1
|
Volk LM, Bruun JE, Trautmann S, Thomas D, Schwalm S, Pfeilschifter J, Zu Heringdorf DM. A role for plasma membrane Ca 2+ ATPases in regulation of cellular Ca 2+ homeostasis by sphingosine kinase-1. Pflugers Arch 2024:10.1007/s00424-024-03027-7. [PMID: 39392480 DOI: 10.1007/s00424-024-03027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a ubiquitous lipid mediator, acting via specific G-protein-coupled receptors (GPCR) and intracellularly. Previous work has shown that deletion of S1P lyase caused a chronic elevation of cytosolic [Ca2+]i and enhanced Ca2+ storage in mouse embryonic fibroblasts. Here, we studied the role of sphingosine kinase (SphK)-1 in Ca2+ signaling, using two independently generated EA.hy926 cell lines with stable knockdown of SphK1 (SphK1-KD1/2). Resting [Ca2+]i and thapsigargin-induced [Ca2+]i increases were reduced in both SphK1-KD1 and -KD2 cells. Agonist-induced [Ca2+]i increases, measured in SphK1-KD1, were blunted. In the absence of extracellular Ca2+, thapsigargin-induced [Ca2+]i increases declined rapidly, indicating enhanced removal of Ca2+ from the cytosol. In agreement, plasma membrane Ca2+ ATPase (PMCA)-1 and -4 and their auxiliary subunit, basigin, were strongly upregulated. Activation of S1P-GPCR by specific agonists or extracellular S1P did not rescue the effects of SphK1 knockdown, indicating that S1P-GPCR were not involved. Lipid measurements indicated that not only S1P but also dihydro-sphingosine, ceramides, and lactosylceramides were markedly depleted in SphK1-KD2 cells. SphK2 and S1P lyase were upregulated, suggesting enhanced flux via the sphingolipid degradation pathway. Finally, histone acetylation was enhanced in SphK1-KD2 cells, and the histone deacetylase inhibitor, vorinostat, induced upregulation of PMCA1 and basigin on mRNA and protein levels in EA.hy926 cells. These data show for the first time a transcriptional regulation of PMCA1 and basigin by S1P metabolism. It is concluded that SphK1 knockdown in EA.hy926 cells caused long-term alterations in cellular Ca2+ homeostasis by upregulating PMCA via increased histone acetylation.
Collapse
Affiliation(s)
- Luisa Michelle Volk
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Jan-Erik Bruun
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Javkhlant A, Toyama K, Abe Y, Spin JM, Mogi M. Lack of ATP2B1 in CD4+ T Cells Causes Colitis. Inflamm Bowel Dis 2024; 30:1852-1864. [PMID: 38507609 DOI: 10.1093/ibd/izae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND The ATP2B1 gene encodes for a calcium pump, which plays a role in removing Ca2+ from cells and maintaining intracellular Ca2+ homeostasis. Reduction of the intracellular Ca2+ concentration in CD4+ T cells is thought to reduce the severity of colitis, while elevation of Ca2+ in CD4+ T cells induces T cell hyperactivity. Our aim was to clarify the role of ATP2B1 in CD4+ T cells and in inflammatory bowel disease development. METHODS A murine CD4+ T cell-specific knockout (KO) of ATP2B1 was created using a Cre-loxP system. CD4+ T cells were isolated from thymus, spleen, and blood using fluorescence-activated cell sorting. To quantify messenger RNA levels, quantitative real-time polymerase chain reaction was performed. RESULTS Although the percentages of CD4+ T cells in both KO mouse spleen and blood decreased compared with those of the control samples, both T-bet (a T helper 1 [Th1] activity marker) and GATA3 (a Th2 activity marker) expression levels were further increased in KO mouse blood CD4+ T cells (vs control blood). Diarrhea and colonic wall thickening (with mucosal changes, including crypt distortion) were seen in KO mice but not in control mice. Prior to diarrhea onset, the KO mouse colon length was already noted to be shorter, and the KO mouse stool water and lipid content were higher than that of the control mice. Tumor necrosis factor α and gp91 expressions were increased in KO mouse colon. CONCLUSIONS Lack of ATP2B1 in CD4+ T cells leads to Th1 and Th2 activation, which contributes to colitis via elevation of tumor necrosis factor α and oxidative stress.
Collapse
Affiliation(s)
- Amarsanaa Javkhlant
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasunori Abe
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Joshua M Spin
- VA Palo Alto Health Care System, Institute for Research, Palo Alto, CA, United States
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
3
|
Ikäheimo K, Leinonen S, Lankinen T, Lindahl M, Saarma M, Pirvola U. Stereocilia fusion pathology in the cochlear outer hair cells at the nanoscale level. J Physiol 2024; 602:3995-4025. [PMID: 39037943 DOI: 10.1113/jp286318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood. Here, we utilized super-resolution expansion microscopy to examine the molecular anatomy of outer hair cell stereocilia fusion in mouse models of age-related hearing loss, heightened endoplasmic reticulum stress and prolonged noise exposure. Prominent stereocilia fusion in our model of heightened endoplasmic reticulum stress, Manf (Mesencephalic astrocyte-derived neurotrophic factor)-inactivated mice in a background with Cadherin 23 missense mutation, impaired mechanotransduction and calcium balance in stereocilia. This was indicated by reduced FM1-43 dye uptake through the mechanotransduction channels, reduced neuroplastin/PMCA2 expression and increased expression of the calcium buffer oncomodulin inside stereocilia. Sparse BAIAP2L2 and myosin 7a expression was retained in the fused stereocilia but mislocalized away from their functional sites at the tips. These hair bundle abnormalities preceded cell soma degeneration, suggesting a sequela from stereociliary molecular perturbations to cell death signalling. In the age-related hearing loss and noise-exposure models, stereocilia fusion was more restricted within the bundles, yet both models exhibited oncomodulin upregulation at the fusion sites, implying perturbed calcium homeostasis. We conclude that stereocilia fusion is linked with the failure to maintain cellular proteostasis and with disturbances in stereociliary calcium balance. KEY POINTS: Stereocilia fusion is a hair cell pathology causing hearing loss. Inactivation of Manf, a component of the endoplasmic reticulum proteostasis machinery, has a cell-intrinsic mode of action in triggering outer hair cell stereocilia fusion and the death of these cells. The genetic background with Cadherin 23 missense mutation contributes to the high susceptibility of outer hair cells to stereocilia fusion, evidenced in Manf-inactivated mice and in the mouse models of early-onset hearing loss and noise exposure. Endoplasmic reticulum stress feeds to outer hair cell stereocilia bundle pathology and impairs the molecular anatomy of calcium regulation. The maintenance of the outer hair cell stereocilia bundle cohesion is challenged by intrinsic and extrinsic stressors, and understanding the underlying mechanisms will probably benefit the development of interventions to promote hearing health.
Collapse
Affiliation(s)
- Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Saija Leinonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Tuuli Lankinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Liang Y, Ormazabal-Toledo R, Yao S, Shi YS, Herrera-Molina R, Montag D, Lin X. Deafness causing neuroplastin missense variants fail to promote plasma membrane Ca 2+-ATPase levels and Ca 2+ transient regulation in brain neurons. J Biol Chem 2024; 300:107474. [PMID: 38879011 PMCID: PMC11264175 DOI: 10.1016/j.jbc.2024.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/08/2024] Open
Abstract
Hearing, the ability to sense sounds, and the processing of auditory information are important for perception of the world. Mice lacking expression of neuroplastin (Np), a type-1 transmembrane glycoprotein, display deafness, multiple cognitive deficiencies, and reduced expression of plasma membrane calcium (Ca2+) ATPases (PMCAs) in cochlear hair cells and brain neurons. In this study, we transferred the deafness causing missense mutations pitch (C315S) and audio-1 (I122N) into human Np (hNp) constructs and investigated their effects at the molecular and cellular levels. Computational molecular dynamics show that loss of the disulfide bridge in hNppitch causes structural destabilization of immunoglobulin-like domain (Ig) III and that the novel asparagine in hNpaudio-1 results in steric constraints and an additional N-glycosylation site in IgII. Additional N-glycosylation of hNpaudio-1 was confirmed by PNGaseF treatment. In comparison to hNpWT, transfection of hNppitch and hNpaudio-1 into HEK293T cells resulted in normal mRNA levels but reduced the Np protein levels and their cell surface expression due to proteasomal/lysosomal degradation. Furthermore, hNppitch and hNpaudio-1 failed to promote exogenous PMCA levels in HEK293T cells. In hippocampal neurons, expression of additional hNppitch or hNpaudio-1 was less efficient than hNpWT to elevate endogenous PMCA levels and to accelerate the restoration of basal Ca2+ levels after electrically evoked Ca2+ transients. We propose that mutations leading to pathological Np variants, as exemplified here by the deafness causing Np mutants, can affect Np-dependent Ca2+ regulatory mechanisms and may potentially cause intellectual and cognitive deficits in humans.
Collapse
Affiliation(s)
- Yi Liang
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Ormazabal-Toledo
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Songhui Yao
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Yun Stone Shi
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Rodrigo Herrera-Molina
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China.
| |
Collapse
|
5
|
Kumar G, Gurao A, Vasisth R, Chitkara M, Singh R, Ranganatha Sriranga K, Shivanand Dige M, Mukesh M, Singh P, Singh Kataria R. Genome-wide 5'-C-phosphate-G-3' methylation patterns reveal the effect of heat stress on the altered semen quality in Bubalus bubalis. Gene 2024; 906:148233. [PMID: 38331117 DOI: 10.1016/j.gene.2024.148233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Semen production and quality are closely correlated with different environmental factors in bovines, particularly for the buffalo (Bubalus bubalis) bulls reared under tropical and sub-tropical conditions. Factors including DNA methylation patterns, an intricate process in sperm cells, have an impact on the production of quality semen in buffalo bulls under abiotic stress conditions. The present study was conducted to identify DNA methylome signatures for semen quality in Murrah buffalo bulls, acclaimed as a major dairy breed globally, under summer heat stress. Based on semen quality parameters that significantly varied between the two groups over the seasons, the breeding bulls were classified into seasonally affected (SA = 6) and seasonally non-affected (SNA = 6) categories. DNA was isolated from purified sperm cells and sequenced using the RRBS (Reduced Representation Bisulfite Sequencing) technique for genome-wide methylome data generation. During the hot summer months, the physiological parameters such as scrotal surface temperature, rectal temperature, and respiration rate for both the SA and SNA bulls were significantly higher in the afternoon than in the morning. Whereas, the global CpG% of SA bulls was positively correlated with the afternoon's scrotal surface and rectal temperature. The RRBS results conveyed differentially methylated cytosines in the promoter region of the genes encoding the channels responsible for Ca2+ exchange, NPTN, Ca2+ activated chloride channels, ANO1, and a few structure-related units such as septins (SEPT4 and SEPT6), SPATA, etc. Additionally, the hypermethylated set of genes in SA was significantly enriched for pathways such as the FOXO signaling pathway and oocyte meiosis. The methylation patterns suggest promoter methylation in the genes regulating the sperm structure as well as surface transporters, which could contribute to the reduced semen quality in the Murrah buffalo bulls during the season-related heat stress.
