1
|
Zhang M, Livi A, Carter M, Schoknecht H, Burkhalter A, Holy TE, Padoa-Schioppa C. The representation of decision variables in orbitofrontal cortex is longitudinally stable. Cell Rep 2024; 43:114772. [PMID: 39331504 DOI: 10.1016/j.celrep.2024.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
The computation and comparison of subjective values underlying economic choices rely on the orbitofrontal cortex (OFC). In this area, distinct groups of neurons encode the value of individual options, the binary choice outcome, and the chosen value. These variables capture both the choice input and the choice output, suggesting that the cell groups found in the OFC constitute the building blocks of a decision circuit. Here, we show that this neural circuit is longitudinally stable. Using two-photon calcium imaging, we record from the OFC of mice engaged in a juice-choice task. Imaging of individual cells continues for up to 40 weeks. For each cell and each session pair, we compare activity profiles using cosine similarity, and we assess whether the neuron encodes the same variable in both sessions. We find a high degree of stability and a modest representational drift. Quantitative estimates indicate that this drift would not randomize the circuit within the animal's lifetime.
Collapse
Affiliation(s)
- Manning Zhang
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alessandro Livi
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mary Carter
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Heide Schoknecht
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Camillo Padoa-Schioppa
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Economics, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Tostado-Marcos P, Arneodo EM, Ostrowski L, Brown DE, Perez XA, Kadwory A, Stanwicks LL, Alothman A, Gentner TQ, Gilja V. Neural population dynamics in songbird RA and HVC during learned motor-vocal behavior. ARXIV 2024:arXiv:2407.06244v1. [PMID: 39040642 PMCID: PMC11261980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Complex, learned motor behaviors involve the coordination of large-scale neural activity across multiple brain regions, but our understanding of the population-level dynamics within different regions tied to the same behavior remains limited. Here, we investigate the neural population dynamics underlying learned vocal production in awake-singing songbirds. We use Neuropixels probes to record the simultaneous extracellular activity of populations of neurons in two regions of the vocal motor pathway. In line with observations made in non-human primates during limb-based motor tasks, we show that the population-level activity in both the premotor nucleus HVC and the motor nucleus RA is organized on low-dimensional neural manifolds upon which coordinated neural activity is well described by temporally structured trajectories during singing behavior. Both the HVC and RA latent trajectories provide relevant information to predict vocal sequence transitions between song syllables. However, the dynamics of these latent trajectories differ between regions. Our state-space models suggest a unique and continuous-over-time correspondence between the latent space of RA and vocal output, whereas the corresponding relationship for HVC exhibits a higher degree of neural variability. We then demonstrate that comparable high-fidelity reconstruction of continuous vocal outputs can be achieved from HVC and RA neural latents and spiking activity. Unlike those that use spiking activity, however, decoding models using neural latents generalize to novel sub-populations in each region, consistent with the existence of preserved manifolds that confine vocal-motor activity in HVC and RA.
Collapse
Affiliation(s)
- Pablo Tostado-Marcos
- Department of Bioengineering
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Lauren Ostrowski
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Daril E Brown
- Department of Electrical and Computer Engineering
- Department of Psychology
| | | | - Adam Kadwory
- Department of Electrical and Computer Engineering
| | - Lauren L Stanwicks
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Timothy Q Gentner
- Department of Psychology
- Department of Neurobiology
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering
- Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Kim JH, Daie K, Li N. A combinatorial neural code for long-term motor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597627. [PMID: 38895416 PMCID: PMC11185691 DOI: 10.1101/2024.06.05.597627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motor skill repertoire can be stably retained over long periods, but the neural mechanism underlying stable memory storage remains poorly understood. Moreover, it is unknown how existing motor memories are maintained as new motor skills are continuously acquired. Here we tracked neural representation of learned actions throughout a significant portion of a mouse's lifespan, and we show that learned actions are stably retained in motor memory in combination with context, which protects existing memories from erasure during new motor learning. We used automated home-cage training to establish a continual learning paradigm in which mice learned to perform directional licking in different task contexts. We combined this paradigm with chronic two-photon imaging of motor cortex activity for up to 6 months. Within the same task context, activity driving directional licking was stable over time with little representational drift. When learning new task contexts, new preparatory activity emerged to drive the same licking actions. Learning created parallel new motor memories while retaining the previous memories. Re-learning to make the same actions in the previous task context re-activated the previous preparatory activity, even months later. At the same time, continual learning of new task contexts kept creating new preparatory activity patterns. Context-specific memories, as we observed in the motor system, may provide a solution for stable memory storage throughout continual learning. Learning in new contexts produces parallel new representations instead of modifying existing representations, thus protecting existing motor repertoire from erasure.
Collapse
|
4
|
Wang B, Torok Z, Duffy A, Bell DG, Wongso S, Velho TAF, Fairhall AL, Lois C. Unsupervised restoration of a complex learned behavior after large-scale neuronal perturbation. Nat Neurosci 2024; 27:1176-1186. [PMID: 38684893 DOI: 10.1038/s41593-024-01630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Reliable execution of precise behaviors requires that brain circuits are resilient to variations in neuronal dynamics. Genetic perturbation of the majority of excitatory neurons in HVC, a brain region involved in song production, in adult songbirds with stereotypical songs triggered severe degradation of the song. The song fully recovered within 2 weeks, and substantial improvement occurred even when animals were prevented from singing during the recovery period, indicating that offline mechanisms enable recovery in an unsupervised manner. Song restoration was accompanied by increased excitatory synaptic input to neighboring, unmanipulated neurons in the same brain region. A model inspired by the behavioral and electrophysiological findings suggests that unsupervised single-cell and population-level homeostatic plasticity rules can support the functional restoration after large-scale disruption of networks that implement sequential dynamics. These observations suggest the existence of cellular and systems-level restorative mechanisms that ensure behavioral resilience.
