1
|
Mufti K, Cordova M, Scott EN, Trueman JN, Lovnicki JM, Loucks CM, Rassekh SR, Ross CJD, Carleton BC. Genomic variations associated with risk and protection against vincristine-induced peripheral neuropathy in pediatric cancer patients. NPJ Genom Med 2024; 9:56. [PMID: 39500896 PMCID: PMC11538333 DOI: 10.1038/s41525-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common and highly debilitating toxicity from vincristine treatment that affects quality of life and often requires dose reduction, potentially affecting survival. Although previous studies demonstrated genetic factors are associated with vincristine neuropathy risk, the clinical relevance of most identified variants is limited by small sample sizes and unclear clinical phenotypes. A genome-wide association study was conducted in 1100 cases and controls matched by vincristine dose and genetic ancestry, uncovering a statistically significant (p < 5.0 × 10-8) variant in MCM3AP gene that substantially increases the risk of neuropathy and 12 variants protective against neuropathy within/near SPDYA, METTL8, PDE4D, FBN2, ZFAND3, NFIB, PAPPA, LRRTM3, NRG3, VTI1A, ARHGAP5, and ACTN1. A follow-up pathway analysis reveals the involvement of four key pathways, including nerve structure and development, myelination, neuronal transmission, and cytoskeleton/microfibril function pathways. These findings present potential actionable genomic markers of vincristine neuropathy and offer opportunities for tailored interventions to improve vincristine safety in children with cancer. This study is registered with ClinicalTrials.gov under the title National Active Surveillance Network and Pharmacogenomics of Adverse Drug Reactions in Children (ID NCT00414115, registered on December 21, 2006).
Collapse
Affiliation(s)
- Kheireddin Mufti
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Miguel Cordova
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erika N Scott
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessica N Trueman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Catrina M Loucks
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Bruce C Carleton
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Duan J, Kahms M, Steinhoff A, Klingauf J. Spontaneous and evoked synaptic vesicle release arises from a single releasable pool. Cell Rep 2024; 43:114461. [PMID: 38990719 DOI: 10.1016/j.celrep.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
The quantal content of an evoked postsynaptic response is typically determined by dividing it by the average spontaneous miniature response. However, this approach is challenged by the notion that different synaptic vesicle pools might drive spontaneous and evoked release. Here, we "silence" synaptic vesicles through pharmacological alkalinization and subsequently rescue them by optogenetic acidification. We find that such silenced synaptic vesicles, retrieved during evoked or spontaneous activity, cross-deplete the complementary release mode in a fully reversible manner. A fluorescently tagged version of the endosomal SNARE protein Vti1a, which has been suggested to identify a separate pool of spontaneously recycling synaptic vesicles, is trafficked to synaptic vesicles significantly only upon overexpression but not when endogenously tagged by CRISPR-Cas9. Thus, both release modes draw synaptic vesicles from the same readily releasable pool.
Collapse
Affiliation(s)
- Junxiu Duan
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Martin Kahms
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Ana Steinhoff
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany; CiM Graduate School of the Cells in Motion Interfaculty Centre and the International Max Planck Research School, 48149 Münster, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, 48149 Münster, Germany; Center for Soft Nanoscience SoN, University of Münster, Busso-Peus-Str.10, 48149 Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
3
|
Asmerian H, Alberts J, Sanetra AM, Diaz AJ, Silm K. Role of adaptor protein complexes in generating functionally distinct synaptic vesicle pools. J Physiol 2024. [PMID: 39034608 DOI: 10.1113/jp286179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
The synaptic vesicle (SV) cycle ensures the release of neurotransmitters and the replenishment of SVs to sustain neuronal activity. Multiple endocytosis and sorting pathways contribute to the recapture of the SV membrane and proteins after fusion. Adaptor protein (AP) complexes are among the critical components of the SV retrieval machinery. The canonical clathrin adaptor AP2 ensures the replenishment of most SVs across many neuronal populations. An alternative AP1/AP3-dependent process mediates the formation of a subset of SVs that differ from AP2 vesicles in molecular composition and respond preferentially during higher frequency firing. Furthermore, recent studies show that vesicular transporters for different neurotransmitters depend to a different extent on the AP3 pathway and this affects the release properties of the respective neurotransmitters. This review focuses on the current understanding of the AP-dependent molecular and functional diversity among SVs. We also discuss the contribution of these pathways to the regulation of neurotransmitter release across neuronal populations.
Collapse
Affiliation(s)
- Hrach Asmerian
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacob Alberts
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anna M Sanetra
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexia J Diaz
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Katlin Silm
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Wang CS, McCarthy CI, Guzikowski NJ, Kavalali ET, Monteggia LM. Brain-derived neurotrophic factor scales presynaptic calcium transients to modulate excitatory neurotransmission. Proc Natl Acad Sci U S A 2024; 121:e2303664121. [PMID: 38621124 PMCID: PMC11047077 DOI: 10.1073/pnas.2303664121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.
Collapse
Affiliation(s)
- Camille S. Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Clara I. McCarthy
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Natalie J. Guzikowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| | - Lisa M. Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN3729-7933
- Department of Pharmacology, Vanderbilt University, Nashville, TN37240-7933
| |
Collapse
|
5
|
Paulussen I, Beckert H, Musial TF, Gschossmann LJ, Wolf J, Schmitt M, Clasadonte J, Mairet-Coello G, Wolff C, Schoch S, Dietrich D. SV2B defines a subpopulation of synaptic vesicles. J Mol Cell Biol 2024; 15:mjad054. [PMID: 37682518 PMCID: PMC11184983 DOI: 10.1093/jmcb/mjad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting the recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found more important for vesicle release.
Collapse
Affiliation(s)
- Isabelle Paulussen
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Hannes Beckert
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Timothy F Musial
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Lena J Gschossmann
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Wolf
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | | | | | | | | | - Susanne Schoch
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Dirk Dietrich
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
6
|
Xu H, Oses-Prieto JA, Khvotchev M, Jain S, Liang J, Burlingame A, Edwards RH. Adaptor protein AP-3 produces synaptic vesicles that release at high frequency by recruiting phospholipid flippase ATP8A1. Nat Neurosci 2023; 26:1685-1700. [PMID: 37723322 DOI: 10.1038/s41593-023-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023]
Abstract
Neural systems encode information in the frequency of action potentials, which is then decoded by synaptic transmission. However, the rapid, synchronous release of neurotransmitters depletes synaptic vesicles (SVs), limiting release at high firing rates. How then do synapses convey information about frequency? Here, we show in mouse hippocampal neurons and slices that the adaptor protein AP-3 makes a subset of SVs that respond specifically to high-frequency stimulation. Neurotransmitter transporters slot onto these SVs in different proportions, contributing to the distinct properties of release observed at different excitatory synapses. Proteomics reveals that AP-3 targets the phospholipid flippase ATP8A1 to SVs; loss of ATP8A1 recapitulates the defect in SV mobilization at high frequency observed with loss of AP-3. The mechanism involves recruitment of synapsin by the cytoplasmically oriented phosphatidylserine translocated by ATP8A1. Thus, ATP8A1 enables the subset of SVs made by AP-3 to release at high frequency.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Mikhail Khvotchev
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shweta Jain
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Jocelyn Liang
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Robert H Edwards
- Departments of Physiology and Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
7
|
Yang XK, Zhang FL, Jin XK, Jiao YT, Zhang XW, Liu YL, Amatore C, Huang WH. Nanoelectrochemistry reveals how soluble Aβ 42 oligomers alter vesicular storage and release of glutamate. Proc Natl Acad Sci U S A 2023; 120:e2219994120. [PMID: 37126689 PMCID: PMC10175745 DOI: 10.1073/pnas.2219994120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by β-amyloid (Aβ) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aβ42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aβ42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aβ amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aβ42-induced neuronal hyperactivity and neuronal degeneration.
