1
|
Kang H, Babola TA, Kanold PO. Rapid rebalancing of co-tuned ensemble activity in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599418. [PMID: 38948779 PMCID: PMC11212947 DOI: 10.1101/2024.06.17.599418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sensory information is represented by small varying neuronal ensembles in sensory cortices. In the auditory cortex (AC) repeated presentations of the same sound activate differing ensembles indicating high trial-by trial variability in activity even though the sounds activate the same percept. Efficient processing of complex acoustic signals requires that these sparsely distributed neuronal ensembles actively interact in order to provide a constant percept. Thus, the differing ensembles might interact to process the incoming sound inputs. Here, we probe interactions within and across ensembles by combining in vivo 2-photon Ca2+ imaging and holographic optogenetic stimulation to study how increased activity of single cells level affects the cortical network. We stimulated a small number of neurons sharing the same frequency preference alongside the presentation of a target pure tone, further increasing their tone-evoked activity. We found that other non-stimulated co-tuned neurons decreased their tone-evoked activity when the frequency of the presented pure tone matched to their tuning property, while non co-tuned neurons were unaffected. Activity decrease was greater for non-stimulated co-tuned neurons with higher frequency selectivity. Co-tuned and non co-tuned neurons were spatially intermingled. Our results shows that co-tuned ensembles communicated and balanced their total activity across the larger network. The rebalanced network activity due to external stimulation remained constant. These effects suggest that co-tuned ensembles in AC interact and rapidly rebalance their activity to maintain encoding homeostasis, and that the rebalanced network is persistent.
Collapse
Affiliation(s)
- HiJee Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| | - Travis A. Babola
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 20215
| |
Collapse
|
2
|
Stevens-Sostre WA, Hoon M. Cellular and Molecular Mechanisms Regulating Retinal Synapse Development. Annu Rev Vis Sci 2024; 10:377-402. [PMID: 39292551 DOI: 10.1146/annurev-vision-102122-105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.
Collapse
Affiliation(s)
- Whitney A Stevens-Sostre
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Ganzen L, Yadav SC, Wei M, Ma H, Nawy S, Kramer RH. Retinoic Acid-Dependent Loss of Synaptic Output from Bipolar Cells Impairs Visual Information Processing in Inherited Retinal Degeneration. J Neurosci 2024; 44:e0129242024. [PMID: 39060177 PMCID: PMC11358532 DOI: 10.1523/jneurosci.0129-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In retinitis pigmentosa (RP), rod and cone photoreceptors degenerate, depriving downstream neurons of light-sensitive input, leading to vision impairment or blindness. Although downstream neurons survive, some undergo morphological and physiological remodeling. Bipolar cells (BCs) link photoreceptors, which sense light, to retinal ganglion cells (RGCs), which send information to the brain. While photoreceptor loss disrupts input synapses to BCs, whether BC output synapses remodel has remained unknown. Here we report that synaptic output from BCs plummets in RP mouse models of both sexes owing to loss of voltage-gated Ca2+ channels. Remodeling reduces the reliability of synaptic output to repeated optogenetic stimuli, causing RGC firing to fail at high-stimulus frequencies. Fortunately, functional remodeling of BCs can be reversed by inhibiting the retinoic acid receptor (RAR). RAR inhibitors targeted to BCs present a new therapeutic opportunity for mitigating detrimental effects of remodeling on signals initiated either by surviving photoreceptors or by vision-restoring tools.
Collapse
Affiliation(s)
- Logan Ganzen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Shubhash Chandra Yadav
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Mingxiao Wei
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Hong Ma
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Scott Nawy
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Richard H Kramer
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
4
|
Chotard V, Trapani F, Glaziou G, Sermet BS, Yger P, Marre O, Rebsam A. Altered Functional Responses of the Retina in B6 Albino Tyrc/c Mice. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 39189994 PMCID: PMC11361382 DOI: 10.1167/iovs.65.10.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose Mammals with albinism present low visual discrimination ability and different proportions of certain retinal cell subtypes. As the spatial resolution of the retina depends on the visual field sampling by retinal ganglion cells (RGCs) based on the convergence of upstream cell inputs, it could be affected in albinism and thus modify the RGC function. Methods We used the Tyrc/c line, a mouse model of oculocutaneous albinism type 1 (OCA1), carrying a tyrosinase mutation, and previously characterized by a total absence of pigment and severe visual deficits. To assess their retinal function, we recorded the light responses of hundreds of RGCs ex vivo using multi-electrode array (MEA). We estimated the receptive field (RF)-center diameter of Tyr+/c and Tyrc/c RGCs using a checkerboard stimulation before simultaneously stimulating the center and surround of RGC RFs with full-field flashes. Results Following checkerboard stimulation, the RF-center diameters of RGCs were indistinguishable between Tyrc/c and Tyr+/c retinas. Nevertheless, RGCs from Tyrc/c retinas presented more OFF responses to full-field flashes than RGCs from Tyr+/c retinas. Unlike Tyr+/c retinas, very few OFF-center RGCs switched polarity to ON or ON-OFF responses after full-field flashes in Tyrc/c retinas, suggesting a different surround suppression in these retinas. Conclusions The retinal output signal is affected in Tyrc/c retinas, despite intact RF-center diameters of their RGCs. Adaptive mechanisms during development are probably responsible for this change in RGC responses, related to the absence of ocular pigments.
Collapse
Affiliation(s)
- Virginie Chotard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Guilhem Glaziou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Pierre Yger
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alexandra Rebsam
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
5
|
Yadav SC, Ganzen L, Nawy S, Kramer RH. Retinal bipolar cells borrow excitability from electrically coupled inhibitory interneurons to amplify excitatory synaptic transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601922. [PMID: 39005421 PMCID: PMC11245017 DOI: 10.1101/2024.07.03.601922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bipolar cells of the retina carry visual information from photoreceptors in the outer retina to retinal ganglion cells (RGCs) in the inner retina. Bipolar cells express L-type voltage-gated Ca2+ channels at the synaptic terminal, but generally lack other types of channels capable of regenerative activity. As a result, the flow of information from outer to inner retina along bipolar cell processes is generally passive in nature, with no opportunity for signal boost or amplification along the way. Here we report the surprising discovery that blocking voltage-gated Na+ channels profoundly reduces the synaptic output of one class of bipolar cell, the type 6 ON bipolar cell (CBC6), despite the fact that the CBC6 itself does not express voltage-gated Na+ channels. Instead, CBC6 borrows voltage-gated Na+ channels from its neighbor, the inhibitory AII amacrine cell, with whom it is connected via an electrical synapse. Thus, an inhibitory neuron aids in amplification of an excitatory signal as it moves through the retina, ensuring that small changes in the membrane potential of bipolar cells are reliably passed onto downstream RGCs.
