1
|
Xie Y, Zhao T, Zhang W, Chen Q, Qiu A, Li Y, Ku Y. Neural deterioration and compensation in visual short-term memory among individuals with amnestic mild cognitive impairment. Alzheimers Dement 2025:e14475. [PMID: 39822072 DOI: 10.1002/alz.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 11/22/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Visual short-term memory (VSTM) is a critical indicator of Alzheimer's disease (AD), but whether its neural substrates could adapt to early disease progression and contribute to cognitive resilience in amnestic mild cognitive impairment (aMCI) has been unclear. METHODS Fifty-five aMCI patients and 68 normal controls (NC) performed a change-detection task and underwent multimodal neuroimaging scanning. RESULTS Among the atrophic brain regions in aMCI, VSTM performance correlated with the volume of the right prefrontal cortex (PFC) but not the medial temporal lobe (MTL), and this correlation was mainly present in patients with greater MTL atrophy. Furthermore, VSTM was primarily correlated with frontal structural connectivity in aMCI but was correlated with more distributed frontal and MTL connectivity in NC. DISCUSSION This study provided evidence on neural adaptation in the precursor stages of AD, highlighting the compensatory role of PFC as MTL deteriorated and suggesting potential targets in early intervention for cognitive preservation. HIGHLIGHTS Atrophic left medial temporal lobe (MTL) no longer correlated with visual short-term memory (VSTM) in amnestic mild cognitive impairment (aMCI). Atrophic right middle frontal area continued to correlate with VSTM in aMCI. Frontal brain-behavior correlation was mainly present in the aMCI subgroup with greater medial temporal lobe (MTL) atrophy. Reliance of VSTM on frontal connectivity increased in compensation for MTL dysfunction.
Collapse
Affiliation(s)
- Ye Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Tinghao Zhao
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Anqi Qiu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China
| | - Yunxia Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Pudong, Shanghai, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
2
|
Murakami T. Spatial dynamics of spontaneous activity in the developing and adult cortices. Neurosci Res 2024:S0168-0102(24)00152-4. [PMID: 39653148 DOI: 10.1016/j.neures.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Even in the absence of external stimuli, the brain remains remarkably active, with neurons continuously firing and communicating with each other. It is not merely random firing of individual neurons but rather orchestrated patterns of activity that propagate throughout the intricate network. Over two decades, advancements in neuroscience observation tools for hemodynamics, membrane potential, and neural calcium signals, have allowed researchers to analyze the dynamics of spontaneous activity across different spatial scales, from individual neurons to macroscale brain networks. One of the remarkable findings from these studies is that the spatial patterns of spontaneous activity in the developing brain are vastly different from those in the mature adult brain. Spatial patterns of spontaneous activity during development are essential for connection refinement between brain regions, whereas the functional role in the adult brain is still controversial. In this paper, I review the differences in spatial dynamics of spontaneous activity between developing and adult cortices. Then, I delve into the cellular mechanisms underlying spontaneous activity, especially its generation and propagation manner, to contribute to a deeper understanding of brain function and its development.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Pöpplau JA, Hanganu-Opatz IL. Development of Prefrontal Circuits and Cognitive Abilities. Cold Spring Harb Perspect Biol 2024; 16:a041502. [PMID: 38692836 PMCID: PMC11444252 DOI: 10.1101/cshperspect.a041502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The prefrontal cortex is considered as the site of multifaceted higher-order cognitive abilities. These abilities emerge late in life long after full sensorimotor maturation, in line with the protracted development of prefrontal circuits that has been identified on molecular, structural, and functional levels. Only recently, as a result of the impressive methodological progress of the last several decades, the mechanisms and clinical implications of prefrontal development have begun to be elucidated, yet major knowledge gaps still persist. Here, we provide an overview on how prefrontal circuits develop to enable multifaceted cognitive processing at adulthood. First, we review recent insights into the mechanisms of prefrontal circuit assembly, with a focus on the contribution of early electrical activity. Second, we highlight the major reorganization of prefrontal circuits during adolescence. Finally, we link the prefrontal plasticity during specific developmental time windows to mental health disorders and discuss potential approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
4
|
Liu Y, Xu S, Deng Y, Luo J, Zhang K, Yang Y, Sha L, Hu R, Xu Z, Yin E, Xu Q, Wu Y, Cai X. SWCNTs/PEDOT:PSS nanocomposites-modified microelectrode arrays for revealing locking relations between burst and local field potential in cultured cortical networks. Biosens Bioelectron 2024; 253:116168. [PMID: 38452571 DOI: 10.1016/j.bios.2024.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Burst and local field potential (LFP) are fundamental components of brain activity, representing fast and slow rhythms, respectively. Understanding the intricate relationship between burst and LFP is crucial for deciphering the underlying mechanisms of brain dynamics. In this study, we fabricated high-performance microelectrode arrays (MEAs) using the SWCNTs/PEDOT:PSS nanocomposites, which exhibited favorable electrical properties (low impedance: 12.8 ± 2.44 kΩ) and minimal phase delay (-11.96 ± 1.64°). These MEAs enabled precise exploration of the burst-LFP interaction in cultured cortical networks. After a 14-day period of culture, we used the MEAs to monitor electrophysiological activities and revealed a time-locking relationship between burst and LFP, indicating the maturation of the neural network. To further investigate this relationship, we modulated burst firing patterns by treating the neural culture with increasing concentrations of glycine. The results indicated that glycine effectively altered burst firing patterns, with both duration and spike count increasing as the concentration rose. This was accompanied by an enhanced level of time-locking between burst and LFP but a decrease in synchrony among neurons. This study not only highlighted the pivotal role of SWCNTs/PEDOT:PSS-modified MEAs in elucidating the interaction between burst and LFP, bridging the gap between slow and fast brain rhythms in vitro but also provides valuable insights into the potential therapeutic strategies targeting neurological disorders associated with abnormal rhythm generation.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yu Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Longze Sha
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ruilin Hu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Erwei Yin
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, 300450, China
| | - Qi Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China.
| |
Collapse
|
5
|
Gao M, Wang F, Sun C, Zhang S, Su R. Effects of olanzapine on hippocampal CA3 and the prefrontal cortex local field potentials. Eur J Pharmacol 2024; 969:176396. [PMID: 38325793 DOI: 10.1016/j.ejphar.2024.176396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
Olanzapine is an antipsychotic drug applied in psychiatry to treat psychoses, especially schizophrenia and schizoaffective disorders with similar or better improvement than haloperidol and risperidone in the treatment of depressive and negative symptoms. The effect of olanzapine on neural synchrony remains to be explored. We investigated the effects of olanzapine on gamma oscillations in the CA3 region of the hippocampus and frontal association cortex. Olanzapine reduced carbachol (CCh)-induced gamma oscillation power in CA3 slice and gamma oscillation power in the frontal association cortex in vivo. The power of theta oscillations was increased in the presence of olanzapine. The phase amplitude coupling of theta and gamma wave was strengthened by the administration of olanzapine in the frontal association cortex in vivo. Taken together, these results show that olanzapine modulates local field potential and the neuronal activity.
