1
|
Akiki TJ, Jubeir J, Bertrand C, Tozzi L, Williams LM. Neural circuit basis of pathological anxiety. Nat Rev Neurosci 2025; 26:5-22. [PMID: 39604513 DOI: 10.1038/s41583-024-00880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Anxiety disorders are the most prevalent mental health conditions worldwide. Unfortunately, the understanding of the precise neurobiological mechanisms that underlie these disorders remains limited. Current diagnostic classifications, based on observable symptoms rather than underlying pathophysiology, do not capture the heterogeneity within and across anxiety disorders. Recent advances in functional neuroimaging have provided new insights into the neural circuits implicated in pathological anxiety, revealing dysfunctions that cut across traditional diagnostic boundaries. In this Review, we synthesize evidence that highlights abnormalities in neurobehavioural systems related to negative valence, positive valence, cognitive systems and social processes. We emphasize that pathological anxiety arises not only from heightened reactivity in acute threat ('fear') circuits but also from alterations in circuits that mediate distant (potential) and sustained threat, reward processing, cognitive control and social processing. We discuss how circuit vulnerabilities can lead to the emergence and maintenance of pathological anxiety. Once established, these neural abnormalities can be exacerbated by maladaptive behaviours that prevent extinction learning and perpetuate anxiety disorders. By delineating the specific neural mechanisms in each neurobiological system, we aim to contribute to a more comprehensive understanding of the neurobiology of anxiety disorders, potentially informing future research directions in this field.
Collapse
Affiliation(s)
- Teddy J Akiki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- National Center for PTSD, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jenna Jubeir
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Bertrand
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
2
|
Yang J, Ma G, Du X, Xie J, Wang M, Wang W, Guo B, Wu S. Deciphering the Role of Shank3 in Dendritic Morphology and Synaptic Function Across Postnatal Developmental Stages in the Shank3B KO Mouse. Neurosci Bull 2024:10.1007/s12264-024-01330-y. [PMID: 39693031 DOI: 10.1007/s12264-024-01330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/14/2024] [Indexed: 12/19/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is marked by early-onset neurodevelopmental anomalies, yet the temporal dynamics of genetic contributions to these processes remain insufficiently understood. This study aimed to elucidate the role of the Shank3 gene, known to be associated with monogenic causes of autism, in early developmental processes to inform the timing and mechanisms for potential interventions for ASD. Utilizing the Shank3B knockout (KO) mouse model, we examined Shank3 expression and its impact on neuronal maturation through Golgi staining for dendritic morphology and electrophysiological recordings to measure synaptic function in the anterior cingulate cortex (ACC) across different postnatal stages. Our longitudinal analysis revealed that, while Shank3B KO mice displayed normal neuronal morphology at one week postnatal, significant impairments in dendritic growth and synaptic activity emerged by two to three weeks. These findings highlight the critical developmental window during which Shank3 is essential for neuronal and synaptic maturation in the ACC.
Collapse
Affiliation(s)
- Jing Yang
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Guaiguai Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaohui Du
- Department of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Jinyi Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengmeng Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Armbruster-Genç DJN, Neil L, Valton V, Phillips H, Rankin G, Sharp M, Rapley J, Viding E, Roiser JP, McCrory E. Childhood maltreatment is associated with lower exploration and disrupted prefrontal activity and connectivity during reward learning in volatile environments. J Child Psychol Psychiatry 2024. [PMID: 39665511 DOI: 10.1111/jcpp.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Atypical reward processing is implicated in a range of psychiatric disorders associated with childhood maltreatment and may represent a latent vulnerability mechanism. In this longitudinal study, we investigated the impact of maltreatment on behavioural and neural indices of reward learning in volatile environments and examined associations with future psychopathology assessed 18 months later. METHODS Thirty-seven children and adolescents with documented histories of maltreatment (MT group) and a carefully matched group of 32 non-maltreated individuals (NMT group) aged 10-16 were presented with a probabilistic reinforcement learning task featuring a phase of stable and a phase of volatile reward contingencies. Brain activation and connectivity were assessed simultaneously using functional magnetic resonance imaging (fMRI). Computational models were used to extract individual estimates of learning rates and temperature, and neural signals in prespecified regions of interest were analysed during volatile and stable environments. In regression analyses, behavioural measures and neural signals at baseline were used to predict psychological symptoms at follow-up. RESULTS The MT group showed lower behavioural exploration, which predicted decreased internalising symptoms at follow-up. The MT group had lower activation in the orbitofrontal cortex (OFC) during outcome delivery in volatile relative to stable contexts. OFC connectivity with an area in the mid-cingulate cortex was also lower during outcome processing, which predicted higher general psychopathology at follow-up. CONCLUSIONS These findings are consistent with the notion that low exploratory behaviour following childhood maltreatment is potentially a protective adaptation against internalising symptoms, while disrupted neural processing of reward learning in volatile environments may index latent vulnerability to mental illness.
Collapse
Affiliation(s)
- Diana J N Armbruster-Genç
- Division of Psychology and Language Sciences, University College London, London, UK
- Institute of Psychology, University of Kaiserslautern-Landau (RPTU), Landau, Germany
| | - Louise Neil
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Vincent Valton
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Harriet Phillips
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Georgia Rankin
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Molly Sharp
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Jessica Rapley
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Eamon McCrory
- Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|
4
|
Ma L, Katyare N, Johnston K, Everling S. Effects of Ketamine on Frontoparietal Interactions in a Rule-Based Antisaccade Task in Macaque Monkeys. J Neurosci 2024; 44:e1018232024. [PMID: 39472063 PMCID: PMC11638814 DOI: 10.1523/jneurosci.1018-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Cognitive control is engaged by working memory processes and high-demand situations like antisaccade, where one must suppress a prepotent response. While it is known to be supported by the frontoparietal control network, how intra- and interareal dynamics contribute to cognitive control processes remains unclear. N-Methyl-d-aspartate glutamate receptors (NMDARs) play a key role in prefrontal dynamics that support cognitive control. NMDAR antagonists, such as ketamine, are known to alter task-related prefrontal activities and impair cognitive performance. However, the role of NMDAR in cognitive control-related frontoparietal dynamics remains underexplored. Here, we simultaneously recorded local field potentials and single-unit activities from the lateral prefrontal (lPFC) and posterior parietal cortices (PPC) in two male macaque monkeys during a rule-based antisaccade task, with both rule-visible (RV) and rule-memorized (RM) conditions. In addition to altering the E/I balance in both areas, ketamine had a negative impact on rule coding in true oscillatory activities. It also reduced frontoparietal coherence in a frequency- and rule-dependent manner. Granger prediction analysis revealed that ketamine induced an overall reduction in bidirectional connectivity. Among antisaccade trials, a greater reduction in lPFC-PPC connectivity during the delay period preceded a greater delay in saccadic onset under the RM condition and a greater deficit in performance under the RV condition. Lastly, ketamine compromised rule coding in lPFC neurons in both RV and RM conditions and in PPC neurons only in the RV condition. Our findings demonstrate the utility of acute NMDAR antagonists in understanding the mechanisms through which frontoparietal dynamics support cognitive control processes.
Collapse
Affiliation(s)
- Liya Ma
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Biophysics, Donders Centre for Neuroscience, Radboud University
| | - Nupur Katyare
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - Stefan Everling
- Department of Physiology and Pharmacology
- Brain and Mind Institute, 6525 AJ Nijmegen, The Netherlands
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Ji P, Nagler J, Perc M, Small M, Xiao J. Focus on the disruption of networks and system dynamics. CHAOS (WOODBURY, N.Y.) 2024; 34:080401. [PMID: 39213016 DOI: 10.1063/5.0231959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Networks are designed to ensure proper functioning and sustained operability of the underlying systems. However, disruptions are generally unavoidable. Internal interactions and external environmental effects can lead to the removal of nodes or edges, resulting in unexpected collective behavior. For instance, a single failing node or removed edge may trigger a cascading failure in an electric power grid. This Focus Issue delves into recent advances in understanding the impacts of disruptions on networks and their system dynamics. The central theme is the disruption of networks and their dynamics from the perspectives of both data-driven analysis as well as modeling. Topics covered include disruptions in the dynamics of empirical systems such as nuclear reaction networks, infrastructure networks, social networks, epidemics, brain dynamics, and physiology. Emphasis is placed on various phenomena in collective behavior, including critical phase transitions, irregular collective dynamics, complex patterns of synchrony and asynchrony, chimera states, and anomalous oscillations. The tools used for these studies include control theory, diffusion processes, stochastic processes, and network theory. This collection offers an exciting addition to the evolving landscape of network disruption research.
Collapse
Affiliation(s)
- Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Jan Nagler
- Deep Dynamics, Frankfurt School of Finance & Management, Frankfurt, Germany
- Centre for Human and Machine Intelligence, Frankfurt School of Finance & Management, Frankfurt, Germany
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Korosška cesta 160, 2000 Maribor, Slovenia
- Community Healthcare Center Dr. Adolf Drolc Maribor, Vošnjakova ulica 2, 2000 Maribor, Slovenia
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria
- Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Michael Small
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- The Complex Systems Group, Department of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
| | - Jinghua Xiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Haddon JE, Titherage D, Heckenast JR, Carter J, Owen MJ, Hall J, Wilkinson LS, Jones MW. Linking haploinsufficiency of the autism- and schizophrenia-associated gene Cyfip1 with striatal-limbic-cortical network dysfunction and cognitive inflexibility. Transl Psychiatry 2024; 14:256. [PMID: 38876996 PMCID: PMC11178837 DOI: 10.1038/s41398-024-02969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired behavioural flexibility is a core feature of neuropsychiatric disorders and is associated with underlying dysfunction of fronto-striatal circuitry. Reduced dosage of Cyfip1 is a risk factor for neuropsychiatric disorder, as evidenced by its involvement in the 15q11.2 (BP1-BP2) copy number variant: deletion carriers are haploinsufficient for CYFIP1 and exhibit a two- to four-fold increased risk of schizophrenia, autism and/or intellectual disability. Here, we model the contributions of Cyfip1 to behavioural flexibility and related fronto-striatal neural network function using a recently developed haploinsufficient, heterozygous knockout rat line. Using multi-site local field potential (LFP) recordings during resting state, we show that Cyfip1 heterozygous rats (Cyfip1+/-) harbor disrupted network activity spanning medial prefrontal cortex, hippocampal CA1 and ventral striatum. In particular, Cyfip1+/- rats showed reduced influence of nucleus accumbens and increased dominance of prefrontal and hippocampal inputs, compared to wildtype controls. Adult Cyfip1+/- rats were able to learn a single cue-response association, yet unable to learn a conditional discrimination task that engages fronto-striatal interactions during flexible pairing of different levers and cue combinations. Together, these results implicate Cyfip1 in development or maintenance of cortico-limbic-striatal network integrity, further supporting the hypothesis that alterations in this circuitry contribute to behavioural inflexibility observed in neuropsychiatric diseases including schizophrenia and autism.