Collapse
Affiliation(s)
- Shubhash Chandra Yadav
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Logan Ganzen
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Scott Nawy
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| | - Richard H Kramer
- University of California Berkeley, Department of Molecular and Cell Biology. Berkeley, CA, USA
| |
Collapse
|
6
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Yang J, Prescott SA. Homeostatic regulation of neuronal function: importance of degeneracy and pleiotropy. Front Cell Neurosci 2023; 17:1184563. [PMID: 37333893 PMCID: PMC10272428 DOI: 10.3389/fncel.2023.1184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Neurons maintain their average firing rate and other properties within narrow bounds despite changing conditions. This homeostatic regulation is achieved using negative feedback to adjust ion channel expression levels. To understand how homeostatic regulation of excitability normally works and how it goes awry, one must consider the various ion channels involved as well as the other regulated properties impacted by adjusting those channels when regulating excitability. This raises issues of degeneracy and pleiotropy. Degeneracy refers to disparate solutions conveying equivalent function (e.g., different channel combinations yielding equivalent excitability). This many-to-one mapping contrasts the one-to-many mapping described by pleiotropy (e.g., one channel affecting multiple properties). Degeneracy facilitates homeostatic regulation by enabling a disturbance to be offset by compensatory changes in any one of several different channels or combinations thereof. Pleiotropy complicates homeostatic regulation because compensatory changes intended to regulate one property may inadvertently disrupt other properties. Co-regulating multiple properties by adjusting pleiotropic channels requires greater degeneracy than regulating one property in isolation and, by extension, can fail for additional reasons such as solutions for each property being incompatible with one another. Problems also arise if a perturbation is too strong and/or negative feedback is too weak, or because the set point is disturbed. Delineating feedback loops and their interactions provides valuable insight into how homeostatic regulation might fail. Insofar as different failure modes require distinct interventions to restore homeostasis, deeper understanding of homeostatic regulation and its pathological disruption may reveal more effective treatments for chronic neurological disorders like neuropathic pain and epilepsy.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Leinonen H, Fu Z, Bull E. Neural and Müller glial adaptation of the retina to photoreceptor degeneration. Neural Regen Res 2023; 18:701-707. [DOI: 10.4103/1673-5374.354511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
10
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
11
|
Inhibition, but not excitation, recovers from partial cone loss with greater spatiotemporal integration, synapse density, and frequency. Cell Rep 2022; 38:110317. [PMID: 35108533 PMCID: PMC8865908 DOI: 10.1016/j.celrep.2022.110317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 12/30/2022] Open
Abstract
Neural circuits function in the face of changing inputs, either caused by normal variation in stimuli or by cell death. To maintain their ability to perform essential computations with partial inputs, neural circuits make modifications. Here, we study the retinal circuit’s responses to changes in light stimuli or in photoreceptor inputs by inducing partial cone death in the mature mouse retina. Can the retina withstand or recover from input loss? We find that the excitatory pathways exhibit functional loss commensurate with cone death and with some aspects predicted by partial light stimulation. However, inhibitory pathways recover functionally from lost input by increasing spatiotemporal integration in a way that is not recapitulated by partially stimulating the control retina. Anatomically, inhibitory synapses are upregulated on secondary bipolar cells and output ganglion cells. These findings demonstrate the greater capacity for inhibition, compared with excitation, to modify spatiotemporal processing with fewer cone inputs. Lee et al. find partial cone loss triggers inhibition, but not excitation, to increase spatiotemporal integration, recover contrast gain, and increase synaptic release onto retinal ganglion cells. Natural images filtered by cone-loss receptive fields perceptually match those of controls. Thus, inhibition compensates for fewer cones to potentially preserve perception.
Collapse
|
12
|
Strettoi E, Di Marco B, Orsini N, Napoli D. Retinal Plasticity. Int J Mol Sci 2022; 23:ijms23031138. [PMID: 35163059 PMCID: PMC8835074 DOI: 10.3390/ijms23031138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Brain plasticity is a well-established concept designating the ability of central nervous system (CNS) neurons to rearrange as a result of learning, when adapting to changeable environmental conditions or else while reacting to injurious factors. As a part of the CNS, the retina has been repeatedly probed for its possible ability to respond plastically to a variably altered environment or to pathological insults. However, numerous studies support the conclusion that the retina, outside the developmental stage, is endowed with only limited plasticity, exhibiting, instead, a remarkable ability to maintain a stable architectural and functional organization. Reviewed here are representative examples of hippocampal and cortical paradigms of plasticity and of retinal structural rearrangements found in organization and circuitry following altered developmental conditions or occurrence of genetic diseases leading to neuronal degeneration. The variable rate of plastic changes found in mammalian retinal neurons in different circumstances is discussed, focusing on structural plasticity. The likely adaptive value of maintaining a low level of plasticity in an organ subserving a sensory modality that is dominant for the human species and that requires elevated fidelity is discussed.
Collapse
Affiliation(s)
- Enrica Strettoi
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Correspondence: ; Tel.: +39-0503153213
| | - Beatrice Di Marco
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Debora Napoli
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| |
Collapse
|
13
|
Miller DS, Wright KM. Neuronal Dystroglycan regulates postnatal development of CCK/cannabinoid receptor-1 interneurons. Neural Dev 2021; 16:4. [PMID: 34362433 PMCID: PMC8349015 DOI: 10.1186/s13064-021-00153-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background The development of functional neural circuits requires the precise formation of synaptic connections between diverse neuronal populations. The molecular pathways that allow GABAergic interneuron subtypes in the mammalian brain to initially recognize their postsynaptic partners remain largely unknown. The transmembrane glycoprotein Dystroglycan is localized to inhibitory synapses in pyramidal neurons, where it is required for the proper function of CCK+ interneurons. However, the precise temporal requirement for Dystroglycan during inhibitory synapse development has not been examined. Methods In this study, we use NEXCre or Camk2aCreERT2 to conditionally delete Dystroglycan from newly-born or adult pyramidal neurons, respectively. We then analyze forebrain development from postnatal day 3 through adulthood, with a particular focus on CCK+ interneurons. Results In the absence of postsynaptic Dystroglycan in developing pyramidal neurons, presynaptic CCK+ interneurons fail to elaborate their axons and largely disappear from the cortex, hippocampus, amygdala, and olfactory bulb during the first two postnatal weeks. Other interneuron subtypes are unaffected, indicating that CCK+ interneurons are unique in their requirement for postsynaptic Dystroglycan. Dystroglycan does not appear to be required in adult pyramidal neurons to maintain CCK+ interneurons. Bax deletion did not rescue CCK+ interneurons in Dystroglycan mutants during development, suggesting that they are not eliminated by canonical apoptosis. Rather, we observed increased innervation of the striatum, suggesting that the few remaining CCK+ interneurons re-directed their axons to neighboring areas where Dystroglycan expression remained intact. Conclusion Together these findings show that Dystroglycan functions as part of a synaptic partner recognition complex that is required early for CCK+ interneuron development in the forebrain. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-021-00153-1.