Collapse
Affiliation(s)
- Gautam Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Rashi Vasisth
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Meenakshi Chitkara
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Ravinder Singh
- ICAR-National Dairy Research Institute, Karnal (Haryana), India
| | | | | | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Pawan Singh
- ICAR-National Dairy Research Institute, Karnal (Haryana), India
| | | |
Collapse
|
6
|
Naffa R, Hegedűs L, Hegedűs T, Tóth S, Papp B, Tordai A, Enyedi Á. Plasma membrane Ca 2+ pump isoform 4 function in cell migration and cancer metastasis. J Physiol 2024; 602:1551-1564. [PMID: 36876504 DOI: 10.1113/jp284179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
The Ca2+ ion is a universal second messenger involved in many vital physiological functions including cell migration and development. To fulfil these tasks the cytosolic Ca2+ concentration is tightly controlled, and this involves an intricate functional balance between a variety of channels and pumps of the Ca2+ signalling machinery. Among these proteins, plasma membrane Ca2+ ATPases (PMCAs) represent the major high-affinity Ca2+ extrusion systems in the cell membrane that are effective in maintaining free Ca2+ concentration at exceedingly low cytosolic levels, which is essential for normal cell function. An imbalance in Ca2+ signalling can have pathogenic consequences including cancer and metastasis. Recent studies have highlighted the role of PMCAs in cancer progression and have shown that a particular variant, PMCA4b, is downregulated in certain cancer types, causing delayed attenuation of the Ca2+ signal. It has also been shown that loss of PMCA4b leads to increased migration and metastasis of melanoma and gastric cancer cells. In contrast, an increased PMCA4 expression has been reported in pancreatic ductal adenocarcinoma that coincided with increased cell migration and shorter patient survival, suggesting distinct roles of PMCA4b in various tumour types and/or different stages of tumour development. The recently discovered interaction of PMCAs with basigin, an extracellular matrix metalloproteinase inducer, may provide further insights into our understanding of the specific roles of PMCA4b in tumour progression and cancer metastasis.
Collapse
Affiliation(s)
- Randa Naffa
- Molecular Biology Research Laboratory, School of Medicine, The University of Jordan, Amman, Jordan
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Sarolta Tóth
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Enyedi
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Doğanyiğit Z, Okan A, Yılmaz S, Uğuz AC, Akyüz E. Gender-related variation expressions of neuroplastin TRAF6, GluA1, GABA(A) receptor, and PMCA in cortex, hippocampus, and brainstem in an experimental epilepsy model. Synapse 2024; 78:e22289. [PMID: 38436644 DOI: 10.1002/syn.22289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Epileptic seizures are seen as a result of changing excitability balance depending on the deterioration in synaptic plasticity in the brain. Neuroplastin, and its related molecules which are known to play a role in synaptic plasticity, neurotransmitter activities that provide balance of excitability and, different neurological diseases, have not been studied before in epilepsy. In this study, a total of 34 Sprague-Dawley male and female rats, 2 months old, weighing 250-300 g were used. The epilepsy model in rats was made via pentylenetetrazole (PTZ). After the completion of the experimental procedure, the brain tissue of the rats were taken and the histopathological changes in the hippocampus and cortex parts and the brain stem were investigated, as well as the immunoreactivity of the proteins related to the immunohistochemical methods. As a result of the histopathological evaluation, it was determined that neuron degeneration and the number of dilated blood vessels in the hippocampus, frontal cortex, and brain stem were higher in the PTZ status epilepticus (SE) groups than in the control groups. It was observed that neuroplastin and related proteins TNF receptor-associated factor 6 (TRAF6), Gamma amino butyric acid type A receptors [(GABA(A)], and plasma membrane Ca2+ ATPase (PMCA) protein immunoreactivity levels increased especially in the male hippocampus, and only AMPA receptor subunit type 1 (GluA1) immunoreactivity decreased, unlike other proteins. We believe this may be caused by a problem in the mechanisms regulating the interaction of neuroplastin and GluA1 and may cause problems in synaptic plasticity in the experimental epilepsy model. It may be useful to elucidate this mechanism and target GluA1 when determining treatment strategies.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Aslı Okan
- Faculty of Medicine, Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | - Seher Yılmaz
- Faculty of Medicine, Department of Anatomy, Yozgat Bozok University, Yozgat, Turkey
| | - A Cihangir Uğuz
- Faculty of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Enes Akyüz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
8
|
Flockerzi V, Fakler B. TR(i)P Goes On: Auxiliary TRP Channel Subunits? Circ Res 2024; 134:346-350. [PMID: 38359093 DOI: 10.1161/circresaha.123.323178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Transient receptor potential (TRP) cation channels are a diverse family of channels whose members play prominent roles as cellular sensors and effectors. The important role of TRP channels (and mechanosensitive piezo channels) in the complex interaction of our senses with the environment was underlined by the award of the Nobel Prize in Physiology or Medicine to 2 pioneers in this field, David Julius and Ardem Patapoutian. There are many competent and comprehensive reviews on many aspects of the TRP channels, and there is no intention to expand on them. Rather, after an introduction to the nomenclature, the molecular architecture of native TRP channel/protein complexes in vivo will be summarized using TRP channels of the canonical transient receptor potential subfamily as an example. This molecular architecture provides the basis for the signatures of native canonical transient receptor potential currents and their control by endogenous modulators and potential drugs.
Collapse
Affiliation(s)
- Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany (V.F.)
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany (B.F.)
| |
Collapse
|
9
|
Chen J, Lin X, Bhattacharya S, Wiesehöfer C, Wennemuth G, Müller K, Montag D. Neuroplastin Expression in Male Mice Is Essential for Fertility, Mating, and Adult Testosterone Levels. Int J Mol Sci 2023; 25:177. [PMID: 38203350 PMCID: PMC10779036 DOI: 10.3390/ijms25010177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Male reproduction depends on hormonally driven behaviors and numerous genes for testis development and spermatogenesis. Neuroplastin-deficient (Nptn-/-) male mice cannot sire offspring. By immunohistochemistry, we characterized neuroplastin expression in the testis. Breeding, mating behavior, hormonal regulation, testicular development, and spermatogenesis were analyzed in cell-type specific neuroplastin mutant mice. Leydig, Sertoli, peritubular myoid, and germ cells express Np, but spermatogenesis and sperm number are not affected in Nptn-/- males. Neuroplastin lack from CNS neurons or restricted to spermatogonia or Sertoli cells permitted reproduction. Normal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) blood levels in Nptn-/- males support undisturbed hormonal regulation in the brain. However, Nptn-/- males lack mounting behavior accompanied by low testosterone blood levels. Testosterone rise from juvenile to adult blood levels is absent in Nptn-/- males. LH-receptor stimulation raising intracellular Ca2+ in Leydig cells triggers testosterone production. Reduced Plasma Membrane Ca2+ ATPase 1 (PMCA1) in Nptn-/- Leydig cells suggests that Nptn-/- Leydig cells produce sufficient testosterone for testis and sperm development, but a lack of PMCA-Np complexes prevents the increase from reaching adult blood levels. Behavioral immaturity with low testosterone blood levels underlies infertility of Nptn-/- males, revealing that Np is essential for reproduction.
Collapse
Affiliation(s)
- Juanjuan Chen
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| | - Xiao Lin
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| | - Soumee Bhattacharya
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| | - Caroline Wiesehöfer
- Department of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany; (C.W.); (G.W.)
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany; (C.W.); (G.W.)
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research IZW, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany;
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (J.C.); (X.L.); (S.B.)
| |
Collapse
|
10
|
Newton S, Aguilar C, Bunton-Stasyshyn RK, Flook M, Stewart M, Marcotti W, Brown S, Bowl MR. Absence of Embigin accelerates hearing loss and causes sub-viability, brain and heart defects in C57BL/6N mice due to interaction with Cdh23ahl. iScience 2023; 26:108056. [PMID: 37854703 PMCID: PMC10579432 DOI: 10.1016/j.isci.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Mouse studies continue to help elaborate upon the genetic landscape of mammalian disease and the underlying molecular mechanisms. Here, we have investigated an Embigintm1b allele maintained on a standard C57BL/6N background and on a co-isogenic C57BL/6N background in which the Cdh23ahl allele has been "repaired." The hypomorphic Cdh23ahl allele is present in several commonly used inbred mouse strains, predisposing them to progressive hearing loss, starting in high-frequency regions. Absence of the neural cell adhesion molecule Embigin on the standard C57BL/6N background leads to accelerated hearing loss and causes sub-viability, brain and cardiac defects. Contrastingly, Embigintm1b/tm1b mice maintained on the co-isogenic "repaired" C57BL/6N background exhibit normal hearing and viability. Thus Embigin genetically interacts with Cdh23. Importantly, our study is the first to demonstrate an effect of the common Cdh23ahl allele outside of the auditory system, which has important ramifications for genetic studies involving inbred strains carrying this allele.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | | | - Marisa Flook
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Michelle Stewart
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Oxford, Oxfordshire OX11 0RD, UK
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| |
Collapse
|
11
|
Bueschke N, Amaral-Silva L, Hu M, Alvarez A, Santin JM. Plasticity in the functional properties of NMDA receptors improves network stability during severe energy stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524811. [PMID: 36711958 PMCID: PMC9882286 DOI: 10.1101/2023.01.19.524811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Brain energy stress leads to neuronal hyperexcitability followed by a rapid loss of function and cell death. In contrast, the frog brainstem switches into a state of extreme metabolic resilience that allows them to maintain motor function during hypoxia as they emerge from hibernation. NMDA receptors (NMDARs) are Ca2+-permeable glutamate receptors that contribute to the loss of homeostasis during hypoxia. Therefore, we hypothesized that hibernation leads to plasticity that reduces the role of NMDARs within neural networks to improve function during energy stress. To test this, we assessed a circuit with a large involvement of NMDAR synapses, the brainstem respiratory network of female bullfrogs, Lithobates catesbeianus. Contrary to our expectations, hibernation did not alter the role of NMDARs in generating network output, nor did it affect the amplitude, kinetics, and hypoxia sensitivity of NMDAR currents. Instead, hibernation strongly reduced NMDAR Ca2+ permeability and enhanced desensitization during repetitive stimulation. Under severe hypoxia, the normal NMDAR profile caused network hyperexcitability within minutes, which was mitigated by blocking NMDARs. After hibernation, the modified complement of NMDARs protected against hyperexcitability, as disordered output did not occur for at least one hour in hypoxia. These findings uncover state-dependence in the plasticity of NMDARs, whereby multiple changes to receptor function improve neural performance during energy stress without interfering with its normal role during healthy activity.
