamond
Bar, California 91765, United States
| | - Zhonghan Li
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
13
|
Berryer MH, Rizki G, Nathanson A, Klein JA, Trendafilova D, Susco SG, Lam D, Messana A, Holton KM, Karhohs KW, Cimini BA, Pfaff K, Carpenter AE, Rubin LL, Barrett LE. High-content synaptic phenotyping in human cellular models reveals a role for BET proteins in synapse assembly. eLife 2023; 12:80168. [PMID: 37083703 PMCID: PMC10121225 DOI: 10.7554/elife.80168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
Resolving fundamental molecular and functional processes underlying human synaptic development is crucial for understanding normal brain function as well as dysfunction in disease. Based upon increasing evidence of species-divergent features of brain cell types, coupled with emerging studies of complex human disease genetics, we developed the first automated and quantitative high-content synaptic phenotyping platform using human neurons and astrocytes. To establish the robustness of our platform, we screened the effects of 376 small molecules on presynaptic density, neurite outgrowth, and cell viability, validating six small molecules that specifically enhanced human presynaptic density in vitro. Astrocytes were essential for mediating the effects of all six small molecules, underscoring the relevance of non-cell-autonomous factors in synapse assembly and their importance in synaptic screening applications. Bromodomain and extraterminal (BET) inhibitors emerged as the most prominent hit class and global transcriptional analyses using multiple BET inhibitors confirmed upregulation of synaptic gene expression. Through these analyses, we demonstrate the robustness of our automated screening platform for identifying potent synaptic modulators, which can be further leveraged for scaled analyses of human synaptic mechanisms and drug discovery efforts.
Collapse
Affiliation(s)
- Martin H Berryer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Gizem Rizki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anna Nathanson
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Jenny A Klein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Darina Trendafilova
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Sara G Susco
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Daisy Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Angelica Messana
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kristina M Holton
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Kyle W Karhohs
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kathleen Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Lee L Rubin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
| |
Collapse
|
14
|
Griffiths J, Grant SGN. Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:13-23. [PMID: 35690535 DOI: 10.1016/j.semcdb.2022.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
Synapse loss and damage are central features of Alzheimer's disease (AD) and contribute to the onset and progression of its behavioural and physiological features. Here we review the literature describing synapse pathology in AD, from what we have learned from microscopy in terms of its impacts on synapse architecture, to the mechanistic role of Aβ, tau and glial cells, mitochondrial dysfunction, and the link with AD risk genes. We consider the emerging view that synapse pathology may operate at a further level, that of synapse diversity, and discuss the prospects for leveraging new synaptome mapping methods to comprehensively understand the molecular properties of vulnerable and resilient synapses. Uncovering AD impacts on brain synapse diversity should inform therapeutic approaches targeted at preserving or replenishing lost and damaged synapses and aid the interpretation of clinical imaging approaches that aim to measure synapse damage.
Collapse
Affiliation(s)
- Jessica Griffiths
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
15
|
Kiyokage E, Ichikawa S, Horie S, Hayashi S, Toida K. Effects of estradiol on dopaminergic synapse formation in the mouse olfactory bulb. J Comp Neurol 2023; 531:528-547. [PMID: 36519231 DOI: 10.1002/cne.25441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Olfactory glomeruli are the sites of initial synaptic integration in olfactory information processing. They are surrounded by juxtaglomerular (JG) cells, which include periglomerular, superficial short axon, and external tufted cells. A subpopulation of JG cells expresses the dopamine synthetic enzymes, tyrosine hydroxylase (TH), and aromatic l-amino acid decarboxylase (AADC). TH cells corelease γ-aminobutyric acid (GABA) and their processes extend to multiple glomeruli forming intra- and interglomerular circuits. It is well established that 17β-estradiol (E2) exerts wide ranging effects in the central nervous system. However, participation of E2 in the modulation of neurotransmission and synaptic plasticity of TH cells in olfactory glomeruli is unknown. To address this, we subcutaneously implanted a 60-day release pellet of E2 or placebo into intact male mice and compared glomerular TH, AADC, and vesicular γ-aminobutyric acid transporter (VGAT) immunoreactivity between them. High-voltage electron microscopy (HVEM) and ultra-HVEM using immunogold revealed significantly increased immunoreactive intensity at the cellular level for TH and AADC after E2 treatment and for VGAT in TH cells. These results indicate that E2 may affect the interplay between dopaminergic and GABAergic systems. Moreover, random-section electron microscopy analysis showed a significant increase in the number of symmetrical synapses from TH cell to mitral/tufted cell dendrites after E2 treatment. This result was supported by quantitative immunofluorescence staining with synapse markers. Together, these data indicate that E2 may regulate inhibition between TH cells and olfactory bulb neurons within the glomerulus via interaction between dopaminergic and GABAergic systems, thereby contributing to neuromodulation of odor information processing.
Collapse
Affiliation(s)
- Emi Kiyokage
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Sawa Horie
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Kazunori Toida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan.,Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
16
|
Quantitative Fluorescence Analysis Reveals Dendrite-Specific Thalamocortical Plasticity in L5 Pyramidal Neurons during Learning. J Neurosci 2023; 43:584-600. [PMID: 36639912 PMCID: PMC9888508 DOI: 10.1523/jneurosci.1372-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
High-throughput anatomic data can stimulate and constrain new hypotheses about how neural circuits change in response to experience. Here, we use fluorescence-based reagents for presynaptic and postsynaptic labeling to monitor changes in thalamocortical synapses onto different compartments of layer 5 (L5) pyramidal (Pyr) neurons in somatosensory (barrel) cortex from mixed-sex mice during whisker-dependent learning (Audette et al., 2019). Using axonal fills and molecular-genetic tags for synapse identification in fixed tissue from Rbp4-Cre transgenic mice, we found that thalamocortical synapses from the higher-order posterior medial thalamic nucleus showed rapid morphologic changes in both presynaptic and postsynaptic structures at the earliest stages of sensory association training. Detected increases in thalamocortical synaptic size were compartment specific, occurring selectively in the proximal dendrites onto L5 Pyr and not at inputs onto their apical tufts in L1. Both axonal and dendritic changes were transient, normalizing back to baseline as animals became expert in the task. Anatomical measurements were corroborated by electrophysiological recordings at different stages of training. Thus, fluorescence-based analysis of input- and target-specific synapses can reveal compartment-specific changes in synapse properties during learning.SIGNIFICANCE STATEMENT Synaptic changes underlie the cellular basis of learning, experience, and neurologic diseases. Neuroanatomical methods to assess synaptic plasticity can provide critical spatial information necessary for building models of neuronal computations during learning and experience but are technically and fiscally intensive. Here, we describe a confocal fluorescence microscopy-based analytical method to assess input, cell type, and dendritic location-specific synaptic plasticity in a sensory learning assay. Our method not only confirms prior electrophysiological measurements but allows us to predict functional strength of synapses in a pathway-specific manner. Our findings also indicate that changes in primary sensory cortices are transient, occurring during early learning. Fluorescence-based synapse identification can be an efficient and easily adopted approach to study synaptic changes in a variety of experimental paradigms.