Collapse
Affiliation(s)
- Daniel S Miller
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, VIB 3435A, 3181 SW Sam Jackson Park Road, L474, Portland, OR, 97239-3098, USA.
| |
Collapse
|
14
|
Della Santina L, Yu AK, Harris SC, Soliño M, Garcia Ruiz T, Most J, Kuo YM, Dunn FA, Ou Y. Disassembly and rewiring of a mature converging excitatory circuit following injury. Cell Rep 2021; 36:109463. [PMID: 34348156 PMCID: PMC8381591 DOI: 10.1016/j.celrep.2021.109463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023] Open
Abstract
Specificity and timing of synapse disassembly in the CNS are essential to learning how individual circuits react to neurodegeneration of the postsynaptic neuron. In sensory systems such as the mammalian retina, synaptic connections of second-order neurons are known to remodel and reconnect in the face of sensory cell loss. Here we analyzed whether degenerating third-order neurons can remodel their local presynaptic connectivity. We injured adult retinal ganglion cells by transiently elevating intraocular pressure. We show that loss of presynaptic structures occurs before postsynaptic density proteins and accounts for impaired transmission from presynaptic neurons, despite no evidence of presynaptic cell loss, axon terminal shrinkage, or reduced functional input. Loss of synapses is biased among converging presynaptic neuron types, with preferential loss of the major excitatory cone-driven partner and increased connectivity with rod-driven presynaptic partners, demonstrating that this adult neural circuit is capable of structural plasticity while undergoing neurodegeneration. Della Santina et al. injure a converging excitatory circuit in the adult retina by intraocular pressure elevation. Postsynaptic retinal ganglion cells disconnect from presynaptic bipolar cells with stereotyped bias against their major partner and rewire with developmental presynaptic partners, underscoring the potential of the adult CNS to adopt developmental patterns.
Collapse
Affiliation(s)
- Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Alfred K Yu
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott C Harris
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manuel Soliño
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tonatiuh Garcia Ruiz
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jesse Most
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli. Neuron 2021; 109:1692-1706.e8. [PMID: 33798407 PMCID: PMC8153253 DOI: 10.1016/j.neuron.2021.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
The retina dissects the visual scene into parallel information channels, which extract specific visual features through nonlinear processing. The first nonlinear stage is typically considered to occur at the output of bipolar cells, resulting from nonlinear transmitter release from synaptic terminals. In contrast, we show here that bipolar cells themselves can act as nonlinear processing elements at the level of their somatic membrane potential. Intracellular recordings from bipolar cells in the salamander retina revealed frequent nonlinear integration of visual signals within bipolar cell receptive field centers, affecting the encoding of artificial and natural stimuli. These nonlinearities provide sensitivity to spatial structure below the scale of bipolar cell receptive fields in both bipolar and downstream ganglion cells and appear to arise at the excitatory input into bipolar cells. Thus, our data suggest that nonlinear signal pooling starts earlier than previously thought: that is, at the input stage of bipolar cells. Some retinal bipolar cells represent visual contrast in a nonlinear fashion These bipolar cells also nonlinearly integrate visual signals over space The spatial nonlinearity affects the encoding of natural stimuli by bipolar cells The nonlinearity results from feedforward input, not from feedback inhibition
Collapse
|
16
|
Abstract
Neurons develop dendritic morphologies that bear cell type-specific features in dendritic field size and geometry, branch placement and density, and the types and distributions of synaptic contacts. Dendritic patterns influence the types and numbers of inputs a neuron receives, and the ways in which neural information is processed and transmitted in the circuitry. Even subtle alterations in dendritic structures can have profound consequences on neuronal function and are implicated in neurodevelopmental disorders. In this chapter, I review how growing dendrites acquire their exquisite patterns by drawing examples from diverse neuronal cell types in vertebrate and invertebrate model systems. Dendrite morphogenesis is shaped by intrinsic and extrinsic factors such as transcriptional regulators, guidance and adhesion molecules, neighboring cells and synaptic partners. I discuss molecular mechanisms that regulate dendrite morphogenesis with a focus on five aspects of dendrite patterning: (1) Dendritic cytoskeleton and cellular machineries that build the arbor; (2) Gene regulatory mechanisms; (3) Afferent cues that regulate dendritic arbor growth; (4) Space-filling strategies that optimize dendritic coverage; and (5) Molecular cues that specify dendrite wiring. Cell type-specific implementation of these patterning mechanisms produces the diversity of dendrite morphologies that wire the nervous system.
Collapse
|
17
|
Pottackal J, Singer JH, Demb JB. Receptoral Mechanisms for Fast Cholinergic Transmission in Direction-Selective Retinal Circuitry. Front Cell Neurosci 2020; 14:604163. [PMID: 33324168 PMCID: PMC7726240 DOI: 10.3389/fncel.2020.604163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Direction selectivity represents an elementary sensory computation that can be related to underlying synaptic mechanisms. In mammalian retina, direction-selective ganglion cells (DSGCs) respond strongly to visual motion in a "preferred" direction and weakly to motion in the opposite, "null" direction. The DS mechanism depends on starburst amacrine cells (SACs), which provide null direction-tuned GABAergic inhibition and untuned cholinergic excitation to DSGCs. GABAergic inhibition depends on conventional synaptic transmission, whereas cholinergic excitation apparently depends on paracrine (i.e., non-synaptic) transmission. Despite its paracrine mode of transmission, cholinergic excitation is more transient than GABAergic inhibition, yielding a temporal difference that contributes essentially to the DS computation. To isolate synaptic mechanisms that generate the distinct temporal properties of cholinergic and GABAergic transmission from SACs to DSGCs, we optogenetically stimulated SACs while recording postsynaptic currents (PSCs) from DSGCs in mouse retina. Direct recordings from channelrhodopsin-2-expressing (ChR2+) SACs during quasi-white noise (WN) (0-30 Hz) photostimulation demonstrated precise, graded optogenetic control of SAC membrane current and potential. Linear systems analysis of ChR2-evoked PSCs recorded in DSGCs revealed cholinergic transmission to be faster than GABAergic transmission. A deconvolution-based analysis showed that distinct postsynaptic receptor kinetics fully account for the temporal difference between cholinergic and GABAergic transmission. Furthermore, GABAA receptor blockade prolonged cholinergic transmission, identifying a new functional role for GABAergic inhibition of SACs. Thus, fast cholinergic transmission from SACs to DSGCs arises from at least two distinct mechanisms, yielding temporal properties consistent with conventional synapses despite its paracrine nature.
