1
|
Haakenson CM, Balthazart J, VanRyzin JW, Marquardt AE, Ashton SE, McCarthy MM, Ball GF. Neurochemical Characterization of Dopaminoceptive Cells in Song Control Nuclei of Canaries and Their Activation During Song Production: A Multiplex Fluorescent In Situ Hybridization Study. J Comp Neurol 2024; 532:e25675. [PMID: 39387367 PMCID: PMC11548801 DOI: 10.1002/cne.25675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
Highly sensitive in situ hybridization procedures (RNAScope) were used to quantify the expression of three dopamine receptors (Drd1, Drd2, and Drd3) in two song control nuclei (HVC and the Area X of the basal ganglia) that are known to receive dopaminergic inputs and in the periaqueductal gray (PAG) of male and female canaries. Both sexes were treated with testosterone to ensure they would sing actively. We also determined the excitatory versus inhibitory phenotype of the cells expressing these receptors as well as their activation following a period of song production. The three receptor types were identified in each brain area, with the exception of Drd3 in Area X. The density of cells expressing each receptor varied as a function of receptor type and brain area. Surprisingly few sex differences were detected; they do not seem to explain the sex differences in testosterone-induced song. Overall, the density of Drd-positive cells was much lower in PAG than in the two song control nuclei. In HVC, the majority of cells expressing the three receptor subtypes were VGlut2-positive, whereas colocalization with Vglut2 occurred in few cells in Area X and in an intermediate proportion of cells in PAG. The number of inhibitory cells expressing dopamine receptors was limited. Most dopaminoceptive cells in Area X did not express either excitatory or inhibitory markers. Finally, cellular activation during singing behavior, as measured by the expression of Egr1, was observed in cells expressing each of the three dopamine receptor subtypes, except Drd3 in the PAG.
Collapse
Affiliation(s)
- Chelsea M. Haakenson
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Jonathan W. VanRyzin
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Ashley E. Marquardt
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Sydney E. Ashton
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Margaret M. McCarthy
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD
| | - Gregory F. Ball
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742
- Department of Psychology, University of Maryland, College Park, MD 20742
| |
Collapse
|
2
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of forkhead box P2-positive neurons is associated with tadpole begging behaviour. Biol Lett 2024; 20:20240395. [PMID: 39317327 PMCID: PMC11421926 DOI: 10.1098/rsbl.2024.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Motor function is a critical aspect of social behaviour in a wide range of taxa. The transcription factor forkhead box P2 (FoxP2) is well studied in the context of vocal communication in humans, mice and songbirds, but its role in regulating social behaviour in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behaviour beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | | |
Collapse
|
3
|
He BH, Yang YH, Hsiao BW, Lin WT, Chuang YF, Chen SY, Liu FC. Foxp2 Is Required for Nucleus Accumbens-mediated Multifaceted Limbic Function. Neuroscience 2024; 542:33-46. [PMID: 38354901 DOI: 10.1016/j.neuroscience.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The forkhead box protein P2 (Foxp2), initially identified for its role in speech and language development, plays an important role in neural development. Previous studies investigated the function of the Foxp2 gene by deleting or mutating Foxp2 from developmental stages. Little is known about its physiological function in adult brains. Although Foxp2 has been well studied in the dorsal striatum, its function in the nucleus accumbens (NAc) of the ventral striatum remains elusive. Here, we examine the physiological function of Foxp2 in NAc of mouse brains. We conditionally knocked out Foxp2 by microinjections of AAV-EGFP-Cre viruses into the medial shell of NAc of Foxp2 floxed (cKO) mice. Immunostaining showed increased c-Fos positive cells in cKO NAc at basal levels, suggesting an abnormality in Foxp2-deficient NAc cells. Unbiased behavioral profiling of Foxp2 cKO mice showed abnormalities in limbic-associated function. Foxp2 cKO mice exhibited abnormal social novelty without preference for interaction with strangers and familiar mice. In appetitive reward learning, Foxp2 cKO mice failed to learn the time expectancy of food delivery. In fear learning, Foxp2 cKO mice exhibited abnormal increases in freezing levels in response to tone paired with foot shock during fear conditioning. The extinction of the fear response was also altered in Foxp2 cKO mice. In contrast, conditional knockout of Foxp2 in NAc did not affect locomotion, motor coordination, thermal pain sensation, anxiety- and depression-like behaviors. Collectively, our study suggests that Foxp2 has a multifaceted physiological role in NAc in the regulation of limbic function in the adult brain.
Collapse
Affiliation(s)
- Bo-Han He
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ya-Hui Yang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Bo-Wen Hsiao
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Ting Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
4
|
Rodríguez-Urgellés E, Casas-Torremocha D, Sancho-Balsells A, Ballasch I, García-García E, Miquel-Rio L, Manasanch A, Del Castillo I, Chen W, Pupak A, Brito V, Tornero D, Rodríguez MJ, Bortolozzi A, Sanchez-Vives MV, Giralt A, Alberch J. Thalamic Foxp2 regulates output connectivity and sensory-motor impairments in a model of Huntington's Disease. Cell Mol Life Sci 2023; 80:367. [PMID: 37987826 PMCID: PMC10663254 DOI: 10.1007/s00018-023-05015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.
Collapse
Affiliation(s)
- Ened Rodríguez-Urgellés
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Anna Sancho-Balsells
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iván Ballasch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Esther García-García
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lluis Miquel-Rio
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Ignacio Del Castillo
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Wanqi Chen
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anika Pupak
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Veronica Brito
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Tornero
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain
| | - Manuel J Rodríguez
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Analia Bortolozzi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036, Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Giralt
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| | - Jordi Alberch
- Facultat de Medicina, Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, 08036, Barcelona, Spain.
| |
Collapse
|
5
|
Rashid M, Olson EC. Delayed cortical development in mice with a neural specific deletion of β1 integrin. Front Neurosci 2023; 17:1158419. [PMID: 37250402 PMCID: PMC10213249 DOI: 10.3389/fnins.2023.1158419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The adhesion systems employed by migrating cortical neurons are not well understood. Genetic deletion studies of focal adhesion kinase (FAK) and paxillin in mice suggested that these classical focal adhesion molecules control the morphology and speed of cortical neuron migration, but whether β1 integrins also regulate migration morphology and speed is not known. We hypothesized that a β1 integrin adhesion complex is required for proper neuronal migration and for proper cortical development. To test this, we have specifically deleted β1 integrin from postmitotic migrating and differentiating neurons by crossing conditional β1 integrin floxed mice into the NEX-Cre transgenic line. Similar to our prior findings with conditional paxillin deficiency, we found that both homozygous and heterozygous deletion of β1 integrin causes transient mispositioning of cortical neurons in the developing cortex when analyzed pre- and perinatally. Paxillin and β1 integrin colocalize in the migrating neurons and deletion of paxillin in the migrating neuron causes an overall reduction of the β1 integrin immunofluorescence signal and reduction in the number of activated β1 integrin puncta in the migrating neurons. These findings suggest that these molecules may form a functional complex in migrating neurons. Similarly, there was an overall reduced number of paxillin+ puncta in the β1 integrin deficient neurons, despite the normal distribution of FAK and Cx26, a connexin required for cortical migration. The double knockout of paxillin and β1 integrin produces a cortical malpositioning phenotype similar to the paxillin or β1 integrin single knockouts, as would be expected if paxillin and β1 integrin function on a common pathway. Importantly, an isolation-induced pup vocalization test showed that β1 integrin mutants produced a significantly smaller number of calls compared to their littermate controls when analyzed at postnatal day 4 (P4) and revealed a several days trend in reduced vocalization development compared to controls. The current study establishes a role for β1 integrin in cortical development and suggests that β1 integrin deficiency leads to migration and neurodevelopmental delays.