Collapse
Affiliation(s)
- Bo Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Zsofia Torok
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alison Duffy
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - David G Bell
- Computational Neuroscience Center, University of Washington, Seattle, WA, USA
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Shelyn Wongso
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tarciso A F Velho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Computational Neuroscience Center, University of Washington, Seattle, WA, USA
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
5
|
Bellafard A, Namvar G, Kao JC, Vaziri A, Golshani P. Volatile working memory representations crystallize with practice. Nature 2024; 629:1109-1117. [PMID: 38750359 PMCID: PMC11136659 DOI: 10.1038/s41586-024-07425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Working memory, the process through which information is transiently maintained and manipulated over a brief period, is essential for most cognitive functions1-4. However, the mechanisms underlying the generation and evolution of working-memory neuronal representations at the population level over long timescales remain unclear. Here, to identify these mechanisms, we trained head-fixed mice to perform an olfactory delayed-association task in which the mice made decisions depending on the sequential identity of two odours separated by a 5 s delay. Optogenetic inhibition of secondary motor neurons during the late-delay and choice epochs strongly impaired the task performance of the mice. Mesoscopic calcium imaging of large neuronal populations of the secondary motor cortex (M2), retrosplenial cortex (RSA) and primary motor cortex (M1) showed that many late-delay-epoch-selective neurons emerged in M2 as the mice learned the task. Working-memory late-delay decoding accuracy substantially improved in the M2, but not in the M1 or RSA, as the mice became experts. During the early expert phase, working-memory representations during the late-delay epoch drifted across days, while the stimulus and choice representations stabilized. In contrast to single-plane layer 2/3 (L2/3) imaging, simultaneous volumetric calcium imaging of up to 73,307 M2 neurons, which included superficial L5 neurons, also revealed stabilization of late-delay working-memory representations with continued practice. Thus, delay- and choice-related activities that are essential for working-memory performance drift during learning and stabilize only after several days of expert performance.
Collapse
Affiliation(s)
- Arash Bellafard
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Ghazal Namvar
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan C Kao
- Department of Electrical and Computer Engineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Greater Los Angeles VA Medical Center, Los Angeles, CA, USA.
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, CA, USA.
- Intellectual and Developmental Disability Research Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Nimpf S, Kaplan HS, Nordmann GC, Cushion T, Keays DA. Long-term, high-resolution in vivo calcium imaging in pigeons. CELL REPORTS METHODS 2024; 4:100711. [PMID: 38382523 PMCID: PMC10921020 DOI: 10.1016/j.crmeth.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/05/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
In vivo 2-photon calcium imaging has led to fundamental advances in our understanding of sensory circuits in mammalian species. In contrast, few studies have exploited this methodology in birds, with investigators primarily relying on histological and electrophysiological techniques. Here, we report the development of in vivo 2-photon calcium imaging in awake pigeons. We show that the genetically encoded calcium indicator GCaMP6s, delivered by the adeno-associated virus rAAV2/7, allows high-quality, stable, and long-term imaging of neuronal populations at single-cell and single-dendrite resolution in the pigeon forebrain. We demonstrate the utility of our setup by investigating the processing of colors in the visual Wulst, the avian homolog of the visual cortex. We report that neurons in the Wulst are color selective and display diverse response profiles to light of different wavelengths. This technology provides a powerful tool to decipher the operating principles that underlie sensory encoding in birds.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany.
| | - Harris S Kaplan
- Harvard University, Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Gregory C Nordmann
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - Thomas Cushion
- University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany; University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
| |
Collapse
|
7
|
Zhang M, Livi A, Carter M, Schoknecht H, Burkhalter A, Holy TE, Padoa-Schioppa C. The Representation of Decision Variables in Orbitofrontal Cortex is Longitudinally Stable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580715. [PMID: 38712111 PMCID: PMC11071317 DOI: 10.1101/2024.02.16.580715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The computation and comparison of subjective values underlying economic choices rely on the orbitofrontal cortex (OFC). In this area, distinct groups of neurons encode the value of individual options, the binary choice outcome, and the chosen value. These variables capture both the input and the output of the choice process, suggesting that the cell groups found in OFC constitute the building blocks of a decision circuit. Here we show that this neural circuit is longitudinally stable. Using two-photon calcium imaging, we recorded from mice choosing between different juice flavors. Recordings of individual cells continued for up to 20 weeks. For each cell and each pair of sessions, we compared the activity profiles using cosine similarity, and we assessed whether the cell encoded the same variable in both sessions. These analyses revealed a high degree of stability and a modest representational drift. A quantitative estimate indicated this drift would not randomize the circuit within the animal's lifetime.