Collapse
Affiliation(s)
- Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Joshua H. Singer
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Jonathan B. Demb
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
18
|
Kim T, Shen N, Hsiang JC, Johnson KP, Kerschensteiner D. Dendritic and parallel processing of visual threats in the retina control defensive responses. SCIENCE ADVANCES 2020; 6:6/47/eabc9920. [PMID: 33208370 PMCID: PMC7673819 DOI: 10.1126/sciadv.abc9920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/01/2020] [Indexed: 05/03/2023]
Abstract
Approaching predators cast expanding shadows (i.e., looming) that elicit innate defensive responses in most animals. Where looming is first detected and how critical parameters of predatory approaches are extracted are unclear. In mice, we identify a retinal interneuron (the VG3 amacrine cell) that responds robustly to looming, but not to related forms of motion. Looming-sensitive calcium transients are restricted to a specific layer of the VG3 dendrite arbor, which provides glutamatergic input to two ganglion cells (W3 and OFFα). These projection neurons combine shared excitation with dissimilar inhibition to signal approach onset and speed, respectively. Removal of VG3 amacrine cells reduces the excitation of W3 and OFFα ganglion cells and diminishes defensive responses of mice to looming without affecting other visual behaviors. Thus, the dendrites of a retinal interneuron detect visual threats, divergent circuits downstream extract critical threat parameters, and these retinal computations initiate an innate survival behavior.
Collapse
Affiliation(s)
- T Kim
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - N Shen
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - J-C Hsiang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - K P Johnson
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - D Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Neurosciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
19
|
Leinonen H, Pham NC, Boyd T, Santoso J, Palczewski K, Vinberg F. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. eLife 2020; 9:59422. [PMID: 32960171 PMCID: PMC7529457 DOI: 10.7554/elife.59422] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Neuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision. Whether such homeostatic plasticity occurs during progressive photoreceptor degenerative disease to help maintain normal visual behavior is unknown. We addressed this issue in an established mouse model of Retinitis Pigmentosa caused by the P23H mutation in rhodopsin. We show robust modulation of the retinal transcriptomic network, reminiscent of the neurodevelopmental state, and potentiation of rod – rod bipolar cell signaling following rod photoreceptor degeneration. Additionally, we found highly sensitive night vision in P23H mice even when more than half of the rod photoreceptors were lost. These results suggest retinal adaptation leading to persistent visual function during photoreceptor degenerative disease.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, United States
| | - Nguyen C Pham
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
| | - Taylor Boyd
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
| | - Johanes Santoso
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, United States
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, United States.,Departments of Physiology and Biophysics, and Chemistry, University of California, Irvine, Irvine, United States
| | - Frans Vinberg
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
| |
Collapse
|
20
|
Flood MD, Wellington AJ, Cruz LA, Eggers ED. Early diabetes impairs ON sustained ganglion cell light responses and adaptation without cell death or dopamine insensitivity. Exp Eye Res 2020; 200:108223. [PMID: 32910942 DOI: 10.1016/j.exer.2020.108223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Retinal signaling under dark-adapted conditions is perturbed during early diabetes. Additionally, dopamine, the main neuromodulator of retinal light adaptation, is diminished in diabetic retinas. However, it is not known if this dopamine deficiency changes how the retina responds to increased light or dopamine. Here we determine whether light adaptation is impaired in the diabetic retina, and investigate potential mechanism(s) of impairment. Diabetes was induced in C57BL/6J male mice via 3 intraperitoneal injections of streptozotocin (75 mg/kg) and confirmed by blood glucose levels more than 200 mg/dL. After 6 weeks, whole-cell recordings of light-evoked and spontaneous inhibitory postsynaptic currents (IPSCs) or excitatory postsynaptic currents (EPSCs) were made from rod bipolar cells and ON sustained ganglion cells, respectively. Light responses were recorded before and after D1 receptor (D1R) activation (SKF-38393, 20 μM) or light adaptation (background of 950 photons·μm-2 ·s-1). Retinal whole mounts were stained for either tyrosine hydroxylase and activated caspase-3 or GAD65/67, GlyT1 and RBPMS and imaged. D1R activation and light adaptation both decreased inhibition, but the disinhibition was not different between control and diabetic rod bipolar cells. However, diabetic ganglion cell light-evoked EPSCs were increased in the dark and showed reduced light adaptation. No differences were found in light adaptation of spontaneous EPSC parameters, suggesting upstream changes. No changes in cell density were found for dopaminergic, glycinergic or GABAergic amacrine cells, or ganglion cells. Thus, in early diabetes, ON sustained ganglion cells receive excessive excitation under dark- and light-adapted conditions. Our results show that this is not attributable to loss in number or dopamine sensitivity of inhibitory amacrine cells or loss of dopaminergic amacrine cells.