Collapse
Affiliation(s)
| | | | - Min Hu
- University of North Carolina-Greensboro, Greensboro, NC 27402
| | - Alvaro Alvarez
- University of North Carolina-Greensboro, Greensboro, NC 27402
| | | |
Collapse
|
12
|
Li S, Wei X, Huang H, Ye L, Ma M, Sun L, Lu Y, Wu Y. Neuroplastin exerts antiepileptic effects through binding to the α1 subunit of GABA type A receptors to inhibit the internalization of the receptors. J Transl Med 2023; 21:707. [PMID: 37814294 PMCID: PMC10563248 DOI: 10.1186/s12967-023-04596-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Seizures are associated with a decrease in γ-aminobutyric type A acid receptors (GABAaRs) on the neuronal surface, which may be regulated by enhanced internalization of GABAaRs. When interactions between GABAaR subunit α-1 (GABRA1) and postsynaptic scaffold proteins are weakened, the α1-containing GABAaRs leave the postsynaptic membrane and are internalized. Previous evidence suggested that neuroplastin (NPTN) promotes the localization of GABRA1 on the postsynaptic membrane. However, the association between NPTN and GABRA1 in seizures and its effect on the internalization of α1-containing GABAaRs on the neuronal surface has not been studied before. METHODS An in vitro seizure model was constructed using magnesium-free extracellular fluid, and an in vivo model of status epilepticus (SE) was constructed using pentylenetetrazole (PTZ). Additionally, in vitro and in vivo NPTN-overexpression models were constructed. Electrophysiological recordings and internalization assays were performed to evaluate the action potentials and miniature inhibitory postsynaptic currents of neurons, as well as the intracellular accumulation ratio of α1-containing GABAaRs in neurons. Western blot analysis was performed to detect the expression of GABRA1 and NPTN both in vitro and in vivo. Immunofluorescence co-localization analysis and co-immunoprecipitation were performed to evaluate the interaction between GABRA1 and NPTN. RESULTS The expression of GABRA1 was found to be decreased on the neuronal surface both in vivo and in vitro seizure models. In the in vitro seizure model, α1-containing GABAaRs showed increased internalization. NPTN expression was found to be positively correlated with GABRA1 expression on the neuronal surface both in vivo and in vitro seizure models. In addition, NPTN overexpression alleviated seizures and NPTN was shown to bind to GABRA1 to form protein complexes that can be disrupted during seizures in both in vivo and in vitro models. Furthermore, NPTN was found to inhibit the internalization of α1-containing GABAaRs in the in vitro seizure model. CONCLUSION Our findings provide evidence that NPTN may exert antiepileptic effects by binding to GABRA1 to inhibit the internalization of α1-containing GABAaRs.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Lanfeng Sun
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuling Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Shuangyong Road No.6, Nanning, Guangxi, China.
| |
Collapse
|
13
|
Jamwal A, Constantin CF, Hirschi S, Henrich S, Bildl W, Fakler B, Draper SJ, Schulte U, Higgins MK. Erythrocyte invasion-neutralising antibodies prevent Plasmodium falciparum RH5 from binding to basigin-containing membrane protein complexes. eLife 2023; 12:e83681. [PMID: 37796723 PMCID: PMC10569788 DOI: 10.7554/elife.83681] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Basigin is an essential host receptor for invasion of Plasmodium falciparum into human erythrocytes, interacting with parasite surface protein PfRH5. PfRH5 is a leading blood-stage malaria vaccine candidate and a target of growth-inhibitory antibodies. Here, we show that erythrocyte basigin is exclusively found in one of two macromolecular complexes, bound either to plasma membrane Ca2+-ATPase 1/4 (PMCA1/4) or to monocarboxylate transporter 1 (MCT1). PfRH5 binds to each of these complexes with a higher affinity than to isolated basigin ectodomain, making it likely that these are the physiological targets of PfRH5. PMCA-mediated Ca2+ export is not affected by PfRH5, making it unlikely that this is the mechanism underlying changes in calcium flux at the interface between an erythrocyte and the invading parasite. However, our studies rationalise the function of the most effective growth-inhibitory antibodies targeting PfRH5. While these antibodies do not reduce the binding of PfRH5 to monomeric basigin, they do reduce its binding to basigin-PMCA and basigin-MCT complexes. This indicates that the most effective PfRH5-targeting antibodies inhibit growth by sterically blocking the essential interaction of PfRH5 with basigin in its physiological context.
Collapse
Affiliation(s)
- Abhishek Jamwal
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | | | - Stephan Hirschi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | - Sebastian Henrich
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSFreiburgGermany
| | - Simon J Draper
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSFreiburgGermany
| | - Matthew K Higgins
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
14
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
15
|
Vilen Z, Joeh E, Lee E, Huang ML. Surfaceome Profiling Identifies Basigin-Chaperoned Protein Clients. Chembiochem 2023; 24:e202300073. [PMID: 36973167 PMCID: PMC10424708 DOI: 10.1002/cbic.202300073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
The surface proteome or "surfaceome" is a critical mediator of cellular biology, facilitating cell-to-cell interactions and communication with extracellular biomolecules. Constituents of the surfaceome can serve as biomarkers for changing cell states and as targets for pharmacological intervention. While some pathways of cell surface trafficking are well characterized to allow prediction of surface localization, some non-canonical trafficking mechanisms do not. Basigin (Bsg), a cell surface glycoprotein, has been shown to chaperone protein clients to the cell surface. However, understanding which proteins are served by Bsg is not always straightforward. To accelerate such identification, we applied a surfaceome proximity labeling method that is integrated with quantitative mass spectrometry-based proteomics to discern changes in the surfaceome of hepatic stellate cells that occur in response to the genetic loss of Bsg. Using this strategy, we observed that the loss of Bsg leads to corresponding reductions in the cell surface expression of monocarboxylate transporters MCT1 and MCT4. We also found that these relationships were unique to Bsg and not found in neuroplastin (Nptn), a related family member. These results establish the utility of the surfaceome proximity labeling method to determine clients of cell surface chaperone proteins.
Collapse
Affiliation(s)
- Zak Vilen
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Eugene Joeh
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Elizabeth Lee
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Mia L. Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular Medicine, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
16
|
Winnik WM, Padgett W, Pitzer EM, Herr DW. Proteome Profiling of Rat Brain Cortical Changes during Early Postnatal Brain Development. J Proteome Res 2023; 22:2460-2476. [PMID: 37326657 PMCID: PMC10851773 DOI: 10.1021/acs.jproteome.3c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Label-free quantitation (LFQ) was applied to proteome profiling of rat brain cortical development during the early postnatal period. Male and female rat brain extracts were prepared using a convenient, detergent-free sample preparation technique at postnatal days (PND) 2, 8, 15, and 22. The PND protein ratios were calculated using Proteome Discoverer, and the PND protein change profiles were constructed separately for male and female animals for key presynaptic, postsynaptic, and adhesion brain proteins. The profiles were compared to the analogous profiles assembled from the published mouse and rat cortex proteomic data, including the fractionated-synaptosome data. The PND protein-change trendlines, Pearson correlation coefficient (PCC), and linear regression analysis of the statistically significant PND protein changes were used in the comparative analysis of the datasets. The analysis identified similarities and differences between the datasets. Importantly, there were significant similarities in the comparison of the rat cortex PND (current work) vs mouse (previously published) PND profiles, although in general, a lower abundance of synaptic proteins in mice than in rats was found. The male and female rat cortex PND profiles were expectedly almost identical (98-99% correlation by PCC), which also substantiated this LFQ nanoflow liquid chromatography-high-resolution mass spectrometry approach.
Collapse
Affiliation(s)
- Witold M Winnik
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - William Padgett
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Emily M Pitzer
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David W Herr
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
17
|
Bradberry MM, Peters-Clarke TM, Shishkova E, Chapman ER, Coon JJ. N-glycoproteomics of brain synapses and synaptic vesicles. Cell Rep 2023; 42:112368. [PMID: 37036808 PMCID: PMC10560701 DOI: 10.1016/j.celrep.2023.112368] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
At mammalian neuronal synapses, synaptic vesicle (SV) glycoproteins are essential for robust neurotransmission. Asparagine (N)-linked glycosylation is required for delivery of the major SV glycoproteins synaptophysin and SV2A to SVs. Despite this key role for N-glycosylation, the molecular compositions of SV N-glycans are largely unknown. In this study, we combined organelle isolation techniques and high-resolution mass spectrometry to characterize N-glycosylation at synapses and SVs from mouse brain. Detecting over 2,500 unique glycopeptides, we found that SVs harbor a distinct population of oligomannose and highly fucosylated N-glycans. Using complementary fluorescence methods, we identify at least one highly fucosylated N-glycan enriched in SVs compared with synaptosomes. High fucosylation was characteristic of SV proteins, plasma membrane proteins, and cell adhesion molecules with key roles in synaptic function and development. Our results define the N-glycoproteome of a specialized neuronal organelle and inform timely questions in the glycobiology of synaptic pruning and neuroinflammation.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Evgenia Shishkova
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
18
|
Beckmann D, Langnaese K, Gottfried A, Hradsky J, Tedford K, Tiwari N, Thomas U, Fischer KD, Korthals M. Ca 2+ Homeostasis by Plasma Membrane Ca 2+ ATPase (PMCA) 1 Is Essential for the Development of DP Thymocytes. Int J Mol Sci 2023; 24:ijms24021442. [PMID: 36674959 PMCID: PMC9865543 DOI: 10.3390/ijms24021442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
The strength of Ca2+ signaling is a hallmark of T cell activation, yet the role of Ca2+ homeostasis in developing T cells before expressing a mature T cell receptor is poorly understood. We aimed to unveil specific functions of the two plasma membrane Ca2+ ATPases expressed in T cells, PMCA1 and PMCA4. On a transcriptional and protein level we found that PMCA4 was expressed at low levels in CD4-CD8- double negative (DN) thymocytes and was even downregulated in subsequent stages while PMCA1 was present throughout development and upregulated in CD4+CD8+ double positive (DP) thymocytes. Mice with a targeted deletion of Pmca1 in DN3 thymocytes had an almost complete block of DP thymocyte development with an accumulation of DN4 thymocytes but severely reduced numbers of CD8+ immature single positive (ISP) thymocytes. The DN4 thymocytes of these mice showed strongly elevated basal cytosolic Ca2+ levels and a pre-mature CD5 expression, but in contrast to the DP thymocytes they were only mildly prone to apoptosis. Surprisingly, mice with a germline deletion of Pmca4 did not show any signs of altered progression through the developmental thymocyte stages, nor altered Ca2+ homeostasis throughout this process. PMCA1 is, therefore, non-redundant in keeping cellular Ca2+ levels low in the early thymocyte development required for the DN to DP transition.
