1
|
Wang G, Peng S, Reyes Mendez M, Keramidas A, Castellano D, Wu K, Han W, Tian Q, Dong L, Li Y, Lu W. The TMEM132B-GABA A receptor complex controls alcohol actions in the brain. Cell 2024; 187:6649-6668.e35. [PMID: 39357522 DOI: 10.1016/j.cell.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
Collapse
Affiliation(s)
- Guohao Wang
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shixiao Peng
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam Reyes Mendez
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
3
|
Ge Y, Craig AM. Haploinsufficiency of GABA A Receptor-Associated Clptm1 Enhances Phasic and Tonic Inhibitory Neurotransmission, Suppresses Excitatory Synaptic Plasticity, and Impairs Memory. J Neurosci 2024; 44:e0521242024. [PMID: 38942471 PMCID: PMC11308325 DOI: 10.1523/jneurosci.0521-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
The mechanisms utilized by neurons to regulate the efficacy of phasic and tonic inhibition and their impacts on synaptic plasticity and behavior are incompletely understood. Cleft lip and palate transmembrane protein 1 (Clptm1) is a membrane-spanning protein that interacts with multiple γ-aminobutyric acid type A receptor (GABAAR) subunits, trapping them in the endoplasmic reticulum and Golgi network. Overexpression and knock-down studies suggest that Clptm1 modulates GABAAR-mediated phasic inhibition and tonic inhibition as well as activity-induced inhibitory synaptic homeostasis in cultured hippocampal neurons. To investigate the role of Clptm1 in the modulation of GABAARs in vivo, we generated Clptm1 knock-out (KO) mice. Here, we show that genetic KO of Clptm1 elevated phasic and tonic inhibitory transmission in both male and female heterozygous mice. Although basal excitatory synaptic transmission was not affected, Clptm1 haploinsufficiency significantly blocked high-frequency stimulation-induced long-term potentiation (LTP) in hippocampal CA3→CA1 synapses. In the hippocampus-dependent contextual fear-conditioning behavior task, both male and female Clptm1 heterozygous KO mice exhibited impairment in contextual fear memory. In addition, LTP and contextual fear memory were rescued by application of L-655,708, a negative allosteric modulator of the extrasynaptic GABAAR α5 subunit. These results suggest that haploinsufficiency of Clptm1 contributes to cognitive deficits through altered synaptic transmission and plasticity by elevation of inhibitory neurotransmission, with tonic inhibition playing a major role.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
4
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
5
|
Richardson RJ, Petrou S, Bryson A. Established and emerging GABA A receptor pharmacotherapy for epilepsy. Front Pharmacol 2024; 15:1341472. [PMID: 38449810 PMCID: PMC10915249 DOI: 10.3389/fphar.2024.1341472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Drugs that modulate the GABAA receptor are widely used in clinical practice for both the long-term management of epilepsy and emergency seizure control. In addition to older medications that have well-defined roles for the treatment of epilepsy, recent discoveries into the structure and function of the GABAA receptor have led to the development of newer compounds designed to maximise therapeutic benefit whilst minimising adverse effects, and whose position within the epilepsy pharmacologic armamentarium is still emerging. Drugs that modulate the GABAA receptor will remain a cornerstone of epilepsy management for the foreseeable future and, in this article, we provide an overview of the mechanisms and clinical efficacy of both established and emerging pharmacotherapies.
Collapse
Affiliation(s)
- Robert J. Richardson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Praxis Precision Medicines, Boston, MA, United States
| | - Alexander Bryson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Neurology, Eastern Health, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Ma M, Yu Q, Delafield DG, Cui Y, Li Z, Li M, Wu W, Shi X, Westmark PR, Gutierrez A, Ma G, Gao A, Xu M, Xu W, Westmark CJ, Li L. On-Tissue Spatial Proteomics Integrating MALDI-MS Imaging with Shotgun Proteomics Reveals Soy Consumption-Induced Protein Changes in a Fragile X Syndrome Mouse Model. ACS Chem Neurosci 2024; 15:119-133. [PMID: 38109073 PMCID: PMC11127747 DOI: 10.1021/acschemneuro.3c00497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS), the leading cause of inherited intellectual disability and autism, is caused by the transcriptional silencing of the FMR1 gene, which encodes the fragile X messenger ribonucleoprotein (FMRP). FMRP interacts with numerous brain mRNAs that are involved in synaptic plasticity and implicated in autism spectrum disorders. Our published studies indicate that single-source, soy-based diets are associated with increased seizures and autism. Thus, there is an acute need for an unbiased protein marker identification in FXS in response to soy consumption. Herein, we present a spatial proteomics approach integrating mass spectrometry imaging with label-free proteomics in the FXS mouse model to map the spatial distribution and quantify levels of proteins in the hippocampus and hypothalamus brain regions. In total, 1250 unique peptides were spatially resolved, demonstrating the diverse array of peptidomes present in the tissue slices and the broad coverage of the strategy. A group of proteins that are known to be involved in glycolysis, synaptic transmission, and coexpression network analysis suggest a significant association between soy proteins and metabolic and synaptic processes in the Fmr1KO brain. Ultimately, this spatial proteomics work represents a crucial step toward identifying potential candidate protein markers and novel therapeutic targets for FXS.
Collapse
Affiliation(s)
- Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Daniel G. Delafield
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Pamela R. Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Alejandra Gutierrez
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Molecular Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Gui Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Molecular Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Chen M, Koopmans F, Gonzalez-Lozano MA, Smit AB, Li KW. Brain Region Differences in α1- and α5-Subunit-Containing GABA A Receptor Proteomes Revealed with Affinity Purification and Blue Native PAGE Proteomics. Cells 2023; 13:14. [PMID: 38201218 PMCID: PMC10778189 DOI: 10.3390/cells13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
GABAA receptors are the major inhibitory receptors in the brain. They are hetero-pentamers with a composition of predominantly two α, two β, and one γ or δ subunit. Of the six α subunit genes, the α5 subunit displays a limited spatial expression pattern and is known to mediate both phasic and tonic inhibition. In this study, using immunoaffinity-based proteomics, we identified the α5 subunit containing receptor complexes in the hippocampus and olfactory bulb. The α1-α5 interaction was identified in both brain regions, albeit with significantly different stoichiometries. In line with this, reverse IPs using anti-α1 antibodies showed the α5-α1 co-occurrence and validated the quantitative difference. In addition, we showed that the association of Neuroligin 2 with α1-containing receptors was much higher in the olfactory bulb than in the hippocampus, which was confirmed using blue native gel electrophoresis and quantitative mass spectrometry. Finally, immunocytochemical staining revealed a co-localization of α1 and α5 subunits in the post-synaptic puncta in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (M.C.); (M.A.G.-L.); (A.B.S.)
| |
Collapse
|
8
|
Ahmadian Elmi M, Motamed N, Picard D. Proteomic Analyses of the G Protein-Coupled Estrogen Receptor GPER1 Reveal Constitutive Links to Endoplasmic Reticulum, Glycosylation, Trafficking, and Calcium Signaling. Cells 2023; 12:2571. [PMID: 37947649 PMCID: PMC10650109 DOI: 10.3390/cells12212571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) has been proposed to mediate rapid responses to the steroid hormone estrogen. However, despite a strong interest in its potential role in cancer, whether it is indeed activated by estrogen and how this works remain controversial. To provide new tools to address these questions, we set out to determine the interactome of exogenously expressed GPER1. The combination of two orthogonal methods, namely APEX2-mediated proximity labeling and immunoprecipitation followed by mass spectrometry, gave us high-confidence results for 73 novel potential GPER1 interactors. We found that this GPER1 interactome is not affected by estrogen, a result that mirrors the constitutive activity of GPER1 in a functional assay with a Rac1 sensor. We specifically validated several hits highlighted by a gene ontology analysis. We demonstrate that CLPTM1 interacts with GPER1 and that PRKCSH and GANAB, the regulatory and catalytic subunits of α-glucosidase II, respectively, associate with CLPTM1 and potentially indirectly with GPER1. An imbalance in CLPTM1 levels induces nuclear association of GPER1, as does the overexpression of PRKCSH. Moreover, we show that the Ca2+ sensor STIM1 interacts with GPER1 and that upon STIM1 overexpression and depletion of Ca2+ stores, GPER1 becomes more nuclear. Thus, these new GPER1 interactors establish interesting connections with membrane protein maturation, trafficking, and calcium signaling.