Collapse
Affiliation(s)
- Michael D Flood
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Andrea J Wellington
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Luis A Cruz
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, P.O. Box 245051, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
21
|
Pfeiffer RL, Anderson JR, Dahal J, Garcia JC, Yang JH, Sigulinsky CL, Rapp K, Emrich DP, Watt CB, Johnstun HA, Houser AR, Marc RE, Jones BW. A pathoconnectome of early neurodegeneration: Network changes in retinal degeneration. Exp Eye Res 2020; 199:108196. [PMID: 32810483 DOI: 10.1016/j.exer.2020.108196] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Connectomics has demonstrated that synaptic networks and their topologies are precise and directly correlate with physiology and behavior. The next extension of connectomics is pathoconnectomics: to map neural network synaptology and circuit topologies corrupted by neurological disease in order to identify robust targets for therapeutics. In this report, we characterize a pathoconnectome of early retinal degeneration. This pathoconnectome was generated using serial section transmission electron microscopy to achieve an ultrastructural connectome with 2.18nm/px resolution for accurate identification of all chemical and gap junctional synapses. We observe aberrant connectivity in the rod-network pathway and novel synaptic connections deriving from neurite sprouting. These observations reveal principles of neuron responses to the loss of network components and can be extended to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| | - James R Anderson
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jeebika Dahal
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jessica C Garcia
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Jia-Hui Yang
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | | | - Kevin Rapp
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Daniel P Emrich
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Carl B Watt
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Hope Ab Johnstun
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Alexis R Houser
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA
| | - Robert E Marc
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA; Signature Immunologics, Torrey, UT, USA
| | - Bryan W Jones
- John Moran Eye Center at the University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
22
|
Sladek AL, Nawy S. Ocular Hypertension Drives Remodeling of AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front Synaptic Neurosci 2020; 12:30. [PMID: 32792936 PMCID: PMC7393603 DOI: 10.3389/fnsyn.2020.00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022] Open
Abstract
AMPA-type glutamate receptors in the CNS are normally impermeable to Ca2+, but the aberrant expression of Ca2+-permeable AMPA receptors (CP-AMPARs) occurs in pathological conditions such as ischemia or epilepsy, or degenerative diseases such as ALS. Here, we show that select populations of retinal ganglion cells (RGCs) similarly express high levels of CP-AMPARs in a mouse model of glaucoma. CP-AMPAR expression increased dramatically in both On sustained alpha and Off transient alpha RGCs, and this increase was prevented by genomic editing of the GluA2 subunit. On sustained alpha RGCs with elevated CP-AMPAR levels displayed profound synaptic depression, which was reduced by selectively blocking CP-AMPARs, buffering Ca2+ with BAPTA, or with the CB1 antagonist AM251, suggesting that depression was mediated by a retrograde transmitter which might be triggered by the influx of Ca2+ through CP-AMPARs. Thus, glaucoma may alter the composition of AMPARs and depress excitatory synaptic input in select populations of RGCs.
Collapse
Affiliation(s)
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
23
|
Care RA, Kastner DB, De la Huerta I, Pan S, Khoche A, Della Santina L, Gamlin C, Santo Tomas C, Ngo J, Chen A, Kuo YM, Ou Y, Dunn FA. Partial Cone Loss Triggers Synapse-Specific Remodeling and Spatial Receptive Field Rearrangements in a Mature Retinal Circuit. Cell Rep 2020; 27:2171-2183.e5. [PMID: 31091454 PMCID: PMC6624172 DOI: 10.1016/j.celrep.2019.04.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022] Open
Abstract
Resilience of neural circuits has been observed in the persistence of function despite neuronal loss. In vision, acuity and sensitivity can be retained after 50% loss of cones. While neurons in the cortex can remodel after input loss, the contributions of cell-type-specific circuits to resilience are unknown. Here, we study the effects of partial cone loss in mature mouse retina where cell types and connections are known. At first-order synapses, bipolar cell dendrites remodel and synaptic proteins diminish at sites of input loss. Sites of remaining inputs preserve synaptic proteins. Second-order synapses between bipolar and ganglion cells remain stable. Functionally, ganglion cell spatio-temporal receptive fields retain center-surround structure following partial cone loss. We find evidence for slower temporal filters and expanded receptive field surrounds, derived mainly from inhibitory inputs. Surround expansion is absent in partially stimulated control retina. Results demonstrate functional resilience to input loss beyond pre-existing mechanisms in control retina. Care et al. find that photoreceptor ablation causes structural rearrangement of bipolar cell input synapses while output synapses endure. Functionally, recipient ganglion cells show altered receptive field sizes, an effect not seen after partial stimulation of control retina, demonstrating de novo changes that occur in inhibitory circuitry after photoreceptor loss.
Collapse
Affiliation(s)
- Rachel A Care
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David B Kastner
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Irina De la Huerta
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Simon Pan
- Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Atrey Khoche
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Luca Della Santina
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clare Gamlin
- Program in Neuroscience, Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Chad Santo Tomas
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jenita Ngo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allen Chen
- Department of Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Park SJH, Lieberman EE, Ke JB, Rho N, Ghorbani P, Rahmani P, Jun NY, Lee HL, Kim IJ, Briggman KL, Demb JB, Singer JH. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. eLife 2020; 9:e56077. [PMID: 32412412 PMCID: PMC7228767 DOI: 10.7554/elife.56077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Night vision in mammals depends fundamentally on rod photoreceptors and the well-studied rod bipolar (RB) cell pathway. The central neuron in this pathway, the AII amacrine cell (AC), exhibits a spatially tuned receptive field, composed of an excitatory center and an inhibitory surround, that propagates to ganglion cells, the retina's projection neurons. The circuitry underlying the surround of the AII, however, remains unresolved. Here, we combined structural, functional and optogenetic analyses of the mouse retina to discover that surround inhibition of the AII depends primarily on a single interneuron type, the NOS-1 AC: a multistratified, axon-bearing GABAergic cell, with dendrites in both ON and OFF synaptic layers, but with a pure ON (depolarizing) response to light. Our study demonstrates generally that novel neural circuits can be identified from targeted connectomic analyses and specifically that the NOS-1 AC mediates long-range inhibition during night vision and is a major element of the RB pathway.
Collapse
Affiliation(s)
- Silvia JH Park
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Evan E Lieberman
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Jiang-Bin Ke
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Nao Rho
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Padideh Ghorbani
- Department of Biology, University of MarylandCollege ParkUnited States
| | - Pouyan Rahmani
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Na Young Jun
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Hae-Lim Lee
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
| | - In-Jung Kim
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
| | - Kevin L Briggman
- Circuit Dynamics and Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Jonathan B Demb
- Department of Ophthalmology & Visual Science, Yale UniversityNew HavenUnited States
- Department of Cellular & Molecular Physiology, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| | - Joshua H Singer
- Department of Biology, University of MarylandCollege ParkUnited States
| |
Collapse
|
25
|
Pan-Vazquez A, Wefelmeyer W, Gonzalez Sabater V, Neves G, Burrone J. Activity-Dependent Plasticity of Axo-axonic Synapses at the Axon Initial Segment. Neuron 2020; 106:265-276.e6. [PMID: 32109363 PMCID: PMC7181187 DOI: 10.1016/j.neuron.2020.01.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
The activity-dependent rules that govern the wiring of GABAergic interneurons are not well understood. Chandelier cells (ChCs) are a type of GABAergic interneuron that control pyramidal cell output through axo-axonic synapses that target the axon initial segment. In vivo imaging of ChCs during development uncovered a narrow window (P12-P18) over which axons arborized and formed connections. We found that increases in the activity of either pyramidal cells or individual ChCs during this temporal window result in a reversible decrease in axo-axonic connections. Voltage imaging of GABAergic transmission at the axon initial segment (AIS) showed that axo-axonic synapses were depolarizing during this period. Identical manipulations of network activity in older mice (P40-P46), when ChC synapses are inhibitory, resulted instead in an increase in axo-axonic synapses. We propose that the direction of ChC synaptic plasticity follows homeostatic rules that depend on the polarity of axo-axonic synapses.