Collapse
Affiliation(s)
- David Beckmann
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kristina Langnaese
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Anna Gottfried
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Johannes Hradsky
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Kerry Tedford
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Nikhil Tiwari
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Ulrich Thomas
- Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39120 Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Mark Korthals
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
19
|
Wu DD, Cheng J, Zheng YN, Liu YT, Hou SX, Liu LF, Huang L, Yuan QL. Neuroplastin 65 deficiency reduces amyloid plaque formation and cognitive deficits in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:1129773. [PMID: 37213217 PMCID: PMC10196121 DOI: 10.3389/fncel.2023.1129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is characterized by increasing cognitive dysfunction, progressive cerebral amyloid beta (Aβ) deposition, and neurofibrillary tangle aggregation. However, the molecular mechanisms of AD pathologies have not been completely understood. As synaptic glycoprotein neuroplastin 65 (NP65) is related with synaptic plasticity and complex molecular events underlying learning and memory, we hypothesized that NP65 would be involved in cognitive dysfunction and Aβ plaque formation of AD. For this purpose, we examined the role of NP65 in the transgenic amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD. Methods Neuroplastin 65-knockout (NP65-/-) mice crossed with APP/PS1 mice to get the NP65-deficient APP/PS1 mice. In the present study, a separate cohort of NP65-deficient APP/PS1 mice were used. First, the cognitive behaviors of NP65-deficient APP/PS1 mice were assessed. Then, Aβ plaque burden and Aβ levels in NP65-deficient APP/PS1 mice were measured by immunostaining and western blot as well as ELISA. Thirdly, immunostaining and western blot were used to evaluate the glial response and neuroinflammation. Finally, protein levels of 5-hydroxytryptamin (serotonin) receptor 3A and synaptic proteins and neurons were measured. Results We found that loss of NP65 alleviated the cognitive deficits of APP/PS1 mice. In addition, Aβ plaque burden and Aβ levels were significantly reduced in NP65-deficient APP/PS1 mice compared with control animals. NP65-loss in APP/PS1 mice resulted in a decrease in glial activation and the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, and IL-4) as well as protective matrix YM-1 and Arg-1, but had no effect on microglial phenotype. Moreover, NP65 deficiency significantly reversed the increase in 5-hydroxytryptamine (serotonin) receptor 3A (Htr3A) expression levels in the hippocampus of APP/PS1 mice. Discussion These findings identify a previously unrecognized role of NP65 in cognitive deficits and Aβ formation of APP/PS1 mice, and suggest that NP65 may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Tong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shuang-Xin Hou
- Department of Neurobiology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Li-Fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qiong-Lan Yuan,
| |
Collapse
|
20
|
Adasme T, Hidalgo C, Herrera-Molina R. Editorial: Emerging views and players in neuronal calcium signaling: synaptic plasticity, learning/memory, aging and neuroinflammation. Front Cell Neurosci 2023; 17:1197417. [PMID: 37138767 PMCID: PMC10150380 DOI: 10.3389/fncel.2023.1197417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Affiliation(s)
- Tatiana Adasme
- Faculty of Medicine, Biomedical Research Institute (BNI), Universidad de Chile, Santiago, Chile
- Clinical Hospital and Laboratory of Translational Psychiatry, Department of Neuroscience and Department de Psychiatry North, Center for Advanced Clinical Investigation (CICA), Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Center for Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Faculty of Medicine, Biomedical Research Institute (BNI), Universidad de Chile, Santiago, Chile
- Department of Neuroscience, Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Center for Exercise, Metabolism and Cancer (CEMC), Universidad de Chile, Santiago, Chile
| | - Rodrigo Herrera-Molina
- Laboratory of Synaptic Signaling, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O‘Higgins, Santiago, Chile
- *Correspondence: Rodrigo Herrera-Molina
| |
Collapse
|
21
|
Kershberg L, Banerjee A, Kaeser PS. Protein composition of axonal dopamine release sites in the striatum. eLife 2022; 11:e83018. [PMID: 36579890 PMCID: PMC9937654 DOI: 10.7554/elife.83018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Dopamine is an important modulator of cognition and movement. We recently found that evoked dopamine secretion is fast and relies on active zone-like release sites. Here, we used in vivo biotin identification (iBioID) proximity proteomics in mouse striatum to assess which proteins are present at these sites. Using three release site baits, we identified proteins that are enriched over the general dopamine axonal protein content, and they fell into several categories, including active zone, Ca2+ regulatory, and synaptic vesicle proteins. We also detected many proteins not previously associated with vesicular exocytosis. Knockout of the presynaptic organizer protein RIM strongly decreased the hit number obtained with iBioID, while Synaptotagmin-1 knockout did not. α-Synuclein, a protein linked to Parkinson's disease, was enriched at release sites, and its enrichment was lost in both tested mutants. We conclude that RIM organizes scaffolded dopamine release sites and provide a proteomic assessment of the composition of these sites.
Collapse
Affiliation(s)
- Lauren Kershberg
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
22
|
Kollewe A, Schwarz Y, Oleinikov K, Raza A, Haupt A, Wartenberg P, Wyatt A, Boehm U, Ectors F, Bildl W, Zolles G, Schulte U, Bruns D, Flockerzi V, Fakler B. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron 2022; 110:4162-4175.e7. [PMID: 36257322 DOI: 10.1016/j.neuron.2022.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022]
Abstract
In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Yvonne Schwarz
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Katharina Oleinikov
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ahsan Raza
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Philipp Wartenberg
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany
| | - Fabien Ectors
- Transgenic facility, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Dieter Bruns
- Institute of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, 66421 Homburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schänzlestr. 18, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Breisacherstr. 4, 79106 Freiburg, Germany.
| |
Collapse
|
23
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
24
|
TTYH family members form tetrameric complexes at the cell membrane. Commun Biol 2022; 5:886. [PMID: 36042377 PMCID: PMC9427776 DOI: 10.1038/s42003-022-03862-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
The conserved Tweety homolog (TTYH) family consists of three paralogs in vertebrates, displaying a ubiquitous expression pattern. Although considered as ion channels for almost two decades, recent structural and functional analyses refuted this role. Intriguingly, while all paralogs shared a dimeric stoichiometry following detergent solubilization, their structures revealed divergence in their relative subunit orientation. Here, we determined the stoichiometry of intact mouse TTYH (mTTYH) complexes in cells. Using cross-linking and single-molecule fluorescence microscopy, we demonstrate that mTTYH1 and mTTYH3 form tetramers at the plasma membrane, stabilized by interactions between their extracellular domains. Using blue-native PAGE, fluorescence-detection size-exclusion chromatography, and hydrogen/deuterium exchange mass spectrometry (HDX-MS), we reveal that detergent solubilization results in tetramers destabilization, leading to their dissolution into dimers. Moreover, HDX-MS demonstrates that the extracellular domains are stabilized in the context of the tetrameric mTTYH complex. Together, our results expose the innate tetrameric organization of TTYH complexes at the cell membrane. Future structural analyses of these assemblies in native membranes are required to illuminate their long-sought cellular function.
Collapse
|
25
|
Ren H, Xia X, Dai X, Dai Y. The role of neuroplastin65 in macrophage against E. coli infection in mice. Mol Immunol 2022; 150:78-89. [PMID: 36007354 DOI: 10.1016/j.molimm.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Innate immune response constitutes the first line of defense against pathogens. Inflammatory responses involve close contact between different populations of cells. These adhesive interactions mediate migration of cells to sites of infection leading the effective action of cells within the lesions. Cell adhesion molecules are critical to controlling immune response mediating cell adhesion or chemotaxis, as well as coordinating actin-based cell motility during phagocytosis and chemotaxis. Recently, a newly discovered neuroplastin (Np) adhesion molecule is found to play an important role in the nervous system. However, there is limited information on Np functions in immune response. To understand how Np is involved in innate immune response, a mouse model of intraperitoneal infection was established to investigate the effect of Np on macrophage-mediated clearance of E. coli infection and its possible molecular mechanisms. METHODS Specific deficiency mice with Nptn gene controlling Np65 isoform were employed in this study. The expression levels of mRNA and proteins were detected by qPCR and western blot, or evaluated by flow cytometry. The expression level of NO and ROS were measured with their specific indicators. Cell cycle and apoptosis were detected by specific detection kits. Acid phosphatase activity was measured by flow cytometry after labelling with LysoRed fluorescent probe. Bone marrow derived macrophages (BMDMs) were isolated from bone marrow of mice hind legs. Cell proliferation was detected by CCK8 assay. Cell migration was measured by wound healing assay or transwell assay. RESULTS The lethal dose of E. coli infection in Np65-/- mice dropped to the half of lethal dose in WT mice. The bacterial load in the spleen, kidney and liver from Np65-/- mice were significantly higher than that from WT mice, which were due to the dramatic reduction of NO and ROS production in phagocytes from Np65-/- mice. Np65 gene deficiency remarkably impaired phagocytosis and function of lysosome in macrophage. Furthermore, Np65 molecule was involved in maturation and proliferation, even in migration and chemotaxis of BMDM in vitro. CONCLUSION This study for the first time demonstrates that Np is involved in multi-function of phagocytes during bacterial infection, proposing that Np adhesion molecule plays a critical role in clearing pathogen infection in innate immunity.
Collapse
Affiliation(s)
- Huan Ren
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoxue Xia
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Xueting Dai
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Yalei Dai
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, and Department of Immunology and Microbiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
26
|
Malci A, Lin X, Sandoval R, Gundelfinger ED, Naumann M, Seidenbecher CI, Herrera-Molina R. Ca 2+ signaling in postsynaptic neurons: Neuroplastin-65 regulates the interplay between plasma membrane Ca 2+ ATPases and ionotropic glutamate receptors. Cell Calcium 2022; 106:102623. [PMID: 35853264 DOI: 10.1016/j.ceca.2022.102623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Upon postsynaptic glutamate receptor activation, the cytosolic Ca2+ concentration rises and initiates signaling and plasticity in spines. The plasma membrane Ca2+ ATPase (PMCA) is a major player to limit the duration of cytosolic Ca2+ signals. It forms complexes with the glycoprotein neuroplastin (Np) isoforms Np55 and Np65 and functionally interplays with N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors (iGluNRs). Moreover, binding of the Np65-specific extracellular domain to Ca2+-permeable GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type ionotropic glutamate receptors (iGluA1Rs) was found to be required for long-term potentiation (LTP). However, the link between PMCA and iGluRs function to regulate cytosolic Ca2+ signals remained unclear. Here, we report that Np65 coordinates PMCA and iGluRs' functions to modulate the duration and amplitude of cytosolic Ca2+ transients in dendrites and spines of hippocampal neurons. Using live-cell Ca2+ imaging, acute pharmacological treatments, and GCaMP5G-expressing hippocampal neurons, we discovered that endogenous or Np65-promoted PMCA activity contributes to the restoration of basal Ca2+ levels and that this effect is dependent on iGluR activation. Super-resolution STED and confocal microscopy revealed that electrical stimulation increases the abundance of synaptic neuroplastin-PMCA complexes depending on iGluR activation and that low-rate overexpression of Np65 doubled PMCA levels and decreased cell surface levels of GluN2A and GluA1 in dendrites and Shank2-positive glutamatergic synapses. In neuroplastin-deficient hippocampi, we observed reduced PMCA and unchanged GluN2B levels, while GluN2A and GluA1 levels were imbalanced. Our electrophysiological data from hippocampal slices argues for an essential interplay of PMCA with GluN2A- but not with GluN2B-containing receptors upon induction of synaptic plasticity. Accordingly, we conclude that Np65 may interconnect PMCA with core players of glutamatergic neurotransmission to fine-tune the Ca2+ signal regulation in basal synaptic function and plasticity.