Collapse
Affiliation(s)
- Maryam Ahmadian Elmi
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, Quai Ernest-Ansermet 30, CH-1211 Genève, Switzerland
| |
Collapse
|
9
|
Liu N, Li J, Gao K, Perszyk RE, Zhang J, Wang J, Wu Y, Jenkins A, Yuan H, Traynelis SF, Jiang Y. De novo CLPTM1 variants with reduced GABA A R current response in patients with epilepsy. Epilepsia 2023; 64:2968-2981. [PMID: 37577761 PMCID: PMC10840799 DOI: 10.1111/epi.17746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE To investigate the clinical features and potential pathogenesis mechanism of de novo CLPTM1 variants associated with epilepsy. METHODS Identify de novo genetic variants associated with epilepsy by reanalyzing trio-based whole-exome sequencing data. We analyzed the clinical characteristics of patients with these variants and performed functional in vitro studies in cells expressing mutant complementary DNA for these variants using whole-cell voltage-clamp current recordings and outside-out patch-clamp recordings from transiently transfected human embryonic kidney (HEK) cells. RESULTS Two de novo missense variants related to epilepsy were identified in the CLPTM1 gene. Functional studies indicated that CLPTM1-p.R454H and CLPTM1-p.R568Q variants reduced the γ-aminobutyric acid A receptor (GABAA R) current response amplitude recorded under voltage clamp compared to the wild-type receptors. These variants also reduced the charge transfer and altered the time course of desensitization and deactivation following rapid removal of GABA. The surface expression of the GABAA R γ2 subunit from the CLPTM1-p.R568Q group was significantly reduced compared to CLPTM1-WT. SIGNIFICANCE This is the first report of functionally relevant variants within the CLPTM1 gene. Patch-clamp recordings showed that these de novo CLPTM1 variants reduce GABAA R currents and charge transfer, which should promote excitation and hypersynchronous activity. This study may provide insights into the molecular mechanisms of the CLPTM1 variants underlying the patients' phenotypes, as well as for exploring potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Nana Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Jinliang Li
- Department of Pediatrics, Central People’s Hospital of Zhanjiang, Guangdong 524045, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China
| | - Riley E. Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Department of Neurology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing 100045, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Andrew Jenkins
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Department of Pharmaceutical Sciences, University of Saint Joseph, Connecticut 06117, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, USA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta 30322 USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta 30322, USA
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
10
|
Luo D, Li J, Liu H, Wang J, Xia Y, Qiu W, Wang N, Wang X, Wang X, Ma C, Ge W. Integrative Transcriptomic Analyses of Hippocampal-Entorhinal System Subfields Identify Key Regulators in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300876. [PMID: 37232225 PMCID: PMC10401097 DOI: 10.1002/advs.202300876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The hippocampal-entorhinal system supports cognitive function and is selectively vulnerable to Alzheimer's disease (AD). Little is known about global transcriptomic changes in the hippocampal-entorhinal subfields during AD. Herein, large-scale transcriptomic analysis is performed in five hippocampal-entorhinal subfields of postmortem brain tissues (262 unique samples). Differentially expressed genes are assessed across subfields and disease states, and integrated genotype data from an AD genome-wide association study. An integrative gene network analysis of bulk and single-nucleus RNA sequencing (snRNA-Seq) data identifies genes with causative roles in AD progression. Using a system-biology approach, pathology-specific expression patterns for cell types are demonstrated, notably upregulation of the A1-reactive astrocyte signature in the entorhinal cortex (EC) during AD. SnRNA-Seq data show that PSAP signaling is involved in alterations of cell- communications in the EC during AD. Further experiments validate the key role of PSAP in inducing astrogliosis and an A1-like reactive astrocyte phenotype. In summary, this study reveals subfield-, cell type-, and AD pathology-specific changes and demonstrates PSAP as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Dan Luo
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Jingying Li
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Hanyou Liu
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Jiayu Wang
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Yu Xia
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Wenying Qiu
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Naili Wang
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xue Wang
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xia Wang
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Chao Ma
- Department of Human AnatomyHistology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Wei Ge
- Department of ImmunologyState Key Laboratory of Complex Severe and Rare DiseasesInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| |
Collapse
|
11
|
Xu S, Chuang CY, Hawkins CL, Hägglund P, Davies MJ. Identification and quantification of protein nitration sites in human coronary artery smooth muscle cells in the absence and presence of peroxynitrous acid/peroxynitrite. Redox Biol 2023; 64:102799. [PMID: 37413764 PMCID: PMC10363479 DOI: 10.1016/j.redox.2023.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxynitrous acid/peroxynitrite (ONOOH/ONOO-) is a powerful oxidizing/nitrating system formed at sites of inflammation, which can modify biological targets, and particularly proteins. Here, we show that multiple proteins from primary human coronary artery smooth muscle cells are nitrated, with LC-MS peptide mass mapping providing data on the sites and extents of changes on cellular and extracellular matrix (ECM) proteins. Evidence is presented for selective and specific nitrations at Tyr and Trp on 11 cellular proteins (out of 3668, including 205 ECM species) in the absence of added reagent ONOOH/ONOO-, with this being consistent with low-level endogenous nitration. A number of these have key roles in cell signaling/sensing and protein turnover. With added ONOOH/ONOO-, more proteins were modified (84 total; with 129 nitrated Tyr and 23 nitrated Trp, with multiple modifications on some proteins), with this occurring at the same and additional sites to endogenous modification. With low concentrations of ONOOH/ONOO- (50 μM) nitration occurs on specific proteins at particular sites, and is not driven by protein or Tyr/Trp abundance, with modifications detected on some low abundance proteins. However, with higher ONOOH/ONOO- concentrations (500 μM), modification is primarily driven by protein abundance. ECM species are major targets and over-represented in the pool of modified proteins, with fibronectin and thrombospondin-1 being particularly heavily modified (12 sites in each case). Both endogenous and exogenous nitration of cell- and ECM-derived species may have significant effects on cell and protein function, and potentially be involved in the development and exacerbation of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
12
|
Zhang XL, Zhou JY, Zhang P, Lin L, Mei R, Zhang FL, Chen YM, Li R. Clptm1, a new target in suppressing epileptic seizure by regulating GABA A R-mediated inhibitory synaptic transmission in a PTZ-induced epilepsy model. Kaohsiung J Med Sci 2023; 39:61-69. [PMID: 36519412 DOI: 10.1002/kjm2.12629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Disruption of gamma-amino butyric acid type A receptors (GABAA Rs) synaptic clustering and a decrease in the number of GABAA Rs in the plasma membrane are thought to contribute to alteration of the balance between excitatory and inhibitory neurotransmission, which promotes seizure induction and propagation. The multipass transmembrane protein cleft lip and palate transmembrane protein 1 (Clptm1) controls the forward trafficking of GABAA R, thus decaying miniature inhibitory postsynaptic current (mIPSC) of inhibitory synapses. In this study, using a pentylenetetrazol (PTZ)-induced epilepsy rat model, we found that Clptm1 regulates epileptic seizures by modulating GABAA R-mediated inhibitory synaptic transmission. First, we showed that Clptm1 expression was elevated in the PTZ-induced epileptic rats. Subsequently, we found that downregulation of Clptm1 expression protected against PTZ-induced seizures, which was attributed to an increase in the number of GABAA Rγ2s in the plasma membrane and the amplitude of mIPSC. Taken together, our findings identify a new anti-seizure target that provides a theoretical basis for the development of novel strategies for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Xiao-Lin Zhang
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jin-Yu Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Lin
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Feng-Li Zhang
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang-Mei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Li
- Department of Neurology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
13
|
Castellano D, Wu K, Keramidas A, Lu W. Shisa7-Dependent Regulation of GABA A Receptor Single-Channel Gating Kinetics. J Neurosci 2022; 42:8758-8766. [PMID: 36216503 PMCID: PMC9698691 DOI: 10.1523/jneurosci.0510-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