Collapse
Affiliation(s)
- Josephine E Haddon
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK.
| | - Daniel Titherage
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health sciences, University of Bristol, Bristol, UK
| | - Julia R Heckenast
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Jennifer Carter
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Yuki S, Nakatani H, Tachibana RO, Okanoya K. Effective modulation from the ventral medial to the dorsal medial portion of the prefrontal cortex in memory confidence-based behavioral control. Sci Rep 2024; 14:10141. [PMID: 38698131 PMCID: PMC11066022 DOI: 10.1038/s41598-024-60755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Metacognition includes the ability to refer to one's own cognitive states, such as confidence, and adaptively control behavior based on this information. This ability is thought to allow us to predictably control our behavior without external feedback, for example, even before we take action. Many studies have suggested that metacognition requires a brain-wide network of multiple brain regions. However, the modulation of effective connectivity within this network during metacognitive tasks remains unclear. This study focused on medial prefrontal regions, which have recently been suggested to be particularly involved in metacognition. We examined whether modulation of effective connectivity specific to metacognitive behavioral control is observed using model-based network analysis and dynamic causal modeling (DCM). The results showed that negative modulation from the ventral medial prefrontal cortex to the dorsal medial prefrontal cortex was observed in situations that required metacognitive behavioral control but not in situations that did not require such metacognitive control. Furthermore, this modulation was particularly pronounced in the group of participants who could better use metacognition for behavioral control. These results imply hierarchical properties of metacognition-related brain networks.
Collapse
Affiliation(s)
- Shoko Yuki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Hironori Nakatani
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- School of Information and Telecommunication Engineering, Tokai University, 2-3-23, Minato-ku, Takanawa, Tokyo, 108-8619, Japan
| | - Ryosuke O Tachibana
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kazuo Okanoya
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| |
Collapse
|
8
|
Rudroff T. Decoding Post-Viral Fatigue: The Basal Ganglia's Complex Role in Long-COVID. Neurol Int 2024; 16:380-393. [PMID: 38668125 PMCID: PMC11054322 DOI: 10.3390/neurolint16020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024] Open
Abstract
Long-COVID afflicts millions with relentless fatigue, disrupting daily life. The objective of this narrative review is to synthesize current evidence on the role of the basal ganglia in long-COVID fatigue, discuss potential mechanisms, and highlight promising therapeutic interventions. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science databases. Mounting evidence from PET, MRI, and functional connectivity data reveals basal ganglia disturbances in long-COVID exhaustion, including inflammation, metabolic disruption, volume changes, and network alterations focused on striatal dopamine circuitry regulating motivation. Theories suggest inflammation-induced signaling disturbances could impede effort/reward valuation, disrupt cortical-subcortical motivational pathways, or diminish excitatory input to arousal centers, attenuating drive initiation. Recent therapeutic pilots targeting basal ganglia abnormalities show provisional efficacy. However, heterogeneous outcomes, inconsistent metrics, and perceived versus objective fatigue discrepancies temper insights. Despite the growing research, gaps remain in understanding the precise pathways linking basal ganglia dysfunction to fatigue and validating treatment efficacy. Further research is needed to advance understanding of the basal ganglia's contribution to long-COVID neurological sequelae and offer hope for improving function across the expanding affected population.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; ; Tel.: +1-(319)-467-0363; Fax: +1-(319)-355-6669
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Ferré S, Winkelman JW, García-Borreguero D, Belcher AM, Chang JH, Earley CJ. Restless legs syndrome, neuroleptic-induced akathisia, and opioid-withdrawal restlessness: shared neuronal mechanisms? Sleep 2024; 47:zsad273. [PMID: 37864837 PMCID: PMC10925952 DOI: 10.1093/sleep/zsad273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/23/2023] Open
Abstract
Restlessness is a core symptom underlying restless legs syndrome (RLS), neuroleptic-induced akathisia, and opioid withdrawal. These three conditions also share other clinical components suggesting some overlap in their pathophysiology. Recent prospective studies demonstrate the frequent incidence of RLS-like symptoms during opioid withdrawal and supervised prescription opioid tapering. Based on the therapeutic role of µ-opioid receptor (MOR) agonists in the three clinical conditions and recent preclinical experimental data in rodents, we provide a coherent and unifying neurobiological basis for the restlessness observed in these three clinical syndromes and propose a heuristic hypothesis of a key role of the specific striatal neurons that express MORs in akathisia/restlessness.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - John W Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Annabelle M Belcher
- Division of Addiction, Research, and Treatment, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joy H Chang
- Substance Abuse Consultation Service, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Christopher J Earley
- Department of Neurology and Sleep Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Wilbrecht L, Davidow JY. Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nat Rev Neurosci 2024; 25:176-194. [PMID: 38263216 DOI: 10.1038/s41583-023-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Juliet Y Davidow
- Department of Psychology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
11
|
Cui Z, Meng L, Zhang Q, Lou J, Lin Y, Sun Y. White and Gray Matter Abnormalities in Young Adult Females with Dependent Personality Disorder: A Diffusion-Tensor Imaging and Voxel-Based Morphometry Study. Brain Topogr 2024; 37:102-115. [PMID: 37831323 DOI: 10.1007/s10548-023-01013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
We applied diffusion-tensor imaging (DTI) including measurements of fractional anisotropy (FA), a parameter of neuronal fiber integrity, mean diffusivity (MD), a parameter of brain tissue integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to provide a basis to improve our understanding of the neurobiological basis of dependent personality disorder (DPD). DTI was performed on young girls with DPD (N = 17) and young female healthy controls (N = 17). Tract-based spatial statistics (TBSS) were used to examine microstructural characteristics. Gray matter volume differences between the two groups were investigated using voxel-based morphometry (VBM). The Pearson correlation analysis was utilized to examine the relationship between distinct brain areas of white matter and gray matter and the Dy score on the MMPI. The DPD had significantly higher fractional anisotropy (FA) values than the HC group in the right retrolenticular part of the internal capsule, right external capsule, the corpus callosum, right posterior thalamic radiation (include optic radiation), right cerebral peduncle (p < 0.05), which was strongly positively correlated with the Dy score of MMPI. The volume of gray matter in the right postcentral gyrus and left cuneus in DPD was significantly increased (p < 0.05), which was strongly positively correlated with the Dy score of MMPI (r1,2= 0.467,0.353; p1,2 = 0.005,0.04). Our results provide new insights into the changes in the brain structure in DPD, which suggests that alterations in the brain structure might implicate the pathophysiology of DPD. Possible visual and somatosensory association with motor nerve circuits in DPD.
Collapse
Affiliation(s)
- Zhixia Cui
- Weifang Mental Health Center, Weifang, Shandong, China
| | | | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Lou
- Beijing Normal University, Beijing, China
| | - Yuan Lin
- First Clinical Department, Dalian Medical University, Dalian, China
| | - Yueji Sun
- Department of Psychiatry and Behavioral Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Lu F, Cui Q, Zou Y, Guo Y, Luo W, Yu Y, Gao J, Cai X, Fu L, Yuan S, Huang J, Zhang Y, Xie J, Sheng W, Tang Q, Gao Q, He Z, Chen H. Effects of rTMS Intervention on Functional Neuroimaging Activities in Adolescents with Major Depressive Disorder Measured Using Resting-State fMRI. Bioengineering (Basel) 2023; 10:1374. [PMID: 38135965 PMCID: PMC10740826 DOI: 10.3390/bioengineering10121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (L-DLPFC) is commonly used for the clinical treatment of major depressive disorder (MDD). The neuroimaging biomarkers and mechanisms of rTMS are still not completely understood. This study aimed to explore the functional neuroimaging changes induced by rTMS in adolescents with MDD. A total of ten sessions of rTMS were administrated to the L-DLPFC in thirteen adolescents with MDD once a day for two weeks. All of them were scanned using resting-state functional magnetic resonance imaging at baseline and after rTMS treatment. The regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and the subgenual anterior cingulate cortex (sgACC)-based functional connectivity (FC) were computed as neuroimaging indicators. The correlation between changes in the sgACC-based FC and the improvement in depressive symptoms was also analyzed. After rTMS treatment, ReHo and ALFF were significantly increased in the L-DLPFC, the left medial prefrontal cortex, bilateral medial orbital frontal cortex, and the left ACC. ReHo and ALFF decreased mainly in the left middle occipital gyrus, the right middle cingulate cortex (MCC), bilateral calcarine, the left cuneus, and the left superior occipital gyrus. Furthermore, the FCs between the left sgACC and the L-DLPFC, the right IFGoper, the left MCC, the left precuneus, bilateral post-central gyrus, the left supplementary motor area, and the left superior marginal gyrus were enhanced after rTMS treatment. Moreover, the changes in the left sgACC-left MCC FC were associated with an improvement in depressive symptoms in early improvers. This study showed that rTMS treatment in adolescents with MDD causes changes in brain activities and sgACC-based FC, which may provide basic neural biomarkers for rTMS clinical trials.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Zou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Yuanhong Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Xiao Cai
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Linna Fu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Shuai Yuan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Juan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Yajun Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Jing Xie
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; (F.L.); (Y.Z.); (Y.G.); (W.L.); (Y.Y.); (X.C.); (L.F.); (S.Y.); (J.H.); (Y.Z.); (J.X.); (W.S.); (Q.T.)
- MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
13
|
Daumas L, Zory R, Junquera-Badilla I, Ferrandez M, Ettore E, Robert P, Sacco G, Manera V, Ramanoël S. How does apathy impact exploration-exploitation decision-making in older patients with neurocognitive disorders? NPJ AGING 2023; 9:25. [PMID: 37903801 PMCID: PMC10616174 DOI: 10.1038/s41514-023-00121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/14/2023] [Indexed: 11/01/2023]
Abstract
Apathy is a pervasive clinical syndrome in neurocognitive disorders, characterized by a quantitative reduction in goal-directed behaviors. The brain structures involved in the physiopathology of apathy have also been connected to the brain structures involved in probabilistic reward learning in the exploration-exploitation dilemma. This dilemma in question involves the challenge of selecting between a familiar option with a more predictable outcome, and another option whose outcome is uncertain and may yield potentially greater rewards compared to the known option. The aim of this study was to combine experimental procedures and computational modeling to examine whether, in older adults with mild neurocognitive disorders, apathy affects performance in the exploration-exploitation dilemma. Through using a four-armed bandit reinforcement-learning task, we showed that apathetic older adults explored more and performed worse than non-apathetic subjects. Moreover, the mental flexibility assessed by the Trail-making test-B was negatively associated with the percentage of exploration. These results suggest that apathy is characterized by an increased explorative behavior and inefficient decision-making, possibly due to weak mental flexibility to switch toward the exploitation of the more rewarding options. Apathetic participants also took longer to make a choice and failed more often to respond in the allotted time, which could reflect the difficulties in action initiation and selection. In conclusion, the present results suggest that apathy in participants with neurocognitive disorders is associated with specific disturbances in the exploration-exploitation trade-off and sheds light on the disturbances in reward processing in patients with apathy.