Collapse
Affiliation(s)
- Ayse Malci
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Xiao Lin
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Sandoval
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Center for Behavioral Brain Sciences, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile; Combinatorial Combinatorial NeuroImaging (CNI), Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
27
|
Rahimi MJ, Urban N, Wegler M, Sticht H, Schaefer M, Popp B, Gaunitz F, Morleo M, Nigro V, Maitz S, Mancini GMS, Ruivenkamp C, Suk EK, Bartolomaeus T, Merkenschlager A, Koboldt D, Bartholomew D, Stegmann APA, Sinnema M, Duynisveld I, Salvarinova R, Race S, de Vries BBA, Trimouille A, Naudion S, Marom D, Hamiel U, Henig N, Demurger F, Rahner N, Bartels E, Hamm JA, Putnam AM, Person R, Abou Jamra R, Oppermann H. De novo variants in ATP2B1 lead to neurodevelopmental delay. Am J Hum Genet 2022; 109:944-952. [PMID: 35358416 DOI: 10.1016/j.ajhg.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023] Open
Abstract
Calcium (Ca2+) is a universal second messenger involved in synaptogenesis and cell survival; consequently, its regulation is important for neurons. ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) belongs to the family of ATP-driven calmodulin-dependent Ca2+ pumps that participate in the regulation of intracellular free Ca2+. Here, we clinically describe a cohort of 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism, seizures, and distal limb abnormalities. Nine probands harbor missense variants, seven of which were in specific functional domains, and three individuals have nonsense variants. 3D structural protein modeling suggested that the variants have a destabilizing effect on the protein. We performed Ca2+ imaging after introducing all nine missense variants in transfected HEK293 cells and showed that all variants lead to a significant decrease in Ca2+ export capacity compared with the wild-type construct, thus proving their pathogenicity. Furthermore, we observed for the same variant set an incorrect intracellular localization of ATP2B1. The genetic findings and the overlapping phenotype of the probands as well as the functional analyses imply that de novo variants in ATP2B1 lead to a monogenic form of neurodevelopmental disorder.
Collapse
Affiliation(s)
- Meer Jacob Rahimi
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig Hospitals and Clinics, Leipzig 04107, Germany
| | - Meret Wegler
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig Hospitals and Clinics, Leipzig 04107, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples 80138, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, 80078 Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples 80138, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetic Unit, Pediatric Clinic, Fondazione MBBM, San Gerardo Hospital, Monza 20900, Italy
| | - Grazia M S Mancini
- ErasmusMC University Medical Center, Department of Clinical Genetics, Rotterdam 3015, the Netherlands
| | - Claudia Ruivenkamp
- Leiden University Medical Center, Clinical Genetics, Leiden 2333, the Netherlands
| | - Eun-Kyung Suk
- Praxis für Humangenetik-Friedrichstrasse, Berlin 10117, Germany
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany; CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen 72076, Germany
| | - Andreas Merkenschlager
- Department of Neuropediatrics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| | - Daniel Koboldt
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Dennis Bartholomew
- Division of Genetic and Genomic Medicine at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht 6229, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht 6229, the Netherlands
| | - Irma Duynisveld
- Severinus Institute for Intellectual Disability, 5507 Veldhoven, the Netherlands
| | - Ramona Salvarinova
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC V6H 3N1, Canada
| | - Simone Race
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC V6H 3N1, Canada
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6525, the Netherlands
| | - Aurélien Trimouille
- Service de Pathologie Centre Hospitalier Universitaire de Bordeaux, Bordeaux 33000, France; MRGM, Maladies Rares: Génétique et Métabolisme, INSERM U1211, Université de Bordeaux, Bordeaux 33076, France
| | - Sophie Naudion
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux 33076, France
| | - Daphna Marom
- The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Uri Hamiel
- The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Noa Henig
- The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | | | - Nils Rahner
- Institute for Clinical Genetics, Bonn 53111, Germany
| | | | - J Austin Hamm
- Pediatric Genetics, East Tennessee Children's Hospital, Knoxville, TN 37916, USA
| | - Abbey M Putnam
- Pediatric Genetics, East Tennessee Children's Hospital, Knoxville, TN 37916, USA
| | - Richard Person
- Clinical Genomics Program, GeneDx, Inc., Gaithersburg, MD 20877, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany
| | - Henry Oppermann
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig 04103, Germany.
| |
Collapse
|
28
|
Hegedüs L, Livingstone E, Bánkfalvi Á, Viehof J, Enyedi Á, Bilecz Á, Győrffy B, Baranyi M, Tőkés AM, Gil J, Marko-Varga G, Griewank KG, Zimmer L, Váraljai R, Sucker A, Zaremba A, Schadendorf D, Aigner C, Hegedüs B. The Prognostic Relevance of PMCA4 Expression in Melanoma: Gender Specificity and Implications for Immune Checkpoint Inhibition. Int J Mol Sci 2022; 23:3324. [PMID: 35328746 PMCID: PMC8949876 DOI: 10.3390/ijms23063324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
PMCA4 is a critical regulator of Ca2+ homeostasis in mammalian cells. While its biological and prognostic relevance in several cancer types has already been demonstrated, only preclinical investigations suggested a metastasis suppressor function in melanoma. Therefore, we studied the expression pattern of PMCA4 in human skin, nevus, as well as in primary and metastatic melanoma using immunohistochemistry. Furthermore, we analyzed the prognostic power of PMCA4 mRNA levels in cutaneous melanoma both at the non-metastatic stage as well as after PD-1 blockade in advanced disease. PMCA4 localizes to the plasma membrane in a differentiation dependent manner in human skin and mucosa, while nevus cells showed no plasma membrane staining. In contrast, primary cutaneous, choroidal and conjunctival melanoma cells showed specific plasma membrane localization of PMCA4 with a wide range of intensities. Analyzing the TCGA cohort, PMCA4 mRNA levels showed a gender specific prognostic impact in stage I-III melanoma. Female patients with high transcript levels had a significantly longer progression-free survival. Melanoma cell specific PMCA4 protein expression is associated with anaplasticity in melanoma lung metastasis but had no impact on survival after lung metastasectomy. Importantly, high PMCA4 transcript levels derived from RNA-seq of cutaneous melanoma are associated with significantly longer overall survival after PD-1 blockade. In summary, we demonstrated that human melanoma cells express PMCA4 and PMCA4 transcript levels carry prognostic information in a gender specific manner.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Elisabeth Livingstone
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Ágnes Bánkfalvi
- Department of Pathology, University Medicine Essen, 45147 Essen, Germany;
| | - Jan Viehof
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Ágnes Enyedi
- Department of Transfusiology, Semmelweis University, 1085 Budapest, Hungary;
| | - Ágnes Bilecz
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1085 Budapest, Hungary;
| | - Marcell Baranyi
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, 1085 Budapest, Hungary; (Á.B.); (M.B.); (A.-M.T.)
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 00 Lund, Sweden;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden;
| | - Klaus G. Griewank
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Lisa Zimmer
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Renáta Váraljai
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Antje Sucker
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Anne Zaremba
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Dirk Schadendorf
- Department of Dermatology, University Medicine Essen, 45147 Essen, Germany; (E.L.); (K.G.G.); (L.Z.); (R.V.); (A.S.); (A.Z.); (D.S.)
| | - Clemens Aigner
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| | - Balázs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen–Ruhrlandklinik, 45239 Essen, Germany; (L.H.); (J.V.); (C.A.)
| |
Collapse
|
29
|
Montag D. Retrograde Amnesia - A Question of Disturbed Calcium Levels? Front Cell Neurosci 2022; 15:746198. [PMID: 34975406 PMCID: PMC8718400 DOI: 10.3389/fncel.2021.746198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Retrograde amnesia is the inability to remember events or information. The successful acquisition and memory of information is required before retrograde amnesia may occur. Often, the trigger for retrograde amnesia is a traumatic event. Loss of memories may be caused in two ways: either by loss/erasure of the memory itself or by the inability to access the memory, which is still present. In general, memories and learning are associated with a positive connotation although the extinction of unpleasant experiences and memories of traumatic events may be highly welcome. In contrast to the many experimental models addressing learning deficits caused by anterograde amnesia, the incapability to acquire new information, retrograde amnesia could so far only be investigated sporadically in human patients and in a limited number of model systems. Apart from models and diseases in which neurodegeneration or dementia like Alzheimer’s disease result in loss of memory, retrograde amnesia can be elicited by various drugs of which alcohol is the most prominent one and exemplifies the non-specific effects and the variable duration. External or internal impacts like traumatic brain injury, stroke, or electroconvulsive treatments may similarly result in variable degrees of retrograde amnesia. In this review, I will discuss a new genetic approach to induce retrograde amnesia in a mouse model and raise the hypothesis that retrograde amnesia is caused by altered intracellular calcium homeostasis. Recently, we observed that neuronal loss of neuroplastin resulted in retrograde amnesia specifically for associative memories. Neuroplastin is tightly linked to the expression of the main Ca2+ extruding pumps, the plasma membrane calcium ATPases (PMCAs). Therefore, neuronal loss of neuroplastin may block the retrieval and storage of associative memories by interference with Ca2+ signaling cascades. The possibility to elicit retrograde amnesia in a controlled manner allows to investigate the underlying mechanisms and may provide a deeper understanding of the molecular and circuit processes of memory.
Collapse
Affiliation(s)
- Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
30
|
Newton S, Kong F, Carlton AJ, Aguilar C, Parker A, Codner GF, Teboul L, Wells S, Brown SDM, Marcotti W, Bowl MR. Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing. PLoS Genet 2022; 18:e1009937. [PMID: 35100259 PMCID: PMC8830789 DOI: 10.1371/journal.pgen.1009937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Fanbo Kong
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Adam J. Carlton
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Gemma F. Codner
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Walter Marcotti
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
- UCL Ear Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Ilic K, Lin X, Malci A, Stojanović M, Puljko B, Rožman M, Vukelić Ž, Heffer M, Montag D, Schnaar RL, Kalanj-Bognar S, Herrera-Molina R, Mlinac-Jerkovic K. Plasma Membrane Calcium ATPase-Neuroplastin Complexes Are Selectively Stabilized in GM1-Containing Lipid Rafts. Int J Mol Sci 2021; 22:ijms222413590. [PMID: 34948386 PMCID: PMC8708829 DOI: 10.3390/ijms222413590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
The recent identification of plasma membrane (Ca2+)-ATPase (PMCA)-Neuroplastin (Np) complexes has renewed attention on cell regulation of cytosolic calcium extrusion, which is of particular relevance in neurons. Here, we tested the hypothesis that PMCA-Neuroplastin complexes exist in specific ganglioside-containing rafts, which could affect calcium homeostasis. We analyzed the abundance of all four PMCA paralogs (PMCA1-4) and Neuroplastin isoforms (Np65 and Np55) in lipid rafts and bulk membrane fractions from GM2/GD2 synthase-deficient mouse brains. In these fractions, we found altered distribution of Np65/Np55 and selected PMCA isoforms, namely PMCA1 and 2. Cell surface staining and confocal microscopy identified GM1 as the main complex ganglioside co-localizing with Neuroplastin in cultured hippocampal neurons. Furthermore, blocking GM1 with a specific antibody resulted in delayed calcium restoration of electrically evoked calcium transients in the soma of hippocampal neurons. The content and composition of all ganglioside species were unchanged in Neuroplastin-deficient mouse brains. Therefore, we conclude that altered composition or disorganization of ganglioside-containing rafts results in changed regulation of calcium signals in neurons. We propose that GM1 could be a key sphingolipid for ensuring proper location of the PMCA-Neuroplastin complexes into rafts in order to participate in the regulation of neuronal calcium homeostasis.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- BRAIN Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King’s College London, London SE5 9NU, UK
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Ayse Malci
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
| | - Mario Stojanović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Borna Puljko
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia;
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (X.L.); (D.M.)
| | - Ronald L. Schnaar
- Departments of Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Rodrigo Herrera-Molina
- Synaptic Signalling Laboratory, Combinatorial NeuroImaging, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; (A.M.); (R.H.-M.)