Collapse
Affiliation(s)
- Mingwei Gao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Fuqi Wang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Chuanyao Sun
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Shuzhuo Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Ruibin Su
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
6
|
Di Berardino C, Mainardi M, Brusco S, Benvenuto E, Broccoli V, Colasante G. Temporal manipulation of the Scn1a gene reveals its essential role in adult brain function. Brain 2024; 147:1216-1230. [PMID: 37812819 PMCID: PMC10994529 DOI: 10.1093/brain/awad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023] Open
Abstract
Dravet syndrome is a severe epileptic encephalopathy, characterized by drug-resistant epilepsy, severe cognitive and behavioural deficits, with increased risk of sudden unexpected death (SUDEP). It is caused by haploinsufficiency of SCN1A gene encoding for the α-subunit of the voltage-gated sodium channel Nav1.1. Therapeutic approaches aiming to upregulate the healthy copy of SCN1A gene to restore its normal expression levels are being developed. However, whether Scn1a gene function is required only during a specific developmental time-window or, alternatively, if its physiological expression is necessary in adulthood is untested up to now. We induced Scn1a gene haploinsufficiency at two ages spanning postnatal brain development (P30 and P60) and compared the phenotypes of those mice to Scn1a perinatally induced mice (P2), recapitulating all deficits of Dravet mice. Induction of heterozygous Nav1.1 mutation at P30 and P60 elicited susceptibility to the development of both spontaneous and hyperthermia-induced seizures and SUDEP rates comparable to P2-induced mice, with symptom onset accompanied by the characteristic GABAergic interneuron dysfunction. Finally, delayed Scn1a haploinsufficiency induction provoked hyperactivity, anxiety and social attitude impairment at levels comparable to age matched P2-induced mice, while it was associated with a better cognitive performance, with P60-induced mice behaving like the control group. Our data show that maintenance of physiological levels of Nav1.1 during brain development is not sufficient to prevent Dravet symptoms and that long-lasting restoration of Scn1a gene expression would be required to grant optimal clinical benefit in patients with Dravet syndrome.
Collapse
Affiliation(s)
- Claudia Di Berardino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Martina Mainardi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Brusco
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
| | - Elena Benvenuto
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Gene and Cell Therapy PhD Program, Vita- Salute San Raffaele University, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
7
|
Bevandić J, Chareyron LJ, Bachevalier J, Cacucci F, Genzel L, Newcombe NS, Vargha-Khadem F, Ólafsdóttir HF. Episodic memory development: Bridging animal and human research. Neuron 2024; 112:1060-1080. [PMID: 38359826 PMCID: PMC11129319 DOI: 10.1016/j.neuron.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Loïc J Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Bachevalier
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Pochinok I, Stöber TM, Triesch J, Chini M, Hanganu-Opatz IL. A developmental increase of inhibition promotes the emergence of hippocampal ripples. Nat Commun 2024; 15:738. [PMID: 38272901 PMCID: PMC10810866 DOI: 10.1038/s41467-024-44983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Sharp wave-ripples (SPW-Rs) are a hippocampal network phenomenon critical for memory consolidation and planning. SPW-Rs have been extensively studied in the adult brain, yet their developmental trajectory is poorly understood. While SPWs have been recorded in rodents shortly after birth, the time point and mechanisms of ripple emergence are still unclear. Here, we combine in vivo electrophysiology with optogenetics and chemogenetics in 4 to 12-day-old mice to address this knowledge gap. We show that ripples are robustly detected and induced by light stimulation of channelrhodopsin-2-transfected CA1 pyramidal neurons only from postnatal day 10 onwards. Leveraging a spiking neural network model, we mechanistically link the maturation of inhibition and ripple emergence. We corroborate these findings by reducing ripple rate upon chemogenetic silencing of CA1 interneurons. Finally, we show that early SPW-Rs elicit a more robust prefrontal cortex response than SPWs lacking ripples. Thus, development of inhibition promotes ripples emergence.
Collapse
Affiliation(s)
- Irina Pochinok
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Tristan M Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology (ZMNH), Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
9
|
Sheroziya M, Khazipov R. Synaptic Origin of Early Sensory-evoked Oscillations in the Immature Thalamus. Neuroscience 2023; 532:50-64. [PMID: 37769898 DOI: 10.1016/j.neuroscience.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
During the critical period of postnatal development, brain maturation is extremely sensitive to external stimuli. Newborn rodents already have functional somatosensory pathways and the thalamus, but the cortex is still forming. Immature thalamic synapses may produce large postsynaptic potentials in immature neurons, while non-synaptic membrane currents remain relatively weak and slow. The thalamocortical system generates spontaneous and evoked early gamma and spindle-burst oscillations in newborn rodents. How relatively strong synapses and weak intrinsic currents interact with each other and how they contribute to early thalamic activities remains largely unknown. Here, we performed local field potential (LFP), juxtacellular, and patch-clamp recordings in the somatosensory thalamus of urethane-anesthetized rat pups at postnatal days 6-7 with one whisker stimulation. We removed the overlying cortex and hippocampus to reach the thalamus with electrodes. Deflection of only one (the principal) whisker induced spikes in a particular thalamic cell. Whisker deflection evoked a group of large-amplitude excitatory events, likely originating from lemniscal synapses and multiple inhibitory postsynaptic events in thalamocortical cells. Large-amplitude excitatory events produced a group of spike bursts and could evoke a depolarization block. Juxtacellular recordings confirmed the partial inactivation of spikes. Inhibitory events prevented inactivation of action potentials and gamma-modulated neuronal firing. We conclude that the interplay of strong excitatory and inhibitory synapses and relatively weak intrinsic currents produces sensory-evoked early gamma oscillations in thalamocortical cells. We also propose that sensory-evoked large-amplitude excitatory events contribute to evoked spindle-bursts.
Collapse
Affiliation(s)
- Maxim Sheroziya
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia; Aix Marseille University, INSERM, INMED, Marseille, France
| |
Collapse
|
10
|
Klavinskis-Whiting S, Bitzenhofer S, Hanganu-Opatz I, Ellender T. Generation and propagation of bursts of activity in the developing basal ganglia. Cereb Cortex 2023; 33:10595-10613. [PMID: 37615347 PMCID: PMC10560579 DOI: 10.1093/cercor/bhad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
The neonatal brain is characterized by intermittent bursts of oscillatory activity interspersed by relative silence. Although well-characterized for many cortical areas, to what extent these propagate and interact with subcortical brain areas is largely unknown. Here, early network activity was recorded from the developing basal ganglia, including motor/somatosensory cortex, dorsal striatum, and intralaminar thalamus, during the first postnatal weeks in mice. An unsupervised detection and classification method revealed two main classes of bursting activity, namely spindle bursts and nested gamma spindle bursts, characterized by oscillatory activity at ~ 10 and ~ 30 Hz frequencies, respectively. These were reliably identified across all three brain regions and exhibited region-specific differences in their structural, spectral, and developmental characteristics. Bursts of the same type often co-occurred in different brain regions and coherence and cross-correlation analyses reveal dynamic developmental changes in their interactions. The strongest interactions were seen for cortex and striatum, from the first postnatal week onwards, and cortex appeared to drive burst events in subcortical regions. Together, these results provide the first detailed description of early network activity within the developing basal ganglia and suggest that cortex is one of the main drivers of activity in downstream nuclei during this postnatal period.
Collapse
Affiliation(s)
| | - Sebastian Bitzenhofer
- Department of Biomedical Sciences, Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ileana Hanganu-Opatz
- Department of Biomedical Sciences, Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX13QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
11
|
Xu L, Liu Y, Long J, He X, Xie F, Yin Q, Chen M, Long D, Chen Y. Loss of spines in the prelimbic cortex is detrimental to working memory in mice with early-life adversity. Mol Psychiatry 2023; 28:3444-3458. [PMID: 37500828 PMCID: PMC10618093 DOI: 10.1038/s41380-023-02197-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Adverse experiences in early life can shape neuronal structures and synaptic function in multiple brain regions, leading to deficits of distinct cognitive functions later in life. Focusing on the pyramidal cells of the prelimbic cortex (PrL), a main subregion of the medial prefrontal cortex, the impact of early-life adversity (ELA) was investigated in a well-established animal model generated by changing the rearing environment during postnatal days 2 to 9 (P2-P9), a sensitive developmental period. ELA has enduring detrimental impacts on the dendritic spines of PrL pyramidal cells, which is most apparent in a spatially circumscribed region. Specifically, ELA affects both thin and mushroom-type spines, and ELA-provoked loss of spines is observed on selective dendritic segments of PrL pyramidal cells in layers II-III and V-VI. Reduced postsynaptic puncta represented by postsynaptic density protein-95 (PSD-95), but not synaptophysin-labelled presynaptic puncta, in ELA mice supports the selective loss of spines in the PrL. Correlation analysis indicates that loss of spines and postsynaptic puncta in the PrL contributes to the poor spatial working memory of ELA mice, and thin spines may play a major role in working memory performance. To further understand whether loss of spines affects glutamatergic transmission, AMPA- and NMDA-receptor-mediated synaptic currents (EPSCs) were recorded in a group of Thy1-expressing PrL pyramidal cells. ELA mice exhibited a depressed glutamatergic transmission, which is accompanied with a decreased expression of GluR1 and NR1 subunits in the PrL. Finally, upregulating the activation of Thy1-expressing PrL pyramidal cells via excitatory DREADDs can efficiently improve the working memory performance of ELA mice in a T-maze-based task, indicating the potential of a chemogenetic approach in restoring ELA-provoked memory deficits.