Collapse
Affiliation(s)
- Mamunur Rashid
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
6
|
Brudner S, Pearson J, Mooney R. Generative models of birdsong learning link circadian fluctuations in song variability to changes in performance. PLoS Comput Biol 2023; 19:e1011051. [PMID: 37126511 PMCID: PMC10150982 DOI: 10.1371/journal.pcbi.1011051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Learning skilled behaviors requires intensive practice over days, months, or years. Behavioral hallmarks of practice include exploratory variation and long-term improvements, both of which can be impacted by circadian processes. During weeks of vocal practice, the juvenile male zebra finch transforms highly variable and simple song into a stable and precise copy of an adult tutor's complex song. Song variability and performance in juvenile finches also exhibit circadian structure that could influence this long-term learning process. In fact, one influential study reported juvenile song regresses towards immature performance overnight, while another suggested a more complex pattern of overnight change. However, neither of these studies thoroughly examined how circadian patterns of variability may structure the production of more or less mature songs. Here we relate the circadian dynamics of song maturation to circadian patterns of song variation, leveraging a combination of data-driven approaches. In particular we analyze juvenile singing in learned feature space that supports both data-driven measures of song maturity and generative developmental models of song production. These models reveal that circadian fluctuations in variability lead to especially regressive morning variants even without overall overnight regression, and highlight the utility of data-driven generative models for untangling these contributions.
Collapse
Affiliation(s)
- Samuel Brudner
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John Pearson
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
7
|
Vernes SC, Devanna P, Hörpel SG, Alvarez van Tussenbroek I, Firzlaff U, Hagoort P, Hiller M, Hoeksema N, Hughes GM, Lavrichenko K, Mengede J, Morales AE, Wiesmann M. The pale spear-nosed bat: A neuromolecular and transgenic model for vocal learning. Ann N Y Acad Sci 2022; 1517:125-142. [PMID: 36069117 PMCID: PMC9826251 DOI: 10.1111/nyas.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.
Collapse
Affiliation(s)
- Sonja C. Vernes
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Paolo Devanna
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Stephen Gareth Hörpel
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ine Alvarez van Tussenbroek
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Uwe Firzlaff
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Peter Hagoort
- Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Nienke Hoeksema
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Graham M. Hughes
- School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Ariadna E. Morales
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Maximilian Wiesmann
- Department of Medical ImagingAnatomyRadboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer CenterNijmegenThe Netherlands
| |
Collapse
|
8
|
Csillag A, Ádám Á, Zachar G. Avian models for brain mechanisms underlying altered social behavior in autism. Front Physiol 2022; 13:1032046. [PMID: 36388132 PMCID: PMC9650632 DOI: 10.3389/fphys.2022.1032046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 08/23/2023] Open
Abstract
The current review is an update on experimental approaches in which birds serve as model species for the investigation of typical failure symptoms associated with autism spectrum disorder (ASD). The discussion is focused on deficiencies of social behavior, from social interactions of domestic chicks, based on visual and auditory cues, to vocal communication in songbirds. Two groups of pathogenetic/risk factors are discussed: 1) non-genetic (environmental/epigenetic) factors, exemplified by embryonic exposure to valproic acid (VPA), and 2) genetic factors, represented by a list of candidate genes and signaling pathways of diagnostic or predictive value in ASD patients. Given the similarities of birds as experimental models to humans (visual orientation, vocal learning, social cohesions), avian models usefully contribute toward the elucidation of the neural systems and developmental factors underlying ASD, improving the applicability of preclinical results obtained on laboratory rodents. Furthermore, they may predict potential susceptibility factors worthy of investigation (both by animal studies and by monitoring human babies at risk), with potential therapeutic consequence.
Collapse
Affiliation(s)
- András Csillag
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
9
|
McGregor JN, Grassler AL, Jaffe PI, Jacob AL, Brainard MS, Sober SJ. Shared mechanisms of auditory and non-auditory vocal learning in the songbird brain. eLife 2022; 11:75691. [PMID: 36107757 PMCID: PMC9522248 DOI: 10.7554/elife.75691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 09/14/2022] [Indexed: 01/18/2023] Open
Abstract
Songbirds and humans share the ability to adaptively modify their vocalizations based on sensory feedback. Prior studies have focused primarily on the role that auditory feedback plays in shaping vocal output throughout life. In contrast, it is unclear how non-auditory information drives vocal plasticity. Here, we first used a reinforcement learning paradigm to establish that somatosensory feedback (cutaneous electrical stimulation) can drive vocal learning in adult songbirds. We then assessed the role of a songbird basal ganglia thalamocortical pathway critical to auditory vocal learning in this novel form of vocal plasticity. We found that both this circuit and its dopaminergic inputs are necessary for non-auditory vocal learning, demonstrating that this pathway is critical for guiding adaptive vocal changes based on both auditory and somatosensory signals. The ability of this circuit to use both auditory and somatosensory information to guide vocal learning may reflect a general principle for the neural systems that support vocal plasticity across species.
Collapse
Affiliation(s)
- James N McGregor
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, United States
| | | | - Paul I Jaffe
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | | | - Michael S Brainard
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, United States
| |
Collapse
|
10
|
Ivlieva NY. The Role of the Basal Ganglia in the Development and Organization of Vocal Behavior in Songbirds. Russ J Dev Biol 2022. [DOI: 10.1134/s106236042204004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Medina CA, Vargas E, Munger SJ, Miller JE. Vocal changes in a zebra finch model of Parkinson's disease characterized by alpha-synuclein overexpression in the song-dedicated anterior forebrain pathway. PLoS One 2022; 17:e0265604. [PMID: 35507553 PMCID: PMC9067653 DOI: 10.1371/journal.pone.0265604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Deterioration in the quality of a person's voice and speech is an early marker of Parkinson's disease (PD). In humans, the neural circuit that supports vocal motor control consists of a cortico-basal ganglia-thalamo-cortico loop. The basal ganglia regions, striatum and globus pallidus, in this loop play a role in modulating the acoustic features of vocal behavior such as loudness, pitch, and articulatory rate. In PD, this area is implicated in pathogenesis. In animal models of PD, the accumulation of toxic aggregates containing the neuronal protein alpha-synuclein (αsyn) in the midbrain and striatum result in limb and vocal motor impairments. It has been challenging to study vocal impairments given the lack of well-defined cortico-basal ganglia circuitry for vocalization in rodent models. Furthermore, whether deterioration of voice quality early in PD is a direct result of αsyn-induced neuropathology is not yet known. Here, we take advantage of the well-characterized vocal circuits of the adult male zebra finch songbird to experimentally target a song-dedicated pathway, the anterior forebrain pathway, using an adeno-associated virus expressing the human wild-type αsyn gene, SNCA. We found that overexpression of αsyn in this pathway coincides with higher levels of insoluble, monomeric αsyn compared to control finches. Impairments in song production were also detected along with shorter and poorer quality syllables, which are the most basic unit of song. These vocal changes are similar to the vocal abnormalities observed in individuals with PD.