Collapse
Affiliation(s)
- Lyne Daumas
- Université Côte d'Azur, LAMHESS, Nice, France.
- Université Côte d'Azur, CoBTeK, Nice, France.
| | - Raphaël Zory
- Université Côte d'Azur, LAMHESS, Nice, France
- Institut Universitaire de France, Paris, France
| | | | - Marion Ferrandez
- Université Côte d'Azur, CoBTeK, Nice, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, service Clinique Gériatrique de Soins Ambulatoires, Centre Mémoire de Ressources et de Recherche, Nice, France
| | - Eric Ettore
- Université Côte d'Azur, CoBTeK, Nice, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, service Clinique Gériatrique de Soins Ambulatoires, Centre Mémoire de Ressources et de Recherche, Nice, France
- Association Innovation Alzheimer, Nice, France
| | - Philippe Robert
- Université Côte d'Azur, CoBTeK, Nice, France
- Association Innovation Alzheimer, Nice, France
| | - Guillaume Sacco
- Université Côte d'Azur, CoBTeK, Nice, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, service Clinique Gériatrique de Soins Ambulatoires, Centre Mémoire de Ressources et de Recherche, Nice, France
- Association Innovation Alzheimer, Nice, France
- Univ Angers, Université de Nantes, LPPL, SFR CONFLUENCES, 49000, Angers, France
| | - Valeria Manera
- Université Côte d'Azur, CoBTeK, Nice, France
- Association Innovation Alzheimer, Nice, France
| | - Stephen Ramanoël
- Université Côte d'Azur, LAMHESS, Nice, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012, Paris, France
| |
Collapse
|
14
|
Sobstyl M, Prokopienko M, Pietras T. The ventral capsule and ventral striatum-Stereotactic targets for the management of treatment-resistant depression. A systematic literature review. Front Psychiatry 2023; 14:1100609. [PMID: 37928918 PMCID: PMC10622982 DOI: 10.3389/fpsyt.2023.1100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/24/2023] [Indexed: 11/07/2023] Open
Abstract
Background Deep brain stimulation (DBS) is still an experimental treatment modality for psychiatric disorders including treatment-resistant depression (TRD). There is preliminary evidence that stimulation of brain reward circuit structures including the ventral striatum (VS) may exert an antidepressant effect. The main nucleus of the reward circuit is the nucleus accumbens (NAc). The NAc is a major structure of VS that plays a critical role in reward-seeking behavior, motivation, and addiction. Aims This study aimed to review the current studies including randomized clinical trials, open-label trials, and case reports of NAc/VS and VC DBS for TRD in humans. Method The literature was reviewed using a medical database-Medical Literature, Analysis, and Retrieval System Online (MEDLINE) on NAc/VS or VC DBS in TRD. The identified studies were assessed based on the patient's characteristics, clinical outcomes, and adverse events related to DBS as well as the stereotactic technique used to guide the implantation of DBS electrodes. The inclusion and exclusion criteria of DBS for TRD were presented and discussed. Results The searched literature revealed one case report, three open-label studies (OLS), one multicenter open-label study (mOLS), and two randomized clinical trials (RCTs). There were three additional studies reporting the clinical outcomes in the long term in TRD patients included in the two mentioned RCTs. The total number of patients with TRD treated by NAc/VS or VC is estimated to be 85 individuals worldwide. The response rate to DBS defined as a 50% reduction of postoperative Montgomery-Asberg Depression Rating Scale (MADRS) scores was achieved in 39.8% of the operated patients (range, 23-53%). The remission defined as MADRS scores of < 10 was found in 17.8% after DBS (range, 0-40%). The mean follow-up was 19.7 months (range 3.7-24 months). Conclusion The current results of NAc/VS and VC DBS are still limited by a relatively small number of patients treated worldwide. Nevertheless, the results suggest that NAc/VS and VC can be regarded as promising and efficacious targets for DBS, taking into account the response and remission rates among TRD patients with no other treatment option. The adverse events of NAc/VS and VC DBS are reversible due to the adjustment of stimulation parameters. The most common adverse events were hypomanic/manic states, suicidal thoughts/attempts, and suicides. Patients with TRD after NAc/VS and VC DBS should be strictly followed to prevent or diminish these stimulation-induced adverse events.
Collapse
Affiliation(s)
- Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marek Prokopienko
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tadeusz Pietras
- Second Department of Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
15
|
Perkes IE, Morris RW, Griffiths KR, Quail S, Waters F, O’Brien M, Hazell PL, Balleine BW. The Motivational Determinants of Human Action, Their Neural Bases and Functional Impact in Adolescents With Obsessive-Compulsive Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1062-1072. [PMID: 37881550 PMCID: PMC10593889 DOI: 10.1016/j.bpsgos.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Establishing the motivational influences on human action is essential for understanding choice and decision making in health and disease. Here we used tests of value-based decision making, manipulating both predicted and experienced reward values to assess the motivational control of goal-directed action in healthy adolescents and those with obsessive-compulsive disorder (OCD). Methods After instrumental training on a two action-two outcome probabilistic task, adolescents (n = 21) underwent Pavlovian conditioning using distinct stimuli predicting either the instrumental outcomes, a third outcome, or nothing. We then assessed functional magnetic resonance imaging during choice tests in which we varied the predicted value, using specific and general Pavlovian-instrumental transfer, and the experienced value, using outcome devaluation. To establish functional significance, we tested a matched cohort of adolescents with OCD (n = 20). Results In healthy adolescents, both predicted and experienced values influenced the performance of goal-directed actions, mediated by distinct orbitofrontal-striatal circuits involving the lateral orbitofrontal cortex (OFC) and medial OFC, respectively. However, in adolescents with OCD, choice was insensitive to changes in either predicted or experienced values. These impairments were related to hypoactivity in the lateral OFC and hyperactivity in the medial OFC during specific Pavlovian-instrumental transfer and hypoactivity in the anterior prefrontal cortex, caudate nucleus, and their connectivity in the devaluation test. Conclusions We found that predicted and experienced values exerted a potent influence on the performance of goal-directed actions in adolescents via distinct orbitofrontal- and prefrontal-striatal circuits. Furthermore, the influence of these motivational processes was severely blunted in OCD, as was the functional segregation of circuits involving medial and lateral OFC, producing dysregulated action control.
Collapse
Affiliation(s)
- Iain E. Perkes
- Decision Neuroscience Laboratory, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
- Discipline of Psychiatry and Mental Health and Discipline of Paediatrics and Children’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Department of Psychological Medicine, Sydney Children’s Hospital Network, Sydney, New South Wales, Australia
| | - Richard W. Morris
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Kristi R. Griffiths
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Stephanie Quail
- Decision Neuroscience Laboratory, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Felicity Waters
- Child and Adolescent Mental Health Services, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Margot O’Brien
- Child and Adolescent Mental Health Services, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Philip L. Hazell
- Child and Adolescent Mental Health Services, Sydney Local Health District, Sydney, New South Wales, Australia
- Specialty of Psychiatry, The University of Sydney, Sydney, New South Wales, Australia
| | - Bernard W. Balleine
- Decision Neuroscience Laboratory, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Béreau M, Van Waes V, Servant M, Magnin E, Tatu L, Anheim M. Apathy in Parkinson's Disease: Clinical Patterns and Neurobiological Basis. Cells 2023; 12:1599. [PMID: 37371068 DOI: 10.3390/cells12121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Apathy is commonly defined as a loss of motivation leading to a reduction in goal-directed behaviors. This multidimensional syndrome, which includes cognitive, emotional and behavioral components, is one of the most prevalent neuropsychiatric features of Parkinson's disease (PD). It has been established that the prevalence of apathy increases as PD progresses. However, the pathophysiology and anatomic substrate of this syndrome remain unclear. Apathy seems to be underpinned by impaired anatomical structures that link the prefrontal cortex with the limbic system. It can be encountered in the prodromal stage of the disease and in fluctuating PD patients receiving bilateral chronic subthalamic nucleus stimulation. In these stages, apathy may be considered as a disorder of motivation that embodies amotivational behavioral syndrome, is underpinned by combined dopaminergic and serotonergic denervation and is dopa-responsive. In contrast, in advanced PD patients, apathy may be considered as cognitive apathy that announces cognitive decline and PD dementia, is underpinned by diffuse neurotransmitter system dysfunction and Lewy pathology spreading and is no longer dopa-responsive. In this review, we discuss the clinical patterns of apathy and their treatment, the neurobiological basis of apathy, the potential role of the anatomical structures involved and the pathways in motivational and cognitive apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Vincent Van Waes
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Mathieu Servant
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Eloi Magnin
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Laurent Tatu
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
- Laboratoire d'Anatomie, Université de Franche-Comté, 25000 Besançon, France
| | - Mathieu Anheim
- Département de Neurologie, CHU de Strasbourg, 67200 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- Institut de génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), INSERM-U964, CNRS-UMR7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
17
|
Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Cetin-Karayumak S, Kubicki M, Coleman MJ, Lewandowski KE, Holt DJ, Keshavan M, Bouix S, Öngür D, Breier A, Shenton ME, O'Donnell LJ. The organization of frontostriatal brain wiring in non-affective early psychosis compared with healthy subjects using a novel diffusion imaging fiber cluster analysis. Mol Psychiatry 2023; 28:2301-2311. [PMID: 37173451 DOI: 10.1038/s41380-023-02031-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Alterations in brain connectivity may underlie neuropsychiatric conditions such as schizophrenia. We here assessed the degree of convergence of frontostriatal fiber projections in 56 young adult healthy controls (HCs) and 108 matched Early Psychosis-Non-Affective patients (EP-NAs) using our novel fiber cluster analysis of whole brain diffusion magnetic resonance imaging tractography. METHODS Using whole brain tractography and our fiber clustering methodology on harmonized diffusion magnetic resonance imaging data from the Human Connectome Project for Early Psychosis we identified 17 white matter fiber clusters that connect frontal cortex (FCtx) and caudate (Cd) per hemisphere in each group. To quantify the degree of convergence and, hence, topographical relationship of these fiber clusters, we measured the inter-cluster mean distances between the endpoints of the fiber clusters at the level of the FCtx and of the Cd, respectively. RESULTS We found (1) in both groups, bilaterally, a non-linear relationship, yielding convex curves, between FCtx and Cd distances for FCtx-Cd connecting fiber clusters, driven by a cluster projecting from inferior frontal gyrus; however, in the right hemisphere, the convex curve was more flattened in EP-NAs; (2) that cluster pairs in the right (p = 0.03), but not left (p = 0.13), hemisphere were significantly more convergent in HCs vs EP-NAs; (3) in both groups, bilaterally, similar clusters projected significantly convergently to the Cd; and, (4) a significant group by fiber cluster pair interaction for 2 right hemisphere fiber clusters (numbers 5, 11; p = .00023; p = .00023) originating in selective PFC subregions. CONCLUSIONS In both groups, we found the FCtx-Cd wiring pattern deviated from a strictly topographic relationship and that similar clusters projected significantly more convergently to the Cd. Interestingly, we also found a significantly more convergent pattern of connectivity in HCs in the right hemisphere and that 2 clusters from PFC subregions in the right hemisphere significantly differed in their pattern of connectivity between groups.