Collapse
Affiliation(s)
- Alejandro Pan-Vazquez
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Winnie Wefelmeyer
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Victoria Gonzalez Sabater
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Guilherme Neves
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - Juan Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
26
|
Graham HK, Duan X. Molecular mechanisms regulating synaptic specificity and retinal circuit formation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e379. [PMID: 32267095 DOI: 10.1002/wdev.379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
The central nervous system (CNS) is composed of precisely assembled circuits which support a variety of physiological functions and behaviors. These circuits include multiple subtypes of neurons with unique morphologies, electrical properties, and molecular identities. How these component parts are precisely wired-up has been a topic of great interest to the field of developmental neurobiology and has implications for our understanding of the etiology of many neurological disorders and mental illnesses. To date, many molecules involved in synaptic choice and specificity have been identified, including members of several families of cell-adhesion molecules (CAMs), which are cell-surface molecules that mediate cell-cell contacts and subsequent intracellular signaling. One favored hypothesis is that unique expression patterns of CAMs define specific neuronal subtype populations and determine compatible pre- and postsynaptic neuronal partners based on the expression of these unique CAMs. The mouse retina has served as a beautiful model for investigations into mammalian CAM interactions due to its well-defined neuronal subtypes and distinct circuits. Moreover, the retina is readily amenable to visualization of circuit organization and electrophysiological measurement of circuit function. The advent of recent genetic, genomic, and imaging technologies has opened the field up to large-scale, unbiased approaches for identification of new molecular determinants of synaptic specificity. Thus, building on the foundation of work reviewed here, we can expect rapid expansion of the field, harnessing the mouse retina as a model to understand the molecular basis for synaptic specificity and functional circuit assembly. This article is categorized under: Nervous System Development > Vertebrates: General Principles Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Hannah K Graham
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Xin Duan
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA.,Neuroscience Graduate Program, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA.,Department of Physiology, University of California San Francisco, San Francisco, California, USA.,Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Homeostatic Plasticity Shapes the Retinal Response to Photoreceptor Degeneration. Curr Biol 2020; 30:1916-1926.e3. [PMID: 32243858 DOI: 10.1016/j.cub.2020.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Homeostatic plasticity stabilizes input and activity levels during neural development, but whether it can restore connectivity and preserve circuit function during neurodegeneration is unknown. Photoreceptor degeneration is the most common cause of blindness in the industrialized world. Visual deficits are dominated by cone loss, which progresses slowly, leaving a window during which rewiring of second-order neurons (i.e., bipolar cells) could preserve function. Here we establish a transgenic model to induce cone degeneration with precise control and analyze bipolar cell responses and their effects on vision through anatomical reconstructions, in vivo electrophysiology, and behavioral assays. In young retinas, we find that three bipolar cell types precisely restore input synapse numbers when 50% of cones degenerate but one does not. Of the three bipolar cell types that rewire, two contact new cones within stable dendritic territories, whereas one expands its dendrite arbors to reach new partners. In mature retinas, only one of four bipolar cell types rewires homeostatically. This steep decline in homeostatic plasticity is accompanied by reduced light responses of bipolar cells and deficits in visual behaviors. By contrast, light responses and behavioral performance are preserved when cones degenerate in young mice. Our results reveal unexpected cell type specificity and a steep maturational decline of homeostatic plasticity. The effect of homeostatic plasticity on functional outcomes identify it as a promising therapeutic target for retinal and other neurodegenerative diseases.
Collapse
|
28
|
Gamlin CR, Zhang C, Dyer MA, Wong ROL. Distinct Developmental Mechanisms Act Independently to Shape Biased Synaptic Divergence from an Inhibitory Neuron. Curr Biol 2020; 30:1258-1268.e2. [PMID: 32109390 DOI: 10.1016/j.cub.2020.01.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Neurons often contact more than one postsynaptic partner type and display stereotypic patterns of synaptic divergence. Such synaptic patterns usually involve some partners receiving more synapses than others. The developmental strategies generating "biased" synaptic distributions remain largely unknown. To gain insight, we took advantage of a compact circuit in the vertebrate retina, whereby the AII amacrine cell (AII AC) provides inhibition onto cone bipolar cell (BC) axons and retinal ganglion cell (RGC) dendrites, but makes the majority of its synapses with the BCs. Using light and electron microscopy, we reconstructed the morphology and connectivity of mouse retinal AII ACs across postnatal development. We found that AII ACs do not elaborate their presynaptic structures, the lobular appendages, until BCs differentiate about a week after RGCs are present. Lobular appendages are present in mutant mice lacking BCs, implying that although synchronized with BC axonal differentiation, presynaptic differentiation of the AII ACs is not dependent on cues from BCs. With maturation, AII ACs maintain a constant number of synapses with RGCs, preferentially increase synaptogenesis with BCs, and eliminate synapses with wide-field amacrine cells. Thus, AII ACs undergo partner type-specific changes in connectivity to attain their mature pattern of synaptic divergence. Moreover, AII ACs contact non-BCs to the same extent in bipolarless retinas, indicating that AII ACs establish partner-type-specific connectivity using diverse mechanisms that operate in parallel but independently.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Chi Zhang
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Children Research Hospital, Danny Thomas Place, Memphis, TN 38105, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Agi E, Kulkarni A, Hiesinger PR. Neuronal strategies for meeting the right partner during brain wiring. Curr Opin Neurobiol 2020; 63:1-8. [PMID: 32036252 DOI: 10.1016/j.conb.2020.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Two neurons can only form a synapse if their axonal and dendritic projections meet at the same time and place. While spatiotemporal proximity is necessary for synapse formation, it remains unclear to what extent the underlying positional strategies are sufficient to ensure synapse formation between the right partners. Many neurons readily form synapses with wrong partners if they find themselves at the wrong place or time. Minimally, restricting spatiotemporal proximity can prevent incorrect synapses. Maximally, restricting encounters in time and space could be sufficient to ensure correct partnerships between neurons that can form synapses promiscuously. In this review we explore recent findings on positional strategies during developmental growth that contribute to precise outcomes in brain wiring.