Collapse
Affiliation(s)
- Cesar A. Medina
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, United State of America
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
| | - Eddie Vargas
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
| | - Stephanie J. Munger
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
| | - Julie E. Miller
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, United State of America
- Department of Neuroscience, University of Arizona, Tucson, Arizona, United States of America
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
12
|
Lukacova K, Hamaide J, Baciak L, Van der Linden A, Kubikova L. Striatal Injury Induces Overall Brain Alteration at the Pallial, Thalamic, and Cerebellar Levels. BIOLOGY 2022; 11:biology11030425. [PMID: 35336799 PMCID: PMC8945699 DOI: 10.3390/biology11030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Magnetic resonance imaging showed that striatal injury leads to structural changes within several brain areas. Here, we specify these changes via gene expression of synaptic plasticity markers, neuronal markers, assessing the number of newborn cells as well as cell densities. We found that the injury resulted in long-lasting modifications involving plasticity and neural protection mechanisms in areas directly as well as indirectly connected with the damaged striatum, including the cerebellum. Abstract The striatal region Area X plays an important role during song learning, sequencing, and variability in songbirds. A previous study revealed that neurotoxic damage within Area X results in micro and macrostructural changes across the entire brain, including the downstream dorsal thalamus and both the upstream pallial nucleus HVC (proper name) and the deep cerebellar nuclei (DCN). Here, we specify these changes on cellular and gene expression levels. We found decreased cell density in the thalamic and cerebellar areas and HVC, but it was not related to neuronal loss. On the contrary, perineuronal nets (PNNs) in HVC increased for up to 2 months post-lesion, suggesting their protecting role. The synaptic plasticity marker Forkhead box protein P2 (FoxP2) showed a bi-phasic increase at 8 days and 3 months post-lesion, indicating a massive synaptic rebuilding. The later increase in HVC was associated with the increased number of new neurons. These data suggest that the damage in the striatal vocal nucleus induces cellular and gene expression alterations in both the efferent and afferent destinations. These changes may be long-lasting and involve plasticity and neural protection mechanisms in the areas directly connected to the injury site and also to distant areas, such as the cerebellum.
Collapse
Affiliation(s)
- Kristina Lukacova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Correspondence: (K.L.); (L.K.)
| | - Julie Hamaide
- Bio-Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2610 Antwerp, Belgium; (J.H.); (A.V.d.L.)
| | - Ladislav Baciak
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia;
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, B-2610 Antwerp, Belgium; (J.H.); (A.V.d.L.)
| | - Lubica Kubikova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
- Correspondence: (K.L.); (L.K.)
| |
Collapse
|
13
|
Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish-implications for neurodevelopmental disorders. Transl Psychiatry 2021; 11:529. [PMID: 34650032 PMCID: PMC8517032 DOI: 10.1038/s41398-021-01651-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). FOXP2 function is suggested to be involved in GABAergic signalling and numerous studies demonstrate that GABAergic function is altered in NDDs, thus disrupting the excitation/inhibition balance. Interestingly, GABAergic signalling components, including glutamate-decarboxylase 1 (Gad1) and GABA receptors, are putative transcriptional targets of FOXP2. However, the specific role of FOXP2 in the pathomechanism of NDDs remains elusive. Here we test the hypothesis that Foxp2 affects behavioural dimensions via GABAergic signalling using zebrafish as model organism. We demonstrate that foxp2 is expressed by a subset of GABAergic neurons located in brain regions involved in motor functions, including the subpallium, posterior tuberculum, thalamus and medulla oblongata. Using CRISPR/Cas9 gene-editing we generated a novel foxp2 zebrafish loss-of-function mutant that exhibits increased locomotor activity. Further, genetic and/or pharmacological disruption of Gad1 or GABA-A receptors causes increased locomotor activity, resembling the phenotype of foxp2 mutants. Application of muscimol, a GABA-A receptor agonist, rescues the hyperactive phenotype induced by the foxp2 loss-of-function. By reverse translation of the therapeutic effect on hyperactive behaviour exerted by methylphenidate, we note that application of methylphenidate evokes different responses in wildtype compared to foxp2 or gad1b loss-of-function animals. Together, our findings support the hypothesis that foxp2 regulates locomotor activity via GABAergic signalling. This provides one targetable mechanism, which may contribute to behavioural phenotypes commonly observed in NDDs.
Collapse
|
14
|
Moorman S, Ahn JR, Kao MH. Plasticity of stereotyped birdsong driven by chronic manipulation of cortical-basal ganglia activity. Curr Biol 2021; 31:2619-2632.e4. [PMID: 33974850 PMCID: PMC8222193 DOI: 10.1016/j.cub.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Cortical-basal ganglia (CBG) circuits are critical for motor learning and performance, and are a major site of pathology. In songbirds, a CBG circuit regulates moment-by-moment variability in song and also enables song plasticity. Studies have shown that variable burst firing in LMAN, the output nucleus of this CBG circuit, actively drives acute song variability, but whether and how LMAN drives long-lasting changes in song remains unclear. Here, we ask whether chronic pharmacological augmentation of LMAN bursting is sufficient to drive plasticity in birds singing stereotyped songs. We show that altered LMAN activity drives cumulative changes in acoustic structure, timing, and sequencing over multiple days, and induces repetitions and silent pauses reminiscent of human stuttering. Changes persisted when LMAN was subsequently inactivated, indicating plasticity in song motor regions. Following cessation of pharmacological treatment, acoustic features and song sequence gradually recovered to their baseline values over a period of days to weeks. Together, our findings show that augmented bursting in CBG circuitry drives plasticity in well-learned motor skills, and may inform treatments for basal ganglia movement disorders.
Collapse
Affiliation(s)
- Sanne Moorman
- Psychology Department, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA.
| | - Jae-Rong Ahn
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Mimi H Kao
- Biology Department, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA; Neuroscience Graduate Program, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
15
|
Wright TF, Derryberry EP. Defining the multidimensional phenotype: New opportunities to integrate the behavioral ecology and behavioral neuroscience of vocal learning. Neurosci Biobehav Rev 2021; 125:328-338. [PMID: 33621636 PMCID: PMC8628558 DOI: 10.1016/j.neubiorev.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
Vocal learning has evolved independently in several lineages. This complex cognitive trait is commonly treated as binary: species either possess or lack it. This view has been a useful starting place to examine the origins of vocal learning, but is also incomplete and potentially misleading, as specific components of the vocal learning program - such as the timing, extent and nature of what is learned - vary widely among species. In our review we revive an idea first proposed by Beecher and Brenowitz (2005) by describing six dimensions of vocal learning: (1) which vocalizations are learned, (2) how much is learned, (3) when it is learned, (4) who it is learned from, (5) what is the extent of the internal template, and (6) how is the template integrated with social learning and innovation. We then highlight key examples of functional and mechanistic work on each dimension, largely from avian taxa, and discuss how a multi-dimensional framework can accelerate our understanding of why vocal learning has evolved, and how brains became capable of this important behaviour.
Collapse
Affiliation(s)
- Timothy F Wright
- Dept of Biology, New Mexico State Univ, Las Cruces, NM, 88005, USA.
| | | |
Collapse
|
16
|
Xiao L, Merullo DP, Koch TMI, Cao M, Co M, Kulkarni A, Konopka G, Roberts TF. Expression of FoxP2 in the basal ganglia regulates vocal motor sequences in the adult songbird. Nat Commun 2021; 12:2617. [PMID: 33976169 PMCID: PMC8113549 DOI: 10.1038/s41467-021-22918-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Disruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Devin P Merullo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Therese M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mou Cao
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marissa Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
O'Rourke T, Martins PT, Asano R, Tachibana RO, Okanoya K, Boeckx C. Capturing the Effects of Domestication on Vocal Learning Complexity. Trends Cogn Sci 2021; 25:462-474. [PMID: 33810982 DOI: 10.1016/j.tics.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
Domesticated and vocal learning species can serve as informative model organisms for the reduction of reactive aggression and emergence of speech in our lineage. Amidst mounting evidence that domestication modifies vocal repertoires across different species, we focus on the domesticated Bengalese finch, which has a more complex song than the wild-type white-rumped munia. Our explanation for this effect revolves around the glutamate neurotransmitter system. Glutamate signaling (i) is implicated in birdsong learning, (ii) controls dopamine activity in neural circuits crucial for vocal learning, (iii) is disproportionately targeted in the evolution of domesticates, and (iv) regulates stress responses and aggressive behaviors attenuated under domestication. We propose that attenuated excitation of stress-related neural circuits potentiates vocal learning via altered dopaminergic signaling.