GABAA receptors (GABAARs) mediate the majority of fast inhibitory transmission throughout the brain. Although it is widely known that pore-forming subunits critically determine receptor function, it is unclear whether their single-channel properties are modulated by GABAAR-associated transmembrane proteins. We previously identified Shisa7 as a GABAAR auxiliary subunit that modulates the trafficking, pharmacology, and deactivation properties of these receptors. However, whether Shisa7 also regulates GABAAR single-channel properties has yet to be determined. Here, we performed single-channel recordings of α2β3γ2L GABAARs cotransfected with Shisa7 in HEK293T cells and found that while Shisa7 does not change channel slope conductance, it reduced the frequency of receptor openings. Importantly, Shisa7 modulates GABAAR gating by decreasing the duration and open probability within bursts. Through kinetic analysis of individual dwell time components, activation modeling, and macroscopic simulations, we demonstrate that Shisa7 accelerates GABAAR deactivation by governing the time spent between close and open states during gating. Together, our data provide a mechanistic basis for how Shisa7 controls GABAAR gating and reveal for the first time that GABAAR single-channel properties can be modulated by an auxiliary subunit. These findings shed light on processes that shape the temporal dynamics of GABAergic transmission.SIGNIFICANCE STATEMENT Although GABAA receptor (GABAAR) single-channel properties are largely determined by pore-forming subunits, it remains unknown whether they are also controlled by GABAAR-associated transmembrane proteins. Here, we show that Shisa7, a recently identified GABAAR auxiliary subunit, modulates GABAAR activation by altering single-channel burst kinetics. These results reveal that Shisa7 primarily decreases the duration and open probability of receptor burst activity during gating, leading to accelerated GABAAR deactivation. These experiments are the first to assess the gating properties of GABAARs in the presence of an auxiliary subunit and provides a kinetic basis for how Shisa7 modifies temporal attributes of GABAergic transmission at the single-channel level.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Kunwei Wu
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wei Lu
- Synapse and Neural Circuit Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Wu K, Shepard RD, Castellano D, Han W, Tian Q, Dong L, Lu W. Shisa7 phosphorylation regulates GABAergic transmission and neurodevelopmental behaviors. Neuropsychopharmacology 2022; 47:2160-2170. [PMID: 35534528 PMCID: PMC9556544 DOI: 10.1038/s41386-022-01334-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
GABA-A receptors (GABAARs) are crucial for development and function of the brain. Altered GABAergic transmission is hypothesized to be involved in neurodevelopmental disorders. Recently, we identified Shisa7 as a GABAAR auxiliary subunit that modulates GABAAR trafficking and GABAergic transmission. However, the underlying molecular mechanisms remain elusive. Here we generated a knock-in (KI) mouse line that is phospho-deficient at a phosphorylation site in Shisa7 (S405) and combined with electrophysiology, imaging and behavioral assays to illustrate the role of this site in GABAergic transmission and plasticity as well as behaviors. We found that expression of phospho-deficient mutants diminished α2-GABAAR trafficking in heterologous cells. Additionally, α1/α2/α5-GABAAR surface expression and GABAergic inhibition were decreased in hippocampal neurons in KI mice. Moreover, chemically induced inhibitory long-term potentiation was abolished in KI mice. Lastly, KI mice exhibited hyperactivity, increased grooming and impaired sleep homeostasis. Collectively, our study reveals a phosphorylation site critical for Shisa7-dependent GABAARs trafficking which contributes to behavioral endophenotypes displayed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Chan ES, Ge Y, So YW, Bai YF, Liu L, Wang YT. Allosteric potentiation of GABAA receptor single-channel conductance by netrin-1 during neuronal-excitation-induced inhibitory synaptic homeostasis. Cell Rep 2022; 41:111584. [DOI: 10.1016/j.celrep.2022.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
|
16
|
Choi C, Smalley JL, Lemons AHS, Ren Q, Bope CE, Dengler JS, Davies PA, Moss SJ. Analyzing the mechanisms that facilitate the subtype-specific assembly of γ-aminobutyric acid type A receptors. Front Mol Neurosci 2022; 15:1017404. [PMID: 36263376 PMCID: PMC9574402 DOI: 10.3389/fnmol.2022.1017404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
Impaired inhibitory signaling underlies the pathophysiology of many neuropsychiatric and neurodevelopmental disorders including autism spectrum disorders and epilepsy. Neuronal inhibition is regulated by synaptic and extrasynaptic γ-aminobutyric acid type A receptors (GABA A Rs), which mediate phasic and tonic inhibition, respectively. These two GABA A R subtypes differ in their function, ligand sensitivity, and physiological properties. Importantly, they contain different α subunit isoforms: synaptic GABA A Rs contain the α1-3 subunits whereas extrasynaptic GABA A Rs contain the α4-6 subunits. While the subunit composition is critical for the distinct roles of synaptic and extrasynaptic GABA A R subtypes in inhibition, the molecular mechanism of the subtype-specific assembly has not been elucidated. To address this issue, we purified endogenous α1- and α4-containing GABA A Rs from adult murine forebrains and examined their subunit composition and interacting proteins using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and quantitative analysis. We found that the α1 and α4 subunits form separate populations of GABA A Rs and interact with distinct sets of binding proteins. We also discovered that the β3 subunit, which co-purifies with both the α1 and α4 subunits, has different levels of phosphorylation on serines 408 and 409 (S408/9) between the two receptor subtypes. To understand the role S408/9 plays in the assembly of α1- and α4-containing GABA A Rs, we examined the effects of S408/9A (alanine) knock-in mutation on the subunit composition of the two receptor subtypes using LC-MS/MS and quantitative analysis. We discovered that the S408/9A mutation results in the formation of novel α1α4-containing GABA A Rs. Moreover, in S408/9A mutants, the plasma membrane expression of the α4 subunit is increased whereas its retention in the endoplasmic reticulum is reduced. These findings suggest that S408/9 play a critical role in determining the subtype-specific assembly of GABA A Rs, and thus the efficacy of neuronal inhibition.
Collapse
Affiliation(s)
- Catherine Choi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Joshua L. Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Abigail H. S. Lemons
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Qiu Ren
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Christopher E. Bope
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jake S. Dengler
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Paul A. Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,*Correspondence: Stephen J. Moss,
| |
Collapse
|
17
|
Wang YJ, Di XJ, Mu TW. Quantitative interactome proteomics identifies a proteostasis network for GABA A receptors. J Biol Chem 2022; 298:102423. [PMID: 36030824 PMCID: PMC9493394 DOI: 10.1016/j.jbc.2022.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
18
|
Yeh KH, Wan HL, Teng MS, Chou HH, Hsu LA, Ko YL. Genetic Variants at the APOE Locus Predict Cardiometabolic Traits and Metabolic Syndrome: A Taiwan Biobank Study. Genes (Basel) 2022; 13:genes13081366. [PMID: 36011277 PMCID: PMC9407549 DOI: 10.3390/genes13081366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Several apolipoprotein genes are located at the APOE locus on chromosome 19q13.32. This study explored the genetic determinants of cardiometabolic traits and metabolic syndrome at the APOE locus in a Taiwanese population. A total of 81,387 Taiwan Biobank (TWB) participants were enrolled to undergo genotype−phenotype analysis using data from the Axiom Genome-Wide CHB arrays. Regional association analysis with conditional analysis revealed lead single-nucleotide variations (SNVs) at the APOE locus: APOE rs7412 and rs429358 for total, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) cholesterol levels; CLPTM1 rs3786505 and rs11672748 for LDL and HDL cholesterol levels; and APOC1 rs438811 and APOE-APOC1 rs439401 for serum triglyceride levels. Genotype−phenotype association analysis revealed a significant association of rs429358 and rs438811 with metabolic syndrome and of rs7412, rs438811, and rs439401 with serum albumin levels (p < 0.0015). Stepwise regression analysis indicated that CLPTM1 variants were independently associated with LDL and HDL cholesterol levels (p = 3.10 × 10−15 for rs3786505 and p = 1.48 × 10−15 for rs11672748, respectively). APOE rs429358 and APOC1 rs438811 were also independently associated with metabolic syndrome (p = 2.29 × 10−14) and serum albumin levels (p = 3.80 × 10−6), respectively. In conclusion, in addition to APOE variants, CLPTM1 is a novel candidate locus for LDL and HDL cholesterol levels at the APOE gene region in Taiwan. Our data also indicated that APOE and APOC1 variants were independently associated with metabolic syndrome and serum albumin levels, respectively. These results revealed the crucial role of genetic variants at the APOE locus in predicting cardiometabolic traits and metabolic syndrome.
Collapse
Affiliation(s)
- Kuan-Hung Yeh
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Hsiang-Lin Wan
- Division of Hematology/Oncology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Hsin-Hua Chou
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Yu-Lin Ko
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan; (K.-H.Y.); (H.-H.C.)
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
19
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
20
|
Tipton AE, Russek SJ. Regulation of Inhibitory Signaling at the Receptor and Cellular Level; Advances in Our Understanding of GABAergic Neurotransmission and the Mechanisms by Which It Is Disrupted in Epilepsy. Front Synaptic Neurosci 2022; 14:914374. [PMID: 35874848 PMCID: PMC9302637 DOI: 10.3389/fnsyn.2022.914374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Inhibitory signaling in the brain organizes the neural circuits that orchestrate how living creatures interact with the world around them and how they build representations of objects and ideas. Without tight control at multiple points of cellular engagement, the brain’s inhibitory systems would run down and the ability to extract meaningful information from excitatory events would be lost leaving behind a system vulnerable to seizures and to cognitive decline. In this review, we will cover many of the salient features that have emerged regarding the dynamic regulation of inhibitory signaling seen through the lens of cell biology with an emphasis on the major building blocks, the ligand-gated ion channel receptors that are the first transduction point when the neurotransmitter GABA is released into the synapse. Epilepsy association will be used to indicate importance of key proteins and their pathways to brain function and to introduce novel areas for therapeutic intervention.