Collapse
|
30
|
Vlasits AL, Euler T, Franke K. Function first: classifying cell types and circuits of the retina. Curr Opin Neurobiol 2019; 56:8-15. [DOI: 10.1016/j.conb.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
|
31
|
Johnson KP, Zhao L, Kerschensteiner D. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields. Cell Rep 2019; 22:1462-1472. [PMID: 29425502 PMCID: PMC5826572 DOI: 10.1016/j.celrep.2018.01.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
The spike trains of retinal ganglion cells (RGCs) are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC). PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive field surround, PixON-RGCs receive only inhibitory input, which is temporally matched to the excitatory center input. As a result, the firing rate of PixON-RGCs linearly encodes local image contrast. Spatially offset (i.e., truly lateral) inhibition of PixON-RGCs arises from spiking GABAergic amacrine cells. The receptive field organization of PixON-RGCs is independent of stimulus wavelength (i.e., achromatic). PixON-RGCs project predominantly to the dorsal lateral geniculate nucleus (dLGN) of the thalamus and likely contribute to visual perception.
Collapse
Affiliation(s)
- Keith P Johnson
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
32
|
Okawa H, Yu WQ, Matti U, Schwarz K, Odermatt B, Zhong H, Tsukamoto Y, Lagnado L, Rieke F, Schmitz F, Wong ROL. Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system. Nat Commun 2019; 10:2167. [PMID: 31092821 PMCID: PMC6520400 DOI: 10.1038/s41467-019-10123-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/10/2019] [Indexed: 11/11/2022] Open
Abstract
Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses. However, synapse density on ON-alpha RGCs was unchanged in mice lacking ribbons (ribeye knockout). Wildtype BCs make both ribbon-containing and ribbon-free synapses with these GCs even at maturity. Ribbon assembly and cone BC-RGC synapse maintenance are thus regulated independently. Despite the absence of synaptic ribbons, RGCs continued to respond robustly to light stimuli, although quantitative examination of the responses revealed reduced frequency and contrast sensitivity.
Collapse
Affiliation(s)
- Haruhisa Okawa
- Department of Biological Structure, University of Washington, Seattle, 98195, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, 98195, WA, USA
| | - Ulf Matti
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, 66421, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, 66421, Germany
| | | | - Haining Zhong
- Vollum institute, Oregon Health and Science University, Portland, 97239, OR, USA
| | - Yoshihiko Tsukamoto
- Department of Biology, Hyogo College of Medicine, Nishinomiya, 663-8501, Hyogo, Japan
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195, WA, USA
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, Homburg/Saar, 66421, Germany
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, 98195, WA, USA.
| |
Collapse
|
33
|
Lieb A, Weston M, Kullmann DM. Designer receptor technology for the treatment of epilepsy. EBioMedicine 2019; 43:641-649. [PMID: 31078519 PMCID: PMC6558262 DOI: 10.1016/j.ebiom.2019.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Epilepsy remains refractory to medical treatment in ~30% of patients despite decades of new drug development. Neurosurgery to remove or disconnect the seizure focus is often curative but frequently contraindicated by risks of irreversible impairment to brain function. Novel therapies are therefore required that better balance seizure suppression against the risks of side effects. Among experimental gene therapies, chemogenetics has the major advantage that the action on the epileptogenic zone can be modulated on demand. Two broad approaches are to use a designer G-protein-coupled receptor or a modified ligand gated ion channel, targeted to specific neurons in the epileptogenic zone using viral vectors and cell-type selective promoters. The receptor can be activated on demand by either an exogenous compound or by pathological levels of extracellular glutamate that occur in epileptogenic tissue. We review the principal designer receptor technologies and their modes of action. We compare the drawbacks and benefits of each designer receptor with particular focus on the drug activators and the potential for clinical translation in epilepsy. Inhibitory designer receptors (DRs) allow on-demand suppression of seizures upon activation by exogenous drugs or endogenous neurotransmitters. DRs include modified G-protein coupled receptors, chimaeric ligand-gated ion channels, and mutated non-mammalian channels. Identification of drug activators of DRs that are already approved for use in humans significantly accelerates clinical translation.
Collapse
Affiliation(s)
- Andreas Lieb
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| | - Mikail Weston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, UK.
| |
Collapse
|
34
|
Mild Intraocular Pressure Elevation in Mice Reveals Distinct Retinal Ganglion Cell Functional Thresholds and Pressure-Dependent Properties. J Neurosci 2019; 39:1881-1891. [PMID: 30622167 DOI: 10.1523/jneurosci.2085-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
Elevation of intraocular pressure (IOP) causes retinal ganglion cell (RGC) dysfunction and death and is a major risk factor for glaucoma. We used a bead injection technique to increase IOP in mice of both genders by an average of ∼3 mmHg for 2 weeks. This level of IOP elevation was lower than that achieved in other studies, which allowed for the study of subtle IOP effects. We used multielectrode array recordings to determine the cellular responses of RGCs exposed to this mild degree of IOP elevation. We found that RGC photopic receptive field (RF) center size and whole-field RGC firing rates were unaffected by IOP elevation. In contrast, we found that the temporal properties of RGC photopic responses in the RF center were accelerated, particularly in ON sustained cells. We also detected a loss of antagonistic surround in several RGC subtypes. Finally, spontaneous firing rate, interspike interval variance, and contrast sensitivity were altered according to the magnitude of IOP exposure and also displayed an IOP-dependent effect. Together, these results suggest that individual RGC physiologic parameters have unique IOP-related functional thresholds that exist concurrently and change following IOP elevation according to specific patterns. Furthermore, even subtle IOP elevation can impart profound changes in RGC function, which in some cases may occur in an IOP-dependent manner. This system of overlapping functional thresholds likely underlies the complex effects of elevated IOP on the retina.SIGNIFICANCE STATEMENT Retinal ganglion cells (RGCs) are the obligate output neurons of the retina and are injured by elevated intraocular pressure (IOP) in diseases such as glaucoma. In this study, a subtle elevation of IOP in mice for 2 weeks revealed distinct IOP-related functional thresholds for specific RGC physiologic parameters and sometimes showed an IOP-dependent effect. These data suggest that overlapping IOP-related thresholds and response profiles exist simultaneously in RGCs and throughout the retina. These overlapping thresholds likely explain the range of RGC responses that occur following IOP elevation and highlight the wide capacity of neurons to respond in a diseased state.