Collapse
Affiliation(s)
- Xiao-Ke Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, People’s Republic of China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, People’s Republic of China
| | - Xue-Ke Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, People’s Republic of China
| | - Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, People’s Republic of China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, People’s Republic of China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, People’s Republic of China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, People’s Republic of China
- PASTEUR, Département de Chimie, École Normale Supérieure, Paris Sciences Lettre Research University, Sorbonne University, & University Pierre and Marie Curie, 0675005Paris, France
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan430071, People’s Republic of China
| |
Collapse
|
8
|
Raj N, Greune L, Kahms M, Mildner K, Franzkoch R, Psathaki OE, Zobel T, Zeuschner D, Klingauf J, Gerke V. Early Endosomes Act as Local Exocytosis Hubs to Repair Endothelial Membrane Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300244. [PMID: 36938863 PMCID: PMC10161044 DOI: 10.1002/advs.202300244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Indexed: 05/06/2023]
Abstract
The plasma membrane of a cell is subject to stresses causing ruptures that must be repaired immediately to preserve membrane integrity and ensure cell survival. Yet, the spatio-temporal membrane dynamics at the wound site and the source of the membrane required for wound repair are poorly understood. Here, it is shown that early endosomes, previously only known to function in the uptake of extracellular material and its endocytic transport, are involved in plasma membrane repair in human endothelial cells. Using live-cell imaging and correlative light and electron microscopy, it is demonstrated that membrane injury triggers a previously unknown exocytosis of early endosomes that is induced by Ca2+ entering through the wound. This exocytosis is restricted to the vicinity of the wound site and mediated by the endosomal soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) VAMP2, which is crucial for efficient membrane repair. Thus, the newly identified Ca2+ -evoked and localized exocytosis of early endosomes supplies the membrane material required for rapid resealing of a damaged plasma membrane, thereby providing the first line of defense against damage in mechanically challenged endothelial cells.
Collapse
Affiliation(s)
- Nikita Raj
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, 48149, Münster, Germany
| | - Martin Kahms
- Institute of Medical Physics and Biophysics, University of Münster, 48149, Münster, Germany
| | - Karina Mildner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Rico Franzkoch
- Department of Biology, integrated Bioimaging Facility (iBiOs), Center of Cellular Nanoanalytics (CellNanO), University of Osnabrück, 49076, Osnabrück, Germany
| | - Olympia Ekaterini Psathaki
- Department of Biology, integrated Bioimaging Facility (iBiOs), Center of Cellular Nanoanalytics (CellNanO), University of Osnabrück, 49076, Osnabrück, Germany
| | - Thomas Zobel
- Imaging Network, Cells in Motion Interfaculty Centre, University of Münster, 48149, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| |
Collapse
|
9
|
Grasskamp AT, Jusyte M, McCarthy AW, Götz TWB, Ditlevsen S, Walter AM. Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials. Front Cell Neurosci 2023; 17:1129417. [PMID: 36970416 PMCID: PMC10030884 DOI: 10.3389/fncel.2023.1129417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Synaptic transmission relies on presynaptic neurotransmitter (NT) release from synaptic vesicles (SVs) and on NT detection by postsynaptic receptors. Transmission exists in two principal modes: action-potential (AP) evoked and AP-independent, "spontaneous" transmission. AP-evoked neurotransmission is considered the primary mode of inter-neuronal communication, whereas spontaneous transmission is required for neuronal development, homeostasis, and plasticity. While some synapses appear dedicated to spontaneous transmission only, all AP-responsive synapses also engage spontaneously, but whether this encodes functional information regarding their excitability is unknown. Here we report on functional interdependence of both transmission modes at individual synaptic contacts of Drosophila larval neuromuscular junctions (NMJs) which were identified by the presynaptic scaffolding protein Bruchpilot (BRP) and whose activities were quantified using the genetically encoded Ca2+ indicator GCaMP. Consistent with the role of BRP in organizing the AP-dependent release machinery (voltage-dependent Ca2+ channels and SV fusion machinery), most active BRP-positive synapses (>85%) responded to APs. At these synapses, the level of spontaneous activity was a predictor for their responsiveness to AP-stimulation. AP-stimulation resulted in cross-depletion of spontaneous activity and both transmission modes were affected by the non-specific Ca2+ channel blocker cadmium and engaged overlapping postsynaptic receptors. Thus, by using overlapping machinery, spontaneous transmission is a continuous, stimulus independent predictor for the AP-responsiveness of individual synapses.
Collapse
Affiliation(s)
| | - Meida Jusyte
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | | | - Torsten W. B. Götz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander M. Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Einstein Center for Neurosciences, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
A Proteome-Wide Effect of PHF8 Knockdown on Cortical Neurons Shows Downregulation of Parkinson's Disease-Associated Protein Alpha-Synuclein and Its Interactors. Biomedicines 2023; 11:biomedicines11020486. [PMID: 36831023 PMCID: PMC9953648 DOI: 10.3390/biomedicines11020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Synaptic dysfunction may underlie the pathophysiology of Parkinson's disease (PD), a presently incurable condition characterized by motor and cognitive symptoms. Here, we used quantitative proteomics to study the role of PHD Finger Protein 8 (PHF8), a histone demethylating enzyme found to be mutated in X-linked intellectual disability and identified as a genetic marker of PD, in regulating the expression of PD-related synaptic plasticity proteins. Amongst the list of proteins found to be affected by PHF8 knockdown were Parkinson's-disease-associated SNCA (alpha synuclein) and PD-linked genes DNAJC6 (auxilin), SYNJ1 (synaptojanin 1), and the PD risk gene SH3GL2 (endophilin A1). Findings in this study show that depletion of PHF8 in cortical neurons affects the activity-induced expression of proteins involved in synaptic plasticity, synaptic structure, vesicular release and membrane trafficking, spanning the spectrum of pre-synaptic and post-synaptic transmission. Given that the depletion of even a single chromatin-modifying enzyme can affect synaptic protein expression in such a concerted manner, more in-depth studies will be needed to show whether such a mechanism can be exploited as a potential disease-modifying therapeutic drug target in PD.
Collapse
|
11
|
Yan C, Jiang J, Yang Y, Geng X, Dong W. The function of VAMP2 in mediating membrane fusion: An overview. Front Mol Neurosci 2022; 15:948160. [PMID: 36618823 PMCID: PMC9816800 DOI: 10.3389/fnmol.2022.948160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Vesicle-associated membrane protein 2 (VAMP2, also known as synaptobrevin-2), encoded by VAMP2 in humans, is a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. VAMP2 combined with syntaxin-1A (SYX-1A) and synaptosome-associated protein 25 (SNAP-25) produces a force that induces the formation of fusion pores, thereby mediating the fusion of synaptic vesicles and the release of neurotransmitters. VAMP2 is largely unstructured in the absence of interaction partners. Upon interaction with other SNAREs, the structure of VAMP2 stabilizes, resulting in the formation of four structural domains. In this review, we highlight the current knowledge of the roles of the VAMP2 domains and the interaction between VAMP2 and various fusion-related proteins in the presynaptic cytoplasm during the fusion process. Our summary will contribute to a better understanding of the roles of the VAMP2 protein in membrane fusion.
Collapse
Affiliation(s)
- Chong Yan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Department of Neurosurgery, Neurosurgical Clinical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Xiaoqi Geng,
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China,Wei Dong,
| |
Collapse
|
12
|
Lamanna J, Ferro M, Spadini S, Malgaroli A. Exploiting the molecular diversity of the synapse to investigate neuronal communication: A guide through the current toolkit. Eur J Neurosci 2022; 56:6141-6161. [PMID: 36239030 PMCID: PMC10100385 DOI: 10.1111/ejn.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Chemical synapses are tiny and overcrowded environments, deeply embedded inside brain tissue and enriched with thousands of protein species. Many efforts have been devoted to developing custom approaches for evaluating and modifying synaptic activity. Most of these methods are based on the engineering of one or more synaptic protein scaffolds used to target active moieties to the synaptic compartment or to manipulate synaptic functioning. In this review, we summarize the most recent methodological advances and provide a description of the involved proteins as well as the operation principle. Furthermore, we highlight their advantages and limitations in relation to studies of synaptic transmission in vitro and in vivo. Concerning the labelling methods, the most important challenge is how to extend the available approaches to the in vivo setting. On the other hand, for those methods that allow manipulation of synaptic function, this limit has been overcome using optogenetic approaches that can be more easily applied to the living brain. Finally, future applications of these methods to neuroscience, as well as new potential routes for development, are discussed.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Turro, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
13
|
Lazarevic V, Yang Y, Paslawski W, Svenningsson P. α-Synuclein induced cholesterol lowering increases tonic and reduces depolarization-evoked synaptic vesicle recycling and glutamate release. NPJ Parkinsons Dis 2022; 8:71. [PMID: 35672421 PMCID: PMC9174203 DOI: 10.1038/s41531-022-00334-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
α-Synuclein (α-syn) is a key molecule linked to Parkinson's disease pathology. Physiologically, the monomeric α-syn in the presynaptic termini is involved in regulation of neurotransmission, but the pathophysiology of extracellular monomeric α-syn is still unknown. Utilizing both in vivo and in vitro approaches, we investigated how extracellular α-syn impact presynaptic structure and function. Our data revealed that treatment with exogenous α-syn leads to increased tonic and decreased depolarization-evoked synaptic vesicle (SV) recycling and glutamate release. This was associated with mobilization of molecularly distinct SV pools and reorganization of active zone components. Our study also showed that exogenous α-syn impaired neuronal cholesterol level and that the cholesterol binding domain of α-syn was sufficient to exert the same presynaptic phenotype as the full-length protein. The present study sheds new light on physiological functions of extracellular α-syn in overall maintenance of presynaptic activity that involves the reorganization of both presynaptic compartment and cholesterol-rich plasma membrane domains.