Collapse
Affiliation(s)
- Allison E. Tipton
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
| | - Shelley J. Russek
- Biomolecular Pharmacology Program, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Boston University MD/PhD Training Program, Boston, MA, United States
- *Correspondence: Shelley J. Russek,
| |
Collapse
|
21
|
Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2115083119. [PMID: 35344438 PMCID: PMC9169118 DOI: 10.1073/pnas.2115083119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways. Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
Collapse
|
22
|
Lalive AL, Congiu M, Lewis C, Groos D, Clerke JA, Tchenio A, Ge Y, Helmchen F, Mameli M. Synaptic inhibition in the lateral habenula shapes reward anticipation. Curr Biol 2022; 32:1829-1836.e4. [DOI: 10.1016/j.cub.2022.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/20/2022]
|
23
|
Bellou E, Escott-Price V. Are Alzheimer's and coronary artery diseases genetically related to longevity? Front Psychiatry 2022; 13:1102347. [PMID: 36684006 PMCID: PMC9859055 DOI: 10.3389/fpsyt.2022.1102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION In the last decade researchers have attempted to investigate the shared genetic architecture of longevity and age-related diseases and assess whether the increased longevity in certain people is due to protective alleles in the risk genes for a particular condition or whether there are specific "longevity" genes increasing the lifespan independently of age-related conditions' risk genes. The aim of this study was to investigate the shared genetic component between longevity and two age-related conditions. METHODS We performed a cross-trait meta-analysis of publicly available genome-wide data for Alzheimer's disease, coronary artery disease and longevity using a subset-based approach provided by the R package ASSET. RESULTS Despite the lack of strong genetic correlation between longevity and the two diseases, we identified 38 genome-wide significant lead SNPs across 22 independent genomic loci. Of them 6 were found to be potentially shared among the three traits mapping to genes including DAB2IP, DNM2, FCHO1, CLPTM1, and SNRPD2. We also identified 19 novel genome-wide associations for the individual traits in this study. Functional annotations and biological pathway enrichment analyses suggested that pleiotropic variants are involved in clathrin-mediated endocytosis and plasma lipoprotein and neurotransmitter clearance processes. DISCUSSION In summary, we have been able to advance in the knowledge of the genetic overlap existing among longevity and the two most common age-related disorders.
Collapse
Affiliation(s)
- Eftychia Bellou
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Escott-Price
- Division of Neuroscience and Mental Health, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Li F, Liu J, Yang J, Sun H, Jiang Z, Wang C, Zhang X, Yu Y, Zhao C, Pu J, Sun Y, Chang KC, Liu J, Sun H. H9N2 virus-derived M1 protein promotes H5N6 virus release in mammalian cells: Mechanism of avian influenza virus inter-species infection in humans. PLoS Pathog 2021; 17:e1010098. [PMID: 34860863 PMCID: PMC8641880 DOI: 10.1371/journal.ppat.1010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
H5N6 highly pathogenic avian influenza virus (HPAIV) clade 2.3.4.4 not only exhibits unprecedented intercontinental spread in poultry, but can also cause serious infection in humans, posing a public health threat. Phylogenetic analyses show that 40% (8/20) of H5N6 viruses that infected humans carried H9N2 virus-derived internal genes. However, the precise contribution of H9N2 virus-derived internal genes to H5N6 virus infection in humans is unclear. Here, we report on the functional contribution of the H9N2 virus-derived matrix protein 1 (M1) to enhanced H5N6 virus replication capacity in mammalian cells. Unlike H5N1 virus-derived M1 protein, H9N2 virus-derived M1 protein showed high binding affinity for H5N6 hemagglutinin (HA) protein and increased viral progeny particle release in different mammalian cell lines. Human host factor, G protein subunit beta 1 (GNB1), exhibited strong binding to H9N2 virus-derived M1 protein to facilitate M1 transport to budding sites at the cell membrane. GNB1 knockdown inhibited the interaction between H9N2 virus-derived M1 and HA protein, and reduced influenza virus-like particles (VLPs) release. Our findings indicate that H9N2 virus-derived M1 protein promotes avian H5N6 influenza virus release from mammalian, in particular human cells, which could be a major viral factor for H5N6 virus cross-species infection.
Collapse
Affiliation(s)
- Fangtao Li
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jizhe Yang
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Sun
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhimin Jiang
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chenxi Wang
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Zhang
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yinghui Yu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuankuo Zhao
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, United Kingdom
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (JL); (HS)
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail: (JL); (HS)
| |
Collapse
|
25
|
Kleidonas D, Vlachos A. Scavenging Tumor Necrosis Factor α Does Not Affect Inhibition of Dentate Granule Cells Following In Vitro Entorhinal Cortex Lesion. Cells 2021; 10:3232. [PMID: 34831454 PMCID: PMC8618320 DOI: 10.3390/cells10113232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neurons that lose part of their afferent input remodel their synaptic connections. While cellular and molecular mechanisms of denervation-induced changes in excitatory neurotransmission have been identified, little is known about the signaling pathways that control inhibition in denervated networks. In this study, we used mouse entorhino-hippocampal tissue cultures of both sexes to study the role of the pro-inflammatory cytokine tumor necrosis factor α (TNFα) in denervation-induced plasticity of inhibitory neurotransmission. In line with our previous findings in vitro, an entorhinal cortex lesion triggered a compensatory increase in the excitatory synaptic strength of partially denervated dentate granule cells. Inhibitory synaptic strength was not changed 3 days after the lesion. These functional changes were accompanied by a recruitment of microglia in the denervated hippocampus, and experiments in tissue cultures prepared from TNF-reporter mice [C57BL/6-Tg(TNFa-eGFP)] showed increased TNFα expression in the denervated zone. However, inhibitory neurotransmission was not affected by scavenging TNFα with a soluble TNF receptor. In turn, a decrease in inhibition, i.e., decreased frequencies of miniature inhibitory postsynaptic currents, was observed in denervated dentate granule cells of microglia-depleted tissue cultures. We conclude from these results that activated microglia maintain the inhibition of denervated dentate granule cells and that TNFα is not required for the maintenance of inhibition after denervation.
Collapse
Affiliation(s)
- Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center Brain Links Brain Tools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
26
|
Wu K, Castellano D, Tian Q, Lu W. Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Rep 2021; 37:109960. [PMID: 34758303 PMCID: PMC8630577 DOI: 10.1016/j.celrep.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tonic inhibition mediated by extrasynaptic GABAARs regulates various brain functions. However, the mechanisms that regulate tonic inhibition remain largely unclear. Here, we report distinct actions of GluN2A- and GluN2B-NMDA receptors (NMDARs) on tonic inhibition in hippocampal neurons under basal and high activity conditions. Specifically, overexpression of GluN2B, but not GluN2A, reduces α5-GABAAR surface expression and tonic currents. Additionally, knockout of GluN2A and GluN2B decreases and increases tonic currents, respectively. Mechanistically, GluN2A-NMDARs inhibit and GluN2B-NMDARs promote α5-GABAAR internalization, resulting in increased and decreased surface α5-GABAAR expression, respectively. Furthermore, GluN2A-NMDARs, but not GluN2B-NMDARs, are required for homeostatic potentiation of tonic inhibition induced by prolonged increase of neuronal activity. Last, tonic inhibition decreases during acute seizures, whereas it increases 24 h later, involving GluN2-NMDAR-dependent signaling. Collectively, these data reveal an NMDAR subunit-specific regulation of tonic inhibition in physiological and pathological conditions and provide mechanistic insight into activity-dependent modulation of tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Regulation of GABA A Receptors Induced by the Activation of L-Type Voltage-Gated Calcium Channels. MEMBRANES 2021; 11:membranes11070486. [PMID: 34209589 PMCID: PMC8304739 DOI: 10.3390/membranes11070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
GABAA receptors are pentameric ion channels that mediate most synaptic and tonic extrasynaptic inhibitory transmissions in the central nervous system. There are multiple GABAA receptor subtypes constructed from 19 different subunits in mammals that exhibit different regional and subcellular distributions and distinct pharmacological properties. Dysfunctional alterations of GABAA receptors are associated with various neuropsychiatric disorders. Short- and long-term plastic changes in GABAA receptors can be induced by the activation of different intracellular signaling pathways that are triggered, under physiological and pathological conditions, by calcium entering through voltage-gated calcium channels. This review discusses several mechanisms of regulation of GABAA receptor function that result from the activation of L-type voltage gated calcium channels. Calcium influx via these channels activates different signaling cascades that lead to changes in GABAA receptor transcription, phosphorylation, trafficking, and synaptic clustering, thus regulating the inhibitory synaptic strength. These plastic mechanisms regulate the interplay of synaptic excitation and inhibition that is crucial for the normal function of neuronal circuits.