Collapse
Affiliation(s)
- Liping Xu
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yue Liu
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jingyi Long
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA, Nijmegen, the Netherlands
| | - Xiulan He
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fanbing Xie
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qiao Yin
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Michael Chen
- University of California, Los Angeles, CA, 90095, USA
| | - Dahong Long
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
Kostka JK, Hanganu-Opatz IL. Olfactory-driven beta band entrainment of limbic circuitry during neonatal development. J Physiol 2023; 601:3605-3630. [PMID: 37434507 DOI: 10.1113/jp284401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Cognitive processing relies on the functional refinement of the limbic circuitry during the first two weeks of life. During this developmental period, when the auditory, somatosensory and visual systems are still largely immature, the sense of olfaction acts as 'door to the world', providing an important source of environmental inputs. However, it is unknown whether early olfactory processing shapes the activity in the limbic circuitry during neonatal development. Here, we address this question by combining simultaneous in vivo recordings from the olfactory bulb (OB), lateral entorhinal cortex (LEC), hippocampus (HP) and prefrontal cortex (PFC) with olfactory stimulation as well as opto- and chemogenetic manipulations of mitral/tufted cells in the OB of non-anaesthetized neonatal mice of both sexes. We show that the neonatal OB synchronizes the limbic circuity in the beta frequency range. Moreover, it drives neuronal and network activity in LEC, as well as subsequently, HP and PFC via long-range projections from mitral cells to HP-projecting LEC neurons. Thus, OB activity shapes the communication within limbic circuits during neonatal development. KEY POINTS: During early postnatal development, oscillatory activity in the olfactory bulb synchronizes the limbic circuit. Olfactory stimulation boosts firing and beta synchronization along the olfactory bulb-lateral entorhinal cortex-hippocampal-prefrontal pathway. Mitral cells drive neuronal and network activity in the lateral entorhinal cortex (LEC), as well as subsequently, the hippocampus (HP) and the prefrontal cortex (PFC) via long-range projections from mitral cells to HP-projecting LEC neurons. Inhibition of vesicle release on LEC targeting mitral cell axons reveals direct involvement of LEC in the olfactory bulb-driven oscillatory entrainment of the limbic circuitry.
Collapse
Affiliation(s)
- Johanna K Kostka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience (HCNS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
14
|
Gamma oscillations provide insights into cortical circuit development. Pflugers Arch 2023; 475:561-568. [PMID: 36864347 PMCID: PMC10105678 DOI: 10.1007/s00424-023-02801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Rhythmic coordination in gamma oscillations provides temporal structure to neuronal activity. Gamma oscillations are commonly observed in the mammalian cerebral cortex, are altered early on in several neuropsychiatric disorders, and provide insights into the development of underlying cortical networks. However, a lack of knowledge on the developmental trajectory of gamma oscillations prevented the combination of findings from the immature and the adult brain. This review is intended to provide an overview on the development of cortical gamma oscillations, the maturation of the underlying network, and the implications for cortical function and dysfunction. The majority of information is drawn from work in rodents with particular emphasis on the prefrontal cortex, the developmental trajectory of gamma oscillations, and potential implications for neuropsychiatric disorders. Current evidence supports the idea that fast oscillations during development are indeed an immature form of adult gamma oscillations and can help us understand the pathology of neuropsychiatric disorders.
Collapse
|
15
|
Gómez LJ, Dooley JC, Blumberg MS. Activity in developing prefrontal cortex is shaped by sleep and sensory experience. eLife 2023; 12:e82103. [PMID: 36745108 PMCID: PMC9901933 DOI: 10.7554/elife.82103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.
Collapse
Affiliation(s)
- Lex J Gómez
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
| |
Collapse
|
16
|
Gellért L, Luhmann HJ, Kilb W. Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse. Front Neuroanat 2023; 17:1105998. [PMID: 36760662 PMCID: PMC9905141 DOI: 10.3389/fnana.2023.1105998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The development of functionally interconnected networks between primary (S1), secondary somatosensory (S2), and motor (M1) cortical areas requires coherent neuronal activity via corticocortical projections. However, the anatomical substrate of functional connections between S1 and M1 or S2 during early development remains elusive. In the present study, we used ex vivo carbocyanine dye (DiI) tracing in paraformaldehyde-fixed newborn mouse brain to investigate axonal projections of neurons in different layers of S1 barrel field (S1Bf), M1, and S2 toward the subplate (SP), a hub layer for sensory information transfer in the immature cortex. In addition, we performed extracellular recordings in neocortical slices to unravel the functional connectivity between these areas. Our experiments demonstrate that already at P0 neurons from the cortical plate (CP), layer 5/6 (L5/6), and the SP of both M1 and S2 send projections through the SP of S1Bf. Reciprocally, neurons from CP to SP of S1Bf send projections through the SP of M1 and S2. Electrophysiological recordings with multi-electrode arrays in cortical slices revealed weak, but functional synaptic connections between SP and L5/6 within and between S1 and M1. An even lower functional connectivity was observed between S1 and S2. In summary, our findings demonstrate that functional connections between SP and upper cortical layers are not confined to the same cortical area, but corticocortical connection between adjacent cortical areas exist already at the day of birth. Hereby, SP can integrate early cortical activity of M1, S1, and S2 and shape the development of sensorimotor integration at an early stage.
Collapse
|
17
|
Nath M, Bhardwaj SK, Srivastava LK, Wong TP. Altered excitatory and decreased inhibitory transmission in the prefrontal cortex of male mice with early developmental disruption to the ventral hippocampus. Cereb Cortex 2023; 33:865-880. [PMID: 35297476 PMCID: PMC9890473 DOI: 10.1093/cercor/bhac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ventral hippocampal (vHPC)-prefrontal cortical (PFC) pathway dysfunction is a core neuroimaging feature of schizophrenia. However, mechanisms underlying impaired connectivity within this pathway remain poorly understood. The vHPC has direct projections to the PFC that help shape its maturation. Here, we wanted to investigate the effects of early developmental vHPC perturbations on long-term functional PFC organization. Using whole-cell recordings to assess PFC cellular activity in transgenic male mouse lines, we show early developmental disconnection of vHPC inputs, by excitotoxic lesion or cell-specific ablations, impairs pyramidal cell firing output and produces a persistent increase in excitatory and decrease in inhibitory synaptic inputs onto pyramidal cells. We show this effect is specific to excitatory vHPC projection cell ablation. We further identify PV-interneurons as a source of deficit in inhibitory transmission. We find PV-interneurons are reduced in density, show a reduced ability to sustain high-frequency firing, and show deficits in excitatory inputs that emerge over time. We additionally show differences in vulnerabilities to early developmental vHPC disconnection, wherein PFC PV-interneurons but not pyramidal cells show deficits in NMDA receptor-mediated current. Our results highlight mechanisms by which the PFC adapts to early developmental vHPC perturbations, providing insights into schizophrenia circuit pathology.