Collapse
Affiliation(s)
- Vesna Lazarevic
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Yunting Yang
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
14
|
Tang F, Fan J, Zhang X, Zou Z, Xiao D, Li X. The Role of Vti1a in Biological Functions and Its Possible Role in Nervous System Disorders. Front Mol Neurosci 2022; 15:918664. [PMID: 35711736 PMCID: PMC9197314 DOI: 10.3389/fnmol.2022.918664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Vesicle transport through interaction with t-SNAREs 1A (Vti1a), a member of the N-ethylmaleimide-sensitive factor attachment protein receptor protein family, is involved in cell signaling as a vesicular protein and mediates vesicle trafficking. Vti1a appears to have specific roles in neurons, primarily by regulating upstream neurosecretory events that mediate exocytotic proteins and the availability of secretory organelles, as well as regulating spontaneous synaptic transmission and postsynaptic efficacy to control neurosecretion. Vti1a also has essential roles in neural development, autophagy, and unconventional extracellular transport of neurons. Studies have shown that Vti1a dysfunction plays critical roles in pathological mechanisms of Hepatic encephalopathy by influencing spontaneous neurotransmission. It also may have an unknown role in amyotrophic lateral sclerosis. A VTI1A variant is associated with the risk of glioma, and the fusion product of the VTI1A gene and the adjacent TCF7L2 gene is involved in glioma development. This review summarizes Vti1a functions in neurons and highlights the role of Vti1a in the several nervous system disorders.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoyan Zhang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Dongqiong Xiao,
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xihong Li,
| |
Collapse
|
15
|
Song C, Leahy SN, Rushton EM, Broadie K. RNA-binding FMRP and Staufen sequentially regulate the Coracle scaffold to control synaptic glutamate receptor and bouton development. Development 2022; 149:274991. [PMID: 35394012 PMCID: PMC9148565 DOI: 10.1242/dev.200045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma M. Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA,Author for correspondence ()
| |
Collapse
|
16
|
Egashira Y, Kumade A, Ojida A, Ono F. Spontaneously Recycling Synaptic Vesicles Constitute Readily Releasable Vesicles in Intact Neuromuscular Synapses. J Neurosci 2022; 42:3523-3536. [PMID: 35332083 PMCID: PMC9053852 DOI: 10.1523/jneurosci.2005-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence shows that spontaneous synaptic transmission plays crucial roles on neuronal functions through presynaptic molecular mechanisms distinct from that of action potential (AP)-evoked transmission. However, whether the synaptic vesicle (SV) population undergoing the two forms of transmission is segregated remains controversial due in part to the conflicting results observed in cultured neurons. Here we address this issue in intact neuromuscular synapses using transgenic zebrafish larvae expressing two different indicators targeted in the SVs: a pH-sensitive fluorescent protein, pHluorin, and a tag protein, HaloTag. By establishing a quantitative measure of recycled SV fractions, we found that ∼85% of SVs were mobilized by high-frequency AP firings. In contrast, spontaneously recycling SVs were mobilized only from <8% of SVs with a time constant of 45 min at 25°C, although prolonged AP inhibition mobilized an additional population with a delayed onset. The mobilization of the early-onset population was less temperature-sensitive and resistant to tetanus toxin, whereas that of the late-onset population was more sensitive to temperature and was inhibited by tetanus toxin, indicating that prolonged AP inhibition activated a distinct molecular machinery for spontaneous SV fusion. Therefore, the early-onset population limited to <8% was likely the only source of spontaneous release that occurred physiologically. We further showed that this limited population was independent from those reluctant to fuse during AP firing and was used in both the hypertonic stimulation and the immediate phase of AP-evoked releases, thereby matching the characteristics of the readily releasable pool.SIGNIFICANCE STATEMENT Synaptic vesicles (SVs) are divided into functionally distinct pools depending on how they respond to action potential (AP) firing. The origin of SVs used for spontaneous fusion remains enigmatic despite intensive studies in cultured preparations. We addressed this question in intact neuromuscular synapses and provided two findings. First, prolonged AP inhibition activated a distinct population of fusion, which needs to be distinguished from genuine spontaneous fusion arising from a highly limited fraction. Second, the limited fraction observed early in the AP inhibition period exhibited the characteristics of readily releasable pool in the subsequent round of stimulation. Our study revealed that the origin of spontaneous SV fusion is restricted to the readily releasable pool among the SV pools involved in AP-evoked fusion.
Collapse
Affiliation(s)
- Yoshihiro Egashira
- Department of Physiology, Osaka Medical and Pharmaceutical University, Takatsuki, 569-8686, Japan
| | - Ayane Kumade
- Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, Takatsuki, 569-8686, Japan
| |
Collapse
|
17
|
An SJ, Stagi M, Gould TJ, Wu Y, Mlodzianoski M, Rivera-Molina F, Toomre D, Strittmatter SM, De Camilli P, Bewersdorf J, Zenisek D. Multimodal imaging of synaptic vesicles with a single probe. CELL REPORTS METHODS 2022; 2:100199. [PMID: 35497490 PMCID: PMC9046237 DOI: 10.1016/j.crmeth.2022.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 05/17/2023]
Abstract
A complete understanding of synaptic-vesicle recycling requires the use of multiple microscopy methods to obtain complementary information. However, many currently available probes are limited to a specific microscopy modality, which necessitates the use of multiple probes and labeling paradigms. Given the complexity of vesicle populations and recycling pathways, having new single-vesicle probes that could be used for multiple microscopy techniques would complement existing sets of tools for studying vesicle function. Here, we present a probe based on the membrane-binding C2 domain of cytosolic phospholipase A2 (cPLA2) that fulfills this need. By conjugating the C2 domain with different detectable tags, we demonstrate that a single, modular probe can allow synaptic vesicles to be imaged at multiple levels of spatial and temporal resolution. Moreover, as a general endocytic marker, the C2 domain may also be used to study membrane recycling in many cell types.
Collapse
Affiliation(s)
- Seong J. An
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Massimiliano Stagi
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool 69 3BX, UK
| | - Travis J. Gould
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240, USA
| | - Yumei Wu
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael Mlodzianoski
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M. Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
19
|
SNARE proteins: zip codes in vesicle targeting? Biochem J 2022; 479:273-288. [PMID: 35119456 PMCID: PMC8883487 DOI: 10.1042/bcj20210719] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.
Collapse
|
20
|
Guzikowski NJ, Kavalali ET. Nano-Organization at the Synapse: Segregation of Distinct Forms of Neurotransmission. Front Synaptic Neurosci 2022; 13:796498. [PMID: 35002671 PMCID: PMC8727373 DOI: 10.3389/fnsyn.2021.796498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Synapses maintain synchronous, asynchronous, and spontaneous modes of neurotransmission through distinct molecular and biochemical pathways. Traditionally a single synapse was assumed to have a homogeneous organization of molecular components both at the active zone and post-synaptically. However, recent advancements in experimental tools and the further elucidation of the physiological significance of distinct forms of release have challenged this notion. In comparison to rapid evoked release, the physiological significance of both spontaneous and asynchronous neurotransmission has only recently been considered in parallel with synaptic structural organization. Active zone nanostructure aligns with postsynaptic nanostructure creating a precise trans-synaptic alignment of release sites and receptors shaping synaptic efficacy, determining neurotransmission reliability, and tuning plasticity. This review will discuss how studies delineating synaptic nanostructure create a picture of a molecularly heterogeneous active zone tuned to distinct forms of release that may dictate diverse synaptic functional outputs.