Collapse
|
28
|
Zhao P, Xu S, Huang Z, Deng P, Zhang Y. Identify specific gene pairs for subarachnoid hemorrhage based on wavelet analysis and genetic algorithm. PLoS One 2021; 16:e0253219. [PMID: 34138931 PMCID: PMC8211192 DOI: 10.1371/journal.pone.0253219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a fatal stroke caused by bleeding in the brain. SAH can be caused by a ruptured aneurysm or head injury. One-third of patients will survive and recover. One-third will survive with disability; one-third will die. The focus of treatment is to stop bleeding, restore normal blood flow, and prevent vasospasm. Treatment for SAH varies, depending on the bleeding’s underlying cause and the extent of damage to the brain. Treatment may include lifesaving measures, symptom relief, repair of the bleeding vessel, and complication prevention. However, the useful diagnostic biomarkers of SAH are still limited due to the instability of gene marker expression. To overcome this limitation, we developed a new protocol pairing genes and screened significant gene pairs based on the feature selection algorithm. A classifier was constructed with the selected gene pairs and achieved a high performance.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Neurosurgery, Anhui No. 2 Provincal People’s Hospital, Hefei, Anhui, China
| | - Shaonian Xu
- Department of Neurosurgery, Anhui No. 2 Provincal People’s Hospital, Hefei, Anhui, China
| | - Zhenshan Huang
- Department of Neurosurgery, Anhui No. 2 Provincal People’s Hospital, Hefei, Anhui, China
| | - Pengcheng Deng
- Department of Neurosurgery, Anhui No. 2 Provincal People’s Hospital, Hefei, Anhui, China
| | - Yongming Zhang
- Department of Neurosurgery, Anhui No. 2 Provincal People’s Hospital, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
29
|
Knoflach F, Bertrand D. Pharmacological modulation of GABA A receptors. Curr Opin Pharmacol 2021; 59:3-10. [PMID: 34020139 DOI: 10.1016/j.coph.2021.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Ligand-gated ion channels are integral membrane proteins that activate through a change in conformation upon transmitter binding and were identified as key players of brain function. GABAA receptors are major inhibitory ligand-gated ion channels of this protein family. They are the target of many therapeutic compounds widely used in the clinic and continue to attract the attention of academic and pharmaceutical laboratories. Advances in the knowledge of the structure of GABAA receptors at the molecular level with unprecedented resolution enabled the determination of the binding sites of many allosteric modulators revealing the nature of their interactions with the receptors. Herein, we review the latest findings on allosteric modulation of GABAA receptors and their relevance to drug discovery.
Collapse
Affiliation(s)
- Frédéric Knoflach
- F. Hoffmann-La Roche Ltd., Neuroscience & Rare Diseases (NRD) Research, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Daniel Bertrand
- HiQScreen Sàrl, 6 rte de Compois, Vésenaz, Geneva, 1222, Switzerland.
| |
Collapse
|
30
|
Gockley J, Montgomery KS, Poehlman WL, Wiley JC, Liu Y, Gerasimov E, Greenwood AK, Sieberts SK, Wingo AP, Wingo TS, Mangravite LM, Logsdon BA. Multi-tissue neocortical transcriptome-wide association study implicates 8 genes across 6 genomic loci in Alzheimer's disease. Genome Med 2021; 13:76. [PMID: 33947463 PMCID: PMC8094491 DOI: 10.1186/s13073-021-00890-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable neurodegenerative disease currently affecting 1.75% of the US population, with projected growth to 3.46% by 2050. Identifying common genetic variants driving differences in transcript expression that confer AD risk is necessary to elucidate AD mechanism and develop therapeutic interventions. We modify the FUSION transcriptome-wide association study (TWAS) pipeline to ingest gene expression values from multiple neocortical regions. METHODS A combined dataset of 2003 genotypes clustered to 1000 Genomes individuals from Utah with Northern and Western European ancestry (CEU) was used to construct a training set of 790 genotypes paired to 888 RNASeq profiles from temporal cortex (TCX = 248), prefrontal cortex (FP = 50), inferior frontal gyrus (IFG = 41), superior temporal gyrus (STG = 34), parahippocampal cortex (PHG = 34), and dorsolateral prefrontal cortex (DLPFC = 461). Following within-tissue normalization and covariate adjustment, predictive weights to impute expression components based on a gene's surrounding cis-variants were trained. The FUSION pipeline was modified to support input of pre-scaled expression values and support cross validation with a repeated measure design arising from the presence of multiple transcriptome samples from the same individual across different tissues. RESULTS Cis-variant architecture alone was informative to train weights and impute expression for 6780 (49.67%) autosomal genes, the majority of which significantly correlated with gene expression; FDR < 5%: N = 6775 (99.92%), Bonferroni: N = 6716 (99.06%). Validation of weights in 515 matched genotype to RNASeq profiles from the CommonMind Consortium (CMC) was (72.14%) in DLPFC profiles. Association of imputed expression components from all 2003 genotype profiles yielded 8 genes significantly associated with AD (FDR < 0.05): APOC1, EED, CD2AP, CEACAM19, CLPTM1, MTCH2, TREM2, and KNOP1. CONCLUSIONS We provide evidence of cis-genetic variation conferring AD risk through 8 genes across six distinct genomic loci. Moreover, we provide expression weights for 6780 genes as a valuable resource to the community, which can be abstracted across the neocortex and a wide range of neuronal phenotypes.
Collapse
Affiliation(s)
| | | | | | | | - Yue Liu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ekaterina Gerasimov
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | - Aliza P Wingo
- Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas S Wingo
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Benjamin A Logsdon
- Cajal Neuroscience, 1616 Eastlake Avenue East, Suite 208, Seattle, WA, 98102, USA.
| |
Collapse
|
31
|
Salm EJ, Dunn PJ, Shan L, Yamasaki M, Malewicz NM, Miyazaki T, Park J, Sumioka A, Hamer RRL, He WW, Morimoto-Tomita M, LaMotte RH, Tomita S. TMEM163 Regulates ATP-Gated P2X Receptor and Behavior. Cell Rep 2021; 31:107704. [PMID: 32492420 DOI: 10.1016/j.celrep.2020.107704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Fast purinergic signaling is mediated by ATP and ATP-gated ionotropic P2X receptors (P2XRs), and it is implicated in pain-related behaviors. The properties exhibited by P2XRs vary between those expressed in heterologous cells and in vivo. Several modulators of ligand-gated ion channels have recently been identified, suggesting that there are P2XR functional modulators in vivo. Here, we establish a genome-wide open reading frame (ORF) collection and perform functional screening to identify modulators of P2XR activity. We identify TMEM163, which specifically modulates the channel properties and pharmacology of P2XRs. We also find that TMEM163 is required for full function of the neuronal P2XR and a pain-related ATP-evoked behavior. These results establish TMEM163 as a critical modulator of P2XRs in vivo and a potential target for the discovery of drugs for treating pain.
Collapse
Affiliation(s)
- Elizabeth J Salm
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Patrick J Dunn
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lili Shan
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Miwako Yamasaki
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Nathalie M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Taisuke Miyazaki
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Joongkyu Park
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akio Sumioka
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Wei-Wu He
- OriGene Technologies, Inc., Rockville, MD 20850, USA
| | - Megumi Morimoto-Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert H LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, The Yale Kavli Institute, Yale University School of Medicine, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
32
|
van Gelder CAGH, Altelaar M. Neuroproteomics of the Synapse: Subcellular Quantification of Protein Networks and Signaling Dynamics. Mol Cell Proteomics 2021; 20:100087. [PMID: 33933679 PMCID: PMC8167277 DOI: 10.1016/j.mcpro.2021.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
One of the most fascinating features of the brain is its ability to adapt to its surroundings. Synaptic plasticity, the dynamic mechanism of functional and structural alterations in synaptic strength, is essential for brain functioning and underlies a variety of processes such as learning and memory. Although the molecular mechanisms underlying such rapid plasticity are not fully understood, a consensus exists on the important role of proteins. The study of these neuronal proteins using neuroproteomics has increased rapidly in the last decades, and advancements in MS-based proteomics have broadened our understanding of neuroplasticity exponentially. In this review, we discuss the trends in MS-based neuroproteomics for the study of synaptic protein-protein interactions and protein signaling dynamics, with a focus on sample types, different labeling and enrichment approaches, and data analysis and interpretation. We highlight studies from the last 5 years, with a focus on synapse structure, composition, functioning, or signaling and finally discuss some recent developments that could further advance the field of neuroproteomics.