Collapse
Affiliation(s)
- Thomas O'Rourke
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Pedro Tiago Martins
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Rie Asano
- Department of Systematic Musicology, University of Cologne, 50923 Cologne, Germany
| | - Ryosuke O Tachibana
- Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| | - Cedric Boeckx
- Section of General Linguistics, University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute for Complex Systems (UBICS), 08028 Barcelona, Spain; Catalan Institute for Advanced Studies and Research (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
18
|
Urbanus BHA, Peter S, Fisher SE, De Zeeuw CI. Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts. Sci Rep 2020; 10:21631. [PMID: 33303861 PMCID: PMC7730140 DOI: 10.1038/s41598-020-78531-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
FOXP2 has been identified as a gene related to speech in humans, based on rare mutations that yield significant impairments in speech at the level of both motor performance and language comprehension. Disruptions of the murine orthologue Foxp2 in mouse pups have been shown to interfere with production of ultrasonic vocalizations (USVs). However, it remains unclear which structures are responsible for these deficits. Here, we show that conditional knockout mice with selective Foxp2 deletions targeting the cerebral cortex, striatum or cerebellum, three key sites of motor control with robust neural gene expression, do not recapture the profile of pup USV deficits observed in mice with global disruptions of this gene. Moreover, we observed that global Foxp2 knockout pups show substantive reductions in USV production as well as an overproduction of short broadband noise “clicks”, which was not present in the brain region-specific knockouts. These data indicate that deficits of Foxp2 expression in the cortex, striatum or cerebellum cannot solely explain the disrupted vocalization behaviours in global Foxp2 knockouts. Our findings raise the possibility that the impact of Foxp2 disruption on USV is mediated at least in part by effects of this gene on the anatomical prerequisites for vocalizing.
Collapse
Affiliation(s)
| | - Saša Peter
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR, Rotterdam, The Netherlands. .,Netherlands Institute for Neuroscience, KNAW, 1105 CA, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Palmer SE, Wright BD, Doupe AJ, Kao MH. Variable but not random: temporal pattern coding in a songbird brain area necessary for song modification. J Neurophysiol 2020; 125:540-555. [PMID: 33296616 DOI: 10.1152/jn.00034.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Practice of a complex motor gesture involves motor exploration to attain a better match to target, but little is known about the neural code for such exploration. We examine spiking in a premotor area of the songbird brain critical for song modification and quantify correlations between spiking and time in the motor sequence. While isolated spikes code for time in song during performance of song to a female bird, extended strings of spiking and silence, particularly bursts, code for time in song during undirected (solo) singing, or "practice." Bursts code for particular times in song with more information than individual spikes, and this spike-spike synergy is significantly higher during undirected singing. The observed pattern information cannot be accounted for by a Poisson model with a matched time-varying rate, indicating that the precise timing of spikes in both bursts in undirected singing and isolated spikes in directed singing code for song with a temporal code. Temporal coding during practice supports the hypothesis that lateral magnocellular nucleus of the anterior nidopallium neurons actively guide song modification at local instances in time.NEW & NOTEWORTHY This paper shows that bursts of spikes in the songbird brain during practice carry information about the output motor pattern. The brain's code for song changes with social context, in performance versus practice. Synergistic combinations of spiking and silence code for time in the bird's song. This is one of the first uses of information theory to quantify neural information about a motor output. This activity may guide changes to the song.
Collapse
Affiliation(s)
- S E Palmer
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - B D Wright
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - A J Doupe
- Department of Organismal Biology and Anatomy, Department of Physics, Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois
| | - M H Kao
- Department of Biology & Program in Neuroscience, Tufts University, Medford, Massachusetts
| |
Collapse
|
20
|
Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e375. [PMID: 31999079 PMCID: PMC8286808 DOI: 10.1002/wdev.375] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Ashley G Anderson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
21
|
Audet JN. Neurobiological and Ecological Correlates of Avian Innovation. Integr Comp Biol 2020; 60:955-966. [PMID: 32681794 DOI: 10.1093/icb/icaa107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the wild, particularly in rapidly changing conditions, being capable of solving new problems can increase an animal's chances of survival and reproduction. In the current context of widespread habitat destruction and increasing urbanization, innovativeness might be a crucial trait. In the past few decades, birds have proven to be a model taxon for the study of innovation, thanks to the abundant literature on avian innovation reports. Innovation databases in birds have been successfully employed to assess associations between innovativeness and other traits such as invasion success, life history, generalism, and brain encephalization. In order to more directly assess the causes of variation in innovation, a complementary approach consists in measuring innovativeness in wild-caught animals using problem-solving tasks that mimic innovations in the field. This method can allow for finer scale evaluation of ecological and neural correlates of innovation. Here, I review some of the most important findings on the correlates of innovation, with a particular focus on neural ones. I conclude by discussing avenues for future research, which I suggest should focus on neurobiology.
Collapse
|
22
|
Kosubek-Langer J, Scharff C. Dynamic FoxP2 levels in male zebra finches are linked to morphology of adult-born Area X medium spiny neurons. Sci Rep 2020; 10:4787. [PMID: 32179863 PMCID: PMC7075913 DOI: 10.1038/s41598-020-61740-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/29/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor FOXP2 is crucial for the formation and function of cortico-striatal circuits. FOXP2 mutations are associated with specific speech and language impairments. In songbirds, experimentally altered FoxP2 expression levels in the striatal song nucleus Area X impair vocal learning and song production. Overall FoxP2 protein levels in Area X are low in adult zebra finches and decrease further with singing. However, some Area X medium spiny neurons (MSNs) express FoxP2 at high levels (FoxP2high MSNs) and singing does not change this. Because Area X receives many new neurons throughout adulthood, we hypothesized that the FoxP2high MSNs are newly recruited neurons, not yet integrated into the local Area X circuitry and thus not active during singing. Contrary to our expectation, FoxP2 protein levels did not predict whether new MSNs were active during singing, assayed via immediate early gene expression. However, new FoxP2high MSNs had more complex dendrites, higher spine density and more mushroom spines than new FoxP2low MSNs. In addition, FoxP2 expression levels correlated positively with nucleus size of new MSNs. Together, our data suggest that dynamic FoxP2 levels in new MSNs shape their morphology during maturation and their incorporation into a neural circuit that enables the maintenance and social modulation of adult birdsong.
Collapse
Affiliation(s)
- Jennifer Kosubek-Langer
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| | - Constance Scharff
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Co M, Hickey SL, Kulkarni A, Harper M, Konopka G. Cortical Foxp2 Supports Behavioral Flexibility and Developmental Dopamine D1 Receptor Expression. Cereb Cortex 2020; 30:1855-1870. [PMID: 31711176 PMCID: PMC7132914 DOI: 10.1093/cercor/bhz209] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic studies have associated FOXP2 variation with speech and language disorders and other neurodevelopmental disorders (NDDs) involving pathology of the cortex. In this brain region, FoxP2 is expressed from development into adulthood, but little is known about its downstream molecular and behavioral functions. Here, we characterized cortex-specific Foxp2 conditional knockout mice and found a major deficit in reversal learning, a form of behavioral flexibility. In contrast, they showed normal activity levels, anxiety, and vocalizations, save for a slight decrease in neonatal call loudness. These behavioral phenotypes were accompanied by decreased cortical dopamine D1 receptor (D1R) expression at neonatal and adult stages, while general cortical development remained unaffected. Finally, using single-cell transcriptomics, we identified at least five excitatory and three inhibitory D1R-expressing cell types in neonatal frontal cortex, and we found changes in D1R cell type composition and gene expression upon cortical Foxp2 deletion. Strikingly, these alterations included non-cell-autonomous changes in upper layer neurons and interneurons. Together, these data support a role for Foxp2 in the development of dopamine-modulated cortical circuits and behaviors relevant to NDDs.