Collapse
Affiliation(s)
- J J Levitt
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - F Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - M Vangel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - P G Nestor
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychology, University of Massachusetts, Boston, MA, 02125, USA
| | - Y Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - S Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - M Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - M J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - K E Lewandowski
- McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - D J Holt
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - M Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - S Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Software Engineering and Information Technology, École de technologie supérieure, Université du Québec, Montréal, QC, H3C 1K3, Canada
| | - D Öngür
- McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - A Breier
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - L J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
18
|
Barnes SA, Dillon DG, Young JW, Thomas ML, Faget L, Yoo JH, Der-Avakian A, Hnasko TS, Geyer MA, Ramanathan DS. Modulation of ventromedial orbitofrontal cortical glutamatergic activity affects the explore-exploit balance and influences value-based decision-making. Cereb Cortex 2023; 33:5783-5796. [PMID: 36472411 PMCID: PMC10183731 DOI: 10.1093/cercor/bhac459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022] Open
Abstract
The balance between exploration and exploitation is essential for decision-making. The present study investigated the role of ventromedial orbitofrontal cortex (vmOFC) glutamate neurons in mediating value-based decision-making by first using optogenetics to manipulate vmOFC glutamate activity in rats during a probabilistic reversal learning (PRL) task. Rats that received vmOFC activation during informative feedback completed fewer reversals and exhibited reduced reward sensitivity relative to rats. Analysis with a Q-learning computational model revealed that increased vmOFC activity did not affect the learning rate but instead promoted maladaptive exploration. By contrast, vmOFC inhibition increased the number of completed reversals and increased exploitative behavior. In a separate group of animals, calcium activity of vmOFC glutamate neurons was recorded using fiber photometry. Complementing our results above, we found that suppression of vmOFC activity during the latter part of rewarded trials was associated with improved PRL performance, greater win-stay responding and selecting the correct choice on the next trial. These data demonstrate that excessive vmOFC activity during reward feedback disrupted value-based decision-making by increasing the maladaptive exploration of lower-valued options. Our findings support the premise that pharmacological interventions that normalize aberrant vmOFC glutamate activity during reward feedback processing may attenuate deficits in value-based decision-making.
Collapse
Affiliation(s)
- Samuel A Barnes
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill St, Belmont, MA 02478, United States
- Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA 02115, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| | - Michael L Thomas
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Psychology, 1876 Campus Delivery, Colorado State University, Fort Collins, CO 80523, United States
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Ji Hoon Yoo
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Andre Der-Avakian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Research Service, VA San Diego Healthcare System, San Diego, CA, 92161, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| | - Dhakshin S Ramanathan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Dr, La Jolla, CA 92093, United States
| |
Collapse
|
19
|
Purcell JR, Brown JW, Tullar RL, Bloomer BF, Kim DJ, Moussa-Tooks AB, Dolan-Bennett K, Bangert BM, Wisner KM, Lundin NB, O'Donnell BF, Hetrick WP. Insular and Striatal Correlates of Uncertain Risky Reward Pursuit in Schizophrenia. Schizophr Bull 2023; 49:726-737. [PMID: 36869757 PMCID: PMC10154703 DOI: 10.1093/schbul/sbac206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND HYPOTHESIS Risk-taking in specific contexts can be beneficial, leading to rewarding outcomes. Schizophrenia is associated with disadvantageous decision-making, as subjects pursue uncertain risky rewards less than controls. However, it is unclear whether this behavior is associated with more risk sensitivity or less reward incentivization. Matching on demographics and intelligence quotient (IQ), we determined whether risk-taking was more associated with brain activation in regions affiliated with risk evaluation or reward processing. STUDY DESIGN Subjects (30 schizophrenia/schizoaffective disorder, 30 controls) completed a modified, fMRI Balloon Analogue Risk Task. Brain activation was modeled during decisions to pursue risky rewards and parametrically modeled according to risk level. STUDY RESULTS The schizophrenia group exhibited less risky-reward pursuit despite previous adverse outcomes (Average Explosions; F(1,59) = 4.06, P = .048) but the comparable point at which risk-taking was volitionally discontinued (Adjusted Pumps; F(1,59) = 2.65, P = .11). Less activation was found in schizophrenia via whole brain and region of interest (ROI) analyses in the right (F(1,59) = 14.91, P < 0.001) and left (F(1,59) = 16.34, P < 0.001) nucleus accumbens (NAcc) during decisions to pursue rewards relative to riskiness. Risk-taking correlated with IQ in schizophrenia, but not controls. Path analyses of average ROI activation revealed less statistically determined influence of anterior insula upon dorsal anterior cingulate bilaterally (left: χ2 = 12.73, P < .001; right: χ2 = 9.54, P = .002) during risky reward pursuit in schizophrenia. CONCLUSIONS NAcc activation in schizophrenia varied less according to the relative riskiness of uncertain rewards compared to controls, suggesting aberrations in reward processing. The lack of activation differences in other regions suggests similar risk evaluation. Less insular influence on the anterior cingulate may relate to attenuated salience attribution or inability for risk-related brain region collaboration to sufficiently perceive situational risk.
Collapse
Affiliation(s)
- John R Purcell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Joshua W Brown
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Rachel L Tullar
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bess F Bloomer
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Dae-Jin Kim
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandra B Moussa-Tooks
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Katherine Dolan-Bennett
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Science, Washington University, St. Louise, MO, USA
| | - Brianna M Bangert
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Krista M Wisner
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Nancy B Lundin
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Brian F O'Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
20
|
Beltz AM, Demidenko MI, Wilson SJ, Berenbaum SA. Prenatal androgen influences on the brain: A review, critique, and illustration of research on congenital adrenal hyperplasia. J Neurosci Res 2023; 101:563-574. [PMID: 34139025 DOI: 10.1002/jnr.24900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Sex hormones, especially androgens, contribute to sex and gender differences in the brain and behavior. Organizational effects are particularly important because they are thought to be permanent, reflecting hormone exposure during sensitive periods of development. In human beings, they are often studied with natural experiments in which sex hormones are dissociated from other biopsychosocial aspects of development, such as genes and experiences. Indeed, the greatest evidence for organizational effects on sex differences in human behavior comes from studies of females with congenital adrenal hyperplasia (CAH), who have heightened prenatal androgen exposure, female-typical rearing, and masculinized toy play, activity and career interests, spatial skills, and some personal characteristics. Interestingly, however, neuroimaging studies of females with CAH have revealed few neural mechanisms underlying these hormone-behavior links, with the exception of emotion processing; studies have instead shown reduced gray matter volumes and reduced white matter integrity most consistent with other disease-related processes. The goals of this narrative review are to: (a) describe methods for studying prenatal androgen influences, while offering a brief overview of behavioral outcomes; (b) provide a critical methodological review of neuroimaging research on females with CAH; (c) present an illustrative analysis that overcomes methodological limitations of previous work, focusing on person-specific neural reward networks (and their associations with sensation seeking) in women with CAH and their unaffected sisters in order to inform future research questions and approaches that are most likely to reveal organizational hormone effects on brain structure and function.
Collapse
Affiliation(s)
- Adriene M Beltz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Sheri A Berenbaum
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
21
|
Burrows K, Figueroa-Hall LK, Alarbi AM, Stewart JL, Kuplicki R, Tan C, Hannafon BN, Ramesh R, Savitz J, Khalsa S, Teague TK, Risbrough VB, Paulus MP. Association between inflammation, reward processing, and ibuprofen-induced increases of miR-23b in astrocyte-enriched extracellular vesicles: A randomized, placebo-controlled, double-blind, exploratory trial in healthy individuals. Brain Behav Immun Health 2023; 27:100582. [PMID: 36605933 PMCID: PMC9807827 DOI: 10.1016/j.bbih.2022.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022] Open
Abstract
Ibuprofen, a non-steroidal, anti-inflammatory drug, modulates inflammation but may also have neuroprotective effects on brain health that are poorly understood. Astrocyte-enriched extracellular vesicles (AEEVs) facilitate cell-to-cell communication and - among other functions - regulate inflammation and metabolism via microribonucleic acids (miRNAs). Dysfunctions in reward-related processing and inflammation have been proposed to be critical pathophysiological pathways in individuals with mood disorders. This investigation examined whether changes in AEEV cargo induced by an anti-inflammatory agent results in inflammatory modulation that is associated with reward-related processing. Data from a double-blind, randomized, repeated-measures study in healthy volunteers were used to examine the effects of AEEV miRNAs on brain activation during reward-related processing. In three separate visits, healthy participants (N = 20) received a single dose of either placebo, 200 mg, or 600 mg of ibuprofen, completed the monetary incentive delay task during functional magnetic resonance imaging, and provided a blood sample for cytokine and AEEV collection. AEEV miRNA content profiling showed that ibuprofen dose-dependently increased AEEV miR-23b-3p expression with greater increase following the 600 mg administration than placebo. Those individuals who received 600 mg and showed the highest miR-23b-3p expression also showed the (a) lowest serum tumor necrosis factor (TNF) and interleukin-17A (IL-17A) concentrations; and had the (b) highest striatal brain activation during reward anticipation. These results support the hypothesis that ibuprofen alters the composition of miRNAs in AEEVs. This opens the possibility that AEEV cargo could be used to modulate brain processes that are important for mental health.