Collapse
Affiliation(s)
- Natalie J Guzikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
21
|
Li WR, Wang YL, Li C, Gao P, Zhang FF, Hu M, Li JC, Zhang S, Li R, Zhang CX. Synaptotagmin-11 inhibits spontaneous neurotransmission through vti1a. J Neurochem 2021; 159:729-741. [PMID: 34599505 DOI: 10.1111/jnc.15523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/25/2020] [Accepted: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Recent work has revealed that spontaneous release plays critical roles in the central nervous system, but how it is regulated remains elusive. Here, we report that synaptotagmin-11 (Syt11), a Ca2+ -independent Syt isoform associated with schizophrenia and Parkinson's disease, suppressed spontaneous release. Syt11-knockout hippocampal neurons showed an increased frequency of miniature excitatory post-synaptic currents while over-expression of Syt11 inversely decreased the frequency. Neither knockout nor over-expression of Syt11 affected the average amplitude, suggesting the pre-synaptic regulation of spontaneous neurotransmission by Syt11. Glutathione S-transferase pull-down, co-immunoprecipitation, and affinity-purification experiments demonstrated a direct interaction of Syt11 with vps10p-tail-interactor-1a (vti1a), a non-canonical SNARE protein that maintains spontaneous release. Importantly, knockdown of vti1a reversed the phenotype of Syt11 knockout, identifying vti1a as the main target of Syt11 inhibition. Domain analysis revealed that the C2A domain of Syt11 bound vti1a with high affinity. Consistently, expression of the C2A domain alone rescued the phenotype of elevated spontaneous release in Syt11-knockout neurons similar to the full-length protein. Altogether, our results suggest that Syt11 inhibits vti1a-containing vesicles during spontaneous release.
Collapse
Affiliation(s)
- Wan-Ru Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ya-Long Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Chao Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fei-Fan Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jing-Chen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
22
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
23
|
Mori Y, Takenaka KI, Fukazawa Y, Takamori S. The endosomal Q-SNARE, Syntaxin 7, defines a rapidly replenishing synaptic vesicle recycling pool in hippocampal neurons. Commun Biol 2021; 4:981. [PMID: 34408265 PMCID: PMC8373932 DOI: 10.1038/s42003-021-02512-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Upon the arrival of repetitive stimulation at the presynaptic terminals of neurons, replenishment of readily releasable synaptic vesicles (SVs) with vesicles in the recycling pool is important for sustained neurotransmitter release. Kinetics of replenishment and the available pool size define synaptic performance. However, whether all SVs in the recycling pool are recruited for release with equal probability and speed is unknown. Here, based on comprehensive optical imaging of various presynaptic endosomal SNARE proteins in cultured hippocampal neurons, all of which are implicated in organellar membrane fusion in non-neuronal cells, we show that part of the recycling pool bearing the endosomal Q-SNARE, syntaxin 7 (Stx7), is preferentially mobilized for release during high-frequency repetitive stimulation. Recruitment of the SV pool marked with an Stx7-reporter requires actin polymerization, as well as activation of the Ca2+/calmodulin signaling pathway, reminiscent of rapidly replenishing SVs characterized previously in calyx of Held synapses. Furthermore, disruption of Stx7 function by overexpressing its N-terminal domain selectively abolished this pool. Thus, our data indicate that endosomal membrane fusion involving Stx7 forms rapidly replenishing vesicles essential for synaptic responses to high-frequency repetitive stimulation, and also highlight functional diversities of endosomal SNAREs in generating distinct exocytic vesicles in the presynaptic terminals. Yasunori Mori et al. find that a subset of neurotransmitter-bearing synaptic vesicles are marked for release by the endosomal Q-SNARE protein Stx7. They show that Stx7 function is necessary for the rapid replenishment of synaptic vesicles that is needed to sustain synaptic transmission during high-frequency stimulation.
Collapse
Affiliation(s)
- Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan. .,Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Koh-Ichiro Takenaka
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Research Center for Child Mental Development, Life Science Innovation Center, School of Medical Science, University of Fukui, Fukui, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.
| |
Collapse
|
24
|
A key requirement for synaptic Reelin signaling in ketamine-mediated behavioral and synaptic action. Proc Natl Acad Sci U S A 2021; 118:2103079118. [PMID: 33975959 PMCID: PMC8157952 DOI: 10.1073/pnas.2103079118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid antidepressant action in some patients with treatment-resistant depression. However, recent data suggest that ∼50% of patients with treatment-resistant depression do not respond to ketamine. The factors that contribute to the nonresponsiveness to ketamine's antidepressant action remain unclear. Recent studies have reported a role for secreted glycoprotein Reelin in regulating pre- and postsynaptic function, which suggests that Reelin may be involved in ketamine's antidepressant action, although the premise has not been tested. Here, we investigated whether the disruption of Reelin-mediated synaptic signaling alters ketamine-triggered synaptic plasticity and behavioral effects. To this end, we used mouse models with genetic deletion of Reelin or apolipoprotein E receptor 2 (Apoer2), as well as pharmacological inhibition of their downstream effectors, Src family kinases (SFKs) or phosphoinositide 3-kinase. We found that disruption of Reelin, Apoer2, or SFKs blocks ketamine-driven behavioral changes and synaptic plasticity in the hippocampal CA1 region. Although ketamine administration did not affect tyrosine phosphorylation of DAB1, an adaptor protein linked to downstream signaling of Reelin, disruption of Apoer2 or SFKs impaired baseline NMDA receptor-mediated neurotransmission. These results suggest that maintenance of baseline NMDA receptor function by Reelin signaling may be a key permissive factor required for ketamine's antidepressant effects. Taken together, our results suggest that impairments in Reelin-Apoer2-SFK pathway components may in part underlie nonresponsiveness to ketamine's antidepressant action.
Collapse
|
25
|
Dason JS, Sokolowski MB. A cGMP-dependent protein kinase, encoded by the Drosophila foraging gene, regulates neurotransmission through changes in synaptic structure and function. J Neurogenet 2021; 35:213-220. [PMID: 33998378 DOI: 10.1080/01677063.2021.1905639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A cGMP-dependent protein kinase (PKG) encoded by the Drosophila foraging (for) gene regulates both synaptic structure (nerve terminal growth) and function (neurotransmission) through independent mechanisms at the Drosophila larval neuromuscular junction (nmj). Glial for is known to restrict nerve terminal growth, whereas presynaptic for inhibits synaptic vesicle (SV) exocytosis during low frequency stimulation. Presynaptic for also facilitates SV endocytosis during high frequency stimulation. for's effects on neurotransmission can occur independent of any changes in nerve terminal growth. However, it remains unclear if for's effects on neurotransmission affect nerve terminal growth. Furthermore, it's possible that for's effects on synaptic structure contribute to changes in neurotransmission. In the present study, we examined these questions using RNA interference to selectively knockdown for in presynaptic neurons or glia at the Drosophila larval nmj. Consistent with our previous findings, presynaptic knockdown of for impaired SV endocytosis, whereas knockdown of glial for had no effect on SV endocytosis. Surprisingly, we found that knockdown of either presynaptic or glial for increased neurotransmitter release in response to low frequency stimulation. Knockdown of presynaptic for did not affect nerve terminal growth, demonstrating that for's effects on neurotransmission does not alter nerve terminal growth. In contrast, knockdown of glial for enhanced nerve terminal growth. This enhanced nerve terminal growth was likely the cause of the enhanced neurotransmitter release seen following knockdown of glial for. Overall, we show that for can affect neurotransmitter release by regulating both synaptic structure and function.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Biomedical Sciences, University of Windsor, Windsor, Canada
| | - Marla B Sokolowski
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
26
|
Vilcaes AA, Chanaday NL, Kavalali ET. Interneuronal exchange and functional integration of synaptobrevin via extracellular vesicles. Neuron 2021; 109:971-983.e5. [PMID: 33513363 PMCID: PMC7979516 DOI: 10.1016/j.neuron.2021.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 12/06/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
Recent studies have investigated the composition and functional effects of extracellular vesicles (EVs) secreted by a variety of cell types. However, the mechanisms underlying the impact of these vesicles on neurotransmission remain unclear. Here, we isolated EVs secreted by rat and mouse hippocampal neurons and found that they contain synaptic-vesicle-associated proteins, in particular the vesicular SNARE (soluble N-ethylmaleimide-sensitive factor [NSF]-attachment protein receptor) synaptobrevin (also called VAMP). Using a combination of electrophysiology and live-fluorescence imaging, we demonstrate that this extracellular pool of synaptobrevins can rapidly integrate into the synaptic vesicle cycle of host neurons via a CD81-dependent process and selectively augment inhibitory neurotransmission as well as specifically rescue neurotransmission in synapses deficient in synaptobrevin. These findings uncover a novel means of interneuronal communication and functional coupling via exchange of vesicular SNAREs.