Collapse
Affiliation(s)
- Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie L Hickey
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Isola GR, Vochin A, Sakata JT. Manipulations of inhibition in cortical circuitry differentially affect spectral and temporal features of Bengalese finch song. J Neurophysiol 2020; 123:815-830. [PMID: 31967928 DOI: 10.1152/jn.00142.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interplay between inhibition and excitation can regulate behavioral expression and control, including the expression of communicative behaviors like birdsong. Computational models postulate varying degrees to which inhibition within vocal motor circuitry influences birdsong, but few studies have tested these models by manipulating inhibition. Here we enhanced and attenuated inhibition in the cortical nucleus HVC (used as proper name) of Bengalese finches (Lonchura striata var. domestica). Enhancement of inhibition (with muscimol) in HVC dose-dependently reduced the amount of song produced. Infusions of higher concentrations of muscimol caused some birds to produce spectrally degraded songs, whereas infusions of lower doses of muscimol led to the production of relatively normal (nondegraded) songs. However, the spectral and temporal structures of these nondegraded songs were significantly different from songs produced under control conditions. In particular, muscimol infusions decreased the frequency and amplitude of syllables, increased various measures of acoustic entropy, and increased the variability of syllable structure. Muscimol also increased sequence durations and the variability of syllable timing and syllable sequencing. Attenuation of inhibition (with bicuculline) in HVC led to changes to song distinct from and often opposite to enhancing inhibition. For example, in contrast to muscimol, bicuculline infusions increased syllable amplitude, frequency, and duration and decreased the variability of acoustic features. However, like muscimol, bicuculline increased the variability of syllable sequencing. These data highlight the importance of inhibition to the production of stereotyped vocalizations and demonstrate that changes to neural dynamics within cortical circuitry can differentially affect spectral and temporal features of song.NEW & NOTEWORTHY We reveal that manipulations of inhibition in the cortical nucleus HVC affect the structure, timing, and sequencing of syllables in Bengalese finch song. Enhancing and blocking inhibition led to opposite changes to the acoustic structure and timing of vocalizations, but both caused similar changes to vocal sequencing. These data provide support for computational models of song control but also motivate refinement of existing models to account for differential effects on syllable structure, timing, and sequencing.
Collapse
Affiliation(s)
- Gaurav R Isola
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Anca Vochin
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Centre for Research on Brain, Language, and Music, Montreal, Quebec, Canada.,Center for Studies in Behavioral Neurobiology, Montreal, Quebec, Canada
| |
Collapse
|
25
|
New Insights into the Avian Song System and Neuronal Control of Learned Vocalizations. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Aamodt CM, Farias-Virgens M, White SA. Birdsong as a window into language origins and evolutionary neuroscience. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190060. [PMID: 31735151 DOI: 10.1098/rstb.2019.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans and songbirds share the key trait of vocal learning, manifested in speech and song, respectively. Striking analogies between these behaviours include that both are acquired during developmental critical periods when the brain's ability for vocal learning peaks. Both behaviours show similarities in the overall architecture of their underlying brain areas, characterized by cortico-striato-thalamic loops and direct projections from cortical neurons onto brainstem motor neurons that control the vocal organs. These neural analogies extend to the molecular level, with certain song control regions sharing convergent transcriptional profiles with speech-related regions in the human brain. This evolutionary convergence offers an unprecedented opportunity to decipher the shared neurogenetic underpinnings of vocal learning. A key strength of the songbird model is that it allows for the delineation of activity-dependent transcriptional changes in the brain that are driven by learned vocal behaviour. To capitalize on this advantage, we used previously published datasets from our laboratory that correlate gene co-expression networks to features of learned vocalization within and after critical period closure to probe the functional relevance of genes implicated in language. We interrogate specific genes and cellular processes through converging lines of evidence: human-specific evolutionary changes, intelligence-related phenotypes and relevance to vocal learning gene co-expression in songbirds. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Caitlin M Aamodt
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Madza Farias-Virgens
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Stephanie A White
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
27
|
Abstract
FOXP2 mutations cause a speech and language disorder, raising interest in potential roles of this gene in human evolution. A new study re-evaluates genomic variation at the human FOXP2 locus but finds no evidence of recent adaptive evolution.
Collapse
Affiliation(s)
- Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
28
|
Differential Song Deficits after Lentivirus-Mediated Knockdown of FoxP1, FoxP2, or FoxP4 in Area X of Juvenile Zebra Finches. J Neurosci 2019; 39:9782-9796. [PMID: 31641053 DOI: 10.1523/jneurosci.1250-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the transcription factors FOXP1 and FOXP2 are associated with speech impairments. FOXP1 is additionally linked to cognitive deficits, as is FOXP4. These FoxP proteins are highly conserved in vertebrates and expressed in comparable brain regions, including the striatum. In male zebra finches, experimental manipulation of FoxP2 in Area X, a striatal song nucleus essential for vocal production learning, affects song development, adult song production, dendritic spine density, and dopamine-regulated synaptic transmission of striatal neurons. We previously showed that, in the majority of Area X neurons FoxP1, FoxP2, and FoxP4 are coexpressed, can dimerize and multimerize with each other and differentially regulate the expression of target genes. These findings raise the possibility that FoxP1, FoxP2, and FoxP4 (FoxP1/2/4) affect neural function differently and in turn vocal learning. To address this directly, we downregulated FoxP1 or FoxP4 in Area X of juvenile zebra finches and compared the resulting song phenotypes with the previously described inaccurate and incomplete song learning after FoxP2 knockdown. We found that experimental downregulation of FoxP1 and FoxP4 led to impaired song learning with partly similar features as those reported for FoxP2 knockdowns. However, there were also specific differences between the groups, leading us to suggest that specific features of the song are differentially impacted by developmental manipulations of FoxP1/2/4 expression in Area X.SIGNIFICANCE STATEMENT We compared the effects of experimentally reduced expression of the transcription factors FoxP1, FoxP2, and FoxP4 in a striatal song nucleus, Area X, on vocal production learning in juvenile male zebra finches. We show, for the first time, that these temporally and spatially precise manipulations of the three FoxPs affect spectral and temporal song features differentially. This is important because it raises the possibility that the different FoxPs control different aspects of vocal learning through combinatorial gene expression or by acting in different microcircuits within Area X. These results are consistent with the deleterious effects of human FOXP1 and FOXP2 mutations on speech and language and add FOXP4 as a possible candidate gene for vocal disorders.
Collapse
|
29
|
Schreiweis C, Irinopoulou T, Vieth B, Laddada L, Oury F, Burguière E, Enard W, Groszer M. Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels. Cortex 2019; 118:212-222. [DOI: 10.1016/j.cortex.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
|
30
|
Vellema M, Diales Rocha M, Bascones S, Zsebők S, Dreier J, Leitner S, Van der Linden A, Brewer J, Gahr M. Accelerated redevelopment of vocal skills is preceded by lasting reorganization of the song motor circuitry. eLife 2019; 8:43194. [PMID: 31099755 PMCID: PMC6570526 DOI: 10.7554/elife.43194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
Complex motor skills take considerable time and practice to learn. Without continued practice the level of skill performance quickly degrades, posing a problem for the timely utilization of skilled motor behaviors. Here we quantified the recurring development of vocal motor skills and the accompanying changes in synaptic connectivity in the brain of a songbird, while manipulating skill performance by consecutively administrating and withdrawing testosterone. We demonstrate that a songbird with prior singing experience can significantly accelerate the re-acquisition of vocal performance. We further demonstrate that an increase in vocal performance is accompanied by a pronounced synaptic pruning in the forebrain vocal motor area HVC, a reduction that is not reversed when birds stop singing. These results provide evidence that lasting synaptic changes in the motor circuitry are associated with the savings of motor skills, enabling a rapid recovery of motor performance under environmental time constraints.