Collapse
|
17
|
Zhu L, Hassan SH, Gao X, Johnson JQ, Wang Y, Bregy MV, Wei Z, Chen J, Li P, Stetler RA. Neuron-targeted Knockout of APE1 Forces Premature Cognitive Impairment and Synaptic Dysfunction in Adult Mice. Aging Dis 2022; 13:1862-1874. [PMID: 36465182 PMCID: PMC9662274 DOI: 10.14336/ad.2022.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/31/2022] [Indexed: 08/02/2023] Open
Abstract
Adaptable and consistent neural function relies at least in part on the ongoing repair of oxidative damage that can accumulate in the brain over a lifespan. To determine whether forebrain neuron-targeted knockout of AP endonuclease 1 (APE1), a critical enzyme in the base excision DNA repair pathway, contributes to neuronal impairments, we generated APE1 conditional knockout mice under the control of the CamKIIα promotor (APE1 cKO). Spatial learning and memory were tested using the Morris water maze. Synaptic markers, including synapsin, vGLUT, GABA1, and GAD were immunostained and quantified. Dendritic morphology and number were characterized using Golgi staining. Long-term potentiation (LTP) was measured in slices from the 6-month-old brain. APE1 cKO mice did not significantly differ from WT mice in the learning phase of the Morris water maze, but performed significantly worse during the memory phase of the Morris water maze. vGLUT, GABA1, and GAD immunostaining was significantly decreased in APE1 cKO mice without concomitant changes in the number of synapsin-positive structures, suggesting that neural networks may be impaired but not at the level of total presynaptic structures. Dendrites were reduced both in number and length of spines in APE1 cKO mice. APE1 cKO brain slices exhibited decreased LTP induction compared to WT brain slices. Together, these data indicate that the conditional loss of APE1 in forebrain neurons leads to a phenotype consistent with expedited brain aging.
Collapse
Affiliation(s)
- Ling Zhu
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sulaiman H Hassan
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- 2Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xuguang Gao
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Joycelyn Q Johnson
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yangfan Wang
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - M Victoria Bregy
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhishuo Wei
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- 2Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Peiying Li
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- 2Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| |
Collapse
|
18
|
Liao H, Zou Z, Liu W, Guo X, Xie J, Li L, Li X, Gan X, Huang X, Liu J, Li W, Zeng H, Chen Z, Jiang Q, Yao H. Osteopontin-integrin signaling positively regulates neuroplasticity through enhancing neural autophagy in the peri-infarct area after ischemic stroke. Am J Transl Res 2022; 14:7726-7743. [PMID: 36505285 PMCID: PMC9730111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the role of Osteopontin (OPN) in mediating macroautophagy, autophagy, and neuroplasticity in the ipsilateral hemisphere after stroke. METHODS Focal stroke was induced by photothrombosis in adult mice. Spatiotemporal expression of endogenous OPN and BECN1 was assessed by immunohistochemistry. Motor function was determined by the grid-walking and cylinder tasks. We also evaluated markers of neuroplasticity and autophagy using biochemical and histology analyses. RESULTS Herein, we showed that endogenous OPN and beclin1 were increased in the peri-infarct area of stroked patients and mice. Intracerebral administration of OPN (0.1 mg/ml; 3 ml) significantly improved performance in motor behavioral tasks compared with non-OPN-treated stroke mice. Furthermore, the neural repair was induced in OPN-treated stroke mice. We found that OPN treatment resulted in a significantly higher density of a presynaptic marker (vesicular glutamate transporter 1, VgluT1) and synaptic plasticity marker (synaptophysin, SYN) within the peri-infarct region. OPN treatment in stroke mice not only increased protein levels of integrin β1 but also promoted the expression of beclin1 and LC3, two autophagy-related proteins in the peri-infarct area. Additionally, OPN-induced neuroplasticity and autophagy were blocked by an integrin antagonist. CONCLUSION Our findings indicate that OPN may enhance neuroplasticity via autophagy, providing a new therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Haikang Liao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China,Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging Wenzhou Medical University, Oujiang LaboratoryWenzhou, Zhejiang, China,Institute of Neurology and Chemistry Wenzhou UniversityWenzhou, Zhejiang, China
| | - Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Weiqin Liu
- The Ganzhou People’s HospitalGanzhou, Jiangxi, China
| | - Xuefeng Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical UniversityGuilin, Guangxi, China
| | - Jinlu Xie
- School of Medicine, Huzhou University, Huzhou Central HospitalHuzhou, Zhejiang, China
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Xia Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Xinying Gan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Xiansheng Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Juxia Liu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Wenyang Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Hongji Zeng
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| | - Zheng Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China,School of Medicine, Huzhou University, Huzhou Central HospitalHuzhou, Zhejiang, China
| | - Qiuhua Jiang
- The Ganzhou People’s HospitalGanzhou, Jiangxi, China
| | - Hua Yao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical UniversityGuilin, Guangxi, China
| |
Collapse
|
19
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
20
|
Sanchez Avila A, Henstridge C. Array tomography: 15 years of synaptic analysis. Neuronal Signal 2022; 6:NS20220013. [PMID: 36187224 PMCID: PMC9512143 DOI: 10.1042/ns20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Synapses are minuscule, intricate structures crucial for the correct communication between neurons. In the 125 years since the term synapse was first coined, we have advanced a long way when it comes to our understanding of how they work and what they do. Most of the fundamental discoveries have been invariably linked to advances in technology. However, due to their size, delicate structural integrity and their sheer number, our knowledge of synaptic biology has remained somewhat elusive and their role in neurodegenerative diseases still remains largely unknown. Here, we briefly discuss some of the imaging technologies used to study synapses and focus on the utility of the high-resolution imaging technique array tomography (AT). We introduce the AT technique and highlight some of the ways it is utilised with a particular focus on its power for analysing synaptic composition and pathology in human post-mortem tissue. We also discuss some of the benefits and drawbacks of techniques for imaging synapses and highlight some recent advances in the study of form and function by combining physiology and high-resolution synaptic imaging.
Collapse
Affiliation(s)
- Anna Sanchez Avila
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| | - Christopher M. Henstridge
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
21
|
Chen Y, Guo J. Multiplexed Single-Cell in Situ Protein Profiling. ACS MEASUREMENT SCIENCE AU 2022; 2:296-303. [PMID: 35996537 PMCID: PMC9389644 DOI: 10.1021/acsmeasuresciau.2c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to profile a large number of different proteins in individual cells in their native cellular locations is critical to accelerate our understanding of normal cell physiology and disease pathogenesis. Bulk cell protein quantification masks the cell heterogeneity in complex biological systems, while conventional immunofluorescence or immunohistochemistry are limited by their low multiplexing capacity. Recent technological advances in multiplexed protein imaging approaches allow many distinct proteins to be analyzed in single cells in situ. These methods will bring new insights into various biological and biomedical fields, such as cell type and subtype classification, signaling network regulation, tissue architecture, and disease diagnosis and prognosis, along with treatment monitoring. In this Review, we will describe the recent advances of multiplexed single-cell in situ protein profiling technologies, discuss their unique advantages and limitations, highlight their applications in biology and medicine, present the current challenges, and propose potential solutions.