Collapse
Affiliation(s)
| | | | - Ahlam M. Alarbi
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
- Integrative Immunology Center, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
| | - Jennifer L. Stewart
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| | | | - Chibing Tan
- Integrative Immunology Center, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
| | - Bethany N. Hannafon
- Department of Obstetrics & Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| | - Sahib Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| | - T. Kent Teague
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, The Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK, USA
| | - Victoria B. Risbrough
- Center of Excellence for Stress and Mental Health, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Martin P. Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Community Medicine, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
22
|
Haber SN, Lehman J, Maffei C, Yendiki A. The rostral zona incerta: a subcortical integrative hub and potential DBS target for OCD. Biol Psychiatry 2023; 93:1010-1022. [PMID: 37055285 DOI: 10.1016/j.biopsych.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/13/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND The zona incerta (ZI) is involved in mediating survival behaviors and is connected to a wide range of cortical and subcortical structures, including key basal ganglia nuclei. Based on these connections and their links to behavioral modulation, we propose that the ZI is a connectional hub for mediating between top-down and bottom-up control and a possible target for deep brain stimulation for obsessive-compulsive disorder. METHODS We analyzed the trajectory of cortical fibers to the ZI in nonhuman and human primates based on tracer injections in monkeys and high-resolution diffusion magnetic resonance imaging in humans. The organization of cortical and subcortical connections within the ZI were identified in the nonhuman primate studies. RESULTS Monkey anatomical data and human diffusion magnetic resonance imaging data showed a similar trajectory of fibers/streamlines to the ZI. Prefrontal cortex/anterior cingulate cortex terminals all converged within the rostral ZI, with dorsal and lateral areas being most prominent. Motor areas terminated caudally. Dense subcortical reciprocal connections included the thalamus, medial hypothalamus, substantia nigra/ventral tegmental area, reticular formation, and pedunculopontine nucleus and a dense nonreciprocal projection to the lateral habenula. Additional connections included the amygdala, dorsal raphe nucleus, and periaqueductal gray. CONCLUSIONS Dense connections with dorsal and lateral prefrontal cortex/anterior cingulate cortex cognitive control areas and the lateral habenula and the substantia nigra/ventral tegmental area, coupled with inputs from the amygdala, hypothalamus, and brainstem, suggest that the rostral ZI is a subcortical hub positioned to modulate between top-down and bottom-up control. A deep brain stimulation electrode placed in the rostral ZI would not only involve connections common to other deep brain stimulation sites but also capture several critically distinctive connections.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts.
| | - Julia Lehman
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Zhang Y, Shao J, Wang X, Pei C, Zhang S, Yao Z, Lu Q. Partly recovery and compensation in anterior cingulate cortex after SSRI treatment-evidence from multi-voxel pattern analysis over resting state fMRI in depression. J Affect Disord 2023; 320:404-412. [PMID: 36179779 DOI: 10.1016/j.jad.2022.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Anterior cingulate cortex (ACC) plays an essential role in the pathophysiology of major depressive disorder (MDD) and its treatment. However, it's still unclear whether the effects of disease and antidepressant treatment on ACC perform diversely in neural mechanisms. METHODS Fifty-nine MDD patients completed resting-state fMRI scanning twice at baseline and after 12-week selective serotonin reuptake inhibitor (SSRI) treatment, respectively in acute state and remission state. Fifty-nine demographically matched healthy controls were enrolled. Using fractional amplitude of low-frequency fluctuation (fALFF) in ACC as features, we performed multi-voxel pattern analysis over pretreatment MDD patients vs health control (HC), and over pretreatment MDD patients vs posttreatment MDD patients. RESULTS Discriminative regions in ACC for MDD impairment and changes after antidepressants were obtained. The intersection set and difference set were calculated to form ACC subregions of recovered, unrecovered and compensative, respectively. The recovered ACC subregion mainly distributed in rostral ACC (80 %) and the other two subregions had nearly equal distribution over dorsal ACC and rostral ACC. Furthermore, only the compensative subregion had significant changed functional connectivity with cingulo-opercular control network (CON) after antidepressant treatment. LIMITATIONS The number of subjects was relatively small. The results need to be validated with larger sample sizes and multisite data. CONCLUSIONS This finding suggested that the local function of ACC was partly recovered on regulating emotion after antidepressant by detecting the common subregional targets of depression impairment and antidepressive effect. Besides, changed fALFF in the compensative ACC subregion and its connectivity with CON may partly compensate for the cognition deficits.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Cong Pei
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Shuqiang Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
24
|
Association between real-time strategy video game learning outcomes and pre-training brain white matter structure: preliminary study. Sci Rep 2022; 12:20741. [PMID: 36456870 PMCID: PMC9715544 DOI: 10.1038/s41598-022-25099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years the association between video games, cognition, and the brain has been actively investigated. However, it is still unclear how individual predispositions, such as brain structure characteristics, play a role in the process of acquiring new skills, such as video games. The aim of this preliminary study was to investigate whether acquisition of cognitive-motor skills from the real-time strategy video game (StarCraft II) is associated with pre-training measures of brain white matter integrity. Results show that higher white matter integrity in regions (anterior limb of internal capsule, cingulum/hippocampus) and tracts (inferior longitudinal fasciculus) related with motoric functions, set shifting and visual decision making was associated with better Star Craft II performance. The presented findings inline with previous results and suggest that structural brain predispositions of individuals are related to the video game skill acquisition. Our study highlights the importance of neuroimaging studies that focus on white matter in predicting the outcomes of intervention studies and has implications for understanding the neural basis of the skill learning process.
Collapse
|
25
|
Hoven M, de Boer NS, Goudriaan AE, Denys D, Lebreton M, van Holst RJ, Luigjes J. Metacognition and the effect of incentive motivation in two compulsive disorders: Gambling disorder and obsessive-compulsive disorder. Psychiatry Clin Neurosci 2022; 76:437-449. [PMID: 35674699 PMCID: PMC9541950 DOI: 10.1111/pcn.13434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022]
Abstract
AIMS Compulsivity is a common phenotype among psychiatric disorders, such as obsessive-compulsive disorder (OCD) and gambling disorder (GD). Deficiencies in metacognition, such as the inability to estimate one's performance via confidence judgments could contribute to pathological decision-making. Earlier research has shown that patients with OCD exhibit underconfidence, while patients with GD exhibit overconfidence. Moreover, it is known that motivational states (e.g. monetary incentives) influence metacognition, with gain (respectively loss) prospects increasing (respectively decreasing) confidence. Here, we reasoned that OCD and GD symptoms might correspond to an exacerbation of this interaction between metacognition and motivation. METHODS We hypothesized GD's overconfidence to be exaggerated during gain prospects, while OCD's underconfidence to be worsened in loss context, which we expected to see represented in ventromedial prefrontal cortex (VMPFC) blood-oxygen-level-dependent activity. We tested those hypotheses in a task-based functional magnetic resonance imaging (fMRI) design (27 patients with GD, 28 patients with OCD, 55 controls). The trial is registered in the Dutch Trial Register (NL6171). RESULTS We showed increased confidence for patients with GD versus patients with OCD, which could partly be explained by sex and IQ. Although our primary analyses did not support the hypothesized interaction between incentives and groups, exploratory analyses did show increased confidence in patients with GD specifically in gain context. fMRI analyses confirmed a central role for VMPFC in the processing of confidence and incentives, but no differences between the groups. CONCLUSION Patients with OCD and those with GD reside at opposite ends of the confidence spectrum, while no interaction with incentives was found, nor group differences in neuronal processing of confidence.
Collapse
Affiliation(s)
- Monja Hoven
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nina S de Boer
- Department of Philosophy, Radboud University, Nijmegen, The Netherlands
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Arkin and Jellinek, Mental Health Care, and Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maël Lebreton
- Paris School of Economics, Paris, France.,Swiss Center for Affective Science, University of Geneva, Geneva, Switzerland.,Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Ruth J van Holst
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judy Luigjes
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Chat IKY, Dunning EE, Bart CP, Carroll AL, Grehl MM, Damme KS, Abramson LY, Nusslock R, Alloy LB. The Interplay between Reward-Relevant Life Events and Trait Reward Sensitivity in Neural Responses to Reward Cues. Clin Psychol Sci 2022; 10:869-884. [PMID: 36381350 PMCID: PMC9662616 DOI: 10.1177/21677026211056627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The reward hypersensitivity model posits that trait reward hypersensitivity should elicit hyper/hypo approach motivation following exposure to recent life events that activate (goal-striving and goal-attainment) or deactivate (goal-failure) the reward system, respectively. To test these hypotheses, eighty-seven young adults with high (HRew) versus moderate (MRew) trait reward sensitivity reported frequency of life events via the Life Event Interview. Brain activation was assessed during the fMRI Monetary Incentive Delay task. Greater exposure to goal-striving events was associated with higher nucleus accumbens (NAc) reward anticipation among HRew participants and lower orbitofrontal cortex (OFC) reward anticipation among MRew participants. Greater exposure to goal-failure events was associated with higher NAc and OFC reward anticipation only among HRew participants. This study demonstrated different neural reward anticipation (but not outcome) following reward-relevant events for HRew versus MRew individuals. Trait reward sensitivity and reward-relevant life events may jointly modulate reward-related brain function, with implications for understanding psychopathology.
Collapse
Affiliation(s)
- Iris Ka-Yi Chat
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Erin E. Dunning
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Corinne P. Bart
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | - Ann L. Carroll
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Mora M. Grehl
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| | | | | | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Lauren B. Alloy
- Department of Psychology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Sarasso P, Francesetti G, Roubal J, Gecele M, Ronga I, Neppi-Modona M, Sacco K. Beauty and Uncertainty as Transformative Factors: A Free Energy Principle Account of Aesthetic Diagnosis and Intervention in Gestalt Psychotherapy. Front Hum Neurosci 2022; 16:906188. [PMID: 35911596 PMCID: PMC9325967 DOI: 10.3389/fnhum.2022.906188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Drawing from field theory, Gestalt therapy conceives psychological suffering and psychotherapy as two intentional field phenomena, where unprocessed and chaotic experiences seek the opportunity to emerge and be assimilated through the contact between the patient and the therapist (i.e., the intentionality of contacting). This therapeutic approach is based on the therapist’s aesthetic experience of his/her embodied presence in the flow of the healing process because (1) the perception of beauty can provide the therapist with feedback on the assimilation of unprocessed experiences; (2) the therapist’s attentional focus on intrinsic aesthetic diagnostic criteria can facilitate the modification of rigid psychopathological fields by supporting the openness to novel experiences. The aim of the present manuscript is to review recent evidence from psychophysiology, neuroaesthetic research, and neurocomputational models of cognition, such as the free energy principle (FEP), which support the notion of the therapeutic potential of aesthetic sensibility in Gestalt psychotherapy. Drawing from neuroimaging data, psychophysiology and recent neurocognitive accounts of aesthetic perception, we propose a novel interpretation of the sense of beauty as a self-generated reward motivating us to assimilate an ever-greater spectrum of sensory and affective states in our predictive representation of ourselves and the world and supporting the intentionality of contact. Expecting beauty, in the psychotherapeutic encounter, can help therapists tolerate uncertainty avoiding impulsive behaviours and to stay tuned to the process of change.