Collapse
Affiliation(s)
- Michiel Vellema
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.,Bio Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - Mariana Diales Rocha
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Sabrina Bascones
- Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Sándor Zsebők
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Jes Dreier
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stefan Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
31
|
Beyond Critical Period Learning: Striatal FoxP2 Affects the Active Maintenance of Learned Vocalizations in Adulthood. eNeuro 2019; 6:eN-CFN-0071-19. [PMID: 31001575 PMCID: PMC6469881 DOI: 10.1523/eneuro.0071-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
In humans, mutations in the transcription factor forkhead box P2 (FOXP2) result in language disorders associated with altered striatal structure. Like speech, birdsong is learned through social interactions during maturational critical periods, and it relies on auditory feedback during initial learning and on-going maintenance. Hearing loss causes learned vocalizations to deteriorate in adult humans and songbirds. In the adult songbird brain, most FoxP2-enriched regions (e.g., cortex, thalamus) show a static expression level, but in the striatal song control nucleus, area X, FoxP2 is regulated by singing and social context: when juveniles and adults sing alone, its levels drop, and songs are more variable. When males sing to females, FoxP2 levels remain high, and songs are relatively stable: this “on-line” regulation implicates FoxP2 in ongoing vocal processes, but its role in the auditory-based maintenance of learned vocalization has not been examined. To test this, we overexpressed FoxP2 in both hearing and deafened adult zebra finches and assessed effects on song sung alone versus songs directed to females. In intact birds singing alone, no changes were detected between songs of males expressing FoxP2 or a GFP construct in area X, consistent with the marked stability of mature song in this species. In contrast, songs of males overexpressing FoxP2 became more variable and were less preferable to females, unlike responses to songs of GFP-expressing control males. In deafened birds, song deteriorated more rapidly following FoxP2 overexpression relative to GFP controls. Together, these experiments suggest that behavior-driven FoxP2 expression and auditory feedback interact to precisely maintain learned vocalizations.
Collapse
|
32
|
Day NF, Saxon D, Robbins A, Harris L, Nee E, Shroff-Mehta N, Stout K, Sun J, Lillie N, Burns M, Korn C, Coleman MJ. D2 dopamine receptor activation induces female preference for male song in the monogamous zebra finch. ACTA ACUST UNITED AC 2019; 222:222/5/jeb191510. [PMID: 30850509 DOI: 10.1242/jeb.191510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
The evolutionary conservation of neural mechanisms for forming and maintaining pair bonds is unclear. Oxytocin, vasopressin and dopamine (DA) transmitter systems have been shown to be important in pair-bond formation and maintenance in several vertebrate species. We examined the role of dopamine in formation of song preference in zebra finches, a monogamous bird. Male courtship song is an honest signal of sexual fitness; thus, we measured female song preference to evaluate the role of DA in mate selection and pair-bond formation, using an operant conditioning paradigm. We found that DA acting through the D2 receptor, but not the D1 receptor, can induce a song preference in unpaired female finches and that blocking the D2 receptor abolished song preference in paired females. These results suggest that similar neural mechanisms for pair-bond formation are evolutionarily conserved in rodents and birds.
Collapse
Affiliation(s)
- Nancy F Day
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7246, USA
| | - David Saxon
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Anastasia Robbins
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Lily Harris
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Emily Nee
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Naomi Shroff-Mehta
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Kaeley Stout
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Julia Sun
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Natalie Lillie
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Mara Burns
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Clio Korn
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| | - Melissa J Coleman
- W.M. Keck Science Department of Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA 91711-5916, USA
| |
Collapse
|
33
|
Sen S, Parishar P, Pundir AS, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol 2019; 527:1801-1836. [PMID: 30697741 DOI: 10.1002/cne.24649] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/27/2023]
Abstract
Birds of the family Corvidae which includes diverse species such as crows, rooks, ravens, magpies, jays, and jackdaws are known for their amazing abilities at problem-solving. Since the catecholaminergic system, especially the neurotransmitter dopamine, plays a role in cognition, we decided to study the distribution of tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines in the brain of house crows (Corvus splendens). We also studied the expression of DARPP-32 (dopamine and cAMP-regulated phosphoprotein), which is expressed in dopaminoceptive neurons. Our results demonstrated that as in other avian species, the expression of both TH and DARPP-32 was highest in the house crow striatum. The caudolateral nidopallium (NCL, the avian analogue of the mammalian prefrontal cortex) could be differentiated from the surrounding pallial regions based on a larger number of TH-positive "baskets" of fibers around neurons in this region and greater intensity of DARPP-32 staining in the neuropil in this region. House crows also possessed distinct nuclei in their brains which corresponded to song control regions in other songbirds. Whereas immunoreactivity for TH was higher in the vocal control region Area X compared to the surrounding MSt (medial striatum) in house crows, staining in RA and HVC was not as prominent. Furthermore, the arcopallial song control regions RA (nucleus robustus arcopallialis) and AId (intermediate arcopallium) were strikingly negative for DARPP-32 staining, in contrast to the surrounding arcopallium. Patterns of immunoreactivity for TH and DARPP-32 in "limbic" areas such as the hippocampus, septum, and extended amygdala have also been described.
Collapse
Affiliation(s)
- Shankhamala Sen
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Pooja Parishar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Arvind Singh Pundir
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States.,Department of Ophthalmology, University of Tennessee, Memphis, Tennessee, United States
| | - Soumya Iyengar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| |
Collapse
|
34
|
Dopaminergic regulation of vocal-motor plasticity and performance. Curr Opin Neurobiol 2019; 54:127-133. [DOI: 10.1016/j.conb.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
|
35
|
Badwal A, Poertner J, Samlan RA, Miller JE. Common Terminology and Acoustic Measures for Human Voice and Birdsong. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:60-69. [PMID: 30540871 DOI: 10.1044/2018_jslhr-s-18-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Purpose The zebra finch is used as a model to study the neural circuitry of auditory-guided human vocal production. The terminology of birdsong production and acoustic analysis, however, differs from human voice production, making it difficult for voice researchers of either species to navigate the literature from the other. The purpose of this research note is to identify common terminology and measures to better compare information across species. Method Terminology used in the birdsong literature will be mapped onto terminology used in the human voice production literature. Measures typically used to quantify the percepts of pitch, loudness, and quality will be described. Measures common to the literature in both species will be made from the songs of 3 middle-age birds using Praat and Song Analysis Pro. Two measures, cepstral peak prominence (CPP) and Wiener entropy (WE), will be compared to determine if they provide similar information. Results Similarities and differences in terminology and acoustic analyses are presented. A core set of measures including frequency, frequency variability within a syllable, intensity, CPP, and WE are proposed for future studies. CPP and WE are related yet provide unique information about the syllable structure. Conclusions Using a core set of measures familiar to both human voice and birdsong researchers, along with both CPP and WE, will allow characterization of similarities and differences among birds. Standard terminology and measures will improve accessibility of the birdsong literature to human voice researchers and vice versa. Supplemental Material https://doi.org/10.23641/asha.7438964.
Collapse
Affiliation(s)
- Areen Badwal
- Department of Neuroscience, University of Arizona, Tucson
| | - JoHanna Poertner
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson
| | - Robin A Samlan
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson
| | - Julie E Miller
- Department of Neuroscience, University of Arizona, Tucson
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson
| |
Collapse
|
36
|
French CA, Vinueza Veloz MF, Zhou K, Peter S, Fisher SE, Costa RM, De Zeeuw CI. Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 2019; 24:447-462. [PMID: 30108312 PMCID: PMC6514880 DOI: 10.1038/s41380-018-0199-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 01/27/2023]
Abstract
Disruptions of the FOXP2 gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted Foxp2 in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task. Foxp2 loss in each region impacted behaviour differently, with striatal and Purkinje cell disruptions affecting the variability and the speed of lever-press sequences, respectively. Mice lacking Foxp2 in Purkinje cells showed a prominent phenotype involving slowed lever pressing as well as deficits in skilled locomotion. In vivo recordings from Purkinje cells uncovered an increased simple spike firing rate and decreased modulation of firing during limb movements. This was caused by increased intrinsic excitability rather than changes in excitatory or inhibitory inputs. Our findings show that Foxp2 can modulate different aspects of motor behaviour in distinct brain regions, and uncover an unknown role for Foxp2 in the modulation of Purkinje cell activity that severely impacts skilled movements.