Collapse
Affiliation(s)
- Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Wu K, Han W, Tian Q, Li Y, Lu W. Activity- and sleep-dependent regulation of tonic inhibition by Shisa7. Cell Rep 2021; 34:108899. [PMID: 33761345 PMCID: PMC8025742 DOI: 10.1016/j.celrep.2021.108899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tonic inhibition mediated by extrasynaptic γ-aminobutyric acid type A receptors (GABAARs) critically regulates neuronal excitability and brain function. However, the mechanisms regulating tonic inhibition remain poorly understood. Here, we report that Shisa7 is critical for tonic inhibition regulation in hippocampal neurons. In juvenile Shisa7 knockout (KO) mice, α5-GABAAR-mediated tonic currents are significantly reduced. Mechanistically, Shisa7 is crucial for α5-GABAAR exocytosis. Additionally, Shisa7 regulation of tonic inhibition requires protein kinase A (PKA) that phosphorylates Shisa7 serine 405 (S405). Importantly, tonic inhibition undergoes activity-dependent regulation, and Shisa7 is required for homeostatic potentiation of tonic inhibition. Interestingly, in young adult Shisa7 KOs, basal tonic inhibition in hippocampal neurons is unaltered, largely due to the diminished α5-GABAAR component of tonic inhibition. However, at this stage, tonic inhibition oscillates during the daily sleep/wake cycle, a process requiring Shisa7. Together, these data demonstrate that intricate signaling mechanisms regulate tonic inhibition at different developmental stages and reveal a molecular link between sleep and tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Schulte C, Maric HM. Expanding GABA AR pharmacology via receptor-associated proteins. Curr Opin Pharmacol 2021; 57:98-106. [PMID: 33684670 DOI: 10.1016/j.coph.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Drugs directly targeting γ-aminobutyric acid type A receptors (GABAARs), the major mediators of fast synaptic inhibition, contribute significantly to today's neuropharmacology. Emerging evidence establishes intracellularly GABAAR-associated proteins as the central players in determining cellular and subcellular GABAergic input sites, thereby providing pharmacological opportunities to affect distinct receptor populations and address discrete neuronal dysfunctions. Here, we report on recently studied GABAAR-associated proteins and highlight challenges and newly available methods for their functional and physical mapping. We anticipate these efforts to contribute to decipher the complexity of GABAergic signalling in the brain and eventually enable therapeutic avenues for, so far, untreatable neuronal disorders and diseases.
Collapse
Affiliation(s)
- Clemens Schulte
- Department of Biotechnology and Biophysics and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D15, 97080, Würzburg, Germany
| | - Hans Michael Maric
- Department of Biotechnology and Biophysics and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, D15, 97080, Würzburg, Germany.
| |
Collapse
|
35
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
36
|
George S, Chiou TT, Kanamalla K, De Blas AL. Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cell Mol Neurobiol 2021; 42:1585-1604. [PMID: 33547626 DOI: 10.1007/s10571-021-01050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
It has been shown that subunit composition is the main determinant of the synaptic or extrasynaptic localization of GABAA receptors (GABAARs). Synaptic and extrasynaptic GABAARs are involved in phasic and tonic inhibition, respectively. It has been proposed that synaptic GABAARs bind to the postsynaptic gephyrin/collybistin (Geph/CB) lattice, but not the typically extrasynaptic GABAARs. Nevertheless, there are no studies of the direct binding of various types of GABAARs with the submembranous Geph/CB lattice in the absence of other synaptic proteins, some of which are known to interact with GABAARs. We have reconstituted GABAARs of various subunit compositions, together with the Geph/CB scaffold, in HEK293 cells, and have investigated the recruitment of surface GABAARs by submembranous Geph/CB clusters. Results show that the typically synaptic α1β3γ2 GABAARs were trapped by submembranous Geph/CB clusters. The α5β3γ2 GABAARs, which are both synaptic and extrasynaptic, were also trapped by Geph/CB clusters. Extrasynaptic α4β3δ GABAARs consistently showed little or no trapping by the Geph/CB clusters. However, the extrasynaptic α6β3δ, α1β3, α6β3 (and less α4β3) GABAARs were highly trapped by the Geph/CB clusters. AMPA and NMDA glutamate receptors were not trapped. The results suggest: (I) in the absence of other synaptic molecules, the Geph/CB lattice has the capacity to trap not only synaptic but also several typically extrasynaptic GABAARs; (II) the Geph/CB lattice is important but does not play a decisive role in the synaptic localization of GABAARs; and (III) in neurons there must be mechanisms preventing the trapping of several typically extrasynaptic GABAARs by the postsynaptic Geph/CB lattice.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA.
| |
Collapse
|
37
|
Han W, Shepard RD, Lu W. Regulation of GABA ARs by Transmembrane Accessory Proteins. Trends Neurosci 2021; 44:152-165. [PMID: 33234346 PMCID: PMC7855156 DOI: 10.1016/j.tins.2020.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The vast majority of fast inhibitory transmission in the brain is mediated by GABA acting on GABAA receptors (GABAARs), which provides inhibitory balance to excitatory drive and controls neuronal output. GABAARs are also effectively targeted by clinically important drugs for treatment in a number of neurological disorders. It has long been hypothesized that function and pharmacology of GABAARs are determined by the channel pore-forming subunits. However, recent studies have provided new dimensions in studying GABAARs due to several transmembrane proteins that interact with GABAARs and modulate their trafficking and function. In this review, we summarize recent findings on these novel GABAAR transmembrane regulators and highlight a potential avenue to develop new GABAAR psychopharmacology by targeting these receptor-associated membrane proteins.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Castellano D, Shepard RD, Lu W. Looking for Novelty in an "Old" Receptor: Recent Advances Toward Our Understanding of GABA ARs and Their Implications in Receptor Pharmacology. Front Neurosci 2021; 14:616298. [PMID: 33519367 PMCID: PMC7841293 DOI: 10.3389/fnins.2020.616298] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diverse populations of GABAA receptors (GABAARs) throughout the brain mediate fast inhibitory transmission and are modulated by various endogenous ligands and therapeutic drugs. Deficits in GABAAR signaling underlie the pathophysiology behind neurological and neuropsychiatric disorders such as epilepsy, anxiety, and depression. Pharmacological intervention for these disorders relies on several drug classes that target GABAARs, such as benzodiazepines and more recently neurosteroids. It has been widely demonstrated that subunit composition and receptor stoichiometry impact the biophysical and pharmacological properties of GABAARs. However, current GABAAR-targeting drugs have limited subunit selectivity and produce their therapeutic effects concomitantly with undesired side effects. Therefore, there is still a need to develop more selective GABAAR pharmaceuticals, as well as evaluate the potential for developing next-generation drugs that can target accessory proteins associated with native GABAARs. In this review, we briefly discuss the effects of benzodiazepines and neurosteroids on GABAARs, their use as therapeutics, and some of the pitfalls associated with their adverse side effects. We also discuss recent advances toward understanding the structure, function, and pharmacology of GABAARs with a focus on benzodiazepines and neurosteroids, as well as newly identified transmembrane proteins that modulate GABAARs.
Collapse
Affiliation(s)
- David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ryan David Shepard
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Crosby KC, Gookin SE, Garcia JD, Hahm KM, Dell'Acqua ML, Smith KR. Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse. Cell Rep 2020; 26:3284-3297.e3. [PMID: 30893601 DOI: 10.1016/j.celrep.2019.02.070] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitory synapses mediate the majority of synaptic inhibition in the brain, thereby controlling neuronal excitability, firing, and plasticity. Although essential for neuronal function, the central question of how these synapses are organized at the subsynaptic level remains unanswered. Here, we use three-dimensional (3D) super-resolution microscopy to image key components of the inhibitory postsynaptic domain and presynaptic terminal, revealing that inhibitory synapses are organized into nanoscale subsynaptic domains (SSDs) of the gephyrin scaffold, GABAARs and the active-zone protein Rab3-interacting molecule (RIM). Gephyrin SSDs cluster GABAAR SSDs, demonstrating nanoscale architectural interdependence between scaffold and receptor. GABAAR SSDs strongly associate with active-zone RIM SSDs, indicating an important role for GABAAR nanoscale organization near sites of GABA release. Finally, we find that in response to elevated activity, synapse growth is mediated by an increase in the number of postsynaptic SSDs, suggesting a modular mechanism for increasing inhibitory synaptic strength.