Collapse
Affiliation(s)
- Pietro Sarasso
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
- *Correspondence: Pietro Sarasso,
| | - Gianni Francesetti
- International Institute for Gestalt Therapy and Psychopathology, Turin Center for Gestalt Therapy, Turin, Italy
| | - Jan Roubal
- Psychotherapy Training Gestalt Studia, Training in Psychotherapy Integration, Center for Psychotherapy Research in Brno, Masaryk University, Brno, Czechia
| | - Michela Gecele
- International Institute for Gestalt Therapy and Psychopathology, Turin Center for Gestalt Therapy, Turin, Italy
| | - Irene Ronga
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Marco Neppi-Modona
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Katiuscia Sacco
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
28
|
He E, Liu M, Gong S, Fu X, Han Y, Deng F. White Matter Alterations in Depressive Disorder. Front Immunol 2022; 13:826812. [PMID: 35634314 PMCID: PMC9133348 DOI: 10.3389/fimmu.2022.826812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder is the most prevalent affective disorder today. Depressive disorder has been linked to changes in the white matter. White matter changes in depressive disorder could be a result of impaired cerebral blood flow (CBF) and CBF self-regulation, impaired blood-brain barrier function, inflammatory factors, genes and environmental factors. Additionally, white matter changes in patients with depression are associated with clinical variables such as differential diagnosis, severity, treatment effect, and efficacy assessment. This review discusses the characteristics, possible mechanisms, clinical relevance, and potential treatment of white matter alterations caused by depressive disorders.
Collapse
|
29
|
Gmaz JM, van der Meer MAA. Context coding in the mouse nucleus accumbens modulates motivationally relevant information. PLoS Biol 2022; 20:e3001338. [PMID: 35486662 PMCID: PMC9094556 DOI: 10.1371/journal.pbio.3001338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/11/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Neural activity in the nucleus accumbens (NAc) is thought to track fundamentally value-centric quantities linked to reward and effort. However, the NAc also contributes to flexible behavior in ways that are difficult to explain based on value signals alone, raising the question of if and how nonvalue signals are encoded in NAc. We recorded NAc neural ensembles while head-fixed mice performed an odor-based biconditional discrimination task where an initial discrete cue modulated the behavioral significance of a subsequently presented reward-predictive cue. We extracted single-unit and population-level correlates related to the cues and found value-independent coding for the initial, context-setting cue. This context signal occupied a population-level coding space orthogonal to outcome-related representations and was predictive of subsequent behaviorally relevant responses to the reward-predictive cues. Together, these findings support a gating model for how the NAc contributes to behavioral flexibility and provide a novel population-level perspective from which to view NAc computations.
Collapse
Affiliation(s)
- Jimmie M. Gmaz
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
| | - Matthijs A. A. van der Meer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, United States of America
- * E-mail:
| |
Collapse
|
30
|
Motivational signals disrupt metacognitive signals in the human ventromedial prefrontal cortex. Commun Biol 2022; 5:244. [PMID: 35304877 PMCID: PMC8933484 DOI: 10.1038/s42003-022-03197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of evidence suggests that, during decision-making, BOLD signal in the ventromedial prefrontal cortex (VMPFC) correlates both with motivational variables – such as incentives and expected values – and metacognitive variables – such as confidence judgments – which reflect the subjective probability of being correct. At the behavioral level, we recently demonstrated that the value of monetary stakes bias confidence judgments, with gain (respectively loss) prospects increasing (respectively decreasing) confidence judgments, even for similar levels of difficulty and performance. If and how this value-confidence interaction is reflected in the VMPFC remains unknown. Here, we used an incentivized perceptual decision-making fMRI task that dissociates key decision-making variables, thereby allowing to test several hypotheses about the role of the VMPFC in the value-confidence interaction. While our initial analyses seemingly indicate that the VMPFC combines incentives and confidence to form an expected value signal, we falsified this conclusion with a meticulous dissection of qualitative activation patterns. Rather, our results show that strong VMPFC confidence signals observed in trials with gain prospects are disrupted in trials with no – or negative (loss) – monetary prospects. Deciphering how decision variables are represented and interact at finer scales seems necessary to better understand biased (meta)cognition. The human ventromedial prefrontal cortex helps to determine value and confidence in certain decisions, but only in situations when there is a potential for a (monetary) reward.
Collapse
|
31
|
Demidenko MI, Huntley ED, Weigard AS, Keating DP, Beltz AM. Neural heterogeneity underlying late adolescent motivational processing is linked to individual differences in behavioral sensation seeking. J Neurosci Res 2022; 100:762-779. [PMID: 35043448 PMCID: PMC8978150 DOI: 10.1002/jnr.25005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/08/2022]
Abstract
Adolescent risk-taking, including sensation seeking (SS), is often attributed to developmental changes in connectivity among brain regions implicated in cognitive control and reward processing. Despite considerable scientific and popular interest in this neurodevelopmental framework, there are few empirical investigations of adolescent functional connectivity, let alone examinations of its links to SS behavior. The studies that have been done focus on mean-based approaches and leave unanswered questions about individual differences in neurodevelopment and behavior. The goal of this paper is to take a person-specific approach to the study of adolescent functional connectivity during a continuous motivational state, and to examine links between connectivity and self-reported SS behavior in 104 adolescents (MAge = 19.3; SDAge = 1.3). Using Group Iterative Multiple Model Estimation (GIMME), person-specific connectivity during two neuroimaging runs of a monetary incentive delay task was estimated among 12 a priori brain regions of interest representing reward, cognitive, and salience networks. Two data-driven subgroups were detected, a finding that was consistent between both neuroimaging runs, but associations with SS were only found in the first run, potentially reflecting neural habituation in the second run. Specifically, the subgroup that had unique connections between reward-related regions had greater SS and showed a distinctive relation between connectivity strength in the reward regions and SS. These findings provide novel evidence for heterogeneity in adolescent brain-behavior relations by showing that subsets of adolescents have unique associations between neural motivational processing and SS. Findings have broader implications for future work on reward processing, as they demonstrate that brain-behavior relations may attenuate across runs.
Collapse
Affiliation(s)
| | - Edward D. Huntley
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel P. Keating
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Adriene M. Beltz
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Reward Value Enhances Sequence Monitoring Ramping Dynamics as Ending Rewards Approach in the Rostrolateral Prefrontal Cortex. eNeuro 2022; 9:ENEURO.0003-22.2022. [PMID: 35168953 PMCID: PMC8906790 DOI: 10.1523/eneuro.0003-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Many fundamental human behaviors contain multiple sequences performed to reach a desired outcome, such as cooking. Reward is inherently associated with sequence completion and has been shown to generally enhance cognitive control. However, the impact of reward on cognitive sequence processing remains unexplored. To address this key question, we focused on the rostrolateral prefrontal cortex (RLPFC). This area is necessary and exhibits increasing (“ramping”) activation during sequences, a dynamic that may be related to reward processing in other brain regions. To separate these dynamics, we designed a task where reward was only provided after multiple four-item sequences (“iterations”), rather than each individual sequence. Using fMRI in humans, we investigated three possible interactions of reward and sequential control signals in RLPFC: (1) with the visibility of sequential cues, i.e., memory; (2) equally across individual sequence iterations; and (3) differently across individual sequence iterations (e.g., increasing as reward approaches). Evidence from previous, nonsequential cognitive control experiments suggested that reward would uniformly change RLPFC activity across iterations and may depend on the visibility of cues. However, we found the influence of reward on RLPFC ramping increased across sequence iterations and did not interact with memory. These results suggest an active, predictive, and distinctive role for RLPFC in sequence monitoring and integration of reward information, consistent with extant literature demonstrating similar accelerating reward-related dopamine dynamics in regions connected to RLPFC. These results have implications for understanding sequential behavior in daily life, and when they go awry in disorders such as addiction.
Collapse
|
33
|
Matsumoto M, Abe H, Tanaka K, Matsumoto K. Different types of uncertainty distinguished by monkey prefrontal neurons. Cereb Cortex Commun 2022; 3:tgac002. [PMID: 35169710 PMCID: PMC8842276 DOI: 10.1093/texcom/tgac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022] Open
Abstract
To adapt one's behavior, in a timely manner, to an environment that changes in many different aspects, one must be sensitive to uncertainty about each aspect of the environment. Although the medial prefrontal cortex has been implicated in the representation and reduction of a variety of uncertainties, it is unknown whether different types of uncertainty are distinguished by distinct neuronal populations. To investigate how the prefrontal cortex distinguishes between different types of uncertainty, we recorded neuronal activities from the medial and lateral prefrontal cortices of monkeys performing a visual feedback-based action-learning task in which uncertainty of coming feedback and that of context change varied asynchronously. We found that the activities of two groups of prefrontal cells represented the two different types of uncertainty. These results suggest that different types of uncertainty are represented by distinct neural populations in the prefrontal cortex.
Collapse
Affiliation(s)
- Madoka Matsumoto
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan
- Brain Science Institute, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory for Cognitive Brain Mapping, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory for Cognitive Brain Mapping, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Tanaka
- Laboratory for Cognitive Brain Mapping, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
- Laboratory for Cognitive Brain Mapping, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Haber SN, Liu H, Seidlitz J, Bullmore E. Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 2022; 47:20-40. [PMID: 34584210 PMCID: PMC8617085 DOI: 10.1038/s41386-021-01156-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
The fundamental importance of prefrontal cortical connectivity to information processing and, therefore, disorders of cognition, emotion, and behavior has been recognized for decades. Anatomic tracing studies in animals have formed the basis for delineating the direct monosynaptic connectivity, from cells of origin, through axon trajectories, to synaptic terminals. Advances in neuroimaging combined with network science have taken the lead in developing complex wiring diagrams or connectomes of the human brain. A key question is how well these magnetic resonance imaging (MRI)-derived networks and hubs reflect the anatomic "hard wiring" first proposed to underlie the distribution of information for large-scale network interactions. In this review, we address this challenge by focusing on what is known about monosynaptic prefrontal cortical connections in non-human primates and how this compares to MRI-derived measurements of network organization in humans. First, we outline the anatomic cortical connections and pathways for each prefrontal cortex (PFC) region. We then review the available MRI-based techniques for indirectly measuring structural and functional connectivity, and introduce graph theoretical methods for analysis of hubs, modules, and topologically integrative features of the connectome. Finally, we bring these two approaches together, using specific examples, to demonstrate how monosynaptic connections, demonstrated by tract-tracing studies, can directly inform understanding of the composition of PFC nodes and hubs, and the edges or pathways that connect PFC to cortical and subcortical areas.