Collapse
Affiliation(s)
- Moushumi Nath
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada.,Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada
| | - Sanjeev K Bhardwaj
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada
| | - Lalit K Srivastava
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Tak Pan Wong
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
18
|
Sibilska S, Mofleh R, Kocsis B. Development of network oscillations through adolescence in male and female rats. Front Cell Neurosci 2023; 17:1135154. [PMID: 37213214 PMCID: PMC10196069 DOI: 10.3389/fncel.2023.1135154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
The primary aim of this research was to study the developmental trajectory of oscillatory synchronization in neural networks of normal healthy rats during adolescence, corresponding to the vulnerable age of schizophrenia prodrome in human. To monitor the development of oscillatory networks through adolescence we used a "pseudo-longitudinal" design. Recordings were performed in terminal experiments under urethane anesthesia, every day from PN32 to PN52 using rats-siblings from the same mother, to reduce individual innate differences between subjects. We found that hippocampal theta power decreased and delta power in prefrontal cortex increased through adolescence, indicating that the oscillations in the two different frequency bands follow distinct developmental trajectories to reach the characteristic oscillatory activity found in adults. Perhaps even more importantly, theta rhythm showed age-dependent stabilization toward late adolescence. Furthermore, sex differences was found in both networks, more prominent in the prefrontal cortex compared with hippocampus. Delta increase was stronger in females and theta stabilization was completed earlier in females, in postnatal days PN41-47, while in males it was only completed in late adolescence. Our finding of a protracted maturation of theta-generating networks in late adolescence is overall consistent with the findings of longitudinal studies in human adolescents, in which oscillatory networks demonstrated a similar pattern of maturation.
Collapse
|
19
|
Zhang W, Guo L, Liu D. Transcerebral information coordination in directional hippocampus-prefrontal cortex network during working memory based on bimodal neural electrical signals. Cogn Neurodyn 2022; 16:1409-1425. [PMID: 36408070 PMCID: PMC9666613 DOI: 10.1007/s11571-022-09792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022] Open
Abstract
Working memory (WM) is a kind of advanced cognitive function, which requires the participation and cooperation of multiple brain regions. Hippocampus and prefrontal cortex are the main responsible brain regions for WM. Exploring information coordination between hippocampus and prefrontal cortex during WM is a frontier problem in cognitive neuroscience. In this paper, an advanced information theory analysis based on bimodal neural electrical signals (local field potentials, LFPs and spikes) was employed to characterize the transcerebral information coordination across the two brain regions. Firstly, LFPs and spikes were recorded simultaneously from rat hippocampus and prefrontal cortex during the WM task by using multi-channel in vivo recording technique. Then, from the perspective of information theory, directional hippocampus-prefrontal cortex networks were constructed by using transfer entropy algorithm based on spectral coherence between LFPs and spikes. Finally, transcerebral coordination of bimodal information at the brain-network level was investigated during acquisition and performance of the WM task. The results show that the transfer entropy in directional hippocampus-prefrontal cortex networks is related to the acquisition and performance of WM. During the acquisition of WM, the information flow, local information transmission ability and information transmission efficiency of the directional hippocampus-prefrontal networks increase over learning days. During the performance of WM, the transfer entropy from the hippocampus to prefrontal cortex plays a leading role for bimodal information coordination across brain regions and hippocampus has a driving effect on prefrontal cortex. Furthermore, bimodal information coordination in the hippocampus → prefrontal cortex network could predict WM during the successful performance of WM.
Collapse
Affiliation(s)
- Wei Zhang
- School of Information Engineering, Tianjin University of Commerce, Tianjin, 300134 China
| | - Lei Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Dongzhao Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
20
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
21
|
Schepanski S, Chini M, Sternemann V, Urbschat C, Thiele K, Sun T, Zhao Y, Poburski M, Woestemeier A, Thieme MT, Zazara DE, Alawi M, Fischer N, Heeren J, Vladimirov N, Woehler A, Puelles VG, Bonn S, Gagliani N, Hanganu-Opatz IL, Arck PC. Pregnancy-induced maternal microchimerism shapes neurodevelopment and behavior in mice. Nat Commun 2022; 13:4571. [PMID: 35931682 PMCID: PMC9356013 DOI: 10.1038/s41467-022-32230-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.
Collapse
Affiliation(s)
- Steven Schepanski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Sternemann
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Zhao
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Poburski
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Theres Thieme
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E Zazara
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikita Vladimirov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Victor G Puelles
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Petra C Arck
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
22
|
Zhang W, Guo L, Liu D. Concurrent interactions between prefrontal cortex and hippocampus during a spatial working memory task. Brain Struct Funct 2022; 227:1735-1755. [DOI: 10.1007/s00429-022-02469-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
|
23
|
Del Rio-Bermudez C, Blumberg MS. Sleep as a window on the sensorimotor foundations of the developing hippocampus. Hippocampus 2022; 32:89-97. [PMID: 33945190 PMCID: PMC9118132 DOI: 10.1002/hipo.23334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/21/2021] [Indexed: 02/03/2023]
Abstract
The hippocampal formation plays established roles in learning, memory, and related cognitive functions. Recent findings also suggest that the hippocampus integrates sensory feedback from self-generated movements to modulate ongoing motor responses in a changing environment. Such findings support the view of Bland and Oddie (Behavioural Brain Research, 2001, 127, 119-136) that the hippocampus is a site of sensorimotor integration. In further support of this view, we review neurophysiological evidence in developing rats that hippocampal function is built on a sensorimotor foundation and that this foundation is especially evident early in development. Moreover, at those ages when the hippocampus is first establishing functional connectivity with distant sensory and motor structures, that connectivity is preferentially expressed during periods of active (or REM) sleep. These findings reinforce the notion that sleep, as the predominant state of early infancy, provides a critical context for sensorimotor development, including development of the hippocampus and its associated network.
Collapse
Affiliation(s)
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
25
|
Portella AK, Papantoni A, Joseph AT, Chen L, Lee RS, Silveira PP, Dube L, Carnell S. Genetically-predicted prefrontal DRD4 gene expression modulates differentiated brain responses to food cues in adolescent girls and boys. Sci Rep 2021; 11:24094. [PMID: 34916545 PMCID: PMC8677785 DOI: 10.1038/s41598-021-02797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
The dopamine receptor 4 (DRD4) in the prefrontal cortex (PFC) acts to modulate behaviours including cognitive control and motivation, and has been implicated in behavioral inhibition and responsivity to food cues. Adolescence is a sensitive period for the development of habitual eating behaviors and obesity risk, with potential mediation by development of the PFC. We previously found that genetic variations influencing DRD4 function or expression were associated with measures of laboratory and real-world eating behavior in girls and boys. Here we investigated brain responses to high energy–density (ED) and low-ED food cues using an fMRI task conducted in the satiated state. We used the gene-based association method PrediXcan to estimate tissue-specific DRD4 gene expression in prefrontal brain areas from individual genotypes. Among girls, those with lower vs. higher predicted prefrontal DRD4 expression showed lesser activation to high-ED and low-ED vs. non-food cues in a distributed network of regions implicated in attention and sensorimotor processing including middle frontal gyrus, and lesser activation to low-ED vs non-food cues in key regions implicated in valuation including orbitofrontal cortex and ventromedial PFC. In contrast, males with lower vs. higher predicted prefrontal DRD4 expression showed minimal differences in food cue response, namely relatively greater activation to high-ED and low-ED vs. non-food cues in the inferior parietal lobule. Our data suggest sex-specific effects of prefrontal DRD4 on brain food responsiveness in adolescence, with modulation of distributed regions relevant to cognitive control and motivation observable in female adolescents.