Collapse
|
22
|
Interrogating structural plasticity among synaptic engrams. Curr Opin Neurobiol 2022; 75:102552. [DOI: 10.1016/j.conb.2022.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
|
23
|
Rupawala H, Shah K, Davies C, Rose J, Colom-Cadena M, Peng X, Granat L, Aljuhani M, Mizuno K, Troakes C, Perez-Nievas BG, Morgan A, So PW, Hortobagyi T, Spires-Jones TL, Noble W, Giese KP. Cysteine string protein alpha accumulates with early pre-synaptic dysfunction in Alzheimer’s disease. Brain Commun 2022; 4:fcac192. [PMID: 35928052 PMCID: PMC9345313 DOI: 10.1093/braincomms/fcac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In Alzheimer’s disease, synapse loss causes memory and cognitive impairment. However, the mechanisms underlying synaptic degeneration in Alzheimer’s disease are not well understood. In the hippocampus, alterations in the level of cysteine string protein alpha, a molecular co-chaperone at the pre-synaptic terminal, occur prior to reductions in synaptophysin, suggesting that it is a very sensitive marker of synapse degeneration in Alzheimer’s. Here, we identify putative extracellular accumulations of cysteine string alpha protein, which are proximal to beta-amyloid deposits in post-mortem human Alzheimer’s brain and in the brain of a transgenic mouse model of Alzheimer’s disease. Cysteine string protein alpha, at least some of which is phosphorylated at serine 10, accumulates near the core of beta-amyloid deposits and does not co-localize with hyperphosphorylated tau, dystrophic neurites or glial cells. Using super-resolution microscopy and array tomography, cysteine string protein alpha was found to accumulate to a greater extent than other pre-synaptic proteins and at a comparatively great distance from the plaque core. This indicates that cysteine string protein alpha is most sensitive to being released from pre-synapses at low concentrations of beta-amyloid oligomers. Cysteine string protein alpha accumulations were also evident in other neurodegenerative diseases, including some fronto-temporal lobar dementias and Lewy body diseases, but only in the presence of amyloid plaques. Our findings are consistent with suggestions that pre-synapses are affected early in Alzheimer’s disease, and they demonstrate that cysteine string protein alpha is a more sensitive marker for early pre-synaptic dysfunction than traditional synaptic markers. We suggest that cysteine string protein alpha should be used as a pathological marker for early synaptic disruption caused by beta-amyloid.
Collapse
Affiliation(s)
- Huzefa Rupawala
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keshvi Shah
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Marti Colom-Cadena
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Xianhui Peng
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Lucy Granat
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Manal Aljuhani
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool L69 3BX , UK
| | - Po-Wah So
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Tibor Hortobagyi
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
- Department of Neurology, ELKH-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen , 4032 Debrecen , Hungary
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| |
Collapse
|
24
|
Wei N, Yu Y, Yang Y, Wang XL, Zhong ZJ, Chen XF, Yu YQ. Inhibitions and Down-Regulation of Motor Protein Eg5 Expression in Primary Sensory Neurons Reveal a Novel Therapeutic Target for Pathological Pain. Neurotherapeutics 2022; 19:1401-1413. [PMID: 35764763 PMCID: PMC9587155 DOI: 10.1007/s13311-022-01263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 10/17/2022] Open
Abstract
The motor protein Eg5, known as kif11 or kinesin-5, interacts with adjacent microtubules in the mitotic spindle and plays essential roles in cell division, yet the function of Eg5 in mature postmitotic neurons remains largely unknown. In this study, we investigated the contribution and molecular mechanism of Eg5 in pathological pain. Pharmacological inhibition of Eg5 and a specific shRNA-expressing viral vector reversed complete Freund's adjuvant (CFA)-induced pain and abrogated vanilloid receptor subtype 1 (VR1) expression in dorsal root ganglion (DRG) neurons. In the dorsal root, Eg5 inhibition promoted VR1 axonal transport and decreased VR1 expression. In the spinal cord, Eg5 inhibition suppressed VR1 expression in axon terminals and impaired synapse formation in superficial laminae I/II. Finally, we showed that Eg5 is necessary for PI3K/Akt signalling-mediated VR1 membrane trafficking and pathological pain. The present study provides compelling evidence of a noncanonical function of Eg5 in primary sensory neurons. These results suggest that Eg5 may be a potential therapeutic target for intractable pain.
Collapse
Affiliation(s)
- Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Zhen-Juan Zhong
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Baqiao, Xi'an, 710038, China.
- Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an, 710038, China.
| |
Collapse
|
25
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
26
|
Complex regulation of Gephyrin splicing is a determinant of inhibitory postsynaptic diversity. Nat Commun 2022; 13:3507. [PMID: 35717442 PMCID: PMC9206673 DOI: 10.1038/s41467-022-31264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/10/2022] [Indexed: 01/05/2023] Open
Abstract
Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses. The protein gephyrin is involved in organizing synapses. Here, the authors show how different transcripts of gephyrin form and regulate inhibitory synapses.
Collapse
|
27
|
Hanuscheck N, Thalman C, Domingues M, Schmaul S, Muthuraman M, Hetsch F, Ecker M, Endle H, Oshaghi M, Martino G, Kuhlmann T, Bozek K, van Beers T, Bittner S, von Engelhardt J, Vogt J, Vogelaar CF, Zipp F. Interleukin-4 receptor signaling modulates neuronal network activity. J Exp Med 2022; 219:213227. [PMID: 35587822 PMCID: PMC9123307 DOI: 10.1084/jem.20211887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/13/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Evidence is emerging that immune responses not only play a part in the central nervous system (CNS) in diseases but may also be relevant for healthy conditions. We discovered a major role for the interleukin-4 (IL-4)/IL-4 receptor alpha (IL-4Rα) signaling pathway in synaptic processes, as indicated by transcriptome analysis in IL-4Rα–deficient mice and human neurons with/without IL-4 treatment. Moreover, IL-4Rα is expressed presynaptically, and locally available IL-4 regulates synaptic transmission. We found reduced synaptic vesicle pools, altered postsynaptic currents, and a higher excitatory drive in cortical networks of IL-4Rα–deficient neurons. Acute effects of IL-4 treatment on postsynaptic currents in wild-type neurons were mediated via PKCγ signaling release and led to increased inhibitory activity supporting the findings in IL-4Rα–deficient neurons. In fact, the deficiency of IL-4Rα resulted in increased network activity in vivo, accompanied by altered exploration and anxiety-related learning behavior; general learning and memory was unchanged. In conclusion, neuronal IL-4Rα and its presynaptic prevalence appear relevant for maintaining homeostasis of CNS synaptic function.