Collapse
Affiliation(s)
- A Alejandro Vilcaes
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba X5000HUA, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba X5000HUA, Argentina; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA.
| |
Collapse
|
27
|
Methods of measuring presynaptic function with fluorescence probes. Appl Microsc 2021; 51:2. [PMID: 33730244 PMCID: PMC7969681 DOI: 10.1186/s42649-021-00051-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Synaptic vesicles, which are endogenous to neurotransmitters, are involved in exocytosis by active potentials and release neurotransmitters. Synaptic vesicles used in neurotransmitter release are reused via endocytosis to maintain a pool of synaptic vesicles. Synaptic vesicles show different types of exo- and endocytosis depending on animal species, type of nerve cell, and electrical activity. To accurately understand the dynamics of synaptic vesicles, direct observation of synaptic vesicles is required; however, it was difficult to observe synaptic vesicles of size 40-50 nm in living neurons. The exo-and endocytosis of synaptic vesicles was confirmed by labeling the vesicles with a fluorescent agent and measuring the changes in fluorescence intensity. To date, various methods of labeling synaptic vesicles have been proposed, and each method has its own characteristics, strength, and drawbacks. In this study, we introduce methods that can measure presynaptic activity and describe the characteristics of each technique.
Collapse
|
28
|
Calmodulin Bidirectionally Regulates Evoked and Spontaneous Neurotransmitter Release at Retinal Ribbon Synapses. eNeuro 2021; 8:ENEURO.0257-20.2020. [PMID: 33293457 PMCID: PMC7808332 DOI: 10.1523/eneuro.0257-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/21/2022] Open
Abstract
For decades, a role for the Ca2+-binding protein calmodulin (CaM) in Ca2+-dependent presynaptic modulation of synaptic transmission has been recognized. Here, we investigated the influence of CaM on evoked and spontaneous neurotransmission at rod bipolar (RB) cell→AII amacrine cell synapses in the mouse retina. Our work was motivated by the observations that expression of CaM in RB axon terminals is extremely high and that [Ca2+] in RB terminals normally rises sufficiently to saturate endogenous buffers, making tonic CaM activation likely. Taking advantage of a model in which RBs can be stimulated by expressed channelrhodopsin-2 (ChR2) to avoid dialysis of the presynaptic terminal, we found that inhibition of CaM dramatically decreased evoked release by inhibition of presynaptic Ca channels while at the same time potentiating both Ca2+-dependent and Ca2+-independent spontaneous release. Remarkably, inhibition of myosin light chain kinase (MLCK), but not other CaM-dependent targets, mimicked the effects of CaM inhibition on evoked and spontaneous release. Importantly, initial antagonism of CaM occluded the effect of subsequent inhibition of MLCK on spontaneous release. We conclude that CaM, by acting through MLCK, bidirectionally regulates evoked and spontaneous release at retinal ribbon synapses.
Collapse
|
29
|
Farsi Z, Walde M, Klementowicz AE, Paraskevopoulou F, Woehler A. Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses. iScience 2020; 24:101909. [PMID: 33392479 PMCID: PMC7773578 DOI: 10.1016/j.isci.2020.101909] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Mammalian central synapses exhibit vast heterogeneity in signaling strength. To understand the extent of this diversity, how it is achieved, and its functional implications, characterization of a large number of individual synapses is required. Using glutamate imaging, we characterized the evoked release probability and spontaneous release frequency of over 24,000 individual synapses. We found striking variability and no correlation between action potential-evoked and spontaneous synaptic release strength, suggesting distinct regulatory mechanisms. Subpixel localization of individual evoked and spontaneous release events reveals tight spatial regulation of evoked release and enhanced spontaneous release outside of evoked release region. Using on-stage post hoc immune-labeling of vesicle-associated proteins, Ca2+-sensing proteins, and soluble presynaptic proteins we were able to show that distinct molecular ensembles are associated with evoked and spontaneous modes of synaptic release.
Collapse
Affiliation(s)
- Zohreh Farsi
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Marie Walde
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Agnieszka E Klementowicz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Foteini Paraskevopoulou
- Institute of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, 10115, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| |
Collapse
|
30
|
Taylor HBC, Tong R, Jeans AF, Emptage NJ. A Novel Optical Quantal Analysis of Miniature Events Reveals Enhanced Frequency Following Amyloid β Exposure. Front Cell Neurosci 2020; 14:564081. [PMID: 33240043 PMCID: PMC7669988 DOI: 10.3389/fncel.2020.564081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Non-evoked miniature release of neurotransmitters is increasingly recognized as playing an important role in neural function and is implicated in synaptic plasticity, metaplasticity, and homeostasis. Spontaneous miniature release events (minis) are usually measured electrophysiologically by recording the miniature postsynaptic currents (mEPSCs) that they evoke. However, this indirect technique can be confounded by changes within the postsynaptic neuron. Here, using the fluorescent probe SynaptopHluorin 2×, we have developed an optical method for the measurement of minis that enables direct assessment of release events. We use the technique to reveal that the frequency of minis following incubation of hippocampal neurons with Amyloid β oligomers (Aβo) is increased. Electrophysiological mEPSC recordings obtained under the same conditions report a decrease in frequency, with the discrepancy likely due to Aβo-induced changes in quantal size. Optical quantal analysis of minis may therefore have a role in the study of minis in both normal physiology and disease, as it can circumvent potential confounds caused by postsynaptic changes.
Collapse
Affiliation(s)
- Henry B. C. Taylor
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, United Kingdom
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, United Kingdom
- Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Alexander F. Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, United Kingdom
| | - Nigel J. Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, United Kingdom
| |
Collapse
|
31
|
Popek M, Bobula B, Sowa J, Hess G, Frontczak-Baniewicz M, Albrecht J, Zielińska M. Physiology and Morphological Correlates of Excitatory Transmission are Preserved in Glutamine Transporter SN1-Depleted Mouse Frontal Cortex. Neuroscience 2020; 446:124-136. [DOI: 10.1016/j.neuroscience.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 08/14/2020] [Indexed: 01/22/2023]
|
32
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
33
|
Tang BL. Vesicle transport through interaction with t-SNAREs 1a (Vti1a)'s roles in neurons. Heliyon 2020; 6:e04600. [PMID: 32775753 PMCID: PMC7398939 DOI: 10.1016/j.heliyon.2020.e04600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023] Open
Abstract
The Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediates membrane fusion during membrane trafficking and autophagy in all eukaryotic cells, with a number of SNAREs having cell type-specific functions. The endosome-trans-Golgi network (TGN) localized SNARE, Vesicle transport through interaction with t-SNAREs 1A (Vti1a), is unique among SNAREs in that it has numerous neuron-specific functions. These include neurite outgrowth, nervous system development, spontaneous neurotransmission, synaptic vesicle and dense core vesicle secretion, as well as a process of unconventional surface transport of the Kv4 potassium channel. Furthermore, the human VT11A gene is known to form fusion products with neighboring genes in cancer tissues, and VT11A variants are associated with risk in cancers, including glioma. In this review, I highlight VTI1A's known physio-pathological roles in brain neurons, as well as unanswered questions in these regards.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
34
|
VAMP4 Maintains a Ca 2+-Sensitive Pool of Spontaneously Recycling Synaptic Vesicles. J Neurosci 2020; 40:5389-5401. [PMID: 32532887 DOI: 10.1523/jneurosci.2386-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Spontaneous neurotransmitter release is a fundamental property of synapses in which neurotransmitter filled vesicles release their content independent of presynaptic action potentials (APs). Despite their seemingly random nature, these spontaneous fusion events can be regulated by Ca2+ signaling pathways. Here, we probed the mechanisms that maintain Ca2+ sensitivity of spontaneous release events in synapses formed between hippocampal neurons cultured from rats of both sexes. In this setting, we examined the potential role of vesicle-associated membrane protein 4 (VAMP4), a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein in spontaneous neurotransmission. Our results show that VAMP4 is required for Ca2+-dependent spontaneous excitatory neurotransmission, with a limited role in spontaneous inhibitory neurotransmission. Key residues in VAMP4 that regulate its retrieval as well as functional clathrin-mediated vesicle trafficking were essential for the maintenance of VAMP4-mediated spontaneous release. Moreover, high-frequency stimulation (HFS) that typically triggers asynchronous release and retrieval of VAMP4 from the plasma membrane also augmentsCa2+-sensitive spontaneous release for up to 30 min in a VAMP4-dependent manner. This VAMP4-mediated link between asynchronous and spontaneous excitatory neurotransmission might serve as a presynaptic substrate for synaptic plasticity coupling distinct forms of release.SIGNIFICANCE STATEMENT Spontaneous neurotransmitter release that occurs independent of presynaptic action potentials (APs) shows significant sensitivity to intracellular Ca2+ levels. In this study, we identify the vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) molecule vesicle-associated membrane protein 4 (VAMP4) as a key component of the machinery that maintains these Ca2+-sensitive fraction of spontaneous release events. Following brief intense activity, VAMP4-dependent synaptic vesicle retrieval supports a pool of vesicles that fuse spontaneously in the long term. We propose that this vesicle trafficking pathway acts to shape spontaneous release and associated signaling based on previous activity history of synapses.