Collapse
Affiliation(s)
- Catherine A. French
- 0000 0004 0453 9636grid.421010.6Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - María F. Vinueza Veloz
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,grid.442230.3School of Medicine, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| | - Kuikui Zhou
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,0000000119573309grid.9227.eThe Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Saša Peter
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Simon E. Fisher
- 0000 0004 0501 3839grid.419550.cLanguage and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands ,0000000122931605grid.5590.9Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rui M. Costa
- 0000 0004 0453 9636grid.421010.6Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal ,0000000419368729grid.21729.3fDepartment of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Chris I. De Zeeuw
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,0000 0001 2153 6865grid.418101.dNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
37
|
The Avian Basal Ganglia Are a Source of Rapid Behavioral Variation That Enables Vocal Motor Exploration. J Neurosci 2018; 38:9635-9647. [PMID: 30249800 DOI: 10.1523/jneurosci.2915-17.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia (BG) participate in aspects of reinforcement learning that require evaluation and selection of motor programs associated with improved performance. However, whether the BG additionally contribute to behavioral variation ("motor exploration") that forms the substrate for such learning remains unclear. In songbirds, a tractable system for studying BG-dependent skill learning, a role for the BG in generating exploratory variability, has been challenged by the finding that lesions of Area X, the song-specific component of the BG, have no lasting effects on several forms of vocal variability that have been studied. Here we demonstrate that lesions of Area X in adult male zebra finches (Taeniopygia gutatta) permanently eliminate rapid within-syllable variation in fundamental frequency (FF), which can act as motor exploration to enable reinforcement-driven song learning. In addition, we found that this within-syllable variation is elevated in juveniles and in adults singing alone, conditions that have been linked to enhanced song plasticity and elevated neural variability in Area X. Consistent with a model that variability is relayed from Area X, via its cortical target, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), to influence song motor circuitry, we found that lesions of LMAN also eliminate within-syllable variability. Moreover, we found that electrical perturbation of LMAN can drive fluctuations in FF that mimic naturally occurring within-syllable variability. Together, these results demonstrate that the BG are a central source of rapid behavioral variation that can serve as motor exploration for vocal learning.SIGNIFICANCE STATEMENT Many complex motor skills, such as speech, are not innately programmed but are learned gradually through trial and error. Learning involves generating exploratory variability in action ("motor exploration") and evaluating subsequent performance to acquire motor programs that lead to improved performance. Although it is well established that the basal ganglia (BG) process signals relating to action evaluation and selection, whether and how the BG promote exploratory motor variability remain unclear. We investigated this question in songbirds, which learn to produce complex vocalizations through trial and error. In contrast with previous studies that did not find effects of BG lesions on vocal motor variability, we demonstrate that the BG are an essential source of rapid behavioral variation linked to vocal learning.
Collapse
|
38
|
Zhang S, Zhao J, Guo Z, Jones JA, Liu P, Liu H. The Association Between Genetic Variation in FOXP2 and Sensorimotor Control of Speech Production. Front Neurosci 2018; 12:666. [PMID: 30294257 PMCID: PMC6158330 DOI: 10.3389/fnins.2018.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Significant advances have been made in understanding the role of auditory feedback in sensorimotor integration for speech production. The neurogenetic basis of this feedback-based control process, however, remains largely unknown. Mutations of FOXP2 gene in humans are associated with severe deficits in speech motor behavior. The present study examined the associations between a FOXP2 common variant, rs6980093 (A/G), and the behavioral and event-related potential (ERP) responses to -50 and -200 cents pitch perturbations during vocal production in a sample of 133 Chinese adults. Behaviorally, the GG genotype was associated with significantly smaller vocal compensations for -200 cents perturbations relative to the AA and AG genotypes. Furthermore, both the AA and AG genotypes exhibited significant positive correlations between the degree of vocal compensation for -50 and -200 cents perturbations and the variability of normal voice fundamental frequency, whereas no such correlation existed for the GG genotype. At the cortical level, significantly larger P2 responses to -200 cents perturbations were associated with the GG genotype as compared to the AA and AG genotypes due to increased left-lateralized activity in the superior, middle, and inferior frontal gyrus, precentral gyrus, anterior cingulate cortex, middle temporal gyrus, and insula. The neurobehavioral responses to -50 cents perturbations, however, did not vary as a function of genotype. These findings present the first neurobehavioral evidence for an association between FOXP2 genetic variant and auditory-motor integration for vocal pitch regulation. The differential effects of FOXP2 genotypes at rs6980093 may reflect their influences on the weighting of feedback and feedforward control of speech production.
Collapse
Affiliation(s)
- Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai, China
| | - Jeffery A Jones
- Department of Psychology, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proc Natl Acad Sci U S A 2018; 115:8799-8804. [PMID: 30104377 DOI: 10.1073/pnas.1721820115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fundamental human traits, such as language and bipedalism, are associated with a range of anatomical adaptations in craniofacial shaping and skeletal remodeling. However, it is unclear how such morphological features arose during hominin evolution. FOXP2 is a brain-expressed transcription factor implicated in a rare disorder involving speech apraxia and language impairments. Analysis of its evolutionary history suggests that this gene may have contributed to the emergence of proficient spoken language. In the present study, through analyses of skeleton-specific knockout mice, we identified roles of Foxp2 in skull shaping and bone remodeling. Selective ablation of Foxp2 in cartilage disrupted pup vocalizations in a similar way to that of global Foxp2 mutants, which may be due to pleiotropic effects on craniofacial morphogenesis. Our findings also indicate that Foxp2 helps to regulate strength and length of hind limbs and maintenance of joint cartilage and intervertebral discs, which are all anatomical features that are susceptible to adaptations for bipedal locomotion. In light of the known roles of Foxp2 in brain circuits that are important for motor skills and spoken language, we suggest that this gene may have been well placed to contribute to coevolution of neural and anatomical adaptations related to speech and bipedal locomotion.
Collapse
|
40
|
Schatton A, Scharff C. FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβ c neurons. Eur J Neurosci 2018; 46:2534-2541. [PMID: 28921711 DOI: 10.1111/ejn.13713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/27/2023]
Abstract
The arthropod mushroom bodies (MB) are a higher order sensory integration centre. In insects, they play a central role in associative olfactory learning and memory. In Drosophila melanogaster (Dm), the highly ordered connectivity of heterogeneous MB neuron populations has been mapped using sophisticated molecular genetic and anatomical techniques. The MB-core subpopulation was recently shown to express the transcription factor FoxP with relevance for decision-making. Here, we report the development and adult distribution of a FoxP-expressing neuron population in the MB of honeybees (Apis mellifera, Am) using in situ hybridisation and a custom-made antiserum. We found the same expression pattern in adult bumblebees (Bombus terrestris, Bt). We also designed a new Dm transgenic line that reports FoxP transcriptional activity in the MB-core region, clarifying previously conflicting data of two other reporter lines. Considering developmental, anatomical and molecular similarities, our data are consistent with the concept of deep homology of FoxP expression in neuron populations coding reinforcement-based learning and habit formation.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
| |
Collapse
|
41
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
42
|
Heston JB, Simon J, Day NF, Coleman MJ, White SA. Bidirectional scaling of vocal variability by an avian cortico-basal ganglia circuit. Physiol Rep 2018; 6:e13638. [PMID: 29687960 PMCID: PMC5913712 DOI: 10.14814/phy2.13638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
Behavioral variability is thought to be critical for trial and error learning, but where such motor exploration is generated in the central nervous system is unclear. The zebra finch songbird species offers a highly appropriate model in which to address this question. The male song is amenable to detailed measurements of variability, while the brain contains an identified cortico-basal ganglia loop that underlies this behavior. We used pharmacogenetic interventions to separately interrogate cortical and basal ganglia nodes of zebra finch song control circuitry. We show that bidirectional manipulations of each node produce near mirror image changes in vocal control: Cortical activity promotes song variability, whereas basal ganglia activity promotes song stability. Furthermore, female conspecifics can detect these pharmacogenetically elicited changes in song quality. Our results indicate that cortex and striatopallidum can jointly and reciprocally affect behaviorally relevant levels of vocal variability, and point to endogenous mechanisms for its control.