Collapse
Affiliation(s)
- Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katlin M Hahm
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
40
|
Han W, Li J, Pelkey KA, Pandey S, Chen X, Wang YX, Wu K, Ge L, Li T, Castellano D, Liu C, Wu LG, Petralia RS, Lynch JW, McBain CJ, Lu W. Shisa7 is a GABA A receptor auxiliary subunit controlling benzodiazepine actions. Science 2020; 366:246-250. [PMID: 31601770 DOI: 10.1126/science.aax5719] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
The function and pharmacology of γ-aminobutyric acid type A receptors (GABAARs) are of great physiological and clinical importance and have long been thought to be determined by the channel pore-forming subunits. We discovered that Shisa7, a single-passing transmembrane protein, localizes at GABAergic inhibitory synapses and interacts with GABAARs. Shisa7 controls receptor abundance at synapses and speeds up the channel deactivation kinetics. Shisa7 also potently enhances the action of diazepam, a classic benzodiazepine, on GABAARs. Genetic deletion of Shisa7 selectively impairs GABAergic transmission and diminishes the effects of diazepam in mice. Our data indicate that Shisa7 regulates GABAAR trafficking, function, and pharmacology and reveal a previously unknown molecular interaction that modulates benzodiazepine action in the brain.
Collapse
Affiliation(s)
- Wenyan Han
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth A Pelkey
- Cellular and Synaptic Neuroscience Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saurabh Pandey
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lihao Ge
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianming Li
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenetic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chris J McBain
- Cellular and Synaptic Neuroscience Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
van der Spek SJF, Koopmans F, Paliukhovich I, Ramsden SL, Harvey K, Harvey RJ, Smit AB, Li KW. Glycine Receptor Complex Analysis Using Immunoprecipitation-Blue Native Gel Electrophoresis-Mass Spectrometry. Proteomics 2020; 20:e1900403. [PMID: 31984645 DOI: 10.1002/pmic.201900403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 11/07/2022]
Abstract
The pentameric glycine receptor (GlyR), comprising the α1 and β subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity-isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1β-GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1β-GPHN-IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1β-GPHN-IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two-hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N-terminal of the IQSEC3 IQ-like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR-GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.
Collapse
Affiliation(s)
- Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sarah L Ramsden
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, 4575, Australia
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
42
|
LRRTM4: A Novel Regulator of Presynaptic Inhibition and Ribbon Synapse Arrangements of Retinal Bipolar Cells. Neuron 2020; 105:1007-1017.e5. [PMID: 31974009 DOI: 10.1016/j.neuron.2019.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
LRRTM4 is a transsynaptic adhesion protein regulating glutamatergic synapse assembly on dendrites of central neurons. In the mouse retina, we find that LRRTM4 is enriched at GABAergic synapses on axon terminals of rod bipolar cells (RBCs). Knockout of LRRTM4 reduces RBC axonal GABAA and GABAC receptor clustering and disrupts presynaptic inhibition onto RBC terminals. LRRTM4 removal also perturbs the stereotyped output synapse arrangement at RBC terminals. Synaptic ribbons are normally apposed to two distinct postsynaptic "dyad" partners, but in the absence of LRRTM4, "monad" and "triad" arrangements are also formed. RBCs from retinas deficient in GABA release also demonstrate dyad mis-arrangements but maintain LRRTM4 expression, suggesting that defects in dyad organization in the LRRTM4 knockout could originate from reduced GABA receptor function. LRRTM4 is thus a key synapse organizing molecule at RBC terminals, where it regulates function of GABAergic synapses and assembly of RBC synaptic dyads.
Collapse
|
43
|
Uezu A, Hisey E, Kobayashi Y, Gao Y, Bradshaw TWA, Devlin P, Rodriguiz R, Tata PR, Soderling S. Essential role for InSyn1 in dystroglycan complex integrity and cognitive behaviors in mice. eLife 2019; 8:e50712. [PMID: 31829939 PMCID: PMC6944460 DOI: 10.7554/elife.50712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Human mutations in the dystroglycan complex (DGC) result in not only muscular dystrophy but also cognitive impairments. However, the molecular architecture critical for the synaptic organization of the DGC in neurons remains elusive. Here, we report Inhibitory Synaptic protein 1 (InSyn1) is a critical component of the DGC whose loss alters the composition of the GABAergic synapses, excitatory/inhibitory balance in vitro and in vivo, and cognitive behavior. Association of InSyn1 with DGC subunits is required for InSyn1 synaptic localization. InSyn1 null neurons also show a significant reduction in DGC and GABA receptor distribution as well as abnormal neuronal network activity. Moreover, InSyn1 null mice exhibit elevated neuronal firing patterns in the hippocampus and deficits in fear conditioning memory. Our results support the dysregulation of the DGC at inhibitory synapses and altered neuronal network activity and specific cognitive tasks via loss of a novel component, InSyn1.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Erin Hisey
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | | | - Yudong Gao
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Tyler WA Bradshaw
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Patrick Devlin
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
| | - Ramona Rodriguiz
- Department of Psychiatry and Behavioral SciencesDuke University Medical SchoolDurhamUnited States
- Mouse Behavioral and Neuroendocrine Analysis Core FacilityDuke University Medical SchoolDurhamUnited States
| | | | - Scott Soderling
- Department of Cell BiologyDuke University Medical SchoolDurhamUnited States
- Department of NeurobiologyDuke University Medical SchoolDurhamUnited States
| |
Collapse
|
44
|
Ge Y, Tian M, Liu L, Wong TP, Gong B, Wu D, Cho T, Lin S, Kast J, Lu J, Wang YT. p97 regulates GluA1 homomeric AMPA receptor formation and plasma membrane expression. Nat Commun 2019; 10:4089. [PMID: 31501443 PMCID: PMC6733861 DOI: 10.1038/s41467-019-12096-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/21/2019] [Indexed: 01/10/2023] Open
Abstract
The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors (AMPARs) mediate the fast excitatory synaptic transmission in the mammalian brain and are important for synaptic plasticity. In particular, the rapid insertion of the GluA1 homomeric (GluA1-homo) AMPARs into the postsynaptic membrane is considered to be critical in the expression of hippocampal CA1 long-term potentiation (LTP), which is important for certain forms of learning and memory. However, how the formation and trafficking of GluA1-homo AMPARs are regulated remains poorly understood. Here, we report that p97 specifically interacts with and promotes the formation of GluA1-homo AMPARs. The association with p97 retains GluA1-homo AMPARs in the intracellular compartment under basal conditions, and its dissociation allows GluA1-homo AMPARs to be rapidly inserted into the postsynaptic membrane shortly after LTP induction. Thus, our results shed lights into the molecular mechanisms by which p97 regulates GluA1-homo AMPARs formation and trafficking, thereby playing a critical role in mediating synaptic plasticity.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5. .,Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.
| | - Meng Tian
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Lidong Liu
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Tak Pan Wong
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.,Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada, H4H 1R3
| | - Bo Gong
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Dongchuan Wu
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.,Translational Medicine Research Center, China Medical University Hospital, and Graduate Institutes of Immunology and Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Taesup Cho
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.,Neurorive Inc., Seoul, Republic of Korea
| | - Shujun Lin
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Jürgen Kast
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Jie Lu
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5. .,Translational Medicine Research Center, China Medical University Hospital, and Graduate Institutes of Immunology and Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
45
|
Campbell BFN, Tyagarajan SK. Cellular Mechanisms Contributing to the Functional Heterogeneity of GABAergic Synapses. Front Mol Neurosci 2019; 12:187. [PMID: 31456660 PMCID: PMC6700328 DOI: 10.3389/fnmol.2019.00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/19/2019] [Indexed: 11/24/2022] Open
Abstract
GABAergic inhibitory neurotransmission contributes to diverse aspects of brain development and adult plasticity, including the expression of complex cognitive processes. This is afforded for in part by the dynamic adaptations occurring at inhibitory synapses, which show great heterogeneity both in terms of upstream signaling and downstream effector mechanisms. Single-particle tracking and live imaging have revealed that complex receptor-scaffold interactions critically determine adaptations at GABAergic synapses. Super-resolution imaging studies have shown that protein interactions at synaptic sites contribute to nano-scale scaffold re-arrangements through post-translational modifications (PTMs), facilitating receptor and scaffold recruitment to synaptic sites. Additionally, plasticity mechanisms may be affected by the protein composition at individual synapses and the type of pre-synaptic input. This mini-review article examines recent discoveries of plasticity mechanisms that are operational within GABAergic synapses and discusses their contribution towards functional heterogeneity in inhibitory neurotransmission.