Collapse
Affiliation(s)
- Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carine Thalman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Micaela Domingues
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela Ecker
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko Endle
- Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Mohammadsaleh Oshaghi
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianvito Martino
- Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Tanja Kuhlmann
- Institute for Neuropathology, University Hospital Münster, Münster, Germany
| | - Katarzyna Bozek
- Center for Molecular Medicine, Faculty of Medicine and University Hospital Cologne; University of Cologne, Cologne, Germany
| | - Tim van Beers
- Molecular Cell Biology, Institute I of Anatomy, University of Cologne, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jakob von Engelhardt
- Institute for Pathophysiology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Molecular and Translational Neuroscience, Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases and Center of Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christina Francisca Vogelaar
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Staudt A, Ratai O, Bouzouina A, Fecher-Trost C, Shaaban A, Bzeih H, Horn A, Shaib AH, Klose M, Flockerzi V, Lauterbach MA, Rettig J, Becherer U. Localization of the Priming Factors CAPS1 and CAPS2 in Mouse Sensory Neurons Is Determined by Their N-Termini. Front Mol Neurosci 2022; 15:674243. [PMID: 35493323 PMCID: PMC9049930 DOI: 10.3389/fnmol.2022.674243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using – in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.
Collapse
Affiliation(s)
- Angelina Staudt
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Olga Ratai
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Aicha Bouzouina
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Hawraa Bzeih
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Alexander Horn
- Department of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Ali H. Shaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Margarete Klose
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Marcel A. Lauterbach
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Jens Rettig
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- *Correspondence: Ute Becherer,
| |
Collapse
|
29
|
Tallafuss A, Stednitz SJ, Voeun M, Levichev A, Larsch J, Eisen J, Washbourne P. Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. eNeuro 2022; 9:ENEURO.0035-22.2022. [PMID: 35346959 PMCID: PMC8994534 DOI: 10.1523/eneuro.0035-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Finding the link between behaviors and their regulatory molecular pathways is a major obstacle in treating neuropsychiatric disorders. The immediate early gene (IEG) EGR1 is implicated in the etiology of neuropsychiatric disorders, and is linked to gene pathways associated with social behavior. Despite extensive knowledge of EGR1 gene regulation at the molecular level, it remains unclear how EGR1 deficits might affect the social component of these disorders. Here, we examined the social behavior of zebrafish with a mutation in the homologous gene egr1 Mutant fish exhibited reduced social approach and orienting, whereas other sensorimotor behaviors were unaffected. On a molecular level, expression of the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH), was strongly decreased in TH-positive neurons of the anterior parvocellular preoptic nucleus. These neurons are connected with basal forebrain (BF) neurons associated with social behavior. Chemogenetic ablation of around 30% of TH-positive neurons in this preoptic region reduced social attraction to a similar extent as the egr1 mutation. These results demonstrate the requirement of Egr1 and dopamine signaling during social interactions, and identify novel circuitry underlying this behavior.
Collapse
Affiliation(s)
| | | | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - Johannes Larsch
- Max Planck Institut für Neurobiologie, Martinsried, D-82152, Munich Germany
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | |
Collapse
|
30
|
Rah JC, Choi JH. Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy. Mol Cells 2022; 45:84-92. [PMID: 35236783 PMCID: PMC8907002 DOI: 10.14348/molcells.2022.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.
Collapse
Affiliation(s)
- Jong-Cheol Rah
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41062, Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea
| | - Joon Ho Choi
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41062, Korea
| |
Collapse
|
31
|
Pchitskaya E, Rakovskaya A, Chigray M, Bezprozvanny I. Cytoskeleton Protein EB3 Contributes to Dendritic Spines Enlargement and Enhances Their Resilience to Toxic Effects of Beta-Amyloid. Int J Mol Sci 2022; 23:2274. [PMID: 35216391 PMCID: PMC8875759 DOI: 10.3390/ijms23042274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
EB3 protein is expressed abundantly in the nervous system and transiently enters the dendritic spines at the tip of the growing microtubule, which leads to spine enlargement. Nevertheless, the role of dynamic microtubules, and particularly EB3 protein, in synapse function is still elusive. By manipulating the EB3 expression level, we have shown that this protein is required for a normal dendritogenesis. Nonetheless, EB3 overexpression also reduces hippocampal neurons dendritic branching and total dendritic length. This effect likely occurs due to the speeding neuronal development cycle from dendrite outgrowth to the step when dendritic spines are forming. Implementing direct morphometric characterization of dendritic spines, we showed that EB3 overexpression leads to a dramatic increase in the dendritic spine head area. EB3 knockout oppositely reduces spine head area and increases spine neck length and spine neck/spine length ratio. The same effect is observed in conditions of amyloid-beta toxicity, modeling Alzheimer`s disease. Neck elongation is supposed to be a common detrimental effect on the spine's shape, which makes them biochemically and electrically less connected to the dendrite. EB3 also potentiates the formation of presynaptic protein Synapsin clusters and CaMKII-alpha preferential localization in spines rather than in dendrites of hippocampal neurons, while its downregulation has an opposite effect and reduces the size of presynaptic protein clusters Synapsin and PSD95. EB3's role in spine development and maturation determines its neuroprotective effect. EB3 overexpression makes dendritic spines resilient to amyloid-beta toxicity, restores altered PSD95 clustering, and reduces CaMKII-alpha localization in spines observed in this pathological state.
Collapse
Affiliation(s)
- Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Anastasiya Rakovskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Margarita Chigray
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.P.); (A.R.); (M.C.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Sneve MA, Piatkevich KD. Towards a Comprehensive Optical Connectome at Single Synapse Resolution via Expansion Microscopy. Front Synaptic Neurosci 2022; 13:754814. [PMID: 35115916 PMCID: PMC8803729 DOI: 10.3389/fnsyn.2021.754814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Mapping and determining the molecular identity of individual synapses is a crucial step towards the comprehensive reconstruction of neuronal circuits. Throughout the history of neuroscience, microscopy has been a key technology for mapping brain circuits. However, subdiffraction size and high density of synapses in brain tissue make this process extremely challenging. Electron microscopy (EM), with its nanoscale resolution, offers one approach to this challenge yet comes with many practical limitations, and to date has only been used in very small samples such as C. elegans, tadpole larvae, fruit fly brain, or very small pieces of mammalian brain tissue. Moreover, EM datasets require tedious data tracing. Light microscopy in combination with tissue expansion via physical magnification-known as expansion microscopy (ExM)-offers an alternative approach to this problem. ExM enables nanoscale imaging of large biological samples, which in combination with multicolor neuronal and synaptic labeling offers the unprecedented capability to trace and map entire neuronal circuits in fully automated mode. Recent advances in new methods for synaptic staining as well as new types of optical molecular probes with superior stability, specificity, and brightness provide new modalities for studying brain circuits. Here we review advanced methods and molecular probes for fluorescence staining of the synapses in the brain that are compatible with currently available expansion microscopy techniques. In particular, we will describe genetically encoded probes for synaptic labeling in mice, zebrafish, Drosophila fruit flies, and C. elegans, which enable the visualization of post-synaptic scaffolds and receptors, presynaptic terminals and vesicles, and even a snapshot of the synaptic activity itself. We will address current methods for applying these probes in ExM experiments, as well as appropriate vectors for the delivery of these molecular constructs. In addition, we offer experimental considerations and limitations for using each of these tools as well as our perspective on emerging tools.