Collapse
Affiliation(s)
- Suzanne N. Haber
- grid.412750.50000 0004 1936 9166Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642 USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Hesheng Liu
- grid.259828.c0000 0001 2189 3475Department of Neuroscience, Medical University of South Carolina, Charleston, SC USA ,grid.38142.3c000000041936754XDepartment of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Jakob Seidlitz
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | - Ed Bullmore
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Herchel Smith Building for Brain and Mind Sciences, Cambridge Biomedical Campus, Cambridge, CB2 0SZ UK
| |
Collapse
|
35
|
Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp 2021; 42:5888-5910. [PMID: 34528323 PMCID: PMC8596959 DOI: 10.1002/hbm.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical effects of deep brain stimulation are largely mediated by the activation of myelinated axons. Hence, increasing attention has been paid in the past on targeting white matter tracts in addition to gray matter. Aims of the present study were: (i) visualization of discrete afferences and efferences of the nucleus accumbens (NAc), supposed to be a major hub of neural networks relating to mental disorders, using probabilistic fiber tractography and a data driven approach, and (ii) validation of the applied methodology for standardized routine clinical applications. MR‐data from 11 healthy subjects and 7 measurement sessions each were acquired on a 3T MRI‐scanner. For probabilistic fiber tracking the NAc as a seed region and the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), amygdala (AMY), hippocampus (HPC), dorsomedial thalamus (dmT) and ventral tegmental area (VTA) as target regions were segmented for each subject and both hemispheres. To quantitatively assess the reliability and stability of the reconstructions, we filtered and clustered the individual fiber‐tracts (NAc to target) for each session and subject and performed a point‐by‐point calculation of the maximum cluster distances for intra‐subject comparison. The connectivity patterns formed by the obtained fibers were in good concordance with published data from tracer and/or fiber‐dissection studies. Furthermore, the reliability assessment of the (NAc to target)‐fiber‐tracts yielded to high correlations between the obtained clustered‐tracts. Using DBS with directional lead technology, the workflow elaborated in this study may guide selective electrical stimulation of NAc projections.
Collapse
Affiliation(s)
- Thilo Rusche
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Radiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
36
|
Galván A. Adolescent Brain Development and Contextual Influences: A Decade in Review. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2021; 31:843-869. [PMID: 34820955 DOI: 10.1111/jora.12687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adolescence is a developmental period characterized by substantial psychological, biological, and neurobiological changes. This review discusses the past decade of research on the adolescent brain, as based on the overarching framework that development is a dynamic process both within the individual and between the individual and external inputs. As such, this review focuses on research showing that the development of the brain is influenced by multiple ongoing and dynamic elements. It highlights the implications this body of work on behavioral development and offers areas of opportunity for future research in the coming decade.
Collapse
|
37
|
de Oliveira KC, Camilo C, Gastaldi VD, Sant'Anna Feltrin A, Lisboa BCG, de Jesus Rodrigues de Paula V, Moretto AC, Lafer B, Hoexter MQ, Miguel EC, Maschietto M, Brentani H. Brain areas involved with obsessive-compulsive disorder present different DNA methylation modulation. BMC Genom Data 2021; 22:45. [PMID: 34717534 PMCID: PMC8557022 DOI: 10.1186/s12863-021-00993-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions, that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight OCD patients and eight matched controls. Results There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area, nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were different among all brain areas. The protein-protein interaction network based on methylation and gene expression data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally, OCD patients and controls did not present significant DNA methylation age differences. Conclusions DNA methylation changes in brain areas involved with OCD, especially those involved with genes related to synaptic plasticity and the immune system could mediate the action of genetic and environmental factors associated with OCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00993-0.
Collapse
Affiliation(s)
- Kátia Cristina de Oliveira
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil.,Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caroline Camilo
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.
| | - Vinícius Daguano Gastaldi
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Arthur Sant'Anna Feltrin
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Bianca Cristina Garcia Lisboa
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Vanessa de Jesus Rodrigues de Paula
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | | | - Beny Lafer
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Marcelo Queiroz Hoexter
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Helena Brentani
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
38
|
Levitt JJ, Zhang F, Vangel M, Nestor PG, Rathi Y, Kubicki M, Shenton ME, O'Donnell LJ. The Organization of Frontostriatal Brain Wiring in Healthy Subjects Using a Novel Diffusion Imaging Fiber Cluster Analysis. Cereb Cortex 2021; 31:5308-5318. [PMID: 34180506 DOI: 10.1093/cercor/bhab159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
To assess normal organization of frontostriatal brain wiring, we analyzed diffusion magnetic resonance imaging (dMRI) scans in 100 young adult healthy subjects (HSs). We identified fiber clusters intersecting the frontal cortex and caudate, a core component of associative striatum, and quantified their degree of deviation from a strictly topographic pattern. Using whole brain dMRI tractography and an automated tract parcellation clustering method, we extracted 17 white matter fiber clusters per hemisphere connecting the frontal cortex and caudate. In a novel approach to quantify the geometric relationship among clusters, we measured intercluster endpoint distances between corresponding cluster pairs in the frontal cortex and caudate. We show first, the overall frontal cortex wiring pattern of the caudate deviates from a strictly topographic organization due to significantly greater convergence in regionally specific clusters; second, these significantly convergent clusters originate in subregions of ventrolateral, dorsolateral, and orbitofrontal prefrontal cortex (PFC); and, third, a similar organization in both hemispheres. Using a novel tractography method, we find PFC-caudate brain wiring in HSs deviates from a strictly topographic organization due to a regionally specific pattern of cluster convergence. We conjecture cortical subregions projecting to the caudate with greater convergence subserve functions that benefit from greater circuit integration.
Collapse
Affiliation(s)
- J J Levitt
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton MA 02301, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - F Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - M Vangel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - P G Nestor
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton MA 02301, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,Department of Psychology, University of Massachusetts, Boston, MA 02125, USA
| | - Y Rathi
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - M Kubicki
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - M E Shenton
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - L J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Dissociable mechanisms of information sampling in prefrontal cortex and the dopaminergic system. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Parr AC, Calabro F, Larsen B, Tervo-Clemmens B, Elliot S, Foran W, Olafsson V, Luna B. Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Prog Neurobiol 2021; 201:101997. [PMID: 33667595 PMCID: PMC8096717 DOI: 10.1016/j.pneurobio.2021.101997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Characterizing developmental changes in frontostriatal circuitry is critical to understanding adolescent development and can clarify neurobiological mechanisms underlying increased reward sensitivity and risk-taking and the emergence of psychopathology during this period. However, the role of striatal neurobiology in the development of frontostriatal circuitry through human adolescence remains largely unknown. We examined background connectivity during a reward-guided decision-making task ("reward-state"), in addition to resting-state, and assessed the association between age-related changes in frontostriatal connectivity and age-related changes in reward learning and risk-taking through adolescence. Further, we examined the contribution of dopaminergic processes to changes in frontostriatal circuitry and decision-making using MR-based assessments of striatal tissue-iron as a correlate of dopamine-related neurobiology. Connectivity between the nucleus accumbens (NAcc) and ventral anterior cingulate, subgenual cingulate, and orbitofrontal cortices decreased through adolescence into adulthood, and decreases in reward-state connectivity were associated with improvements reward-guided decision-making as well as with decreases in risk-taking. Finally, NAcc tissue-iron mediated age-related changes and was associated with variability in connectivity, and developmental increases in NAcc R2' corresponded with developmental decreases in connectivity. Our results provide evidence that dopamine-related striatal properties contribute to the specialization of frontostriatal circuitry, potentially underlying changes in risk-taking and reward sensitivity into adulthood.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Bart Larsen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Samuel Elliot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| | - Valur Olafsson
- NUBIC, Northeastern University, Boston, MA, 02115, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 14213, United States
| |
Collapse
|
42
|
Hunt LT. Frontal circuit specialisations for decision making. Eur J Neurosci 2021; 53:3654-3671. [PMID: 33864305 DOI: 10.1111/ejn.15236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 11/29/2022]
Abstract
There is widespread consensus that distributed circuits across prefrontal and anterior cingulate cortex (PFC/ACC) are critical for reward-based decision making. The circuit specialisations of these areas in primates were likely shaped by their foraging niche, in which decision making is typically sequential, attention-guided and temporally extended. Here, I argue that in humans and other primates, PFC/ACC circuits are functionally specialised in two ways. First, microcircuits found across PFC/ACC are highly recurrent in nature and have synaptic properties that support persistent activity across temporally extended cognitive tasks. These properties provide the basis of a computational account of time-varying neural activity within PFC/ACC as a decision is being made. Second, the macrocircuit connections (to other brain areas) differ between distinct PFC/ACC cytoarchitectonic subregions. This variation in macrocircuit connections explains why PFC/ACC subregions make unique contributions to reward-based decision tasks and how these contributions are shaped by attention. They predict dissociable neural representations to emerge in orbitofrontal, anterior cingulate and dorsolateral prefrontal cortex during sequential attention-guided choice, as recently confirmed in neurophysiological recordings.
Collapse
Affiliation(s)
- Laurence T Hunt
- Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Zhang Y, Shao J, Wang X, Chen Z, Liu H, Pei C, Zhang S, Yao Z, Lu Q. Functional impairment-based segmentation of anterior cingulate cortex in depression and its relationship with treatment effects. Hum Brain Mapp 2021; 42:4035-4047. [PMID: 34008911 PMCID: PMC8288091 DOI: 10.1002/hbm.25537] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
In major depressive disorder (MDD), the anterior cingulate cortex (ACC) is widely related to depression impairment and antidepressant treatment response. The multiplicity of ACC subdivisions calls for a fine‐grained investigation of their functional impairment and recovery profiles. We recorded resting state fMRI signals from 59 MDD patients twice before and after 12‐week antidepressant treatment, as well as 59 healthy controls (HCs). With functional connectivity (FC) between each ACC voxel and four regions of interests (bilateral dorsolateral prefrontal cortex [DLPFC] and amygdalae), subdivisions with variable impairment were identified based on groups' dissimilarity values between MDD patients before treatment and HC. The ACC was subdivided into three impairment subdivisions named as MedialACC, DistalACC, and LateralACC according to their dominant locations. Furthermore, the impairment pattern and the recovery pattern were measured based on group statistical analyses. DistalACC impaired more on its FC with left DLPFC, whereas LateralACC showed more serious impairment on its FC with bilateral amygdalae. After treatment, FCs between DistalACC and left DLPFC, and between LateralACC and right amygdala were normalized while impaired FC between LateralACC and left amygdala kept dysfunctional. Subsequently, FC between DistalACC and left DLPFC might contribute to clinical outcome prediction. Our approach could provide an insight into how the ACC was impaired in depression and partly restored after antidepressant treatment, from the perspective of the interaction between ACC subregions and critical frontal and subcortical regions.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Ministry of Education, Research Center for Learning Science, Nanjing, China
| | - Junneng Shao
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Ministry of Education, Research Center for Learning Science, Nanjing, China
| | - Xinyi Wang
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Ministry of Education, Research Center for Learning Science, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haiyan Liu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cong Pei
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Ministry of Education, Research Center for Learning Science, Nanjing, China
| | - Shuqiang Zhang
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Ministry of Education, Research Center for Learning Science, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China.,Key Laboratory of Child Development and Learning Science, Southeast University, Ministry of Education, Research Center for Learning Science, Nanjing, China
| |
Collapse
|
44
|
Monko ME, Heilbronner SR. Retrosplenial Cortical Connectivity with Frontal Basal Ganglia Networks. J Cogn Neurosci 2021; 33:1096-1105. [PMID: 34428786 PMCID: PMC8428783 DOI: 10.1162/jocn_a_01699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous studies of the retrosplenial cortex (RSC) have focused on its role in navigation and memory, consistent with its well-established medial temporal connections, but recent evidence also suggests a role for this region in reward and decision making. Because function is determined largely by anatomical connections, and to better understand the anatomy of RSC, we used tract-tracing methods to examine the anatomical connectivity between the rat RSC and frontostriatal networks (canonical reward and decision-making circuits). We find that, among frontal cortical regions, RSC bidirectionally connects most strongly with the anterior cingulate cortex, but also with an area of the central-medial orbito-frontal cortex. RSC projects to the dorsomedial striatum, and its terminal fields are virtually encompassed by the frontal-striatal projection zone, suggestive of functional convergence through the basal ganglia. This overlap is driven by anterior cingulate cortex, prelimbic cortex, and orbito-frontal cortex, all of which contribute to goal-directed decision making, suggesting that the RSC is involved in similar processes.