Collapse
Affiliation(s)
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Lorenz-Guertin JM, Bambino MJ, Das S, Weintraub ST, Jacob TC. Diazepam Accelerates GABA AR Synaptic Exchange and Alters Intracellular Trafficking. Front Cell Neurosci 2019; 13:163. [PMID: 31080408 PMCID: PMC6497791 DOI: 10.3389/fncel.2019.00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite 50+ years of clinical use as anxiolytics, anti-convulsants, and sedative/hypnotic agents, the mechanisms underlying benzodiazepine (BZD) tolerance are poorly understood. BZDs potentiate the actions of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, through positive allosteric modulation of γ2 subunit containing GABA type A receptors (GABAARs). Here we define key molecular events impacting γ2 GABAAR and the inhibitory synapse gephyrin scaffold following initial sustained BZD exposure in vitro and in vivo. Using immunofluorescence and biochemical experiments, we found that cultured cortical neurons treated with the classical BZD, diazepam (DZP), presented no substantial change in surface or synaptic levels of γ2-GABAARs. In contrast, both γ2 and the postsynaptic scaffolding protein gephyrin showed diminished total protein levels following a single DZP treatment in vitro and in mouse cortical tissue. We further identified DZP treatment enhanced phosphorylation of gephyrin Ser270 and increased generation of gephyrin cleavage products. Selective immunoprecipitation of γ2 from cultured neurons revealed enhanced ubiquitination of this subunit following DZP exposure. To assess novel trafficking responses induced by DZP, we employed a γ2 subunit containing an N terminal fluorogen-activating peptide (FAP) and pH-sensitive green fluorescent protein (γ2pHFAP). Live-imaging experiments using γ2pHFAP GABAAR expressing neurons identified enhanced lysosomal targeting of surface GABAARs and increased overall accumulation in vesicular compartments in response to DZP. Using fluorescence resonance energy transfer (FRET) measurements between α2 and γ2 subunits within a GABAAR in neurons, we identified reductions in synaptic clusters of this subpopulation of surface BZD sensitive receptor. Additional time-series experiments revealed the gephyrin regulating kinase ERK was inactivated by DZP at multiple time points. Moreover, we found DZP simultaneously enhanced synaptic exchange of both γ2-GABAARs and gephyrin using fluorescence recovery after photobleaching (FRAP) techniques. Finally we provide the first proteomic analysis of the BZD sensitive GABAAR interactome in DZP vs. vehicle treated mice. Collectively, our results indicate DZP exposure elicits down-regulation of gephyrin scaffolding and BZD sensitive GABAAR synaptic availability via multiple dynamic trafficking processes.
Collapse
Affiliation(s)
- Joshua M. Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J. Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan T. Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
47
|
Hui KK, Takashima N, Watanabe A, Chater TE, Matsukawa H, Nekooki-Machida Y, Nilsson P, Endo R, Goda Y, Saido TC, Yoshikawa T, Tanaka M. GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA A receptor trafficking and social behavior. SCIENCE ADVANCES 2019; 5:eaau8237. [PMID: 30989111 PMCID: PMC6457945 DOI: 10.1126/sciadv.aau8237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/20/2019] [Indexed: 05/02/2023]
Abstract
Dysfunctional mTOR signaling is associated with the pathogenesis of neurodevelopmental and neuropsychiatric disorders. However, it is unclear what molecular mechanisms and pathogenic mediators are involved and whether mTOR-regulated autophagy continues to be crucial beyond neurodevelopment. Here, we selectively deleted Atg7 in forebrain GABAergic interneurons in adolescent mice and unexpectedly found that these mice showed a set of behavioral deficits similar to Atg7 deletion in forebrain excitatory neurons. By unbiased quantitative proteomic analysis, we identified γ-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2) to differentially form high-molecular weight species in autophagy-deficient brains. Further functional analyses revealed a novel pathogenic mechanism involving the p62-dependent sequestration of GABARAP family proteins, leading to the reduction of surface GABAA receptor levels. Our work demonstrates a novel physiological role for autophagy in regulating GABA signaling beyond postnatal neurodevelopment, providing a potential mechanism for the reduced inhibitory inputs observed in neurodevelopmental and neuropsychiatric disorders with mTOR hyperactivation.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Noriko Takashima
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroshi Matsukawa
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yoko Nekooki-Machida
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge 141 57, Sweden
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Corresponding author.
| |
Collapse
|
48
|
Fu YL, Zhang B, Mu TW. LMAN1 (ERGIC-53) promotes trafficking of neuroreceptors. Biochem Biophys Res Commun 2019; 511:356-362. [PMID: 30791981 DOI: 10.1016/j.bbrc.2019.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum-Golgi intermediate compartment protein-53 (ERGIC-53, aka LMAN1), which cycles between the endoplasmic reticulum (ER) and Golgi, is a known cargo receptor for a number of soluble proteins. However, whether LMAN1 plays a role as a trafficking factor in the central nervous system is largely unknown. Here, we determined the role of LMAN1 on endogenous protein levels of the Cys-loop superfamily of neuroreceptors, including gamma-aminobutyric acid type A receptors (GABAARs), 5-hydroxytryptamine (serotonin) type 3 (5-HT3) receptors, and nicotinic acetylcholine receptors (nAChRs). Knockdown of LMAN1 reduces the surface trafficking of endogenous β3 subunits of GABAARs in mouse hypothalamic GT1-7 neurons. Furthermore, Western blot analysis of brain homogenates from LMAN1 knockout mice demonstrated that loss of LMAN1 decreases the total protein levels of 5HT3A receptors and γ2 subunits of GABAARs. LMAN1 knockout regulates the ER proteostasis network by upregulating ERP44 without changing calnexin levels. Interestingly, despite the critical role of the glycan-binding function of LMAN1 in its other known cargo clients, LMAN1 interacts with GABAARs in a glycan-independent manner. In summary, LMAN1 is a trafficking factor for certain neuroreceptors in the central nervous system. This is the first report of LMAN1 function in membrane protein trafficking.
Collapse
Affiliation(s)
- Yan-Lin Fu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bin Zhang
- Genomic Medicine Institute, Lerner Research Institute of Cleveland Clinic, Cleveland, OH, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
49
|
Specht CG. Fractional occupancy of synaptic binding sites and the molecular plasticity of inhibitory synapses. Neuropharmacology 2019; 169:107493. [PMID: 30648560 DOI: 10.1016/j.neuropharm.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/01/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
The postsynaptic density (PSD) at inhibitory synapses is a complex molecular assembly that serves as a platform for the interaction of neurotransmitter receptors, scaffold and adapter proteins, cytoskeletal elements and signalling molecules. The stability of the PSD depends on a multiplicity of interactions linking individual components. At the same time the PSD retains a substantial degree of flexibility. The continuous exchange of synaptic molecules and the preferential addition or removal of certain components induce plastic changes in the synaptic structure. This property necessarily implies that interactors are in dynamic equilibrium and that not all synaptic binding sites are occupied simultaneously. This review discusses the molecular plasticity of inhibitory synapses in terms of the connectivity of their components. Whereas stable protein complexes are marked by stoichiometric relationships between subunits, the majority of synaptic interactions have fractional occupancy, which is here defined as the non-saturation of synaptic binding sites. Fractional occupancy can have several causes: reduced kinetic or thermodynamic stability of the interactions, an imbalance in the concentrations or limited spatio-temporal overlap of interacting proteins, negative cooperativity or mutually exclusive binding. The role of fractional occupancy in the regulation of synaptic structure and function is explored based on recent data about the connectivity of inhibitory receptors and scaffold proteins. I propose that the absolute quantification of interactors and their stoichiometry at identified synapses can provide new mechanistic insights into the dynamic properties of inhibitory PSDs at the molecular level. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Christian G Specht
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institute of Biology (IBENS), Paris, 75005, France.
| |
Collapse
|
50
|
Inoue K, Hatano K, Hanamatsu Y, Saigo C, Kito Y, Bunai K, Shibata T, Takeuchi T. Pathobiological role of cleft palate transmembrane protein 1 family proteins in oral squamous cell carcinoma. J Cancer Res Clin Oncol 2019; 145:851-859. [DOI: 10.1007/s00432-019-02843-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
|