Collapse
Affiliation(s)
- Madison A. Sneve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, United States
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| |
Collapse
|
33
|
Sóki N, Richter Z, Karádi K, Lőrincz K, Horváth R, Gyimesi C, Szekeres-Paraczky C, Horváth Z, Janszky J, Dóczi T, Seress L, Ábrahám H. Investigation of synapses in the cortical white matter in human temporal lobe epilepsy. Brain Res 2022; 1779:147787. [PMID: 35041843 DOI: 10.1016/j.brainres.2022.147787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common focal pharmacotherapy-resistant epilepsy in adults. Previous studies have shown significantly higher numbers of neurons in the neocortical white matter in TLE patients than in controls. The aim of this work was to investigate whether white matter neurons are part of the neuronal circuitry. Therefore, we studied the distribution and density of synapses in surgically resected neocortical tissue of pharmacotherapy-resistant TLE patients. Neocortical white matter of temporal lobe from non-epileptic patients were used as controls. Synapses and neurons were visualized with immunohistochemistry using antibodies against synaptophysin and NeuN, respectively. The presence of synaptophysin in presynaptic terminals was verified by electron microscopy. Quantification of immunostaining was performed and the data of the patients' cognitive tests as well as clinical records were compared to the density of neurons and synapses. Synaptophysin density in the white matter of TLE patients was significantly higher than in controls. In TLE, a significant correlation was found between synaptophysin immunodensity and density of white matter neurons. Neuronal as well as synaptophysin density significantly correlated with scores of verbal memory of TLE patients. Neurosurgical outcome of TLE patients did not significantly correlate with histological data, although, higher neuronal and synaptophysin densities were observed in patients with favorable post-surgical outcome. Our results suggest that white matter neurons in TLE patients receive substantial synaptic input and indicate that white matter neurons may be integrated in epileptic neuronal networks responsible for the development or maintenance of seizures.
Collapse
Affiliation(s)
- Noémi Sóki
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Zsófia Richter
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary
| | - Kázmér Karádi
- Department of Behavioral Sciences, University of Pécs Medical School Szigeti u. 12. Pécs, 7624, Hungary
| | - Katalin Lőrincz
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Réka Horváth
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - Cecília Szekeres-Paraczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH Szigony u. 43. Budapest, 1083, Hungary
| | - Zsolt Horváth
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary
| | - József Janszky
- Department of Neurology, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - Tamás Dóczi
- Department of Neurosurgery, University of Pécs Medical School Rét u. 2. Pécs, 7623, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Center for Neuroscience, University of Pécs Ifjúság u 20. Pécs, 7624, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary
| | - Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School Szigeti u. 12. Pécs, 7643, Hungary; Neuromorphology and Cellular Neurobiology Research Group, Center for Neuroscience, University of Pécs Ifjúság u. 20. Pécs, 7624, Hungary.
| |
Collapse
|
34
|
Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2022; 227:89-110. [PMID: 34510281 PMCID: PMC8741722 DOI: 10.1007/s00429-021-02375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
To better understand GABAergic transmission at two targets of basal ganglia downstream projections, the pedunculopontine (PPN) and laterodorsal (LDT) tegmental nuclei, the anatomical localization of GABAA and GABAB receptors was investigated in both nuclei. Specifically, the total number of neurons expressing the GABAA receptor γ2 subunit (GABAAR γ2) and the GABAB receptor R2 subunit (GABAB R2) in PPN and LDT was estimated using stereological methods, and the neurochemical phenotype of cells expressing each subunit was also determined. The mean number of non-cholinergic cells expressing GABAAR γ2 was 9850 ± 1856 in the PPN and 8285 ± 962 in the LDT, whereas those expressing GABAB R2 were 7310 ± 1970 and 9170 ± 1900 in the PPN and LDT, respectively. In addition, all cholinergic neurons in both nuclei co-expressed GABAAR γ2 and 95-98% of them co-expressed GABAB R2. Triple labeling using in situ hybridization revealed that 77% of GAD67 mRNA-positive cells in the PPT and 49% in the LDT expressed GABAAR γ2, while 90% (PPN) and 65% (LDT) of Vglut2 mRNA-positive cells also expressed GABAAR γ2. In contrast, a similar proportion (~2/3) of glutamatergic and GABAergic cells co-expressed GABAB R2 in both nuclei. The heterogeneous distribution of GABAAR and GABABR among non-cholinergic cells in PPN and LDT may give rise to physiological differences within each neurochemical subpopulation. In addition, the dissimilar proportion of GABAAR γ2-expressing glutamatergic and GABAergic neurons in the PPN and LDT may contribute to some of the functional differences found between the two nuclei.
Collapse
Affiliation(s)
- Esther Luquin
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Beatriz Paternain
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Inés Zugasti
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Santomá
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Elisa Mengual
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
35
|
Koga D, Kusumi S, Shibata M, Watanabe T. Applications of Scanning Electron Microscopy Using Secondary and Backscattered Electron Signals in Neural Structure. Front Neuroanat 2021; 15:759804. [PMID: 34955763 PMCID: PMC8693767 DOI: 10.3389/fnana.2021.759804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Scanning electron microscopy (SEM) has contributed to elucidating the ultrastructure of bio-specimens in three dimensions. SEM imagery detects several kinds of signals, of which secondary electrons (SEs) and backscattered electrons (BSEs) are the main electrons used in biological and biomedical research. SE and BSE signals provide a three-dimensional (3D) surface topography and information on the composition of specimens, respectively. Among the various sample preparation techniques for SE-mode SEM, the osmium maceration method is the only approach for examining the subcellular structure that does not require any reconstruction processes. The 3D ultrastructure of organelles, such as the Golgi apparatus, mitochondria, and endoplasmic reticulum has been uncovered using high-resolution SEM of osmium-macerated tissues. Recent instrumental advances in scanning electron microscopes have broadened the applications of SEM for examining bio-specimens and enabled imaging of resin-embedded tissue blocks and sections using BSE-mode SEM under low-accelerating voltages; such techniques are fundamental to the 3D-SEM methods that are now known as focused ion-beam SEM, serial block-face SEM, and array tomography (i.e., serial section SEM). This technical breakthrough has allowed us to establish an innovative BSE imaging technique called section-face imaging to acquire ultrathin information from resin-embedded tissue sections. In contrast, serial section SEM is a modern 3D imaging technique for creating 3D surface rendering models of cells and organelles from tomographic BSE images of consecutive ultrathin sections embedded in resin. In this article, we introduce our related SEM techniques that use SE and BSE signals, such as the osmium maceration method, semithin section SEM (section-face imaging of resin-embedded semithin sections), section-face imaging for correlative light and SEM, and serial section SEM, to summarize their applications to neural structure and discuss the future possibilities and directions for these methods.