Collapse
Affiliation(s)
- Megan E. Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA 55455
| | | |
Collapse
|
45
|
Binge drinking is associated with altered resting state functional connectivity of reward-salience and top down control networks. Brain Imaging Behav 2021; 14:1731-1746. [PMID: 31073695 DOI: 10.1007/s11682-019-00107-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Binge drinking is characterized by bouts of high-intensity alcohol intake and is associated with an array of health-related harms. Even though the transition from occasional impulsive to addictive alcohol use is not well understood, neurobiological models of addiction suggest that repeated cycles of intoxication and withdrawal contribute to the development of addiction in part through dysregulation of neurofunctional networks. Research on the neural sequelae associated with binge drinking is scant but resting state functional connectivity (RSFC) studies of alcohol use disorders (AUD) indicate that the development and maintenance of long-term excessive drinking may be mediated by network-level disruptions. The present study examined RSFC in young adult binge (BD) and light (LD) drinkers with seeds representing the networks subserving reward (the nucleus accumbens and caudate nucleus), salience (anterior cingulate cortex, ACC), and executive control (inferior frontal cortex, IFC). BDs exhibited enhanced connectivity between the striatal reward areas and the orbitofrontal cortex and the ACC, which is consistent with AUD studies and may be indicative of alcohol-motivated appetitive behaviors. Conversely, BDs demonstrated lower connectivity between the IFC and hippocampus which was associated with higher craving. This may indicate impaired ability to suppress unwanted thoughts and a failure to employ memory of the harmful consequences of heavy drinking in prospective plans and intentions. The observed greater connectivity of the reward/salience network and the lower prefrontal-hippocampal connectivity were associated with hazardous drinking levels indicating that dysregulation of neurofunctional networks may underlie binge drinking patterns.
Collapse
|
46
|
Saleh Y, Le Heron C, Petitet P, Veldsman M, Drew D, Plant O, Schulz U, Sen A, Rothwell PM, Manohar S, Husain M. Apathy in small vessel cerebrovascular disease is associated with deficits in effort-based decision making. Brain 2021; 144:1247-1262. [PMID: 33734344 PMCID: PMC8240747 DOI: 10.1093/brain/awab013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Patients with small vessel cerebrovascular disease frequently suffer from apathy, a debilitating neuropsychiatric syndrome, the underlying mechanisms of which remain to be established. Here we investigated the hypothesis that apathy is associated with disrupted decision making in effort-based decision making, and that these alterations are associated with abnormalities in the white matter network connecting brain regions that underpin such decisions. Eighty-two patients with MRI evidence of small vessel disease were assessed using a behavioural paradigm as well as diffusion weighted MRI. The decision-making task involved accepting or rejecting monetary rewards in return for performing different levels of physical effort (hand grip force). Choice data and reaction times were integrated into a drift diffusion model that framed decisions to accept or reject offers as stochastic processes approaching a decision boundary with a particular drift rate. Tract-based spatial statistics were used to assess the relationship between white matter tract integrity and apathy, while accounting for depression. Overall, patients with apathy accepted significantly fewer offers on this decision-making task. Notably, while apathetic patients were less responsive to low rewards, they were also significantly averse to investing in high effort. Significant reductions in white matter integrity were observed to be specifically related to apathy, but not to depression. These included pathways connecting brain regions previously implicated in effort-based decision making in healthy people. The drift rate to decision parameter was significantly associated with both apathy and altered white matter tracts, suggesting that both brain and behavioural changes in apathy are associated with this single parameter. On the other hand, depression was associated with an increase in the decision boundary, consistent with an increase in the amount of evidence required prior to making a decision. These findings demonstrate altered effort-based decision making for reward in apathy, and also highlight dissociable mechanisms underlying apathy and depression in small vessel disease. They provide clear potential brain and behavioural targets for future therapeutic interventions, as well as modelling parameters that can be used to measure the effects of treatment at the behavioural level.
Collapse
Affiliation(s)
- Youssuf Saleh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Campbell Le Heron
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,New Zealand Brain Research Institute, Christchurch 8011, New Zealand.,Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Daniel Drew
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Olivia Plant
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Ursula Schulz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Arjune Sen
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Dept Clinical Neurosciences, University of Oxford, UK
| | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Oxford, OX2 6GG, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK
| |
Collapse
|
47
|
Thompson K, Nahmias E, Fani N, Kvaran T, Turner J, Tone E. The Prisoner's Dilemma paradigm provides a neurobiological framework for the social decision cascade. PLoS One 2021; 16:e0248006. [PMID: 33735226 PMCID: PMC7971531 DOI: 10.1371/journal.pone.0248006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
To function during social interactions, we must be able to consider and coordinate our actions with other people's perspectives. This process unfolds from decision-making, to anticipation of that decision's consequences, to feedback about those consequences, in what can be described as a "cascade" of three phases. The iterated Prisoner's Dilemma (iPD) task, an economic-exchange game used to illustrate how people achieve stable cooperation over repeated interactions, provides a framework for examining this "social decision cascade". In the present study, we examined neural activity associated with the three phases of the cascade, which can be isolated during iPD game rounds. While undergoing functional magnetic resonance imaging (fMRI), 31 adult participants made a) decisions about whether to cooperate with a co-player for a monetary reward, b) anticipated the co-player's decision, and then c) learned the co-player's decision. Across all three phases, participants recruited the temporoparietal junction (TPJ) and the dorsomedial prefrontal cortex (dmPFC), regions implicated in numerous facets of social reasoning such as perspective-taking and the judgement of intentions. Additionally, a common distributed neural network underlies both decision-making and feedback appraisal; however, differences were identified in the magnitude of recruitment between both phases. Furthermore, there was limited evidence that anticipation following the decision to defect evoked a neural signature that is distinct from the signature of anticipation following the decision to cooperate. This study is the first to delineate the neural substrates of the entire social decision cascade in the context of the iPD game.
Collapse
Affiliation(s)
- Khalil Thompson
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Eddy Nahmias
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Trevor Kvaran
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Jessica Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| | - Erin Tone
- Department of Psychology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
48
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
Lane HY, Tu CH, Lin WC, Lin CH. Brain Activity of Benzoate, a D-Amino Acid Oxidase Inhibitor, in Patients With Mild Cognitive Impairment in a Randomized, Double-Blind, Placebo Controlled Clinical Trial. Int J Neuropsychopharmacol 2021; 24:392-399. [PMID: 33406269 PMCID: PMC8130199 DOI: 10.1093/ijnp/pyab001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Current anti-dementia drugs cannot benefit mild cognitive impairment (MCI). Sodium benzoate (a D-amino acid oxidase [DAO] inhibitor) has been found to improve the cognitive function of patients with early-phase Alzheimer's disease (mild Alzheimer's disease or MCI). However, its effect on brain function remains unknown. This study aimed to evaluate the influence of benzoate on functional magnetic resonance imaging in patients with amnestic MCI. METHODS This was a 24-week, randomized, double-blind, placebo-controlled trial that enrolled 21 patients with amnestic MCI and allocated them randomly to either of 2 treatment groups: (1) benzoate group (250-1500 mg/d), or (2) placebo group. We assessed the patients' working memory, verbal learning and memory, and resting-state functional magnetic resonance imaging and regional homogeneity (ReHo) maps at baseline and endpoint. RESULTS Resting-state ReHo decreased in right orbitofrontal cortex after benzoate treatment but did not change after placebo. Moreover, after benzoate treatment, the change in working memory was positively correlated with the change in ReHo in right precentral gyrus and right middle occipital gyrus; and the change in verbal learning and memory was positively correlated with the change in ReHo in left precuneus. In contrast, after placebo treatment, the change in working memory or in verbal learning and memory was not correlated with the change in ReHo in any brain region. CONCLUSION The current study is the first to our knowledge to demonstrate that a DAO inhibitor, sodium benzoate herein, can alter brain activity as well as cognitive functions in individuals with MCI. The preliminary finding lends supports for DAO inhibition as a novel approach for early dementing processes.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan ,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Wei-Che Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan,School of Medicine, Chang Gung University, Taoyuan, Taiwan ,Correspondence: Chieh-Hsin Lin, MD, PhD, Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Rd., Niaosong District, Kaohsiung City, 833, Taiwan ()
| |
Collapse
|
50
|
Biria M, Cantonas LM, Banca P. Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. Curr Top Behav Neurosci 2021; 49:231-268. [PMID: 33751502 DOI: 10.1007/7854_2020_201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by structural and functional deficits in the cortico-striato-thalamic-cortical (CSTC) circuitry and abnormal neurochemical changes are thought to modulate these deficits. The hypothesis that an imbalanced concentration of the brain neurotransmitters, in particular glutamate (Glu) and gamma-amino-butyric acid (GABA), could impair the normal functioning of the CSTC, thus leading to OCD symptoms, has been tested in humans using magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). This chapter summarises these neurochemical findings and represents an attempt to condense such scattered literature. We also discuss potential challenges in the field that may explain the inconsistent findings and suggest ways to overcome them. There is some convergent research from MRS pointing towards abnormalities in the brain concentration of neurometabolite markers of neuronal integrity, such as N-acetylaspartate (NAA) and choline (Cho). Lower NAA levels have been found in dorsal and rostral ACC of OCD patients (as compared to healthy volunteers), which increase after CBT and SSRI treatment, and higher Cho concentration has been reported in the thalamus of the OCD brain. However, findings for other neurometabolites are very inconsistent. Studies have reported abnormalities in the concentrations of creatine (Cr), GABA, glutamate (Glu), glutamine (Gln), Ins (myo-inositol), and serotonin (5-HT), but most of the results were not replicated. The question remains whether the NAA and Cho findings are genuinely the only neurochemical abnormalities in OCD or whether the lack of consistent findings for the other neurometabolites is caused by the lower magnetic field (1-3 Tesla (T)) used by the studies conducted so far, their small sample sizes or a lack of proper control for medication effects. To answer these questions and to further inform the biological underpinning of the symptoms and the cognitive problems at the basis of OCD we need better controlled studies using clear medicated vs unmedicated groups, larger sample sizes, stronger magnetic fields (e.g. at 7 T), and more consistency in the definition of the regions of interest.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|