Collapse
|
35
|
Weinert S, Gimber N, Deuschel D, Stuhlmann T, Puchkov D, Farsi Z, Ludwig CF, Novarino G, López-Cayuqueo KI, Planells-Cases R, Jentsch TJ. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration. EMBO J 2020; 39:e103358. [PMID: 32118314 PMCID: PMC7196918 DOI: 10.15252/embj.2019103358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
CLC chloride/proton exchangers may support acidification of endolysosomes and raise their luminal Cl− concentration. Disruption of endosomal ClC‐3 causes severe neurodegeneration. To assess the importance of ClC‐3 Cl−/H+ exchange, we now generate Clcn3unc/unc mice in which ClC‐3 is converted into a Cl− channel. Unlike Clcn3−/− mice, Clcn3unc/unc mice appear normal owing to compensation by ClC‐4 with which ClC‐3 forms heteromers. ClC‐4 protein levels are strongly reduced in Clcn3−/−, but not in Clcn3unc/unc mice because ClC‐3unc binds and stabilizes ClC‐4 like wild‐type ClC‐3. Although mice lacking ClC‐4 appear healthy, its absence in Clcn3unc/unc/Clcn4−/− mice entails even stronger neurodegeneration than observed in Clcn3−/− mice. A fraction of ClC‐3 is found on synaptic vesicles, but miniature postsynaptic currents and synaptic vesicle acidification are not affected in Clcn3unc/unc or Clcn3−/− mice before neurodegeneration sets in. Both, Cl−/H+‐exchange activity and the stabilizing effect on ClC‐4, are central to the biological function of ClC‐3.
Collapse
Affiliation(s)
- Stefanie Weinert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Niclas Gimber
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dorothea Deuschel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Till Stuhlmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Zohreh Farsi
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Carmen F Ludwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gaia Novarino
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Karen I López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Synaptotagmin 1 oligomers clamp and regulate different modes of neurotransmitter release. Proc Natl Acad Sci U S A 2020; 117:3819-3827. [PMID: 32015138 PMCID: PMC7035618 DOI: 10.1073/pnas.1920403117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Release of neurotransmitters relies on submillisecond coupling of synaptic vesicle fusion to the triggering signal: AP-evoked presynaptic Ca2+ influx. The key player that controls exocytosis of the synaptic vesicle is the Ca2+ sensor synaptotagmin 1 (Syt1). While the Ca2+ activation of Syt1 has been extensively characterized, how Syt1 reversibly clamps vesicular fusion remains enigmatic. Here, using a targeted mutation combined with fluorescence imaging and electrophysiology, we show that the structural feature of Syt1 to self-oligomerize provides the molecular basis for clamping of spontaneous and asynchronous release but is not required for triggering of synchronous release. Our findings propose a mechanistic model that explains how Syt1 oligomers regulate different modes of transmitter release in neuronal synapses. Synaptotagmin 1 (Syt1) synchronizes neurotransmitter release to action potentials (APs) acting as the fast Ca2+ release sensor and as the inhibitor (clamp) of spontaneous and delayed asynchronous release. While the Syt1 Ca2+ activation mechanism has been well-characterized, how Syt1 clamps transmitter release remains enigmatic. Here we show that C2B domain-dependent oligomerization provides the molecular basis for the Syt1 clamping function. This follows from the investigation of a designed mutation (F349A), which selectively destabilizes Syt1 oligomerization. Using a combination of fluorescence imaging and electrophysiology in neocortical synapses, we show that Syt1F349A is more efficient than wild-type Syt1 (Syt1WT) in triggering synchronous transmitter release but fails to clamp spontaneous and synaptotagmin 7 (Syt7)-mediated asynchronous release components both in rescue (Syt1−/− knockout background) and dominant-interference (Syt1+/+ background) conditions. Thus, we conclude that Ca2+-sensitive Syt1 oligomers, acting as an exocytosis clamp, are critical for maintaining the balance among the different modes of neurotransmitter release.
Collapse
|
37
|
Ge D, Noakes PG, Lavidis NA. What are Neurotransmitter Release Sites and Do They Interact? Neuroscience 2020; 425:157-168. [DOI: 10.1016/j.neuroscience.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022]
|
38
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
39
|
Emperador-Melero J, Toonen RF, Verhage M. Vti Proteins: Beyond Endolysosomal Trafficking. Neuroscience 2019; 420:32-40. [DOI: 10.1016/j.neuroscience.2018.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
40
|
Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses. J Neurosci 2019; 39:6049-6066. [PMID: 31160536 DOI: 10.1523/jneurosci.0403-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
Abstract
Synaptic transmission occurs when an action potential triggers neurotransmitter release via the fusion of synaptic vesicles with the presynaptic membrane, driven by the formation of SNARE complexes composed of the vesicular (v)-SNARE synaptobrevin and the target (t)-SNAREs Snap-25 and syntaxin-1. Neurotransmitters are also released spontaneously, independent of an action potential, through the fusion of synaptic vesicles with the presynaptic membrane. The major neuronal vSNAREs, synaptobrevin-1 and synaptobrevin-2, are expressed at the developing neuromuscular junction (NMJ) in mice, but their specific roles in NMJ formation and function remain unclear. Here, we examine the NMJs in mutant mouse embryos lacking either synaptobrevin 1 (Syb1lew/lew ) or synaptobrevin 2 (Syb2 -/-), and those lacking both (Syb1lew/lewSyb2 -/-). We found that, compared with controls: (1) the number and size of NMJs was markedly increased in Syb2 -/- and Syb1lew/lewSyb2 -/- mice, but not in Syb1lew/lew mice; (2) synaptic vesicle density was markedly reduced in Syb1lew/lewSyb2 -/- NMJs; and (3) evoked neurotransmission was markedly reduced in Syb2 -/- NMJs and completely abolished in Syb1lew/lewSyb2 -/- NMJs. Surprisingly, however, spontaneous neurotransmission persists in the absence of both Syb1 and Syb2. Furthermore, spontaneous neurotransmission remains constant in Syb1lew/lewSyb2 -/- NMJs despite changing Ca2+ levels. These findings reveal an overlapping role for Syb1 and Syb2 (with Syb2 being dominant) in developing NMJs in mice. Moreover, because spontaneous release becomes Ca2+-insensitive in Syb1lew/lewSyb2 -/- NMJs, our findings suggest that synaptobrevin-based SNARE complexes play a critical role in conferring Ca2+ sensitivity during spontaneous release.SIGNIFICANCE STATEMENT Neurotransmitters can be released at synapses with (evoked) or without (spontaneous) the influence of action potentials. Whereas evoked neurotransmission requires Ca2+ influx, those underlying the spontaneous neurotransmission may occur with or without Ca2+ Our findings show that, in the absence neuronal vSNARE synaptobrevin-1 and synaptobrevin-2, evoked neurotransmission is completely abolished; however, spontaneous synaptic transmission not only persists but even increased. Furthermore, spontaneous synaptic transmission that is normally highly Ca2+-sensitive became Ca2+-independent upon deletion of vSNARE synaptobrevin-1 and synaptobrevin-2. These findings reveal distinct mechanisms for evoked and spontaneous neurotransmitter release. Moreover, these findings suggest that synaptobrevin-based SNARE complexes play critical roles in conferring Ca2+ sensitivity during spontaneous neurotransmission at developing neuromuscular synapses in mice.
Collapse
|
41
|
Jin Y, Seo KH, Ko HM, Jung TW, Chung YH, Lee JH, Park HH, Kim HC, Jeong JH, Lee SH. Various approaches for measurement of synaptic vesicle endocytosis at the central nerve terminal. Arch Pharm Res 2019; 42:455-465. [PMID: 31115782 DOI: 10.1007/s12272-019-01161-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
At the presynaptic terminal, neurotransmitters are stored in synaptic vesicles (SVs), which are released and recycled via exo- and endocytosis. SV endocytosis is crucial for sustaining synaptic transmission by maintaining the SV pool. Many studies have shown that presynaptic dysfunction, particularly impairment of SV endocytosis, is related to neurological disorders. Notably, the presynaptic terminal is considered to be a sensitive structure because certain presynaptic dysfunctions, manifested as impaired SV endocytosis or ultrastructural changes in the presynaptic terminal, can be observed before there is a biochemical or pathological evidence of a neurological disorder. Therefore, monitoring and assessing the presynaptic function by SV endocytosis facilitates the development of early markers for neurological disorders. In this study, we reviewed the current methods for assessing and visualizing SV endocytosis at the central nerve terminal.