Collapse
Affiliation(s)
- Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Satoshi Kusumi
- Department of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Shibata
- Department of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
36
|
Lautz JD, Tsegay KB, Zhu Z, Gniffke EP, Welsh JP, Smith SEP. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states. Cell Rep 2021; 37:110076. [PMID: 34852231 PMCID: PMC8722361 DOI: 10.1016/j.celrep.2021.110076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022] Open
Abstract
A core network of widely expressed proteins within the glutamatergic post-synapse mediates activity-dependent synaptic plasticity throughout the brain, but the specific proteomic composition of synapses differs between brain regions. Here, we address the question, how does proteomic composition affect activity-dependent protein-protein interaction networks (PINs) downstream of synaptic activity? Using quantitative multiplex co-immunoprecipitation, we compare the PIN response of in vivo or ex vivo neurons derived from different brain regions to activation by different agonists or different forms of eyeblink conditioning. We report that PINs discriminate between incoming stimuli using differential kinetics of overlapping and non-overlapping PIN parameters. Further, these "molecular logic rules" differ by brain region. We conclude that although the PIN of the glutamatergic post-synapse is expressed widely throughout the brain, its activity-dependent dynamics show remarkable stimulus-specific and brain-region-specific diversity. This diversity may help explain the challenges in developing molecule-specific drug therapies for neurological disorders.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kaleb B Tsegay
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Zhiyi Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
37
|
Neuromodulation Induced by Sitagliptin: A New Strategy for Treating Diabetic Retinopathy. Biomedicines 2021; 9:biomedicines9121772. [PMID: 34944588 PMCID: PMC8698405 DOI: 10.3390/biomedicines9121772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy (DR) involves progressive neurovascular degeneration of the retina. Reduction in synaptic protein expression has been observed in retinas from several diabetic animal models and human retinas. We previously reported that the topical administration (eye drops) of sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, prevented retinal neurodegeneration induced by diabetes in db/db mice. The aim of the present study is to examine whether the modulation of presynaptic proteins is a mechanism involved in the neuroprotective effect of sitagliptin. For this purpose, 12 db/db mice, aged 12 weeks, received a topical administration of sitagliptin (5 μL; concentration: 10 mg/mL) twice per day for 2 weeks, while other 12 db/db mice were treated with vehicle (5 μL). Twelve non-diabetic mice (db/+) were used as a control group. Protein levels were assessed by western blot and immunohistochemistry (IHC), and mRNA levels were evaluated by reverse transcription polymerase chain reaction (RT-PCR). Our results revealed a downregulation (protein and mRNA levels) of several presynaptic proteins such as synapsin I (Syn1), synaptophysin (Syp), synaptotagmin (Syt1), syntaxin 1A (Stx1a), vesicle-associated membrane protein 2 (Vamp2), and synaptosomal-associated protein of 25 kDa (Snap25) in diabetic mice treated with vehicle in comparison with non-diabetic mice. These proteins are involved in vesicle biogenesis, mobilization and docking, membrane fusion and recycling, and synaptic neurotransmission. Sitagliptin was able to significantly prevent the downregulation of all these proteins. We conclude that sitagliptin exerts beneficial effects in the retinas of db/db mice by preventing the downregulation of crucial presynaptic proteins. These neuroprotective effects open a new avenue for treating DR as well other retinal diseases in which neurodegeneration/synaptic abnormalities play a relevant role.
Collapse
|
38
|
|
39
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Extensive Structural Remodeling of the Axonal Arbors of Parvalbumin Basket Cells during Development in Mouse Neocortex. J Neurosci 2021; 41:9326-9339. [PMID: 34583957 PMCID: PMC8580153 DOI: 10.1523/jneurosci.0871-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Parvalbumin-containing (PV+) basket cells are specialized cortical interneurons that regulate the activity of local neuronal circuits with high temporal precision and reliability. To understand how the PV+ interneuron connectivity underlying these functional properties is established during development, we used array tomography to map pairs of synaptically connected PV+ interneurons and postsynaptic neurons from the neocortex of mice of both sexes. We focused on the axon-myelin unit of the PV+ interneuron and quantified the number of synapses onto the postsynaptic neuron, length of connecting axonal paths, and their myelination at different time points between 2 weeks and 7 months of age. We find that myelination of the proximal axon occurs very rapidly during the third and, to a lesser extent, fourth postnatal weeks. The number of synaptic contacts made by the PV+ interneuron on its postsynaptic partner meanwhile is significantly reduced to about one-third by the end of the first postnatal month. The number of autapses, the synapses that PV+ interneurons form on themselves, however, remains constant throughout the examined period. Axon reorganizations continue beyond postnatal month 2, with the postsynaptic targets of PV+ interneurons gradually shifting to more proximal locations, and the length of axonal paths and their myelin becoming conspicuously uniform per connection. These continued microcircuit refinements likely provide the structural substrate for the robust inhibitory effects and fine temporal precision of adult PV+ basket cells.SIGNIFICANCE STATEMENT The axon of adult parvalbumin-containing (PV+) interneurons is highly specialized for fast and reliable neurotransmission. It is myelinated and forms synapses mostly onto the cell bodies and proximal dendrites of postsynaptic neurons for maximal impact. In this study, we follow the development of the PV+ interneuron axon, its myelination and synapse formation, revealing a rapid sequence of axonal reorganization, myelination of the PV+ interneuron proximal axon, and pruning of almost two-thirds of the synapses in an individual connection. This is followed by a prolonged period of axon refinement and additional myelination leading to a remarkable precision of connections in the adult mouse cortex, consistent with the temporal precision and fidelity of PV+ interneuron action.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| |
Collapse
|
40
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
41
|
Moreno Manrique JF, Voit PR, Windsor KE, Karla AR, Rodriguez SR, Beaudoin GMJ. SynapseJ: An Automated, Synapse Identification Macro for ImageJ. Front Neural Circuits 2021; 15:731333. [PMID: 34675779 PMCID: PMC8524137 DOI: 10.3389/fncir.2021.731333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
While electron microscopy represents the gold standard for detection of synapses, a number of limitations prevent its broad applicability. A key method for detecting synapses is immunostaining for markers of pre- and post-synaptic proteins, which can infer a synapse based upon the apposition of the two markers. While immunostaining and imaging techniques have improved to allow for identification of synapses in tissue, analysis and identification of these appositions are not facile, and there has been a lack of tools to accurately identify these appositions. Here, we delineate a macro that uses open-source and freely available ImageJ or FIJI for analysis of multichannel, z-stack confocal images. With use of a high magnification with a high NA objective, we outline two methods to identify puncta in either sparsely or densely labeled images. Puncta from each channel are used to eliminate non-apposed puncta and are subsequently linked with their cognate from the other channel. These methods are applied to analysis of a pre-synaptic marker, bassoon, with two different post-synaptic markers, gephyrin and N-methyl-d-aspartate (NMDA) receptor subunit 1 (NR1). Using gephyrin as an inhibitory, post-synaptic scaffolding protein, we identify inhibitory synapses in basolateral amygdala, central amygdala, arcuate and the ventromedial hypothalamus. Systematic variation of the settings identify the parameters most critical for this analysis. Identification of specifically overlapping puncta allows for correlation of morphometry data between each channel. Finally, we extend the analysis to only examine puncta overlapping with a cytoplasmic marker of specific cell types, a distinct advantage beyond electron microscopy. Bassoon puncta are restricted to virally transduced, pedunculopontine tegmental nucleus (PPN) axons expressing yellow fluorescent protein. NR1 puncta are restricted to tyrosine hydroxylase labeled dopaminergic neurons of the substantia nigra pars compacta (SNc). The macro identifies bassoon-NR1 overlap throughout the image, or those only restricted to the PPN-SNc connections. Thus, we have extended the available analysis tools that can be used to study synapses in situ. Our analysis code is freely available and open-source allowing for further innovation.