Collapse
Affiliation(s)
- Andre K Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada.,Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brazil
| | - Afroditi Papantoni
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antoneta T Joseph
- McGill Centre for the Convergence of Health and Economics (MCCHE), McGill University, Montreal, Canada
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Division of Psychiatric Neuroimaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Kalemaki K, Velli A, Christodoulou O, Denaxa M, Karagogeos D, Sidiropoulou K. The Developmental Changes in Intrinsic and Synaptic Properties of Prefrontal Neurons Enhance Local Network Activity from the Second to the Third Postnatal Weeks in Mice. Cereb Cortex 2021; 32:3633-3650. [PMID: 34905772 DOI: 10.1093/cercor/bhab438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The prefrontal cortex (PFC) is characterized by protracted maturation. The cellular mechanisms controlling the early development of prefrontal circuits are still largely unknown. Our study delineates the developmental cellular processes in the mouse medial PFC (mPFC) during the second and the third postnatal weeks and characterizes their contribution to the changes in network activity. We show that spontaneous inhibitory postsynaptic currents (sIPSC) are increased, whereas spontaneous excitatory postsynaptic currents (sEPSC) are reduced from the second to the third postnatal week. Drug application suggested that the increased sEPSC frequency in mPFC at postnatal day 10 (P10) is due to depolarizing γ-aminobutyric acid (GABA) type A receptor function. To further validate this, perforated patch-clamp recordings were obtained and the expression levels of K-Cl cotransporter 2 (KCC2) protein were examined. The reversal potential of IPSCs in response to current stimulation was significantly more depolarized at P10 than P20 while KCC2 expression is decreased. Moreover, the number of parvalbumin-expressing GABAergic interneurons increases and their intrinsic electrophysiological properties significantly mature in the mPFC from P10 to P20. Using computational modeling, we show that the developmental changes in synaptic and intrinsic properties of mPFC neurons contribute to the enhanced network activity in the juvenile compared with neonatal mPFC.
Collapse
Affiliation(s)
- Katerina Kalemaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion GR70013, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), FORTH, Heraklion GR70013, Greece
| | - Angeliki Velli
- Institute of Molecular Biology and Biotechnology (IMBB), FORTH, Heraklion GR70013, Greece.,Department of Biology, University of Crete, Heraklion GR70013, Greece
| | - Ourania Christodoulou
- Department of Biology, University of Crete, Heraklion GR70013, Greece.,Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center 'Alexander Fleming', Heraklion GR70013, Greece
| | - Myrto Denaxa
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center 'Alexander Fleming', Heraklion GR70013, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion GR70013, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), FORTH, Heraklion GR70013, Greece
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology (IMBB), FORTH, Heraklion GR70013, Greece.,Department of Biology, University of Crete, Heraklion GR70013, Greece
| |
Collapse
|
27
|
Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021; 12:6810. [PMID: 34815409 PMCID: PMC8611076 DOI: 10.1038/s41467-021-27114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice. The authors show that mice that mimic the dual genetic-environmental etiology of psychiatric risk have poor lateral entorhinal cortex-dependent recognition memory already at pre-juvenile age and abnormal communication within LECHP-PFC networks throughout development.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
28
|
Shan X, Contreras MP, Mendez M, Born J, Inostroza M. Unfolding of spatial representation at systems level in infant rats. Hippocampus 2021; 32:121-133. [PMID: 34786798 DOI: 10.1002/hipo.23392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022]
Abstract
Spatial representations enable navigation from early life on. However, the brain regions essential to form spatial representations, like the hippocampus, are considered functionally immature before weaning. Here, we examined the formation of representations of space in rat pups on postnatal day (PD) 16, using a simple habituation paradigm where the pups were exposed to an arena on three occasions, separated by ~140 min. Whereas on the first two occasions the arena was the same, on the third "test" occasion either proximal cues (Prox group), or distal cues (Dist group), or proximal and distal cues (Prox-Dist group), or no cues (No-change group) were rearranged. Locomotion (distance traveled) was used as behavioral measure of habituation, and c-Fos expression to measure regional brain activity at test. Locomotion generally decreased across the first two occasions. At test, it reached a minimum in the No-change group, indicating familiarity with the spatial conditions. By contrast, the Prox-Dist group displayed a significant increase in locomotion which was less robust in the Prox group and absent in the Dist group, a pattern suggesting that the pups relied more on proximal than distal cues during spatial exploration. c-Fos activity in the No-change group was significantly suppressed in the hippocampus (CA1, CA3, dentate gyrus) but simultaneously enhanced in the prelimbic area (PL) of the medial prefrontal cortex, compared with untreated Home-cage controls, pointing to a possible involvement of the PL in regulating locomotion in familiar spaces. By contrast, in both Prox-Dist and Prox groups c-Fos activity was enhanced in hippocampal CA1 and CA3 regions, suggesting these regions might be particularly involved in regulating exploration of spatial novelty. Our findings show that functional representations of space at a systems level are formed already in pre-weanling rats.
Collapse
Affiliation(s)
- Xia Shan
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
| | - María P Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Graduate School of Neural & Behavioral Science, International Max Planck Research School, Tübingen, Germany
| | - Marta Mendez
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Plaza Feijoo, Oviedo, Spain
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany.,Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Colonnese MT, Murata Y, Phillips MA. A new role for visual experience in top-down cortical development. Neuron 2021; 109:3400-3401. [PMID: 34735791 DOI: 10.1016/j.neuron.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Neuron, Ibrahim et al. (2021) examine the rules by which top-down connections are made on visual cortical layer 1 interneurons, discovering activity-dependent cooperative interactions with visual input that are specific to neurogliaform cells and anterior cingulate cortex.
Collapse
Affiliation(s)
- Matthew T Colonnese
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Yasunobu Murata
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
30
|
Tokariev A, Breakspear M, Videman M, Stjerna S, Scholtens LH, van den Heuvel MP, Cocchi L, Vanhatalo S. Impact of In Utero Exposure to Antiepileptic Drugs on Neonatal Brain Function. Cereb Cortex 2021; 32:2385-2397. [PMID: 34585721 PMCID: PMC9157298 DOI: 10.1093/cercor/bhab338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
In utero brain development underpins brain health across the lifespan but is vulnerable to physiological and pharmacological perturbation. Here, we show that antiepileptic medication during pregnancy impacts on cortical activity during neonatal sleep, a potent indicator of newborn brain health. These effects are evident in frequency-specific functional brain networks and carry prognostic information for later neurodevelopment. Notably, such effects differ between different antiepileptic drugs that suggest neurodevelopmental adversity from exposure to antiepileptic drugs and not maternal epilepsy per se. This work provides translatable bedside metrics of brain health that are sensitive to the effects of antiepileptic drugs on postnatal neurodevelopment and carry direct prognostic value.
Collapse
Affiliation(s)
- Anton Tokariev
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mari Videman
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Pediatric Neurology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Susanna Stjerna
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Cocchi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sampsa Vanhatalo
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Mojtahedi N, Kovalchuk Y, Böttcher A, Garaschuk O. Stable behavioral state-specific large scale activity patterns in the developing cortex of neonates. Cell Calcium 2021; 98:102448. [PMID: 34375923 DOI: 10.1016/j.ceca.2021.102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 01/31/2023]
Abstract
Intrinsic neuronal activity is a hallmark of the developing brain. In rodents, a handful of such activities were described in different cortical areas but the unifying macroscopic perspective is still lacking. Here we combined large-scale in vivo Ca2+ imaging of the dorsal cortex in non-anesthetized neonatal mice with mathematical analyses to reveal unique behavioral state-specific maps of intrinsic activity. These maps were remarkably stable over time within and across experiments and used patches of correlated activity with little hemispheric symmetry as well as stationary and propagating waves as building blocks. Importantly, the maps recorded during motion and rest were almost inverse, with frontoparietal areas active during motion and posterior-lateral areas active at rest. The retrosplenial cortex engaged in both resting- and motion-related activities via functional long-range connections with respective cortical areas. The data obtained bind different region-specific activity patterns described so far into a single consistent picture and set the stage for future inactivation studies, probing the exact function of this complex activity pattern for cortical wiring in neonates.
Collapse
Affiliation(s)
- Nima Mojtahedi
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Yury Kovalchuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Alexander Böttcher
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
32
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|
33
|
Rudnitskaya EA, Kozlova TA, Burnyasheva AO, Stefanova NA, Kolosova NG. Glia Not Neurons: Uncovering Brain Dysmaturation in a Rat Model of Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9070823. [PMID: 34356887 PMCID: PMC8301397 DOI: 10.3390/biomedicines9070823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is a severe disorder of unknown etiology with no definite time frame of onset. Recent studies suggest that middle age is a critical period for the relevant pathological processes of AD. Nonetheless, sufficient data have accumulated supporting the hypothesis of "neurodevelopmental origin of neurodegenerative disorders": prerequisites for neurodegeneration may occur during early brain development. Therefore, we investigated the development of the most AD-affected brain structures (hippocampus and prefrontal cortex) using an immunohistochemical approach in senescence-accelerated OXYS rats, which are considered a suitable model of the most common-sporadic-type of AD. We noticed an additional peak of neurogenesis, which coincides in time with the peak of apoptosis in the hippocampus of OXYS rats on postnatal day three. Besides, we showed signs of delayed migration of neurons to the prefrontal cortex as well as disturbances in astrocytic and microglial support of the hippocampus and prefrontal cortex during the first postnatal week. Altogether, our results point to dysmaturation during early development of the brain-especially insufficient glial support-as a possible "first hit" leading to neurodegenerative processes and AD pathology manifestation later in life.