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8307993, Chile
- Center for Behavioral Brain Sciences, 39120 Magdeburg, Germany
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.I.); (M.S.); (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|
32
|
Ikäheimo K, Herranen A, Iivanainen V, Lankinen T, Aarnisalo AA, Sivonen V, Patel KA, Demir K, Saarma M, Lindahl M, Pirvola U. MANF supports the inner hair cell synapse and the outer hair cell stereocilia bundle in the cochlea. Life Sci Alliance 2021; 5:5/2/e202101068. [PMID: 34815294 PMCID: PMC8616558 DOI: 10.26508/lsa.202101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The authors show in the mouse how the auditory hair cell structural maintenance is perturbed by the inactivation of Manf and the concomitant ER stress, causing early-onset, progressive hearing loss. Failure in the structural maintenance of the hair cell stereocilia bundle and ribbon synapse causes hearing loss. Here, we have studied how ER stress elicits hair cell pathology, using mouse models with inactivation of Manf (mesencephalic astrocyte-derived neurotrophic factor), encoding an ER-homeostasis-promoting protein. From hearing onset, Manf deficiency caused disarray of the outer hair cell stereocilia bundle and reduced cochlear sound amplification capability throughout the tonotopic axis. In high-frequency outer hair cells, the pathology ended in molecular changes in the stereocilia taper region and in strong stereocilia fusion. In high-frequency inner hair cells, Manf deficiency degraded ribbon synapses. The altered phenotype strongly depended on the mouse genetic background. Altogether, the failure in the ER homeostasis maintenance induced early-onset stereociliopathy and synaptopathy and accelerated the effect of genetic causes driving age-related hearing loss. Correspondingly, MANF mutation in a human patient induced severe sensorineural hearing loss from a young age onward. Thus, we present MANF as a novel protein and ER stress as a mechanism that regulate auditory hair cell maintenance in both mice and humans.
Collapse
Affiliation(s)
- Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Anni Herranen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Vilma Iivanainen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Tuuli Lankinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Antti A Aarnisalo
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ville Sivonen
- Department of Otorhinolaryngology-Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Korcan Demir
- Department of Paediatric Endocrinology, Dokuz Eylul University, Izmir, Turkey
| | - Mart Saarma
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Shrestha BR, Burgos A, Grueber WB. The Immunoglobulin Superfamily Member Basigin Is Required for Complex Dendrite Formation in Drosophila. Front Cell Neurosci 2021; 15:739741. [PMID: 34803611 PMCID: PMC8600269 DOI: 10.3389/fncel.2021.739741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Coordination of dendrite growth with changes in the surrounding substrate occurs widely in the nervous system and is vital for establishing and maintaining neural circuits. However, the molecular basis of this important developmental process remains poorly understood. To identify potential mediators of neuron-substrate interactions important for dendrite morphogenesis, we undertook an expression pattern-based screen in Drosophila larvae, which revealed many proteins with expression in dendritic arborization (da) sensory neurons and in neurons and their epidermal substrate. We found that reporters for Basigin, a cell surface molecule of the immunoglobulin (Ig) superfamily previously implicated in cell-cell and cell-substrate interactions, are expressed in da sensory neurons and epidermis. Loss of Basigin in da neurons led to defects in morphogenesis of the complex dendrites of class IV da neurons. Classes of sensory neurons with simpler branching patterns were unaffected by loss of Basigin. Structure-function analyses showed that a juxtamembrane KRR motif is critical for this function. Furthermore, knock down of Basigin in the epidermis led to defects in dendrite elaboration of class IV neurons, suggesting a non-autonomous role. Together, our findings support a role for Basigin in complex dendrite morphogenesis and interactions between dendrites and the adjacent epidermis.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neuroscience, Columbia University Medical Center, New York, NY, United States
| | - Anita Burgos
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Wesley B Grueber
- Department of Neuroscience, Columbia University Medical Center, New York, NY, United States.,Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Department of Physiology and Cellular Biophysics, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
34
|
Kollewe A, Chubanov V, Tseung FT, Correia L, Schmidt E, Rössig A, Zierler S, Haupt A, Müller CS, Bildl W, Schulte U, Nicke A, Fakler B, Gudermann T. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. eLife 2021; 10:68544. [PMID: 34766907 PMCID: PMC8616561 DOI: 10.7554/elife.68544] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn2+, Mg2+, and Ca2+, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Fong Tsuen Tseung
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Leonor Correia
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Eva Schmidt
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anna Rössig
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| | - Alexander Haupt
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin Swantje Müller
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Annette Nicke
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Bernd Fakler
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|
35
|
Lin X, Liang Y, Herrera-Molina R, Montag D. Neuroplastin in Neuropsychiatric Diseases. Genes (Basel) 2021; 12:1507. [PMID: 34680901 PMCID: PMC8535836 DOI: 10.3390/genes12101507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular mechanisms underlying neuropsychiatric and neurodegenerative diseases are insufficiently elucidated. A detailed understanding of these mechanisms may help to further improve medical intervention. Recently, intellectual abilities, creativity, and amnesia have been associated with neuroplastin, a cell recognition glycoprotein of the immunoglobulin superfamily that participates in synapse formation and function and calcium signaling. Data from animal models suggest a role for neuroplastin in pathways affected in neuropsychiatric and neurodegenerative diseases. Neuroplastin loss or disruption of molecular pathways related to neuronal processes has been linked to various neurological diseases, including dementia, schizophrenia, and Alzheimer's disease. Here, we review the molecular features of the cell recognition molecule neuroplastin, and its binding partners, which are related to neurological processes and involved in learning and memory. The emerging functions of neuroplastin may have implications for the treatment of diseases, particularly those of the nervous system.
Collapse
Affiliation(s)
- Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (X.L.); (Y.L.)
| | - Yi Liang
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (X.L.); (Y.L.)
| | - Rodrigo Herrera-Molina
- Combinatorial NeuroImaging (CNI), Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany;
- Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O’Higgins, Santiago 8307993, Chile
- Center for Behavioral Brain Sciences (CBBS), D-39106 Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, D-39118 Magdeburg, Germany; (X.L.); (Y.L.)
| |
Collapse
|
36
|
Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple subcellular locations. Sci Rep 2021; 11:18435. [PMID: 34531445 PMCID: PMC8446001 DOI: 10.1038/s41598-021-97777-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023] Open
Abstract
The significance of crosstalks among constituents of plasma membrane protein clusters/complexes in cellular proteostasis and protein quality control (PQC) remains incompletely understood. Examining the glial (enriched) cell adhesion molecule (CAM), we demonstrate its chaperone-like role in the biosynthetic processing of the megalencephalic leukoencephalopathy with subcortical cyst 1 (MLC1)-heteromeric regulatory membrane protein complex, as well as the function of the GlialCAM/MLC1 signalling complex. We show that in the absence of GlialCAM, newly synthesized MLC1 molecules remain unfolded and are susceptible to polyubiquitination-dependent proteasomal degradation at the endoplasmic reticulum. At the plasma membrane, GlialCAM regulates the diffusional partitioning and endocytic dynamics of cluster members, including the ClC-2 chloride channel and MLC1. Impaired folding and/or expression of GlialCAM or MLC1 in the presence of diseases causing mutations, as well as plasma membrane tethering compromise the functional expression of the cluster, leading to compromised endo-lysosomal organellar identity. In addition, the enlarged endo-lysosomal compartments display accelerated acidification, ubiquitinated cargo-sorting and impaired endosomal recycling. Jointly, these observations indicate an essential and previously unrecognized role for CAM, where GliaCAM functions as a PQC factor for the MLC1 signalling complex biogenesis and possess a permissive role in the membrane dynamic and cargo sorting functions with implications in modulations of receptor signalling.
Collapse
|
37
|
Corradi GR, Mazzitelli LR, Petrovich GD, de Tezanos Pinto F, Rochi L, Adamo HP. Plasma Membrane Ca 2+ Pump PMCA4z Is More Active Than Splicing Variant PMCA4x. Front Cell Neurosci 2021; 15:668371. [PMID: 34512262 PMCID: PMC8428515 DOI: 10.3389/fncel.2021.668371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The plasma membrane Ca2+ pumps (PMCA) are P-ATPases that control Ca2+ signaling and homeostasis by transporting Ca2+ out of the eukaryotic cell. Humans have four genes that code for PMCA isoforms (PMCA1-4). A large diversity of PMCA isoforms is generated by alternative mRNA splicing at sites A and C. The different PMCA isoforms are expressed in a cell-type and developmental-specific manner and exhibit differential sensitivity to a great number of regulatory mechanisms. PMCA4 has two A splice variants, the forms "x" and "z". While PMCA4x is ubiquitously expressed and relatively well-studied, PMCA4z is less characterized and its expression is restricted to some tissues such as the brain and heart muscle. PMCA4z lacks a stretch of 12 amino acids in the so-called A-M3 linker, a conformation-sensitive region of the molecule connecting the actuator domain (A) with the third transmembrane segment (M3). We expressed in yeast PMCA4 variants "x" and "z", maintaining constant the most frequent splice variant "b" at the C-terminal end, and obtained purified preparations of both proteins. In the basal autoinhibited state, PMCA4zb showed a higher ATPase activity and a higher apparent Ca2+ affinity than PMCA4xb. Both isoforms were stimulated by calmodulin but PMCA4zb was more strongly activated by acidic lipids than PMCA4xb. The results indicate that a PMCA4 intrinsically more active and more responsive to acidic lipids is produced by the variant "z" of the splicing site A.
Collapse
Affiliation(s)
- Gerardo R Corradi
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana R Mazzitelli
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido D Petrovich
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucia Rochi
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P Adamo
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
38
|
Baldwin KT, Tan CX, Strader ST, Jiang C, Savage JT, Elorza-Vidal X, Contreras X, Rülicke T, Hippenmeyer S, Estévez R, Ji RR, Eroglu C. HepaCAM controls astrocyte self-organization and coupling. Neuron 2021; 109:2427-2442.e10. [PMID: 34171291 PMCID: PMC8547372 DOI: 10.1016/j.neuron.2021.05.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Astrocytes extensively infiltrate the neuropil to regulate critical aspects of synaptic development and function. This process is regulated by transcellular interactions between astrocytes and neurons via cell adhesion molecules. How astrocytes coordinate developmental processes among one another to parse out the synaptic neuropil and form non-overlapping territories is unknown. Here we identify a molecular mechanism regulating astrocyte-astrocyte interactions during development to coordinate astrocyte morphogenesis and gap junction coupling. We show that hepaCAM, a disease-linked, astrocyte-enriched cell adhesion molecule, regulates astrocyte competition for territory and morphological complexity in the developing mouse cortex. Furthermore, conditional deletion of Hepacam from developing astrocytes significantly impairs gap junction coupling between astrocytes and disrupts the balance between synaptic excitation and inhibition. Mutations in HEPACAM cause megalencephalic leukoencephalopathy with subcortical cysts in humans. Therefore, our findings suggest that disruption of astrocyte self-organization mechanisms could be an underlying cause of neural pathology.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Christabel X Tan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Samuel T Strader
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Changyu Jiang
- Department of Anesthesiology and Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xabier Elorza-Vidal
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Ximena Contreras
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Raúl Estévez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ru-Rong Ji
- Department of Anesthesiology and Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA; Duke University Regeneration Next Initiative, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Ilic K, Mlinac-Jerkovic K, Sedmak G, Rosenzweig I, Kalanj-Bognar S. Neuroplastin in human cognition: review of literature and future perspectives. Transl Psychiatry 2021; 11:394. [PMID: 34282131 PMCID: PMC8289873 DOI: 10.1038/s41398-021-01509-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic glycoprotein neuroplastin is involved in synaptic plasticity and complex molecular events underlying learning and memory. Studies in mice and rats suggest that neuroplastin is essential for cognition, as it is needed for long-term potentiation and associative memory formation. Recently, it was found that some of the effects of neuroplastin are related to regulation of calcium homeostasis through interactions with plasma membrane calcium ATPases. Neuroplastin is increasingly seen as a key factor in complex brain functions, but studies in humans remain scarce. Here we summarize present knowledge about neuroplastin in human tissues and argue its genetic association with cortical thickness, intelligence, schizophrenia, and autism; specific immunolocalization depicting hippocampal trisynaptic pathway; potential role in tissue compensatory response in neurodegeneration; and high, almost housekeeping, level of spatio-temporal gene expression in the human brain. We also propose that neuroplastin acts as a housekeeper of neuroplasticity, and that it may be considered as an important novel cognition-related molecule in humans. Several promising directions for future investigations are suggested, which may complete our understanding of neuroplastin actions in molecular basis of human cognition.