Collapse
Affiliation(s)
| | - Parker R Voit
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Kathryn E Windsor
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Aamuktha R Karla
- Department of Biology, Trinity University, San Antonio, TX, United States
| | - Sierra R Rodriguez
- Department of Biology, Trinity University, San Antonio, TX, United States
| | | |
Collapse
|
42
|
Curran OE, Qiu Z, Smith C, Grant SGN. A single-synapse resolution survey of PSD95-positive synapses in twenty human brain regions. Eur J Neurosci 2021; 54:6864-6881. [PMID: 32492218 PMCID: PMC7615673 DOI: 10.1111/ejn.14846] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Mapping the molecular composition of individual excitatory synapses across the mouse brain reveals high synapse diversity with each brain region showing a distinct composition of synapse types. As a first step towards systematic mapping of synapse diversity across the human brain, we have labelled and imaged synapses expressing the excitatory synapse protein PSD95 in twenty human brain regions, including 13 neocortical, two subcortical, one hippocampal, one cerebellar and three brainstem regions, in four phenotypically normal individuals. We quantified the number, size and intensity of individual synaptic puncta and compared their regional distributions. We found that each region showed a distinct signature of synaptic puncta parameters. Comparison of brain regions showed that cortical and hippocampal structures are similar, and distinct from those of cerebellum and brainstem. Comparison of synapse parameters from human and mouse brain revealed conservation of parameters, hierarchical organization of brain regions and network architecture. This work illustrates the feasibility of generating a systematic single-synapse resolution atlas of the human brain, a potentially significant resource in studies of brain health and disease.
Collapse
Affiliation(s)
- Olimpia E Curran
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Zhen Qiu
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Academic Neuropathology, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| |
Collapse
|
43
|
Kuljis DA, Micheva KD, Ray A, Wegner W, Bowman R, Madison DV, Willig KI, Barth AL. Gephyrin-Lacking PV Synapses on Neocortical Pyramidal Neurons. Int J Mol Sci 2021; 22:ijms221810032. [PMID: 34576197 PMCID: PMC8467468 DOI: 10.3390/ijms221810032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022] Open
Abstract
Gephyrin has long been thought of as a master regulator for inhibitory synapses, acting as a scaffold to organize γ-aminobutyric acid type A receptors (GABAARs) at the post-synaptic density. Accordingly, gephyrin immunostaining has been used as an indicator of inhibitory synapses; despite this, the pan-synaptic localization of gephyrin to specific classes of inhibitory synapses has not been demonstrated. Genetically encoded fibronectin intrabodies generated with mRNA display (FingRs) against gephyrin (Gephyrin.FingR) reliably label endogenous gephyrin, and can be tagged with fluorophores for comprehensive synaptic quantitation and monitoring. Here we investigated input- and target-specific localization of gephyrin at a defined class of inhibitory synapse, using Gephyrin.FingR proteins tagged with EGFP in brain tissue from transgenic mice. Parvalbumin-expressing (PV) neuron presynaptic boutons labeled using Cre- dependent synaptophysin-tdTomato were aligned with postsynaptic Gephyrin.FingR puncta. We discovered that more than one-third of PV boutons adjacent to neocortical pyramidal (Pyr) cell somas lack postsynaptic gephyrin labeling. This finding was confirmed using correlative fluorescence and electron microscopy. Our findings suggest some inhibitory synapses may lack gephyrin. Gephyrin-lacking synapses may play an important role in dynamically regulating cell activity under different physiological conditions.
Collapse
Affiliation(s)
- Dika A. Kuljis
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
| | - Kristina D. Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; (K.D.M.); (D.V.M.)
| | - Ajit Ray
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
| | - Waja Wegner
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37075 Göttingen, Germany; (W.W.); (K.I.W.)
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ryan Bowman
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
| | - Daniel V. Madison
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; (K.D.M.); (D.V.M.)
| | - Katrin I. Willig
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37075 Göttingen, Germany; (W.W.); (K.I.W.)
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Alison L. Barth
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
- Correspondence: ; Tel.: +1-412-268-1198
| |
Collapse
|
44
|
Navarro-Gonzalez C, Carceller H, Benito Vicente M, Serra I, Navarrete M, Domínguez-Canterla Y, Rodríguez-Prieto Á, González-Manteiga A, Fazzari P. Nrg1 haploinsufficiency alters inhibitory cortical circuits. Neurobiol Dis 2021; 157:105442. [PMID: 34246770 DOI: 10.1016/j.nbd.2021.105442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/19/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.
Collapse
Affiliation(s)
- Carmen Navarro-Gonzalez
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Héctor Carceller
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Marina Benito Vicente
- Laboratorio Resonancia Magnética de Investigación, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | - Irene Serra
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.
| | - Marta Navarrete
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.
| | - Yaiza Domínguez-Canterla
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Ángela Rodríguez-Prieto
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Ana González-Manteiga
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Pietro Fazzari
- Lab of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, Valencia, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa, Madrid, Spain.
| |
Collapse
|
45
|
Yook JS, Kim J, Kim J. Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Front Syst Neurosci 2021; 15:688673. [PMID: 34234652 PMCID: PMC8255632 DOI: 10.3389/fnsys.2021.688673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex neural circuits that underpin brain function and behavior has been a long-standing goal of neuroscience. Yet this is no small feat considering the interconnectedness of neurons and other cell types, both within and across brain regions. In this review, we describe recent advances in mouse molecular genetic engineering that can be used to integrate information on brain activity and structure at regional, cellular, and subcellular levels. The convergence of structural inputs can be mapped throughout the brain in a cell type-specific manner by antero- and retrograde viral systems expressing various fluorescent proteins and genetic switches. Furthermore, neural activity can be manipulated using opto- and chemo-genetic tools to interrogate the functional significance of this input convergence. Monitoring neuronal activity is obtained with precise spatiotemporal resolution using genetically encoded sensors for calcium changes and specific neurotransmitters. Combining these genetically engineered mapping tools is a compelling approach for unraveling the structural and functional brain architecture of complex behaviors and malfunctioned states of neurological disorders.
Collapse
Affiliation(s)
- Jang Soo Yook
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jihyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| |
Collapse
|
46
|
Heaney CF, Namjoshi SV, Uneri A, Bach EC, Weiner JL, Raab-Graham KF. Role of FMRP in rapid antidepressant effects and synapse regulation. Mol Psychiatry 2021; 26:2350-2362. [PMID: 33432187 PMCID: PMC8440195 DOI: 10.1038/s41380-020-00977-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 11/09/2022]
Abstract
Rapid antidepressants are novel treatments for major depressive disorder (MDD) and work by blocking N-methyl-D-aspartate receptors (NMDARs), which, in turn, activate the protein synthesis pathway regulated by mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Our recent work demonstrates that the RNA-binding protein Fragile X Mental Retardation Protein (FMRP) is downregulated in dendrites upon treatment with a rapid antidepressant. Here, we show that the behavioral effects of the rapid antidepressant Ro-25-6981 require FMRP expression, and treatment promotes differential mRNA binding to FMRP in an mTORC1-dependent manner. Further, these mRNAs are identified to regulate transsynaptic signaling. Using a novel technique, we show that synapse formation underlying the behavioral effects of Ro-25-6981 requires GABABR-mediated mTORC1 activity in WT animals. Finally, we demonstrate that in an animal model that lacks FMRP expression and has clinical relevance for Fragile X Syndrome (FXS), GABABR activity is detrimental to the effects of Ro-25-6981. These effects are rescued with the combined therapy of blocking GABABRs and NMDARs, indicating that rapid antidepressants alone may not be an effective treatment for people with comorbid FXS and MDD.