Collapse
|
34
|
Niedecker RW, Kloc ML, Holmes GL, Barry JM. Effects of early life seizures on coordination of hippocampal-prefrontal networks: Influence of sex and dynamic brain states. Epilepsia 2021; 62:1701-1714. [PMID: 34002378 PMCID: PMC8260466 DOI: 10.1111/epi.16927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Early life seizures (ELSs) alter activity-dependent maturation of neuronal circuits underlying learning and memory. The pathophysiological mechanisms underpinning seizure-induced cognitive impairment are not fully understood, and critical variables such as sex and dynamic brain states with regard to cognitive outcomes have not been explored. We hypothesized that in comparison to control (CTL) rats, ELS rats would exhibit deficits in spatial cognition correlating with impaired dynamic neural signal coordination between the hippocampus and medial prefrontal cortex (mPFC). METHODS Male and female rat pups were given 50 flurothyl-induced seizures over 10 days starting at postnatal Day 15. As adults, spatial cognition was tested through active avoidance on a rotating arena. Microwire tetrodes were implanted in the mPFC and CA1 subfield. Single cells and local field potentials were recorded and analyzed in each region during active avoidance and sleep. RESULTS ELS males exhibited avoidance impairments, whereas female rats were unaffected. During avoidance, hippocampus-mPFC coherence was higher in CTL females than CTL males across bandwidths. In comparison to CTL males, ELS male learners exhibit increased coherence within theta bandwidth as well as altered burst-timing in mPFC cell activity. Hippocampus-mPFC coherence levels are predictive of cognitive outcome in the active avoidance spatial task. SIGNIFICANCE Spatial cognitive outcome post-ELS is sex-dependent, as females fare better than males. ELS males that learn the task exhibit increased mPFC coherence levels at low-theta frequency, which may compensate for ELS effects on mPFC cell timing. These results suggest that coherence may serve as a biomarker for spatial cognitive outcome post-ELS and emphasize the significance of analyzing sex and dynamic cognition as variables in understanding seizure effects on the developing brain.
Collapse
Affiliation(s)
- Rhys W Niedecker
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Michelle L Kloc
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jeremy M Barry
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
35
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
36
|
The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 2021; 22:290-307. [PMID: 33772226 PMCID: PMC9001156 DOI: 10.1038/s41583-021-00443-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.
Collapse
|
37
|
Bitzenhofer SH, Pöpplau JA, Chini M, Marquardt A, Hanganu-Opatz IL. A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice. Neuron 2021; 109:1350-1364.e6. [PMID: 33675685 PMCID: PMC8063718 DOI: 10.1016/j.neuron.2021.02.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Disturbed neuronal activity in neuropsychiatric pathologies emerges during development and might cause multifold neuronal dysfunction by interfering with apoptosis, dendritic growth, and synapse formation. However, how altered electrical activity early in life affects neuronal function and behavior in adults is unknown. Here, we address this question by transiently increasing the coordinated activity of layer 2/3 pyramidal neurons in the medial prefrontal cortex of neonatal mice and monitoring long-term functional and behavioral consequences. We show that increased activity during early development causes premature maturation of pyramidal neurons and affects interneuronal density. Consequently, altered inhibitory feedback by fast-spiking interneurons and excitation/inhibition imbalance in prefrontal circuits of young adults result in weaker evoked synchronization of gamma frequency. These structural and functional changes ultimately lead to poorer mnemonic and social abilities. Thus, prefrontal activity during early development actively controls the cognitive performance of adults and might be critical for cognitive symptoms in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
38
|
Cassel JC, Ferraris M, Quilichini P, Cholvin T, Boch L, Stephan A, Pereira de Vasconcelos A. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neurosci Biobehav Rev 2021; 126:338-360. [PMID: 33766671 DOI: 10.1016/j.neubiorev.2021.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Abstract
Over the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh. The current review will cover these recent articles, more on Re than on Rh, and their contribution will be approached according to their affiliation with work before 2013. These neuroanatomical, electrophysiological or behavioral findings appear coherent and point to the ReRh nuclei as two major components of a multistructural system supporting numerous cognitive (and non-cognitive) functions. They gate the flow of information, perhaps especially from the medial prefrontal cortex to the hippocampus and back, and coordinate activity and processing across these two (and possibly other) brain regions of major cognitive relevance.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Maëva Ferraris
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Pascale Quilichini
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Thibault Cholvin
- Institute for Physiology I, University Clinics Freiburg, 79104 Freiburg, Germany
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
39
|
Ferraris M, Cassel JC, Pereira de Vasconcelos A, Stephan A, Quilichini PP. The nucleus reuniens, a thalamic relay for cortico-hippocampal interaction in recent and remote memory consolidation. Neurosci Biobehav Rev 2021; 125:339-354. [PMID: 33631314 DOI: 10.1016/j.neubiorev.2021.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The consolidation of declarative memories is believed to occur mostly during sleep and involves a dialogue between two brain regions, the hippocampus and the medial prefrontal cortex. The information encoded during experience by neuronal assemblies is replayed during sleep leading to the progressive strengthening and integration of the memory trace in the prefrontal cortex. The gradual transfer of information from the hippocampus to the medial prefrontal cortex for long-term storage requires the synchronization of cortico-hippocampal networks by different oscillations, like ripples, spindles, and slow oscillations. Recent studies suggest the involvement of a third partner, the nucleus reuniens, in memory consolidation. Its bidirectional connections with the hippocampus and medial prefrontal cortex place the reuniens in a key position to relay information between the two structures. Indeed, many topical works reveal the original role that the nucleus reuniens occupies in different recent and remote memories consolidation. This review aimed to examine these contributions, as well as its functional embedment in this complex memory network, and provide some insights on the possible mechanisms.