Collapse
Affiliation(s)
- Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), Strand, London, WC2R 2LS, UK
- Sleep Disorders Centre, Guy's and St Thomas' Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, 10000, Zagreb, Croatia.
| |
Collapse
|
40
|
Separation of presynaptic Ca v2 and Ca v1 channel function in synaptic vesicle exo- and endocytosis by the membrane anchored Ca 2+ pump PMCA. Proc Natl Acad Sci U S A 2021; 118:2106621118. [PMID: 34244444 PMCID: PMC8285953 DOI: 10.1073/pnas.2106621118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicle (SV) release, recycling, and plastic changes of release probability co-occur side by side within nerve terminals and rely on local Ca2+ signals with different temporal and spatial profiles. The mechanisms that guarantee separate regulation of these vital presynaptic functions during action potential (AP)-triggered presynaptic Ca2+ entry remain unclear. Combining Drosophila genetics with electrophysiology and imaging reveals the localization of two different voltage-gated calcium channels at the presynaptic terminals of glutamatergic neuromuscular synapses (the Drosophila Cav2 homolog, Dmca1A or cacophony, and the Cav1 homolog, Dmca1D) but with spatial and functional separation. Cav2 within active zones is required for AP-triggered neurotransmitter release. By contrast, Cav1 localizes predominantly around active zones and contributes substantially to AP-evoked Ca2+ influx but has a small impact on release. Instead, L-type calcium currents through Cav1 fine-tune short-term plasticity and facilitate SV recycling. Separate control of SV exo- and endocytosis by AP-triggered presynaptic Ca2+ influx through different channels demands efficient measures to protect the neurotransmitter release machinery against Cav1-mediated Ca2+ influx. We show that the plasma membrane Ca2+ ATPase (PMCA) resides in between active zones and isolates Cav2-triggered release from Cav1-mediated dynamic regulation of recycling and short-term plasticity, two processes which Cav2 may also contribute to. As L-type Cav1 channels also localize next to PQ-type Cav2 channels within axon terminals of some central mammalian synapses, we propose that Cav2, Cav1, and PMCA act as a conserved functional triad that enables separate control of SV release and recycling rates in presynaptic terminals.
Collapse
|
41
|
Merino-Wong M, Niemeyer BA, Alansary D. Plasma Membrane Calcium ATPase Regulates Stoichiometry of CD4 + T-Cell Compartments. Front Immunol 2021; 12:687242. [PMID: 34093590 PMCID: PMC8175910 DOI: 10.3389/fimmu.2021.687242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Immune responses involve mobilization of T cells within naïve and memory compartments. Tightly regulated Ca2+ levels are essential for balanced immune outcomes. How Ca2+ contributes to regulating compartment stoichiometry is unknown. Here, we show that plasma membrane Ca2+ ATPase 4 (PMCA4) is differentially expressed in human CD4+ T compartments yielding distinct store operated Ca2+ entry (SOCE) profiles. Modulation of PMCA4 yielded a more prominent increase of SOCE in memory than in naïve CD4+ T cell. Interestingly, downregulation of PMCA4 reduced the effector compartment fraction and led to accumulation of cells in the naïve compartment. In silico analysis and chromatin immunoprecipitation point towards Ying Yang 1 (YY1) as a transcription factor regulating PMCA4 expression. Analyses of PMCA and YY1 expression patterns following activation and of PMCA promoter activity following downregulation of YY1 highlight repressive role of YY1 on PMCA expression. Our findings show that PMCA4 adapts Ca2+ levels to cellular requirements during effector and quiescent phases and thereby represent a potential target to intervene with the outcome of the immune response.
Collapse
Affiliation(s)
| | | | - Dalia Alansary
- Molecular Biophysics, Saarland University, Homburg, Germany
| |
Collapse
|
42
|
Lin X, Brunk MGK, Yuanxiang P, Curran AW, Zhang E, Stöber F, Goldschmidt J, Gundelfinger ED, Vollmer M, Happel MFK, Herrera-Molina R, Montag D. Neuroplastin expression is essential for hearing and hair cell PMCA expression. Brain Struct Funct 2021; 226:1533-1551. [PMID: 33844052 PMCID: PMC8096745 DOI: 10.1007/s00429-021-02269-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/27/2021] [Indexed: 12/25/2022]
Abstract
Hearing deficits impact on the communication with the external world and severely compromise perception of the surrounding. Deafness can be caused by particular mutations in the neuroplastin (Nptn) gene, which encodes a transmembrane recognition molecule of the immunoglobulin (Ig) superfamily and plasma membrane Calcium ATPase (PMCA) accessory subunit. This study investigates whether the complete absence of neuroplastin or the loss of neuroplastin in the adult after normal development lead to hearing impairment in mice analyzed by behavioral, electrophysiological, and in vivo imaging measurements. Auditory brainstem recordings from adult neuroplastin-deficient mice (Nptn-/-) show that these mice are deaf. With age, hair cells and spiral ganglion cells degenerate in Nptn-/- mice. Adult Nptn-/- mice fail to behaviorally respond to white noise and show reduced baseline blood flow in the auditory cortex (AC) as revealed by single-photon emission computed tomography (SPECT). In adult Nptn-/- mice, tone-evoked cortical activity was not detectable within the primary auditory field (A1) of the AC, although we observed non-persistent tone-like evoked activities in electrophysiological recordings of some young Nptn-/- mice. Conditional ablation of neuroplastin in Nptnlox/loxEmx1Cre mice reveals that behavioral responses to simple tones or white noise do not require neuroplastin expression by central glutamatergic neurons. Loss of neuroplastin from hair cells in adult NptnΔlox/loxPrCreERT mice after normal development is correlated with increased hearing thresholds and only high prepulse intensities result in effective prepulse inhibition (PPI) of the startle response. Furthermore, we show that neuroplastin is required for the expression of PMCA 2 in outer hair cells. This suggests that altered Ca2+ homeostasis underlies the observed hearing impairments and leads to hair cell degeneration. Our results underline the importance of neuroplastin for the development and the maintenance of the auditory system.
Collapse
Affiliation(s)
- Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Michael G K Brunk
- Department System Physiology and Learning, AG CortXplorer, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Pingan Yuanxiang
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Andrew W Curran
- Department System Physiology and Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Enqi Zhang
- Institute of Medical Psychology, Otto-Von-Guericke University Magdeburg, University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Franziska Stöber
- Department System Physiology and Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department System Physiology and Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Medical Faculty, Molecular Neuroscience, Otto-Von-Guericke University Magdeburg, University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | - Maike Vollmer
- Department System Physiology and Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Department of Otolaryngology-Head and Neck Surgery, Otto-Von-Guericke University Magdeburg, University Hospital, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Max F K Happel
- Department System Physiology and Learning, AG CortXplorer, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, 8307993, Santiago, Chile
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| |
Collapse
|
43
|
Köpnick AL, Jansen A, Geistlinger K, Epalle NH, Beitz E. Basigin drives intracellular accumulation of l-lactate by harvesting protons and substrate anions. PLoS One 2021; 16:e0249110. [PMID: 33770122 PMCID: PMC7996999 DOI: 10.1371/journal.pone.0249110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Transmembrane transport of l-lactate by members of the monocarboxylate transporter family, MCT, is vital in human physiology and a malignancy factor in cancer. Interaction with an accessory protein, typically basigin, is required to deliver the MCT to the plasma membrane. It is unknown whether basigin additionally exerts direct effects on the transmembrane l-lactate transport of MCT1. Here, we show that the presence of basigin leads to an intracellular accumulation of l-lactate 4.5-fold above the substrate/proton concentrations provided by the external buffer. Using basigin truncations we localized the effect to arise from the extracellular Ig-I domain. Identification of surface patches of condensed opposite electrostatic potential, and experimental analysis of charge-affecting Ig-I mutants indicated a bivalent harvesting antenna functionality for both, protons and substrate anions. From these data, and determinations of the cytosolic pH with a fluorescent probe, we conclude that the basigin Ig-I domain drives lactate uptake by locally increasing the proton and substrate concentration at the extracellular MCT entry site. The biophysical properties are physiologically relevant as cell growth on lactate media was strongly promoted in the presence of the Ig-I domain. Lack of the domain due to shedding, or misfolding due to breakage of a stabilizing disulfide bridge reversed the effect. Tumor progression according to classical or reverse Warburg effects depends on the transmembrane l-lactate distribution, and this study shows that the basigin Ig-I domain is a pivotal determinant.
Collapse
Affiliation(s)
- Anna-Lena Köpnick
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Annika Jansen
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katharina Geistlinger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nathan Hugo Epalle
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
44
|
Jiang CH, Wei M, Zhang C, Shi YS. The amino-terminal domain of GluA1 mediates LTP maintenance via interaction with neuroplastin-65. Proc Natl Acad Sci U S A 2021; 118:e2019194118. [PMID: 33627404 PMCID: PMC7936340 DOI: 10.1073/pnas.2019194118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Long-term potentiation (LTP) has long been considered as an important cellular mechanism for learning and memory. LTP expression involves NMDA receptor-dependent synaptic insertion of AMPA receptors (AMPARs). However, how AMPARs are recruited and anchored at the postsynaptic membrane during LTP remains largely unknown. In this study, using CRISPR/Cas9 to delete the endogenous AMPARs and replace them with the mutant forms in single neurons, we have found that the amino-terminal domain (ATD) of GluA1 is required for LTP maintenance. Moreover, we show that GluA1 ATD directly interacts with the cell adhesion molecule neuroplastin-65 (Np65). Neurons lacking Np65 exhibit severely impaired LTP maintenance, and Np65 deletion prevents GluA1 from rescuing LTP in AMPARs-deleted neurons. Thus, our study reveals an essential role for GluA1/Np65 binding in anchoring AMPARs at the postsynaptic membrane during LTP.