Collapse
|
8
|
Adam I, Riebel K, Stål P, Wood N, Previs MJ, Elemans CPH. Daily vocal exercise is necessary for peak performance singing in a songbird. Nat Commun 2023; 14:7787. [PMID: 38086817 PMCID: PMC10716414 DOI: 10.1038/s41467-023-43592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Vocal signals, including human speech and birdsong, are produced by complicated, precisely coordinated body movements, whose execution is fitness-determining in resource competition and mate choice. While the acquisition and maintenance of motor skills generally requires practice to develop and maintain both motor circuitry and muscle performance, it is unknown whether vocal muscles, like limb muscles, exhibit exercise-induced plasticity. Here, we show that juvenile and adult zebra finches (Taeniopygia castanotis) require daily vocal exercise to first gain and subsequently maintain peak vocal muscle performance. Experimentally preventing male birds from singing alters both vocal muscle physiology and vocal performance within days. Furthermore, we find females prefer song of vocally exercised males in choice experiments. Vocal output thus contains information on recent exercise status, and acts as an honest indicator of past exercise investment in songbirds, and possibly in all vocalising vertebrates.
Collapse
Affiliation(s)
- Iris Adam
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Katharina Riebel
- Institute of Biology, Animal Sciences & Health, Leiden University, Leiden, The Netherlands
| | - Per Stål
- Department of Integrative Medical Biology, Umea University, Umeå, Sweden
| | - Neil Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, NJ, USA
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Micou C, O'Leary T. Representational drift as a window into neural and behavioural plasticity. Curr Opin Neurobiol 2023; 81:102746. [PMID: 37392671 DOI: 10.1016/j.conb.2023.102746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Large-scale recordings of neural activity over days and weeks have revealed that neural representations of familiar tasks, precepts and actions continually evolve without obvious changes in behaviour. We hypothesise that this steady drift in neural activity and accompanying physiological changes is due in part to the continuous application of a learning rule at the cellular and population level. Explicit predictions of this drift can be found in neural network models that use iterative learning to optimise weights. Drift therefore provides a measurable signal that can reveal systems-level properties of biological plasticity mechanisms, such as their precision and effective learning rates.
Collapse
Affiliation(s)
- Charles Micou
- Department of Engineering, University of Cambridge, United Kingdom
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, United Kingdom; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan.
| |
Collapse
|
10
|
Moll FW, Kranz D, Corredera Asensio A, Elmaleh M, Ackert-Smith LA, Long MA. Thalamus drives vocal onsets in the zebra finch courtship song. Nature 2023; 616:132-136. [PMID: 36949189 DOI: 10.1038/s41586-023-05818-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/09/2023] [Indexed: 03/24/2023]
Abstract
While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.
Collapse
Affiliation(s)
- Felix W Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Devorah Kranz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Lyn A Ackert-Smith
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
11
|
Qin S, Farashahi S, Lipshutz D, Sengupta AM, Chklovskii DB, Pehlevan C. Coordinated drift of receptive fields in Hebbian/anti-Hebbian network models during noisy representation learning. Nat Neurosci 2023; 26:339-349. [PMID: 36635497 DOI: 10.1038/s41593-022-01225-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2022] [Indexed: 01/13/2023]
Abstract
Recent experiments have revealed that neural population codes in many brain areas continuously change even when animals have fully learned and stably perform their tasks. This representational 'drift' naturally leads to questions about its causes, dynamics and functions. Here we explore the hypothesis that neural representations optimize a representational objective with a degenerate solution space, and noisy synaptic updates drive the network to explore this (near-)optimal space causing representational drift. We illustrate this idea and explore its consequences in simple, biologically plausible Hebbian/anti-Hebbian network models of representation learning. We find that the drifting receptive fields of individual neurons can be characterized by a coordinated random walk, with effective diffusion constants depending on various parameters such as learning rate, noise amplitude and input statistics. Despite such drift, the representational similarity of population codes is stable over time. Our model recapitulates experimental observations in the hippocampus and posterior parietal cortex and makes testable predictions that can be probed in future experiments.
Collapse
Affiliation(s)
- Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Shiva Farashahi
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - David Lipshutz
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Anirvan M Sengupta
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ, USA
| | - Dmitri B Chklovskii
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- NYU Langone Medical Center, New York, NY, USA
| | - Cengiz Pehlevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Shani-Narkiss H, Beniaguev D, Segev I, Mizrahi A. Stability and flexibility of odor representations in the mouse olfactory bulb. Front Neural Circuits 2023; 17:1157259. [PMID: 37151358 PMCID: PMC10157098 DOI: 10.3389/fncir.2023.1157259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Dynamic changes in sensory representations have been basic tenants of studies in neural coding and plasticity. In olfaction, relatively little is known about the dynamic range of changes in odor representations under different brain states and over time. Here, we used time-lapse in vivo two-photon calcium imaging to describe changes in odor representation by mitral cells, the output neurons of the mouse olfactory bulb. Using anesthetics as a gross manipulation to switch between different brain states (wakefulness and under anesthesia), we found that odor representations by mitral cells undergo significant re-shaping across states but not over time within state. Odor representations were well balanced across the population in the awake state yet highly diverse under anesthesia. To evaluate differences in odor representation across states, we used linear classifiers to decode odor identity in one state based on training data from the other state. Decoding across states resulted in nearly chance-level accuracy. In contrast, repeating the same procedure for data recorded within the same state but in different time points, showed that time had a rather minor impact on odor representations. Relative to the differences across states, odor representations remained stable over months. Thus, single mitral cells can change dynamically across states but maintain robust representations across months. These findings have implications for sensory coding and plasticity in the mammalian brain.