Collapse
Affiliation(s)
- Maëva Ferraris
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Jean-Christophe Cassel
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | - Aline Stephan
- Laboratoire De Neurosciences Cognitives Et Adaptatives, Université De Strasbourg, F-67000, Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000, Strasbourg, France
| | | |
Collapse
|
40
|
Hanganu-Opatz IL, Butt SJB, Hippenmeyer S, De Marco García NV, Cardin JA, Voytek B, Muotri AR. The Logic of Developing Neocortical Circuits in Health and Disease. J Neurosci 2021; 41:813-822. [PMID: 33431633 PMCID: PMC7880298 DOI: 10.1523/jneurosci.1655-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
The sensory and cognitive abilities of the mammalian neocortex are underpinned by intricate columnar and laminar circuits formed from an array of diverse neuronal populations. One approach to determining how interactions between these circuit components give rise to complex behavior is to investigate the rules by which cortical circuits are formed and acquire functionality during development. This review summarizes recent research on the development of the neocortex, from genetic determination in neural stem cells through to the dynamic role that specific neuronal populations play in the earliest circuits of neocortex, and how they contribute to emergent function and cognition. While many of these endeavors take advantage of model systems, consideration will also be given to advances in our understanding of activity in nascent human circuits. Such cross-species perspective is imperative when investigating the mechanisms underlying the dysfunction of early neocortical circuits in neurodevelopmental disorders, so that one can identify targets amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Simon J B Butt
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Jessica A Cardin
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut 06520
| | - Bradley Voytek
- University of California San Diego, Department of Cognitive Science, Halıcıoğlu Data Science Institute, Neurosciences Graduate Program, La Jolla, California 92093
- University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, California 92093
| | - Alysson R Muotri
- University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, California 92093
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny, La Jolla, California 92037
| |
Collapse
|
41
|
Pires J, Nelissen R, Mansvelder HD, Meredith RM. Spontaneous synchronous network activity in the neonatal development of mPFC in mice. Dev Neurobiol 2021; 81:207-225. [PMID: 33453138 PMCID: PMC8048581 DOI: 10.1002/dneu.22811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Spontaneous Synchronous Network Activity (SSA) is a hallmark of neurodevelopment found in numerous central nervous system structures, including neocortex. SSA occurs during restricted developmental time‐windows, commonly referred to as critical periods in sensory neocortex. Although part of the neocortex, the critical period for SSA in the medial prefrontal cortex (mPFC) and the underlying mechanisms for generation and propagation are unknown. Using Ca2+ imaging and whole‐cell patch‐clamp in an acute mPFC slice mouse model, the development of spontaneous activity and SSA was investigated at cellular and network levels during the two first postnatal weeks. The data revealed that developing mPFC neuronal networks are spontaneously active and exhibit SSA in the first two postnatal weeks, with peak synchronous activity at postnatal days (P)8–9. Networks remain active but are desynchronized by the end of this 2‐week period. SSA was driven by excitatory ionotropic glutamatergic transmission with a small contribution of excitatory GABAergic transmission at early time points. The neurohormone oxytocin desynchronized SSA in the first postnatal week only without affecting concurrent spontaneous activity. By the end of the second postnatal week, inhibiting GABAA receptors restored SSA. These findings point to the emergence of GABAA receptor‐mediated inhibition as a major factor in the termination of SSA in mouse mPFC.
Collapse
Affiliation(s)
- Johny Pires
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rosalie Nelissen
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| | - Rhiannon M Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics & Cognitive Research, Faculty of Science, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Nath M, Wong TP, Srivastava LK. Neurodevelopmental insights into circuit dysconnectivity in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110047. [PMID: 32721441 DOI: 10.1016/j.pnpbp.2020.110047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
Schizophrenia is increasingly being recognized as a disorder of brain circuits of developmental origin. Animal models, however, have been technically limited in exploring the effects of early developmental circuit abnormalities on the maturation of the brain and associated behavioural outputs. This review discusses evidence of the developmental emergence of circuit abnormalities in schizophrenia, followed by a critical assessment on how animal models need to be adapted through optimized tools in order to spatially and temporally manipulate early developmental events, thereby providing insight into the causal contribution of developmental perturbations to schizophrenia.
Collapse
Affiliation(s)
- Moushumi Nath
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada.
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| |
Collapse
|
43
|
Xu X, Song L, Hanganu-Opatz IL. Knock-Down of Hippocampal DISC1 in Immune-Challenged Mice Impairs the Prefrontal-Hippocampal Coupling and the Cognitive Performance Throughout Development. Cereb Cortex 2021; 31:1240-1258. [PMID: 33037815 PMCID: PMC7786359 DOI: 10.1093/cercor/bhaa291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) gene represents an intracellular hub of developmental processes. When combined with early environmental stressors, such as maternal immune activation, but not in the absence of thereof, whole-brain DISC1 knock-down leads to memory and executive deficits as result of impaired prefrontal–hippocampal communication throughout development. While synaptic dysfunction in neonatal prefrontal cortex (PFC) has been recently identified as one source of abnormal long-range coupling, the contribution of hippocampus (HP) is still unknown. Here, we aim to fill this knowledge gap by combining in vivo electrophysiology and optogenetics with morphological and behavioral assessment of immune-challenged mice with DISC1 knock-down either in the whole brain (GE) or restricted to pyramidal neurons in hippocampal CA1 area (GHPE). We found abnormal network activity, sharp-waves, and neuronal firing in CA1 that complement the deficits in upper layer of PFC. Moreover, optogenetic activating CA1 pyramidal neurons fails to activate the prefrontal local circuits. These deficits that persist till prejuvenile age relate to dendrite sparsification and loss of spines of CA1 pyramidal neurons. As a long-term consequence, DISC1 knock-down in HP leads to poorer recognition memory at prejuvenile age. Thus, DISC1-controlled developmental processes in HP in immune-challenged mice are critical for circuit function and cognitive behavior.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
44
|
Chini M, Hanganu-Opatz IL. Prefrontal Cortex Development in Health and Disease: Lessons from Rodents and Humans. Trends Neurosci 2020; 44:227-240. [PMID: 33246578 DOI: 10.1016/j.tins.2020.10.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
The role of the prefrontal cortex (PFC) takes center stage among unanswered questions in modern neuroscience. The PFC has a Janus-faced nature: it enables sophisticated cognitive and social abilities that reach their maximum expression in humans, yet it underlies some of the devastating symptoms of psychiatric disorders. Accordingly, appropriate prefrontal development is crucial for many high-order cognitive abilities and dysregulation of this process has been linked to various neuropsychiatric diseases. Reviewing recent advances in the field, with a primary focus on rodents and humans, we highlight why, despite differences across species, a cross-species approach is a fruitful strategy for understanding prefrontal development. We briefly review the developmental contribution of molecules and extensively discuss how electrical activity controls the early maturation and wiring of prefrontal areas, as well as the emergence and refinement of input-output circuitry involved in cognitive processing. Finally, we highlight the mechanisms of developmental dysfunction and their relevance for psychiatric disorders.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
45
|
Bitzenhofer SH, Pöpplau JA, Hanganu-Opatz I. Gamma activity accelerates during prefrontal development. eLife 2020; 9:e56795. [PMID: 33206597 PMCID: PMC7673781 DOI: 10.7554/elife.56795] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Gamma oscillations are a prominent activity pattern in the cerebral cortex. While gamma rhythms have been extensively studied in the adult prefrontal cortex in the context of cognitive (dys)functions, little is known about their development. We addressed this issue by using extracellular recordings and optogenetic stimulations in mice across postnatal development. We show that fast rhythmic activity in the prefrontal cortex becomes prominent during the second postnatal week. While initially at about 15 Hz, fast oscillatory activity progressively accelerates with age and stabilizes within gamma frequency range (30-80 Hz) during the fourth postnatal week. Activation of layer 2/3 pyramidal neurons drives fast oscillations throughout development, yet the acceleration of their frequency follows similar temporal dynamics as the maturation of fast-spiking interneurons. These findings uncover the development of prefrontal gamma activity and provide a framework to examine the origin of abnormal gamma activity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Ileana Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-EppendorfHamburgGermany
| |
Collapse
|
46
|
Moghimi S, Shadkam A, Mahmoudzadeh M, Calipe O, Panzani M, Edalati M, Ghorbani M, Routier L, Wallois F. The intimate relationship between coalescent generators in very premature human newborn brains: Quantifying the coupling of nested endogenous oscillations. Hum Brain Mapp 2020; 41:4691-4703. [PMID: 33463873 PMCID: PMC7555093 DOI: 10.1002/hbm.25150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Temporal theta slow-wave activity (TTA-SW) in premature infants is a specific neurobiomarker of the early neurodevelopment of perisylvian networks observed as early as 24 weeks of gestational age (wGA). It is present at the turning point between non-sensory driven spontaneous networks and cortical network functioning. Despite its clinical importance, the underlying mechanisms responsible for this spontaneous nested activity and its functional role have not yet been determined. The coupling between neural oscillations at different timescales is a key feature of ongoing neural activity, the characteristics of which are determined by the network structure and dynamics. The underlying mechanisms of cross-frequency coupling (CFC) are associated with several putative functions in adults. In order to show that this generic mechanism is already in place early in the course of development, we analyzed electroencephalography recordings from sleeping preterm newborns (24-27 wGA). Employing cross-frequency phase-amplitude coupling analyses, we found that TTAs were orchestrated by the SWs defined by a precise temporal relationship. Notably, TTAs were synchronized to the SW trough, and were suppressed during the SW peak. Spontaneous endogenous TTA-SWs constitute one of the very early signatures of the developing temporal neural networks with key functions, such as language and communication. The presence of a fine-tuned relationship between the slow activity and the TTA in premature neonates emphasizes the complexity and relative maturity of the intimate mechanisms that shape the CFC, the disruption of which can have severe neurodevelopmental consequences.