Collapse
Affiliation(s)
- Chao-Hua Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, 210032 Nanjing, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 210032 Nanjing, China
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China;
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, 210032 Nanjing, China;
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 210032 Nanjing, China
- Institute for Brain Sciences, Nanjing University, 210032 Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, 210032 Nanjing, China
| |
Collapse
|
45
|
Liu F, Xu L, Nishi M, Ichimura A, Takeshima H. Enhanced Ca 2+ handling in thioglycolate-elicited peritoneal macrophages. Cell Calcium 2021; 96:102381. [PMID: 33647639 DOI: 10.1016/j.ceca.2021.102381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/24/2022]
Abstract
In macrophage biology, resident peritoneal macrophages (RPMs) and thioglycolate-elicited peritoneal macrophages (TGPMs) have been traditionally utilized as primary cultured models. RPMs and TGPMs exhibit distinct morphological, functional and metabolic characteristics, although it remains unclear how cellular Ca2+ handling differs between them. In our Fura-2 Ca2+ imaging, TGPMs displayed elevated resting Ca2+ levels, increased store Ca2+ contents and facilitated store-operated Ca2+ entry (SOCE) compared with RPMs. The intensified intracellular Ca2+ stores were enriched with major luminal Ca2+-binding proteins inducibly expressed in TGPMs. The elevated resting Ca2+ level was predominantly maintained by constitutive Ca2+ influx, probably through the transient receptor potential (TRP) family members TRPP2, TRPM7 and TRPA1. These TRP family channels seemed to be largely activated in a manner dependent on phospholipase C activity, and together with Orai channels, contributed to SOCE. Moreover, Ca2+-dependent K+ channels efficiently facilitated SOCE by enhancing the Ca2+ driving force in TGPMs. The consolidated cellular Ca2+ handling described may underlie the specialized cell-physiological features of TGPMs, such as vital proliferation, active migration and avid phagocytosis.
Collapse
Affiliation(s)
- Feng Liu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Luxin Xu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
46
|
Vemula SK, Malci A, Junge L, Lehmann AC, Rama R, Hradsky J, Matute RA, Weber A, Prigge M, Naumann M, Kreutz MR, Seidenbecher CI, Gundelfinger ED, Herrera-Molina R. The Interaction of TRAF6 With Neuroplastin Promotes Spinogenesis During Early Neuronal Development. Front Cell Dev Biol 2020; 8:579513. [PMID: 33363141 PMCID: PMC7755605 DOI: 10.3389/fcell.2020.579513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022] Open
Abstract
Correct brain wiring depends on reliable synapse formation. Nevertheless, signaling codes promoting synaptogenesis are not fully understood. Here, we report a spinogenic mechanism that operates during neuronal development and is based on the interaction of tumor necrosis factor receptor-associated factor 6 (TRAF6) with the synaptic cell adhesion molecule neuroplastin. The interaction between these proteins was predicted in silico and verified by co-immunoprecipitation in extracts from rat brain and co-transfected HEK cells. Binding assays show physical interaction between neuroplastin’s C-terminus and the TRAF-C domain of TRAF6 with a Kd value of 88 μM. As the two proteins co-localize in primordial dendritic protrusions, we used young cultures of rat and mouse as well as neuroplastin-deficient mouse neurons and showed with mutagenesis, knock-down, and pharmacological blockade that TRAF6 is required by neuroplastin to promote early spinogenesis during in vitro days 6-9, but not later. Time-framed TRAF6 blockade during days 6–9 reduced mEPSC amplitude, number of postsynaptic sites, synapse density and neuronal activity as neurons mature. Our data unravel a new molecular liaison that may emerge during a specific window of the neuronal development to determine excitatory synapse density in the rodent brain.
Collapse
Affiliation(s)
- Sampath Kumar Vemula
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ayse Malci
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lennart Junge
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne-Christin Lehmann
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ramya Rama
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Johannes Hradsky
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ricardo A Matute
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - André Weber
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Matthias Prigge
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michael R Kreutz
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Constanze I Seidenbecher
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Rodrigo Herrera-Molina
- Laboratory of Synaptic Signaling, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
47
|
Neuroplastin Modulates Anti-inflammatory Effects of MANF. iScience 2020; 23:101810. [PMID: 33299977 PMCID: PMC7702011 DOI: 10.1016/j.isci.2020.101810] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is known to induce pro-inflammatory response and ultimately leads to cell death. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER-localized protein whose expression and secretion is induced by ER stress and a crucial survival factor. However, the underlying mechanism of how MANF exerts its cytoprotective activity remains unclear due to the lack of knowledge of its receptor. Here we show that Neuroplastin (NPTN) is such a receptor for MANF. Biochemical analysis shows the physiological interaction between MANF and NPTN on the cell surface. Binding of MANF to NPTN mitigates the inflammatory response and apoptosis via suppression of NF-kβ signaling. Our results demonstrate that NPTN is a cell surface receptor for MANF, which modulates inflammatory responses and cell death, and that the MANF-NPTN survival signaling described here provides potential therapeutic targets for the treatment of ER stress-related disorders, including diabetes mellitus, neurodegeneration, retinal degeneration, and Wolfram syndrome. Neuroplastin (NPTN) is a plasma membrane receptor for MANF NPTN regulates MANF-mediated suppression of inflammation NPTN regulates cell survival mediated by MANF under ER stress MANF-NPTN survival pathway provides potential therapeutic targets for ER stress-related disorders
Collapse
|
48
|
Ye X, Vogt MS, van der Does C, Bildl W, Schulte U, Essen LO, Albers SV. The Phosphatase PP2A Interacts With ArnA and ArnB to Regulate the Oligomeric State and the Stability of the ArnA/B Complex. Front Microbiol 2020; 11:1849. [PMID: 32973695 PMCID: PMC7472852 DOI: 10.3389/fmicb.2020.01849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022] Open
Abstract
In the crenarchaeon Sulfolobus acidocaldarius, the archaellum, a type-IV pilus like motility structure, is synthesized in response to nutrient starvation. Synthesis of components of the archaellum is controlled by the archaellum regulatory network (arn). Protein phosphorylation plays an important role in this regulatory network since the deletion of several genes encoding protein kinases and the phosphatase PP2A affected cell motility. Several proteins in the archaellum regulatory network can be phosphorylated, however, details of how phosphorylation levels of different components affect archaellum synthesis are still unknown. To identify proteins interacting with the S. acidocaldarius phosphatases PTP and PP2A, co-immunoprecipitation assays coupled to mass spectrometry analysis were performed. Thirty minutes after growth in nutrient starvation medium, especially a conserved putative ATP/GTP binding protein (Saci_1281), a universal stress protein (Saci_0887) and the archaellum regulators ArnA and ArnB were identified as highly abundant interaction proteins of PP2A. The interaction between ArnA, ArnB, and PP2A was further studied. Previous studies showed that the Forkhead-associated domain containing ArnA interacts with von Willebrand type A domain containing ArnB, and that both proteins could be phosphorylated by the kinase ArnC in vitro. The ArnA/B heterodimer was reconstituted from the purified proteins. In complex with ArnA, phosphorylation of ArnB by the ArnC kinase was strongly stimulated and resulted in formation of (ArnA/B)2 and higher oligomeric complexes, while association and dephosphorylation by PP2A resulted in dissociation of these ArnA/B complexes.
Collapse
Affiliation(s)
- Xing Ye
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | | | - Chris van der Does
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies(BIOSS), Freiburg, Germany.,Center for Integrative Signaling Studies (CIBSS), Freiburg, Germany
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany.,Loewe Center for Synthetic Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies(BIOSS), Freiburg, Germany
| |
Collapse
|
49
|
Inoue M, Sakuta N, Watanabe S, Zhang Y, Yoshikaie K, Tanaka Y, Ushioda R, Kato Y, Takagi J, Tsukazaki T, Nagata K, Inaba K. Structural Basis of Sarco/Endoplasmic Reticulum Ca 2+-ATPase 2b Regulation via Transmembrane Helix Interplay. Cell Rep 2020; 27:1221-1230.e3. [PMID: 31018135 DOI: 10.1016/j.celrep.2019.03.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Sarco/endoplasmic reticulum (ER) Ca2+-ATPase 2b (SERCA2b) is a ubiquitously expressed membrane protein that facilitates Ca2+ uptake from the cytosol to the ER. SERCA2b includes a characteristic 11th transmembrane helix (TM11) followed by a luminal tail, but the structural basis of SERCA regulation by these C-terminal segments remains unclear. Here, we determined the crystal structures of SERCA2b and its C-terminal splicing variant SERCA2a, both in the E1-2Ca2+-adenylyl methylenediphosphonate (AMPPCP) state. Despite discrepancies with the previously reported structural model of SERCA2b, TM11 was found to be located adjacent to TM10 and to interact weakly with a part of the L8/9 loop and the N-terminal end of TM10, thereby inhibiting the SERCA2b catalytic cycle. Accordingly, mutational disruption of the interactions between TM11 and its neighboring residues caused SERCA2b to display SERCA2a-like ATPase activity. We propose that TM11 serves as a key modulator of SERCA2b activity by fine-tuning the intramolecular interactions with other transmembrane regions.
Collapse
Affiliation(s)
- Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Kawaguchi, Japan
| | - Nanami Sakuta
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Kawaguchi, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Kawaguchi, Japan
| | - Yuxia Zhang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Kawaguchi, Japan
| | - Kunihito Yoshikaie
- Graduate School of Biological Sciences, NARA Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yoshiki Tanaka
- Graduate School of Biological Sciences, NARA Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ryo Ushioda
- Graduate School of Biological Sciences, NARA Institute of Science and Technology, Ikoma 630-0192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Kawaguchi, Japan
| | - Yukinari Kato
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Tomoya Tsukazaki
- Graduate School of Biological Sciences, NARA Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Kawaguchi, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Kawaguchi, Japan.
| |
Collapse
|
50
|
Han JYS, Kinoshita J, Bisetto S, Bell BA, Nowak RA, Peachey NS, Philp NJ. Role of monocarboxylate transporters in regulating metabolic homeostasis in the outer retina: Insight gained from cell-specific Bsg deletion. FASEB J 2020; 34:5401-5419. [PMID: 32112484 DOI: 10.1096/fj.201902961r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
The neural retina metabolizes glucose through aerobic glycolysis generating large amounts of lactate. Lactate flux into and out of cells is regulated by proton-coupled monocarboxylate transporters (MCTs), which are encoded by members of the Slc16a family. MCT1, MCT3, and MCT4 are expressed in the retina and require association with the accessory protein basigin, encoded by Bsg, for maturation and trafficking to the plasma membrane. Bsg-/- mice have severely reduced electroretinograms (ERGs) and progressive photoreceptor degeneration, which is presumed to be driven by metabolic dysfunction resulting from loss of MCTs. To understand the basis of the Bsg-/- phenotype, we generated mice with conditional deletion of Bsg in rods (RodΔBsg), cones (Cone∆Bsg), or retinal pigment epithelial cells (RPEΔBsg). RodΔBsg mice showed a progressive loss of photoreceptors, while ConeΔBsg mice did not display a degenerative phenotype. The RPEΔBsg mice developed a distinct phenotype characterized by severely reduced ERG responses as early as 4 weeks of age. The loss of lactate transporters from the RPE most closely resembled the phenotype of the Bsg-/- mouse, suggesting that the regulation of lactate levels in the RPE and the subretinal space is essential for the viability and function of photoreceptors.
Collapse
Affiliation(s)
- John Y S Han
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Sara Bisetto
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Brent A Bell
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Romana A Nowak
- Animal Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy, & Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|