Collapse
Affiliation(s)
- Yeonsun Jin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyoung Hee Seo
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon, 27841, Republic of Korea
| | - Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan, 31499, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
42
|
Silm K, Yang J, Marcott PF, Asensio CS, Eriksen J, Guthrie DA, Newman AH, Ford CP, Edwards RH. Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron 2019; 102:786-800.e5. [PMID: 31003725 PMCID: PMC6541489 DOI: 10.1016/j.neuron.2019.03.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Abstract
In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca2+ channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.
Collapse
Affiliation(s)
- Kätlin Silm
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jing Yang
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Pamela F Marcott
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cedric S Asensio
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institutes of Drug Abuse - Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, Graduate Programs in Neuroscience and Cell Biology, Kavli Institute for Fundamental Neuroscience, Weill Institute for the Neurosciences, UCSF School of Medicine, San Francisco, CA 94143, USA.
| |
Collapse
|
43
|
Salmasi M, Loebel A, Glasauer S, Stemmler M. Short-term synaptic depression can increase the rate of information transfer at a release site. PLoS Comput Biol 2019; 15:e1006666. [PMID: 30601804 PMCID: PMC6355030 DOI: 10.1371/journal.pcbi.1006666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 01/31/2019] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
The release of neurotransmitters from synapses obeys complex and stochastic dynamics. Depending on the recent history of synaptic activation, many synapses depress the probability of releasing more neurotransmitter, which is known as synaptic depression. Our understanding of how synaptic depression affects the information efficacy, however, is limited. Here we propose a mathematically tractable model of both synchronous spike-evoked release and asynchronous release that permits us to quantify the information conveyed by a synapse. The model transits between discrete states of a communication channel, with the present state depending on many past time steps, emulating the gradual depression and exponential recovery of the synapse. Asynchronous and spontaneous releases play a critical role in shaping the information efficacy of the synapse. We prove that depression can enhance both the information rate and the information rate per unit energy expended, provided that synchronous spike-evoked release depresses less (or recovers faster) than asynchronous release. Furthermore, we explore the theoretical implications of short-term synaptic depression adapting on longer time scales, as part of the phenomenon of metaplasticity. In particular, we show that a synapse can adjust its energy expenditure by changing the dynamics of short-term synaptic depression without affecting the net information conveyed by each successful release. Moreover, the optimal input spike rate is independent of the amplitude or time constant of synaptic depression. We analyze the information efficacy of three types of synapses for which the short-term dynamics of both synchronous and asynchronous release have been experimentally measured. In hippocampal autaptic synapses, the persistence of asynchronous release during depression cannot compensate for the reduction of synchronous release, so that the rate of information transmission declines with synaptic depression. In the calyx of Held, the information rate per release remains constant despite large variations in the measured asynchronous release rate. Lastly, we show that dopamine, by controlling asynchronous release in corticostriatal synapses, increases the synaptic information efficacy in nucleus accumbens. Fatigue is an intrinsic property of living systems and synapses are no exception. Synaptic depression reduces the ability of synapses to release vesicles in response to an incoming action potential. Whether synaptic depression simply reflects the exhaustion of neuronal resources or whether it serves some additional function is still an open question. We ask how synaptic depression modulates the information transfer between neurons by keeping the synapse in an appropriate operating range. Using a tractable mathematical model for synaptic depression of both synchronous spike-evoked and asynchronous release of neurotransmitter, we derive a closed-form expression for the mutual information rate. Depression, it turns out, can both enhance or impair information transfer, depending on the relative level of depression for synchronous spike-evoked and asynchronous releases. We also study the compromise a synapse makes between its energy consumption and the rate of information transmission. Interestingly, we show that synaptic depression can regulate energy use without affecting the information (measured in bits) per synaptic release. By applying our mathematical framework to experimentally measured synapses, we show that some synapses can compensate for intrinsic variability in asynchronous release rates; moreover, we show how neuromodulators such as dopamine act to improve the information transmission rate.
Collapse
Affiliation(s)
- Mehrdad Salmasi
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany.,Bernstein Center for Computational Neuroscience, Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alex Loebel
- Bernstein Center for Computational Neuroscience, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Glasauer
- Bernstein Center for Computational Neuroscience, Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität, Munich, Germany.,Chair of Computational Neuroscience, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Martin Stemmler
- Bernstein Center for Computational Neuroscience, Munich, Germany.,Department of Biology II, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
44
|
Quentin E, Belmer A, Maroteaux L. Somato-Dendritic Regulation of Raphe Serotonin Neurons; A Key to Antidepressant Action. Front Neurosci 2018; 12:982. [PMID: 30618598 PMCID: PMC6307465 DOI: 10.3389/fnins.2018.00982] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/07/2018] [Indexed: 11/22/2022] Open
Abstract
Several lines of evidence implicate serotonin (5-hydroxytryptamine, 5-HT)in regulating personality traits and mood control. Serotonergic neurons are classically thought to be tonic regular-firing, “clock-like” neurons. Neurotransmission by serotonin is tightly regulated by the serotonin transporter (SERT) and by autoreceptors (serotonin receptors expressed by serotonin neurons) through negative feedback inhibition at the cell bodies and dendrites (5-HT1A receptors) of the dorsal raphe nuclei or at the axon terminals (5-HT1B receptors). In dorsal raphe neurons, the release of serotonin from vesicles in the soma, dendrites, and/or axonal varicosities is independent of classical synapses and can be induced by neuron depolarization, by the stimulation of L-type calcium channels, by activation of glutamatergic receptors, and/or by activation of 5-HT2 receptors. The resulting serotonin release displays a slow kinetic and a large diffusion. This process called volume transmission may ultimately affect the rate of discharge of serotonergic neurons, and their tonic activity. The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking SERT but rely on consequences of chronic exposure, i.e., a selective desensitization of somatodendritic 5-HT1A autoreceptors. Agonist stimulation of 5-HT2B receptors mimicked behavioral and neurogenic SSRI actions, and increased extracellular serotonin in dorsal raphe. By contrast, a lack of effects of SSRIs was observed in the absence of 5-HT2B receptors (knockout-KO), even restricted to serotonergic neurons (Htr2b5-HTKO mice). The absence of 5-HT2B receptors in serotonergic neurons is associated with a higher 5-HT1A-autoreceptor reactivity and thus a lower firing activity of these neurons. In agreement, mice with overexpression of 5-HT1A autoreceptor show decreased neuronal activity and increased depression-like behavior that is resistant to SSRI treatment. We propose thus that the serotonergic tone results from the opposite control exerted by somatodendritic (Gi-coupled) 5-HT1A and (Gq-coupled) 5-HT2B receptors on dorsal raphe neurons. Therefore, 5-HT2B receptors may contribute to SSRI therapeutic effects by their positive regulation of adult raphe serotonergic neurons. Deciphering the molecular mechanism controlling extrasynaptic release of serotonin, and how autoreceptors interact in regulating the tonic activity of serotonergic neurons, is critical to fully understand the therapeutic effect of SSRIs.
Collapse
Affiliation(s)
- Emily Quentin
- INSERM UMR-S 839, Institut du Fer à Moulin, Paris, France.,Sorbonne Universités, UPMC University Paris 6, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Arnauld Belmer
- INSERM UMR-S 839, Institut du Fer à Moulin, Paris, France.,Sorbonne Universités, UPMC University Paris 6, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Luc Maroteaux
- INSERM UMR-S 839, Institut du Fer à Moulin, Paris, France.,Sorbonne Universités, UPMC University Paris 6, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
45
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
46
|
Emperador-Melero J, Huson V, van Weering J, Bollmann C, Fischer von Mollard G, Toonen RF, Verhage M. Vti1a/b regulate synaptic vesicle and dense core vesicle secretion via protein sorting at the Golgi. Nat Commun 2018; 9:3421. [PMID: 30143604 PMCID: PMC6109172 DOI: 10.1038/s41467-018-05699-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022] Open
Abstract
The SNAREs Vti1a/1b are implicated in regulated secretion, but their role relative to canonical exocytic SNAREs remains elusive. Here, we show that synaptic vesicle and dense-core vesicle (DCV) secretion is indeed severely impaired in Vti1a/b-deficient neurons. The synaptic levels of proteins that mediate secretion were reduced, down to 50% for the exocytic SNARE SNAP25. The delivery of SNAP25 and DCV-cargo into axons was decreased and these molecules accumulated in the Golgi. These defects were rescued by either Vti1a or Vti1b expression. Distended Golgi cisternae and clear vacuoles were observed in Vti1a/b-deficient neurons. The normal non-homogeneous distribution of DCV-cargo inside the Golgi was lost. Cargo trafficking out of, but not into the Golgi, was impaired. Finally, retrograde Cholera Toxin trafficking, but not Sortilin/Sorcs1 distribution, was compromised. We conclude that Vti1a/b support regulated secretion by sorting secretory cargo and synaptic secretion machinery components at the Golgi.