Collapse
Affiliation(s)
- Haran Shani-Narkiss
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Beniaguev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Adi Mizrahi,
| |
Collapse
|
13
|
Jensen KT, Kadmon Harpaz N, Dhawale AK, Wolff SBE, Ölveczky BP. Long-term stability of single neuron activity in the motor system. Nat Neurosci 2022; 25:1664-1674. [PMID: 36357811 PMCID: PMC11152193 DOI: 10.1038/s41593-022-01194-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
How an established behavior is retained and consistently produced by a nervous system in constant flux remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time provided that the population dynamics are constrained to produce the same behavior. To arbitrate between these possibilities, we recorded single-unit activity in motor cortex and striatum continuously for several weeks as rats performed stereotyped motor behaviors-both learned and innate. We found long-term stability in single neuron activity patterns across both brain regions. A small amount of drift in neural activity, observed over weeks of recording, could be explained by concomitant changes in task-irrelevant aspects of the behavior. These results suggest that long-term stable behaviors are generated by single neuron activity patterns that are themselves highly stable.
Collapse
Affiliation(s)
- Kristopher T Jensen
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Naama Kadmon Harpaz
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Aitken K, Garrett M, Olsen S, Mihalas S. The geometry of representational drift in natural and artificial neural networks. PLoS Comput Biol 2022; 18:e1010716. [PMID: 36441762 PMCID: PMC9731438 DOI: 10.1371/journal.pcbi.1010716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/08/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Neurons in sensory areas encode/represent stimuli. Surprisingly, recent studies have suggested that, even during persistent performance, these representations are not stable and change over the course of days and weeks. We examine stimulus representations from fluorescence recordings across hundreds of neurons in the visual cortex using in vivo two-photon calcium imaging and we corroborate previous studies finding that such representations change as experimental trials are repeated across days. This phenomenon has been termed "representational drift". In this study we geometrically characterize the properties of representational drift in the primary visual cortex of mice in two open datasets from the Allen Institute and propose a potential mechanism behind such drift. We observe representational drift both for passively presented stimuli, as well as for stimuli which are behaviorally relevant. Across experiments, the drift differs from in-session variance and most often occurs along directions that have the most in-class variance, leading to a significant turnover in the neurons used for a given representation. Interestingly, despite this significant change due to drift, linear classifiers trained to distinguish neuronal representations show little to no degradation in performance across days. The features we observe in the neural data are similar to properties of artificial neural networks where representations are updated by continual learning in the presence of dropout, i.e. a random masking of nodes/weights, but not other types of noise. Therefore, we conclude that a potential reason for the representational drift in biological networks is driven by an underlying dropout-like noise while continuously learning and that such a mechanism may be computational advantageous for the brain in the same way it is for artificial neural networks, e.g. preventing overfitting.
Collapse
Affiliation(s)
- Kyle Aitken
- MindScope Program, Allen Institute, Seattle, Washington, United States of America
| | - Marina Garrett
- MindScope Program, Allen Institute, Seattle, Washington, United States of America
| | - Shawn Olsen
- MindScope Program, Allen Institute, Seattle, Washington, United States of America
| | - Stefan Mihalas
- MindScope Program, Allen Institute, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Grienberger C, Giovannucci A, Zeiger W, Portera-Cailliau C. Two-photon calcium imaging of neuronal activity. NATURE REVIEWS. METHODS PRIMERS 2022; 2:67. [PMID: 38124998 PMCID: PMC10732251 DOI: 10.1038/s43586-022-00147-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/23/2023]
Abstract
In vivo two-photon calcium imaging (2PCI) is a technique used for recording neuronal activity in the intact brain. It is based on the principle that, when neurons fire action potentials, intracellular calcium levels rise, which can be detected using fluorescent molecules that bind to calcium. This Primer is designed for scientists who are considering embarking on experiments with 2PCI. We provide the reader with a background on the basic concepts behind calcium imaging and on the reasons why 2PCI is an increasingly powerful and versatile technique in neuroscience. The Primer explains the different steps involved in experiments with 2PCI, provides examples of what ideal preparations should look like and explains how data are analysed. We also discuss some of the current limitations of the technique, and the types of solutions to circumvent them. Finally, we conclude by anticipating what the future of 2PCI might look like, emphasizing some of the analysis pipelines that are being developed and international efforts for data sharing.
Collapse
Affiliation(s)
- Christine Grienberger
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA
| | - Andrea Giovannucci
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
17
|
Patel S, Johnson K, Adank D, Rosas-Vidal LE. Longitudinal monitoring of prefrontal cortical ensemble dynamics reveals new insights into stress habituation. Neurobiol Stress 2022; 20:100481. [PMID: 36160815 PMCID: PMC9489534 DOI: 10.1016/j.ynstr.2022.100481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023] Open
Abstract
The prefrontal cortex is highly susceptible to the detrimental effects of stress and has been implicated in the pathogenesis of stress-related psychiatric disorders. It is not well understood, however, how stress is represented at the neuronal level in the prefrontal cortical neuronal ensembles. Even less understood is how the representation of stress changes over time with repeated exposure. Here we show that the prelimbic prefrontal neuronal ensemble representation of foot shock stress exhibits rapid spatial drift within and between sessions. Despite this rapid spatial drift of the ensemble, the representation of the stressor itself stabilizes over days. Our results suggest that stress is represented by rapidly drifting ensembles and despite this rapid drift, important features of the neuronal representation are stabilized, suggesting a neural correlate of stress habituation is present within prefrontal cortical neuron populations.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Keenan Johnson
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Danielle Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Luis E. Rosas-Vidal
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
18
|
Driscoll LN, Duncker L, Harvey CD. Representational drift: Emerging theories for continual learning and experimental future directions. Curr Opin Neurobiol 2022; 76:102609. [PMID: 35939861 DOI: 10.1016/j.conb.2022.102609] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Recent work has revealed that the neural activity patterns correlated with sensation, cognition, and action often are not stable and instead undergo large scale changes over days and weeks-a phenomenon called representational drift. Here, we highlight recent observations of drift, how drift is unlikely to be explained by experimental confounds, and how the brain can likely compensate for drift to allow stable computation. We propose that drift might have important roles in neural computation to allow continual learning, both for separating and relating memories that occur at distinct times. Finally, we present an outlook on future experimental directions that are needed to further characterize drift and to test emerging theories for drift's role in computation.