Collapse
Affiliation(s)
- Chelcie F Heaney
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Translational Alcohol Research Center (WF-TARC), Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sanjeev V Namjoshi
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Ayse Uneri
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Eva C Bach
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Translational Alcohol Research Center (WF-TARC), Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Translational Alcohol Research Center (WF-TARC), Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Wake Forest Translational Alcohol Research Center (WF-TARC), Wake Forest University Health Sciences, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
47
|
Tripartite synaptomics: Cell-surface proximity labeling in vivo. Neurosci Res 2021; 173:14-21. [PMID: 34019951 DOI: 10.1016/j.neures.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The astrocyte is a central glial cell and plays a critical role in the architecture and activity of neuronal circuits and brain functions through forming a tripartite synapse with neurons. Emerging evidence suggests that dysfunction of tripartite synaptic connections contributes to a variety of psychiatric and neurodevelopmental disorders. Furthermore, recent advancements with transcriptome profiling, cell biological and physiological approaches have provided new insights into the molecular mechanisms into how astrocytes control synaptogenesis in the brain. In addition to these findings, we have recently developed in vivo cell-surface proximity-dependent biotinylation (BioID) approaches, TurboID-surface and Split-TurboID, to comprehensively understand the molecular composition between astrocytes and neuronal synapses. These proteomic approaches have discovered a novel molecular framework for understanding the tripartite synaptic cleft that arbitrates neuronal circuit formation and function. Here, this short review highlights novel in vivo cell-surface BioID approaches and recent advances in this rapidly evolving field, emphasizing how astrocytes regulate excitatory and inhibitory synapse formation in vitro and in vivo.
Collapse
|
48
|
Holderith N, Heredi J, Kis V, Nusser Z. A High-Resolution Method for Quantitative Molecular Analysis of Functionally Characterized Individual Synapses. Cell Rep 2021; 32:107968. [PMID: 32726631 PMCID: PMC7408500 DOI: 10.1016/j.celrep.2020.107968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Elucidating the molecular mechanisms underlying the functional diversity of synapses requires a high-resolution, sensitive, diffusion-free, quantitative localization method that allows the determination of many proteins in functionally characterized individual synapses. Array tomography permits the quantitative analysis of single synapses but has limited sensitivity, and its application to functionally characterized synapses is challenging. Here, we aim to overcome these limitations by searching the parameter space of different fixation, resin, embedding, etching, retrieval, and elution conditions. Our optimizations reveal that etching epoxy-resin-embedded ultrathin sections with Na-ethanolate and treating them with SDS dramatically increase the labeling efficiency of synaptic proteins. We also demonstrate that this method is ideal for the molecular characterization of individual synapses following paired recordings, two-photon [Ca2+] or glutamate-sensor (iGluSnFR) imaging. This method fills a missing gap in the toolbox of molecular and cellular neuroscience, helping us to reveal how molecular heterogeneity leads to diversity in function. Etching and antigen retrieval enhance immunoreactions in epoxy-resin-embedded tissue Biocytin-filled nerve cells can be visualized in epoxy-resin-embedded tissue Molecular composition of functionally characterized individual synapses is revealed Multiplexed, postembedding reactions are compatible with STED imaging
Collapse
Affiliation(s)
- Noemi Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Judit Heredi
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Viktor Kis
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary.
| |
Collapse
|
49
|
Experience-Dependent Inhibitory Plasticity Is Mediated by CCK+ Basket Cells in the Developing Dentate Gyrus. J Neurosci 2021; 41:4607-4619. [PMID: 33906898 DOI: 10.1523/jneurosci.1207-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Early postnatal experience shapes both inhibitory and excitatory networks in the hippocampus. However, the underlying circuit plasticity is unclear. Using an enriched environment (EE) paradigm during the preweaning period in mice of either sex, we assessed the circuit plasticity of inhibitory cell types in the hippocampus. We found that cholecystokinin (CCK)-expressing basket cells strongly increased somatic inhibition on the excitatory granular cells (GCs) following EE, whereas another pivotal inhibitory cell type, parvalbumin (PV)-expressing cells, did not show changes. Using electrophysiological analysis and the use of cannabinoid receptor 1 (CB1R) agonist WIN 55 212-2, we demonstrate that the change in somatic inhibition from CCK+ neurons increases CB1R-mediated inhibition in the circuit. By inhibiting activity of the entorhinal cortex (EC) using a chemogenetic approach, we further demonstrate that the activity of the projections from the EC mediates the developmental assembly of CCK+ basket cell network. Altogether, our study places the experience-dependent remodeling of CCK+ basket cell innervation as a central process to adjust inhibition in the dentate gyrus and shows that cortical inputs to the hippocampus play an instructional role in controlling the refinement of the synaptic connections during the preweaning period.SIGNIFICANCE STATEMENT Brain plasticity is triggered by experience during postnatal brain development and shapes the maturing neural circuits. In humans, altered experience-dependent plasticity can have long-lasting detrimental effects on circuit function and lead to psychiatric disorders. Yet, the cellular mechanisms governing how early experience fine-tunes the maturing synaptic network is not fully understood. Here, taking advantage of an enrichment-housing paradigm, we unravel a new plasticity mechanism involved in the maintenance of the inhibitory to excitatory balance in the hippocampus. Our findings demonstrate that cortical activity instructs the assembly of the CCK+ basket cell network. Considering the importance of this specific cell type for learning and memory, experience-dependent remodeling of CCK+ cells may be a critical determinant for establishing appropriate neural networks.
Collapse
|
50
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Conduction Velocity Along the Local Axons of Parvalbumin Interneurons Correlates With the Degree of Axonal Myelination. Cereb Cortex 2021; 31:3374-3392. [PMID: 33704414 DOI: 10.1093/cercor/bhab018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Parvalbumin-containing (PV+) basket cells in mammalian neocortex are fast-spiking interneurons that regulate the activity of local neuronal circuits in multiple ways. Even though PV+ basket cells are locally projecting interneurons, their axons are myelinated. Can this myelination contribute in any significant way to the speed of action potential propagation along such short axons? We used dual whole cell recordings of synaptically connected PV+ interneurons and their postsynaptic target in acutely prepared neocortical slices from adult mice to measure the amplitude and latency of single presynaptic action potential-evoked inhibitory postsynaptic currents. These same neurons were then imaged with immunofluorescent array tomography, the synapses between them identified and a precise map of the connections was generated, with the exact axonal length and extent of myelin coverage. Our results support that myelination of PV+ basket cells significantly increases conduction velocity, and does so to a degree that can be physiologically relevant.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| |
Collapse
|