Collapse
Affiliation(s)
- Jonathan B. Heston
- Interdepartmental Program in NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
| | - Joseph Simon
- Undergraduate Interdepartmental Program for NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
| | - Nancy F. Day
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| | - Melissa J. Coleman
- W. M. Keck Science Department of Claremont McKenna CollegePitzer College, and Scripps CollegeClaremontCalifornia
| | - Stephanie A. White
- Interdepartmental Program in NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
- Undergraduate Interdepartmental Program for NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| |
Collapse
|
43
|
Jhang CL, Huang TN, Hsueh YP, Liao W. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors. Hum Mol Genet 2018; 26:3922-3934. [PMID: 29016850 DOI: 10.1093/hmg/ddx279] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 01/02/2023] Open
Abstract
Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity.
Collapse
Affiliation(s)
- Cian-Ling Jhang
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan.,Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| |
Collapse
|
44
|
Rodenas-Cuadrado PM, Mengede J, Baas L, Devanna P, Schmid TA, Yartsev M, Firzlaff U, Vernes SC. Mapping the distribution of language related genes FoxP1, FoxP2, and CntnaP2 in the brains of vocal learning bat species. J Comp Neurol 2018; 526:1235-1266. [PMID: 29297931 PMCID: PMC5900884 DOI: 10.1002/cne.24385] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language‐related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language‐relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language‐relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open‐access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language‐related genes in complex vocal‐motor and vocal learning behaviors in a mammalian model system.
Collapse
Affiliation(s)
- Pedro M Rodenas-Cuadrado
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Laura Baas
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Tobias A Schmid
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720
| | - Michael Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720.,Department of Bioengineering, UC Berkeley, 306 University of California, Berkeley, California, 94720
| | - Uwe Firzlaff
- Department Tierwissenschaften, Lehrstuhl für Zoologie, TU München, München, 85354, Germany
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands.,Donders Centre for Cognitive Neuroimaging, Nijmegen, 6525 EN, The Netherlands
| |
Collapse
|
45
|
Shi Z, Piccus Z, Zhang X, Yang H, Jarrell H, Ding Y, Teng Z, Tchernichovski O, Li X. miR-9 regulates basal ganglia-dependent developmental vocal learning and adult vocal performance in songbirds. eLife 2018; 7:29087. [PMID: 29345619 PMCID: PMC5800847 DOI: 10.7554/elife.29087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
miR-9 is an evolutionarily conserved miRNA that is abundantly expressed in Area X, a basal ganglia nucleus required for vocal learning in songbirds. Here, we report that overexpression of miR-9 in Area X of juvenile zebra finches impairs developmental vocal learning, resulting in a song with syllable omission, reduced similarity to the tutor song, and altered acoustic features. miR-9 overexpression in juveniles also leads to more variable song performance in adulthood, and abolishes social context-dependent modulation of song variability. We further show that these behavioral deficits are accompanied by downregulation of FoxP1 and FoxP2, genes that are known to be associated with language impairments, as well as by disruption of dopamine signaling and widespread changes in the expression of genes that are important in circuit development and functions. These findings demonstrate a vital role for miR-9 in basal ganglia function and vocal communication, suggesting that dysregulation of miR-9 in humans may contribute to language impairments and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhimin Shi
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Zoe Piccus
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Xiaofang Zhang
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Huidi Yang
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Hannah Jarrell
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Yan Ding
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | - Zhaoqian Teng
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| | | | - XiaoChing Li
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, United States
| |
Collapse
|
46
|
Shi Z, Tchernichovski O, Li X. Studying the Mechanisms of Developmental Vocal Learning and Adult Vocal Performance in Zebra Finches through Lentiviral Injection. Bio Protoc 2018; 8:e3006. [DOI: 10.21769/bioprotoc.3006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
47
|
Abstract
The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human.
Collapse
|
48
|
FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci Rep 2017; 7:16866. [PMID: 29203828 PMCID: PMC5715162 DOI: 10.1038/s41598-017-16844-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
The gene coding for the forkhead box protein P2 (FOXP2) is associated with human language disorders. Evolutionary changes in this gene are hypothesized to have contributed to the emergence of speech and language in the human lineage. Although FOXP2 is highly conserved across most mammals, humans differ at two functional amino acid substitutions from chimpanzees, bonobos and gorillas, with an additional fixed substitution found in orangutans. However, FOXP2 has been characterized in only a small number of apes and no publication to date has examined the degree of natural variation in large samples of unrelated great apes. Here, we analyzed the genetic variation in the FOXP2 coding sequence in 63 chimpanzees, 11 bonobos, 48 gorillas, 37 orangutans and 2 gibbons and observed undescribed variation in great apes. We identified two variable polyglutamine microsatellites in chimpanzees and orangutans and found three nonsynonymous single nucleotide polymorphisms, one in chimpanzees, one in gorillas and one in orangutans with derived allele frequencies of 0.01, 0.26 and 0.29, respectively. Structural and functional protein modeling indicate a biochemical effect of the substitution in orangutans, and because of its presence solely in the Sumatran orangutan species, the mutation may be associated with reported population differences in vocalizations.
Collapse
|
49
|
Usui N, Araujo DJ, Kulkarni A, Co M, Ellegood J, Harper M, Toriumi K, Lerch JP, Konopka G. Foxp1 regulation of neonatal vocalizations via cortical development. Genes Dev 2017; 31:2039-2055. [PMID: 29138280 PMCID: PMC5733496 DOI: 10.1101/gad.305037.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
Usui et al. show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. The molecular mechanisms driving brain development at risk in autism spectrum disorders (ASDs) remain mostly unknown. Previous studies have implicated the transcription factor FOXP1 in both brain development and ASD pathophysiology. However, the specific molecular pathways both upstream of and downstream from FOXP1 are not fully understood. To elucidate the contribution of FOXP1-mediated signaling to brain development and, in particular, neocortical development, we generated forebrain-specific Foxp1 conditional knockout mice. We show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Using a genomics approach, we identified the transcriptional networks regulated by Foxp1 in the developing neocortex and found that such networks are enriched for downstream targets involved in neurogenesis and neuronal migration. We also uncovered mechanistic insight into Foxp1 function by demonstrating that sumoylation of Foxp1 during embryonic brain development is necessary for mediating proper interactions between Foxp1 and the NuRD complex. Furthermore, we demonstrated that sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. Together, these data provide critical mechanistic insights into the function of FOXP1 in the developing neocortex and may reveal molecular pathways at risk in ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.,Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Daniel J Araujo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kazuya Toriumi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Project for Schizophrenia Research, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
50
|
Deriziotis P, Fisher SE. Speech and Language: Translating the Genome. Trends Genet 2017; 33:642-656. [DOI: 10.1016/j.tig.2017.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023]
|