Collapse
Affiliation(s)
- Laura N Driscoll
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Lea Duncker
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
19
|
Hennig MH. The sloppy relationship between neural circuit structure and function. J Physiol 2022. [PMID: 35876720 DOI: 10.1113/jp282757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
Investigating and describing the relationships between the structure of a circuit and its function has a long tradition in neuroscience. Since neural circuits acquire their structure through sophisticated developmental programmes, and memories and experiences are maintained through synaptic modification, it is to be expected that structure is closely linked to function. Recent findings challenge this hypothesis from three different angles: Function does not strongly constrain circuit parameters, many parameters in neural circuits are irrelevant and contribute little to function, and circuit parameters are unstable and subject to constant random drift. At the same time however, recent work also showed that dynamics in neural circuit activity that is related to function are robust over time and across individuals. Here this apparent contradiction is addressed by considering the properties of neural manifolds that restrict circuit activity to functionally relevant subspaces, and it will be suggested that degenerate, anisotropic and unstable parameter spaces are a closely related to the structure and implementation of functionally relevant neural manifolds. Abstract figure legend What are the relationships between noisy and highly variable microscopic neural circuit variables on the one hand and the generation of behaviour on the other? Here it is proposed that an intermediate level of description exists where this relationship can be understood in terms of low-dimensional dynamics. Recordings of neural activity during unconstrained behaviour and the development of new machine learning methods will help to uncover these links. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matthias H Hennig
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh
| |
Collapse
|
20
|
Masset P, Qin S, Zavatone-Veth JA. Drifting neuronal representations: Bug or feature? BIOLOGICAL CYBERNETICS 2022; 116:253-266. [PMID: 34993613 DOI: 10.1007/s00422-021-00916-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
The brain displays a remarkable ability to sustain stable memories, allowing animals to execute precise behaviors or recall stimulus associations years after they were first learned. Yet, recent long-term recording experiments have revealed that single-neuron representations continuously change over time, contravening the classical assumption that learned features remain static. How do unstable neural codes support robust perception, memories, and actions? Here, we review recent experimental evidence for such representational drift across brain areas, as well as dissections of its functional characteristics and underlying mechanisms. We emphasize theoretical proposals for how drift need not only be a form of noise for which the brain must compensate. Rather, it can emerge from computationally beneficial mechanisms in hierarchical networks performing robust probabilistic computations.
Collapse
Affiliation(s)
- Paul Masset
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Shanshan Qin
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jacob A Zavatone-Veth
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
21
|
Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration. Nat Commun 2022; 13:2450. [PMID: 35508447 PMCID: PMC9068924 DOI: 10.1038/s41467-022-30069-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Animals can capitalize on invariance in the environment by learning and automating highly consistent actions; however, they must also remain flexible and adapt to environmental changes. It remains unclear how primary motor cortex (M1) can drive precise movements, yet also support behavioral exploration when faced with consistent errors. Using a reach-to-grasp task in rats, along with simultaneous electrophysiological monitoring in M1 and dorsolateral striatum (DLS), we find that behavioral exploration to overcome consistent task errors is closely associated with tandem increases in M1 and DLS neural variability; subsequently, consistent ensemble patterning returns with convergence to a new successful strategy. We also show that compared to reliably patterned intracranial microstimulation in M1, variable stimulation patterns result in significantly greater movement variability. Our results thus indicate that motor and striatal areas can flexibly transition between two modes, reliable neural pattern generation for automatic and precise movements versus variable neural patterning for behavioral exploration. It is not fully understood how behavioral flexibility is established in the context of automatic performance of a complex motor skill. Here the authors show that corticostriatal activity can flexibly transition between two modes during a reach to-grasp task in rats: reliable neural pattern generation for precise, automatic movements versus variable neural patterning for behavioral exploration.
Collapse
|
22
|
Pinotsis DA, Miller EK. Beyond dimension reduction: Stable electric fields emerge from and allow representational drift. Neuroimage 2022; 253:119058. [PMID: 35272022 DOI: 10.1016/j.neuroimage.2022.119058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 01/18/2023] Open
Abstract
It is known that the exact neurons maintaining a given memory (the neural ensemble) change from trial to trial. This raises the question of how the brain achieves stability in the face of this representational drift. Here, we demonstrate that this stability emerges at the level of the electric fields that arise from neural activity. We show that electric fields carry information about working memory content. The electric fields, in turn, can act as "guard rails" that funnel higher dimensional variable neural activity along stable lower dimensional routes. We obtained the latent space associated with each memory. We then confirmed the stability of the electric field by mapping the latent space to different cortical patches (that comprise a neural ensemble) and reconstructing information flow between patches. Stable electric fields can allow latent states to be transferred between brain areas, in accord with modern engram theory.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City-University of London, London EC1V 0HB, United Kingdom; The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Rule ME, O'Leary T. Self-healing codes: How stable neural populations can track continually reconfiguring neural representations. Proc Natl Acad Sci U S A 2022; 119:e2106692119. [PMID: 35145024 PMCID: PMC8851551 DOI: 10.1073/pnas.2106692119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
As an adaptive system, the brain must retain a faithful representation of the world while continuously integrating new information. Recent experiments have measured population activity in cortical and hippocampal circuits over many days and found that patterns of neural activity associated with fixed behavioral variables and percepts change dramatically over time. Such "representational drift" raises the question of how malleable population codes can interact coherently with stable long-term representations that are found in other circuits and with relatively rigid topographic mappings of peripheral sensory and motor signals. We explore how known plasticity mechanisms can allow single neurons to reliably read out an evolving population code without external error feedback. We find that interactions between Hebbian learning and single-cell homeostasis can exploit redundancy in a distributed population code to compensate for gradual changes in tuning. Recurrent feedback of partially stabilized readouts could allow a pool of readout cells to further correct inconsistencies introduced by representational drift. This shows how relatively simple, known mechanisms can stabilize neural tuning in the short term and provides a plausible explanation for how plastic neural codes remain integrated with consolidated, long-term representations.