Collapse
Affiliation(s)
- Javier Emperador-Melero
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Vincent Huson
- Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Jan van Weering
- Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Christian Bollmann
- Department of Biochemistry III, Bielefeld University, 33615, Bielefeld, Germany
| | | | - Ruud F Toonen
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Departments of Functional Genomics, Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands. .,Clinical Genetics, VUmc, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Neurotransmitter- and Release-Mode-Specific Modulation of Inhibitory Transmission by Group I Metabotropic Glutamate Receptors in Central Auditory Neurons of the Mouse. J Neurosci 2018; 38:8187-8199. [PMID: 30093538 DOI: 10.1523/jneurosci.0603-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Neuromodulation mediated by metabotropic glutamate receptors (mGluRs) regulates many brain functions. However, the functions of mGluRs in the auditory system under normal and diseased states are not well understood. The medial nucleus of the trapezoid body (MNTB) is a critical nucleus in the auditory brainstem nuclei involved in sound localization. In addition to the classical calyx excitatory inputs, MNTB neurons also receive synaptic inhibition and it remains entirely unknown how this inhibition is regulated. Here, using whole-cell voltage clamp in brain slices, we investigated group I mGluR (mGluR I)-mediated modulation of the glycinergic and GABAergic inputs to MNTB neurons in both WT mice and a fragile X syndrome (FXS) mouse model (both sexes) in which the fragile X mental retardation gene 1 is knocked out (Fmr1 KO), causing exaggerated activity of mGluR I and behavioral phenotypes. Activation of mGluR I by (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) increased the frequency and amplitude of glycinergic spontaneous IPSCs (sIPSCs) in both WT and Fmr1 KO neurons in a voltage-gated sodium channel-dependent fashion, but did not modulate glycinergic evoked IPSCs (eIPSCs). In contrast, 3,5-DHPG did not affect GABAergic sIPSCs, but did suppress eIPSCs in WT neurons via endocannabinoid signaling. In the KO, the effect of 3,5-DHPG on GABAergic eIPSCs was highly variable, which supports the notion of impaired GABAergic signaling in the FXS model. The differential modulation of sIPSC and eIPSC and differential modulation of glycinergic and GABAergic transmission suggest distinct mechanisms responsible for spontaneous and evoked release of inhibitory transmitters and their modulation through the mGluR I signaling pathway.SIGNIFICANCE STATEMENT Neurons communicate with each other through the release of neurotransmitters, which assumes two basic modes, spontaneous and evoked release. These two release modes are believed to function using the same vesicle pool and machinery. Recent works have challenged this dogma, pointing to distinct vesicle release mechanisms underlying the two release modes. Here, we provide the first evidence in the central auditory system supporting this novel concept. We discovered neural-transmitter- and release-mode-specific neuromodulation of inhibitory transmission by metabotropic glutamate receptors and revealed part of the signaling pathways underlying this differential modulation. The results establish the foundation for a multitude of directions to study physiological significance of different release modes in auditory processing.
Collapse
|
48
|
Chanaday NL, Kavalali ET. Presynaptic origins of distinct modes of neurotransmitter release. Curr Opin Neurobiol 2018; 51:119-126. [PMID: 29597140 PMCID: PMC6066415 DOI: 10.1016/j.conb.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/17/2022]
Abstract
Presynaptic nerve terminals release neurotransmitter synchronously, asynchronously or spontaneously. During synchronous neurotransmission release is precisely coupled to action potentials, in contrast, asynchronous release events show only loose temporal coupling to presynaptic activity whereas spontaneous neurotransmission occurs independent of presynaptic activity. The mechanisms that give rise to this diversity in neurotransmitter release modes are poorly understood. Recent studies have described several presynaptic molecular pathways controlling synaptic vesicle pool segregation and recycling, which in turn may dictate distinct modes of neurotransmitter release. In this article, we review this recent work regarding neurotransmitter release modes and their relationship to synaptic vesicle pool dynamics as well as the molecular machinery that establishes synaptic vesicle pool identity.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
49
|
Copine-6 Binds to SNAREs and Selectively Suppresses Spontaneous Neurotransmission. J Neurosci 2018; 38:5888-5899. [PMID: 29802203 DOI: 10.1523/jneurosci.0461-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that spontaneous and action potential-evoked neurotransmitter release processes are independently regulated. However, the mechanisms that uncouple the two forms of neurotransmission remain unclear. In cultured mouse and rat neurons, we show that the two C2 domain-containing protein copine-6 is localized to presynaptic terminals and binds to synaptobrevin2 as well as other SNARE proteins in a Ca2+-dependent manner. Ca2+-dependent interaction of copine-6 with synaptobrevin2 selectively suppresses spontaneous neurotransmission in a reaction that requires the tandem tryptophan residues at the C-terminal region of synaptobrevin2. Accordingly, copine-6 loss of function augmented presynaptic Ca2+ elevation-mediated neurotransmitter release. Intracellular Ca2+ chelation, on the other hand, occluded copine-6-mediated suppression of release. We also evaluated the molecular specificity of the copine-6-dependent regulation of spontaneous release and found that overexpression of copine-6 did not suppress spontaneous release in synaptobrevin2-deficient neurons. Together, these results suggest that copine-6 acts as a specific Ca2+-dependent suppressor of spontaneous neurotransmission.SIGNIFICANCE STATEMENT Synaptic transmission occurs both in response to presynaptic action potentials and spontaneously, in the absence of stimulation. Currently, much more is understood about the mechanisms underlying action potential-evoked neurotransmission compared with spontaneous release. However, recent studies have shown selective modulation of spontaneous neurotransmission process by several neuromodulators, suggesting specific molecular regulation of spontaneous release. In this study, we identify copine-6 as a specific regulator of spontaneous neurotransmission. By both gain-of-function and loss-of-function experiments, we show that copine-6 functions as a Ca2+-dependent suppressor of spontaneous release. These results further elucidate the mechanisms underlying differential regulation of evoked and spontaneous neurotransmitter release.
Collapse
|
50
|
Kahms M, Klingauf J. Novel pH-Sensitive Lipid Based Exo-Endocytosis Tracers Reveal Fast Intermixing of Synaptic Vesicle Pools. Front Cell Neurosci 2018; 12:18. [PMID: 29456492 PMCID: PMC5801418 DOI: 10.3389/fncel.2018.00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/11/2018] [Indexed: 11/13/2022] Open
Abstract
Styryl dyes and genetically encoded pH-sensitive fluorescent proteins like pHluorin are well-established tools for the optical analysis of synaptic vesicle (SV) recycling at presynaptic boutons. Here, we describe the development of a new class of fluorescent probes based on pH-sensitive organic dyes covalently bound to lipids, providing a promising complementary assay to genetically encoded fluorescent probes. These new optical tracers allow a pure read out of membrane turnover during synaptic activity and visualization of multiple rounds of stimulation-dependent SV recycling without genetic perturbation. Measuring the incorporation efficacy of different dye-labeled lipids into budding SVs, we did not observe an enrichment of lipids with affinity for liquid ordered membrane domains. But most importantly, we found no evidence for a static segregation of SVs into recycling and resting pools. A small but significant fraction of SVs that is reluctant to release during a first round of evoked activity can be exocytosed during a second bout of stimulation, showing fast intermixing of SV pools within seconds. Furthermore, we found that SVs recycling spontaneously have a higher chance to re-occupy release sites than SVs recycling during high-frequency evoked activity. In summary, our data provide strong evidence for a highly dynamic and use-dependent control of the fractions of releasable or resting SVs.
Collapse
Affiliation(s)
- Martin Kahms
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Department of Cellular Biophysics, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- IZKF Münster and Cluster of Excellence Cells in Motion, University of Münster, Münster, Germany
| |
Collapse
|