Collapse
|
35
|
Yu WQ, El-Danaf RN, Okawa H, Pacholec JM, Matti U, Schwarz K, Odermatt B, Dunn FA, Lagnado L, Schmitz F, Huberman AD, Wong ROL. Synaptic Convergence Patterns onto Retinal Ganglion Cells Are Preserved despite Topographic Variation in Pre- and Postsynaptic Territories. Cell Rep 2018; 25:2017-2026.e3. [PMID: 30463000 PMCID: PMC6317877 DOI: 10.1016/j.celrep.2018.10.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/13/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Sensory processing can be tuned by a neuron's integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched. Despite this difference, in both circuits, the proportion of inputs from each BC type, i.e., synaptic convergence between specific BCs and RGCs, remained constant across varying dendritic territory sizes. Furthermore, synapse density between BCs and RGCs was invariant across topography. Our results demonstrate a wiring design, likely engaging homotypic axonal tiling of BCs, that ensures consistency in synaptic convergence between specific BC types onto their target RGCs while enabling independent regulation of pre- and postsynaptic territory sizes and synapse number between cell pairs.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rana N El-Danaf
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Justin M Pacholec
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ulf Matti
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | | | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Neurobiology and Ophthalmology, Stanford Neurosciences Institute, and BioX, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Prigge CL, Kay JN. Dendrite morphogenesis from birth to adulthood. Curr Opin Neurobiol 2018; 53:139-145. [PMID: 30092409 DOI: 10.1016/j.conb.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
Dendrites are the conduits for receiving (and in some cases transmitting) neural signals; their ability to do these jobs is a direct result of their morphology. Developmental patterning mechanisms are critical to ensuring concordance between dendritic form and function. This article reviews recent studies in vertebrate retina and brain that elucidate key strategies for dendrite functional maturation. Specific cellular and molecular signals control the initiation and elaboration of dendritic arbors, and facilitate integration of young neurons into particular circuits. In some cells, dendrite growth and remodeling continues into adulthood. Once formed, dendrites subdivide into compartments with distinct physiological properties that enable dendritic computations. Understanding these key stages of dendrite patterning will help reveal how circuit functional properties arise during development.
Collapse
Affiliation(s)
- Cameron L Prigge
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeremy N Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Tien NW, Kerschensteiner D. Homeostatic plasticity in neural development. Neural Dev 2018; 13:9. [PMID: 29855353 PMCID: PMC5984303 DOI: 10.1186/s13064-018-0105-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Throughout life, neural circuits change their connectivity, especially during development, when neurons frequently extend and retract dendrites and axons, and form and eliminate synapses. In spite of their changing connectivity, neural circuits maintain relatively constant activity levels. Neural circuits achieve functional stability by homeostatic plasticity, which equipoises intrinsic excitability and synaptic strength, balances network excitation and inhibition, and coordinates changes in circuit connectivity. Here, we review how diverse mechanisms of homeostatic plasticity stabilize activity in developing neural circuits.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, USA.
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Department of Neuroscience, Washington University School of Medicine, Saint Louis, USA. .,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
38
|
Park SJH, Pottackal J, Ke JB, Jun NY, Rahmani P, Kim IJ, Singer JH, Demb JB. Convergence and Divergence of CRH Amacrine Cells in Mouse Retinal Circuitry. J Neurosci 2018; 38:3753-3766. [PMID: 29572434 PMCID: PMC5895998 DOI: 10.1523/jneurosci.2518-17.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons sculpt the outputs of excitatory circuits to expand the dynamic range of information processing. In mammalian retina, >30 types of amacrine cells provide lateral inhibition to vertical, excitatory bipolar cell circuits, but functional roles for only a few amacrine cells are well established. Here, we elucidate the function of corticotropin-releasing hormone (CRH)-expressing amacrine cells labeled in Cre-transgenic mice of either sex. CRH cells costratify with the ON alpha ganglion cell, a neuron highly sensitive to positive contrast. Electrophysiological and optogenetic analyses demonstrate that two CRH types (CRH-1 and CRH-3) make GABAergic synapses with ON alpha cells. CRH-1 cells signal via graded membrane potential changes, whereas CRH-3 cells fire action potentials. Both types show sustained ON-type responses to positive contrast over a range of stimulus conditions. Optogenetic control of transmission at CRH-1 synapses demonstrates that these synapses are tuned to low temporal frequencies, maintaining GABA release during fast hyperpolarizations during brief periods of negative contrast. CRH amacrine cell output is suppressed by prolonged negative contrast, when ON alpha ganglion cells continue to receive inhibitory input from converging OFF-pathway amacrine cells; the converging ON- and OFF-pathway inhibition balances tonic excitatory drive to ON alpha cells. Previously, it was demonstrated that CRH-1 cells inhibit firing by suppressed-by-contrast (SbC) ganglion cells during positive contrast. Therefore, divergent outputs of CRH-1 cells inhibit two ganglion cell types with opposite responses to positive contrast. The opposing responses of ON alpha and SbC ganglion cells are explained by differing excitation/inhibition balance in the two circuits.SIGNIFICANCE STATEMENT A goal of neuroscience research is to explain the function of neural circuits at the level of specific cell types. Here, we studied the function of specific types of inhibitory interneurons, corticotropin-releasing hormone (CRH) amacrine cells, in the mouse retina. Genetic tools were used to identify and manipulate CRH cells, which make GABAergic synapses with a well studied ganglion cell type, the ON alpha cell. CRH cells converge with other types of amacrine cells to tonically inhibit ON alpha cells and balance their high level of excitation. CRH cells diverge to different types of ganglion cell, the unique properties of which depend on their balance of excitation and inhibition.
Collapse
Affiliation(s)
| | | | - Jiang-Bin Ke
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | | | - In-Jung Kim
- Department of Ophthalmology and Visual Science
- Interdepartmental Neuroscience Program
- Department of Neuroscience
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science,
- Interdepartmental Neuroscience Program
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06511, and
| |
Collapse
|