Collapse
Affiliation(s)
- Michael E Rule
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Timothy O'Leary
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
24
|
Zeng HH, Huang JF, Li JR, Shen Z, Gong N, Wen YQ, Wang L, Poo MM. Distinct neuron populations for simple and compound calls in the primary auditory cortex of awake marmosets. Natl Sci Rev 2021; 8:nwab126. [PMID: 34876995 PMCID: PMC8645005 DOI: 10.1093/nsr/nwab126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 11/12/2022] Open
Abstract
Marmosets are highly social non-human primates that live in families. They exhibit rich vocalization, but the neural basis underlying this complex vocal communication is largely unknown. Here we report the existence of specific neuron populations in marmoset A1 that respond selectively to distinct simple or compound calls made by conspecific marmosets. These neurons were spatially dispersed within A1 but distinct from those responsive to pure tones. Call-selective responses were markedly diminished when individual domains of the call were deleted or the domain sequence was altered, indicating the importance of the global rather than local spectral-temporal properties of the sound. Compound call-selective responses also disappeared when the sequence of the two simple-call components was reversed or their interval was extended beyond 1 s. Light anesthesia largely abolished call-selective responses. Our findings demonstrate extensive inhibitory and facilitatory interactions among call-evoked responses, and provide the basis for further study of circuit mechanisms underlying vocal communication in awake non-human primates.
Collapse
Affiliation(s)
- Huan-huan Zeng
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-feng Huang
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100086, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Jun-ru Li
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Zhiming Shen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Neng Gong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Yun-qing Wen
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | | | | |
Collapse
|
25
|
Elmaleh M, Kranz D, Asensio AC, Moll FW, Long MA. Sleep replay reveals premotor circuit structure for a skilled behavior. Neuron 2021; 109:3851-3861.e4. [PMID: 34626537 DOI: 10.1016/j.neuron.2021.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Neural circuits often exhibit sequences of activity, but the contribution of local networks to their generation remains unclear. In the zebra finch, song-related premotor sequences within HVC may result from some combination of local connectivity and long-range thalamic inputs from nucleus uvaeformis (Uva). Because lesions to either structure abolish song, we examine "sleep replay" using high-density recording methods to reconstruct precise song-related events. Replay activity persists after the upstream nucleus interfacialis of the nidopallium is lesioned and slows when HVC is cooled, demonstrating that HVC provides temporal structure for these events. To further gauge the importance of intra-HVC connectivity for shaping network dynamics, we lesion Uva during sleep and find that residual replay sequences could span syllable boundaries, supporting a model in which HVC can propagate sequences throughout the duration of the song. Our results highlight the power of studying offline activity to investigate behaviorally relevant circuit organization.
Collapse
Affiliation(s)
- Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Devorah Kranz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Ariadna Corredera Asensio
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Felix W Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
26
|
Bauer J, Rose T. Mouse vision: Variability and stability across the visual processing hierarchy. Curr Biol 2021; 31:R1129-R1132. [PMID: 34637715 DOI: 10.1016/j.cub.2021.08.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The response of individual neurons to stable sensory input or behavioral output can change over time. A new study provides evidence from the mouse visual system that such drift does not follow the hierarchy of information flow across the brain.
Collapse
Affiliation(s)
- Joel Bauer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Tobias Rose
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
27
|
Marks TD, Goard MJ. Stimulus-dependent representational drift in primary visual cortex. Nat Commun 2021; 12:5169. [PMID: 34453051 PMCID: PMC8397766 DOI: 10.1038/s41467-021-25436-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
To produce consistent sensory perception, neurons must maintain stable representations of sensory input. However, neurons in many regions exhibit progressive drift across days. Longitudinal studies have found stable responses to artificial stimuli across sessions in visual areas, but it is unclear whether this stability extends to naturalistic stimuli. We performed chronic 2-photon imaging of mouse V1 populations to directly compare the representational stability of artificial versus naturalistic visual stimuli over weeks. Responses to gratings were highly stable across sessions. However, neural responses to naturalistic movies exhibited progressive representational drift across sessions. Differential drift was present across cortical layers, in inhibitory interneurons, and could not be explained by differential response strength or higher order stimulus statistics. However, representational drift was accompanied by similar differential changes in local population correlation structure. These results suggest representational stability in V1 is stimulus-dependent and may relate to differences in preexisting circuit architecture of co-tuned neurons.