Collapse
Affiliation(s)
- Sahar Moghimi
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
- Rayan Center for Neuroscience and BehaviorFerdowsi University of MashhadMashhadIran
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Azadeh Shadkam
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
| | - Mahdi Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
- Inserm UMR1105, EFSN PédiatriquesCentre Hospitalier Universitaire Amiens sudAmiens CedexFrance
| | - Olivia Calipe
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Marine Panzani
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Mohammadreza Edalati
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
| | - Maryam Ghorbani
- Electrical Engineering DepartmentFerdowsi University of MashhadIran
- Rayan Center for Neuroscience and BehaviorFerdowsi University of MashhadMashhadIran
| | - Laura Routier
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
- Inserm UMR1105, EFSN PédiatriquesCentre Hospitalier Universitaire Amiens sudAmiens CedexFrance
| | - Fabrice Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction CérébraleCentre Universitaire de Recherches en SanteAmiens CedexFrance
- Inserm UMR1105, EFSN PédiatriquesCentre Hospitalier Universitaire Amiens sudAmiens CedexFrance
| |
Collapse
|
47
|
Song P, Li S, Wang S, Wei H, Lin H, Wang Y. Repetitive transcranial magnetic stimulation of the cerebellum improves ataxia and cerebello-fronto plasticity in multiple system atrophy: a randomized, double-blind, sham-controlled and TMS-EEG study. Aging (Albany NY) 2020; 12:20611-20622. [PMID: 33085647 PMCID: PMC7655163 DOI: 10.18632/aging.103946] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
Cerebellar ataxia is the predominant motor feature of multiple system atrophy cerebellar subtype (MSA-C). Although repetitive transcranial magnetic stimulation (TMS) of the cerebellum is growingly applied in MSA, the mechanism is unknown. We examined dynamic connectivity changes of 20 patients with MSA and 25 healthy controls using TMS combined with electroencephalography. Observations that significantly decreased dynamic cerebello-frontal connectivity in patients have inspired attempts to modulate cerebellar connectivity in order to benefit MSA. We further explore the therapeutic potential of a 10-day treatment of cerebellar intermittent theta burst stimulation (iTBS) in MSA by a randomized, double-blind, sham-controlled trial. The functional reorganization of cerebellar networks was investigated after the end of treatment in active and sham groups. The severity of the symptoms was evaluated using the Scale for Assessment and Rating of Ataxia scores. Patients treated with active stimulation showed an improvement of cerebello-frontal connectivity and balance functions, as revealed by a significant decrease in the ataxia scores (P < 0.01). Importantly, the neural activity of frontal connectivity from 80 to 100 ms after a single TMS was significantly related to the severity of the disease. Our study provides new proof that cerebellar iTBS improves motor imbalance in MSA by acting on cerebello-cortical plasticity.
Collapse
Affiliation(s)
- Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Geriatric Medical Research Center, Beijing 100053, China
| | - Siran Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Suobin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hua Wei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.,Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| |
Collapse
|
48
|
Kostka JK, Gretenkord S, Spehr M, Hanganu-Opatz IL. Bursting mitral cells time the oscillatory coupling between olfactory bulb and entorhinal networks in neonatal mice. J Physiol 2020; 598:5753-5769. [PMID: 32926437 DOI: 10.1113/jp280131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/08/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During early postnatal development, mitral cells show either irregular bursting or non-bursting firing patterns Bursting mitral cells preferentially fire during theta bursts in the neonatal olfactory bulb, being locked to the theta phase Bursting mitral cells preferentially fire during theta bursts in the neonatal lateral entorhinal cortex and are temporally related to both respiration rhythm- and theta phase Bursting mitral cells act as a cellular substrate of the olfactory drive that promotes the oscillatory entrainment of entorhinal networks ABSTRACT: Shortly after birth, the olfactory system provides not only the main source of environmental inputs to blind, deaf, non-whisking and motorically-limited rodents, but also the drive boosting the functional entrainment of limbic circuits. However, the cellular substrate of this early communication remains largely unknown. Here, we combine in vivo and in vitro patch-clamp and extracellular recordings to reveal the contribution of mitral cell (MC) firing to early patterns of network activity in both the neonatal olfactory bulb (OB) and the lateral entorhinal cortex (LEC), the gatekeeper of limbic circuits. We show that MCs predominantly fire either in an irregular bursting or non-bursting pattern during discontinuous theta events in the OB. However, the temporal spike-theta phase coupling is stronger for bursting than non-bursting MCs. In line with the direct OB-to-LEC projections, both bursting and non-bursting discharge augments during co-ordinated patterns of entorhinal activity, albeit with higher magnitude for bursting MCs. For these neurons, temporal coupling to the discontinuous theta events in the LEC is stronger. Thus, bursting MCs might drive the entrainment of the OB-LEC network during neonatal development.
Collapse
Affiliation(s)
- Johanna K Kostka
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Gretenkord
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute of Biology II, Rheinisch-Westfalische Technische Hochschule Aachen, Aachen, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Developmental onset distinguishes three types of spontaneous recognition memory in mice. Sci Rep 2020; 10:10612. [PMID: 32606443 PMCID: PMC7326931 DOI: 10.1038/s41598-020-67619-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/09/2020] [Indexed: 11/20/2022] Open
Abstract
Spontaneous recognition memory tasks build on an animal’s natural preference for novelty to assess the what, where and when components of episodic memory. Their simplicity, ethological relevance and cross-species adaptability make them extremely useful to study the physiology and pathology of memory. Recognition memory deficits are common in rodent models of neurodevelopmental disorders, and yet very little is known about the expression of spontaneous recognition memory in young rodents. This is exacerbated by the paucity of data on the developmental onset of recognition memory in mice, a major animal model of disease. To address this, we characterized the ontogeny of three types of spontaneous recognition memory in mice: object location, novel object recognition and temporal order recognition. We found that object location is the first to emerge, at postnatal day (P)21. This was followed by novel object recognition (24 h delay), at P25. Temporal order recognition was the last to emerge, at P28. Elucidating the developmental expression of recognition memory in mice is critical to improving our understanding of the ontogeny of episodic memory, and establishes a necessary blueprint to apply these tasks to probe cognitive deficits at clinically relevant time points in animal models of developmental disorders.
Collapse
|
50
|
Del Rio-Bermudez C, Kim J, Sokoloff G, Blumberg MS. Active Sleep Promotes Coherent Oscillatory Activity in the Cortico-Hippocampal System of Infant Rats. Cereb Cortex 2020; 30:2070-2082. [PMID: 31922194 PMCID: PMC7175014 DOI: 10.1093/cercor/bhz223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Active sleep (AS) provides a unique developmental context for synchronizing neural activity within and between cortical and subcortical structures. In week-old rats, sensory feedback from myoclonic twitches, the phasic motor activity that characterizes AS, promotes coherent theta oscillations (4-8 Hz) in the hippocampus and red nucleus, a midbrain motor structure. Sensory feedback from twitches also triggers rhythmic activity in sensorimotor cortex in the form of spindle bursts, which are brief oscillatory events composed of rhythmic components in the theta, alpha/beta (8-20 Hz), and beta2 (20-30 Hz) bands. Here we ask whether one or more of these spindle-burst components are communicated from sensorimotor cortex to hippocampus. By recording simultaneously from whisker barrel cortex and dorsal hippocampus in 8-day-old rats, we show that AS, but not other behavioral states, promotes cortico-hippocampal coherence specifically in the beta2 band. By cutting the infraorbital nerve to prevent the conveyance of sensory feedback from whisker twitches, cortical-hippocampal beta2 coherence during AS was substantially reduced. These results demonstrate the necessity of sensory input, particularly during AS, for coordinating rhythmic activity between these two developing forebrain structures.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|