Collapse
Affiliation(s)
- Tyler D Marks
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Michael J Goard
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
28
|
Xia J, Marks TD, Goard MJ, Wessel R. Stable representation of a naturalistic movie emerges from episodic activity with gain variability. Nat Commun 2021; 12:5170. [PMID: 34453045 PMCID: PMC8397750 DOI: 10.1038/s41467-021-25437-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Visual cortical responses are known to be highly variable across trials within an experimental session. However, the long-term stability of visual cortical responses is poorly understood. Here using chronic imaging of V1 in mice we show that neural responses to repeated natural movie clips are unstable across weeks. Individual neuronal responses consist of sparse episodic activity which are stable in time but unstable in gain across weeks. Further, we find that the individual episode, instead of neuron, serves as the basic unit of the week-to-week fluctuation. To investigate how population activity encodes the stimulus, we extract a stable one-dimensional representation of the time in the natural movie, using an unsupervised method. Most week-to-week fluctuation is perpendicular to the stimulus encoding direction, thus leaving the stimulus representation largely unaffected. We propose that precise episodic activity with coordinated gain changes are keys to maintain a stable stimulus representation in V1.
Collapse
Affiliation(s)
- Ji Xia
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA.
| | - Tyler D Marks
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Michael J Goard
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Ralf Wessel
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
29
|
Egger R, Tupikov Y, Elmaleh M, Katlowitz KA, Benezra SE, Picardo MA, Moll F, Kornfeld J, Jin DZ, Long MA. Local Axonal Conduction Shapes the Spatiotemporal Properties of Neural Sequences. Cell 2021; 183:537-548.e12. [PMID: 33064989 DOI: 10.1016/j.cell.2020.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022]
Abstract
Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.
Collapse
Affiliation(s)
- Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Yevhen Tupikov
- Department of Physics and Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Kalman A Katlowitz
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam E Benezra
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michel A Picardo
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Felix Moll
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Jörgen Kornfeld
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Dezhe Z Jin
- Department of Physics and Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
30
|
Leong ATL, Wang X, Wong EC, Dong CM, Wu EX. Neural activity temporal pattern dictates long-range propagation targets. Neuroimage 2021; 235:118032. [PMID: 33836268 DOI: 10.1016/j.neuroimage.2021.118032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
Brain possesses a complex spatiotemporal architecture for efficient information processing and computing. However, it remains unknown how neural signal propagates to its intended targets brain-wide. Using optogenetics and functional MRI, we arbitrarily initiated various discrete neural activity pulse trains with different temporal patterns and revealed their distinct long-range propagation targets within the well-defined, topographically organized somatosensory thalamo-cortical circuit. We further observed that such neural activity propagation over long range could modulate brain-wide sensory functions. Electrophysiological analysis indicated that distinct propagation pathways arose from system level neural adaptation and facilitation in response to the neural activity temporal characteristics. Together, our findings provide fundamental insights into the long-range information transfer and processing. They directly support that temporal coding underpins the whole brain functional architecture in presence of the vast and relatively static anatomical architecture.
Collapse
Affiliation(s)
- Alex T L Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Xunda Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Eddie C Wong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Celia M Dong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|
31
|
Maes A, Barahona M, Clopath C. Learning compositional sequences with multiple time scales through a hierarchical network of spiking neurons. PLoS Comput Biol 2021; 17:e1008866. [PMID: 33764970 PMCID: PMC8023498 DOI: 10.1371/journal.pcbi.1008866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/06/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Sequential behaviour is often compositional and organised across multiple time scales: a set of individual elements developing on short time scales (motifs) are combined to form longer functional sequences (syntax). Such organisation leads to a natural hierarchy that can be used advantageously for learning, since the motifs and the syntax can be acquired independently. Despite mounting experimental evidence for hierarchical structures in neuroscience, models for temporal learning based on neuronal networks have mostly focused on serial methods. Here, we introduce a network model of spiking neurons with a hierarchical organisation aimed at sequence learning on multiple time scales. Using biophysically motivated neuron dynamics and local plasticity rules, the model can learn motifs and syntax independently. Furthermore, the model can relearn sequences efficiently and store multiple sequences. Compared to serial learning, the hierarchical model displays faster learning, more flexible relearning, increased capacity, and higher robustness to perturbations. The hierarchical model redistributes the variability: it achieves high motif fidelity at the cost of higher variability in the between-motif timings.
Collapse
Affiliation(s)
- Amadeus Maes
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Mauricio Barahona
- Mathematics Department, Imperial College London, London, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Mau W, Hasselmo ME, Cai DJ. The brain in motion: How ensemble fluidity drives memory-updating and flexibility. eLife 2020; 9:e63550. [PMID: 33372892 PMCID: PMC7771967 DOI: 10.7554/elife.63550] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
While memories are often thought of as flashbacks to a previous experience, they do not simply conserve veridical representations of the past but must continually integrate new information to ensure survival in dynamic environments. Therefore, 'drift' in neural firing patterns, typically construed as disruptive 'instability' or an undesirable consequence of noise, may actually be useful for updating memories. In our view, continual modifications in memory representations reconcile classical theories of stable memory traces with neural drift. Here we review how memory representations are updated through dynamic recruitment of neuronal ensembles on the basis of excitability and functional connectivity at the time of learning. Overall, we emphasize the importance of considering memories not as static entities, but instead as flexible network states that reactivate and evolve across time and experience.
Collapse
Affiliation(s)
- William Mau
- Neuroscience Department, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Denise J Cai
- Neuroscience Department, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
33
|
Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature 2020; 587:426-431. [PMID: 33029014 PMCID: PMC7677212 DOI: 10.1038/s41586-020-2807-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Infant cries evoke powerful responses in parents1–4. To what extent are parental animals intrinsically sensitive to neonatal vocalizations, or might instead learn about vocal cues for parenting responses? In mice, pup-naive virgins do not recognize the meaning of pup distress calls, but retrieve isolated pups to the nest following cohousing with a mother and litter5–9. Distress calls are variable, requiring co-caring virgins to generalize across calls for reliable retrieval10,11. Here we show that the onset of maternal behavior in mice results from interactions between intrinsic mechanisms and experience-dependent plasticity in auditory cortex. In maternal females, calls with inter-syllable intervals (ISIs) from 75:375 ms elicited pup retrieval, and cortical responses generalized across these ISIs. In contrast, naive virgins were behaviorally sensitive only to the most common (‘prototypical’) ISIs. Inhibitory and excitatory neural responses were initially mismatched in naive cortex, with untuned inhibition and overly-narrow excitation. During cohousing, excitatory responses broadened to represent a wider range of ISIs, while inhibitory tuning sharpened to form a perceptual boundary. We presented synthetic calls during cohousing and observed that neurobehavioral responses adjusted to match these statistics, a process requiring cortical activity and the hypothalamic oxytocin system. Neuroplastic mechanisms therefore build on an intrinsic sensitivity in mouse auditory cortex, enabling rapid plasticity for reliable parenting behavior.
Collapse
|
34
|
Denis J, Dard RF, Quiroli E, Cossart R, Picardo MA. DeepCINAC: A Deep-Learning-Based Python Toolbox for Inferring Calcium Imaging Neuronal Activity Based on Movie Visualization. eNeuro 2020; 7:ENEURO.0038-20.2020. [PMID: 32699072 PMCID: PMC7438055 DOI: 10.1523/eneuro.0038-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022] Open
Abstract
Two-photon calcium imaging is now widely used to infer neuronal dynamics from changes in fluorescence of an indicator. However, state-of-the-art computational tools are not optimized for the reliable detection of fluorescence transients from highly synchronous neurons located in densely packed regions such as the CA1 pyramidal layer of the hippocampus during early postnatal stages of development. Indeed, the latest analytical tools often lack proper benchmark measurements. To meet this challenge, we first developed a graphical user interface (GUI) allowing for a precise manual detection of all calcium transients from imaged neurons based on the visualization of the calcium imaging movie. Then, we analyzed movies from mouse pups using a convolutional neural network (CNN) with an attention process and a bidirectional long-short term memory (LSTM) network. This method is able to reach human performance and offers a better F1 score (harmonic mean of sensitivity and precision) than CaImAn to infer neural activity in the developing CA1 without any user intervention. It also enables automatically identifying activity originating from GABAergic neurons. Overall, DeepCINAC offers a simple, fast and flexible open-source toolbox for processing a wide variety of calcium imaging datasets while providing the tools to evaluate its performance.
Collapse
Affiliation(s)
| | | | | | - Rosa Cossart
- Aix Marseille Univ, INSERM, INMED, Marseille 13273, France
| | | |
Collapse
|
35
|
Kauvar IV, Machado TA, Yuen E, Kochalka J, Choi M, Allen WE, Wetzstein G, Deisseroth K. Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions. Neuron 2020; 107:351-367.e19. [PMID: 32433908 PMCID: PMC7687350 DOI: 10.1016/j.neuron.2020.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/26/2020] [Indexed: 01/05/2023]
Abstract
To advance the measurement of distributed neuronal population representations of targeted motor actions on single trials, we developed an optical method (COSMOS) for tracking neural activity in a largely uncharacterized spatiotemporal regime. COSMOS allowed simultaneous recording of neural dynamics at ∼30 Hz from over a thousand near-cellular resolution neuronal sources spread across the entire dorsal neocortex of awake, behaving mice during a three-option lick-to-target task. We identified spatially distributed neuronal population representations spanning the dorsal cortex that precisely encoded ongoing motor actions on single trials. Neuronal correlations measured at video rate using unaveraged, whole-session data had localized spatial structure, whereas trial-averaged data exhibited widespread correlations. Separable modes of neural activity encoded history-guided motor plans, with similar population dynamics in individual areas throughout cortex. These initial experiments illustrate how COSMOS enables investigation of large-scale cortical dynamics and that information about motor actions is widely shared between areas, potentially underlying distributed computations.
Collapse
Affiliation(s)
- Isaac V Kauvar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Timothy A Machado
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Elle Yuen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - John Kochalka
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Minseung Choi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - William E Allen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gordon Wetzstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Network dynamics underlie learning and performance of birdsong. Curr Opin Neurobiol 2020; 64:119-126. [PMID: 32480313 DOI: 10.1016/j.conb.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023]
Abstract
Understanding the sensorimotor control of the endless variety of human speech patterns stands as one of the apex problems in neuroscience. The capacity to learn - through imitation - to rapidly sequence vocal sounds in meaningful patterns is clearly one of the most derived of human behavioral traits. Selection pressure produced an analogous capacity in numerous species of vocal-learning birds, and due to an increasing appreciation for the cognitive and computational flexibility of avian cortex and basal ganglia, a general understanding of the forebrain network that supports the learning and production of birdsong is beginning to emerge. Here, we review recent advances in experimental studies of the zebra finch (Taeniopygia guttata), which offer new insights into the network dynamics that support this surprising analogue of human speech learning and production.
Collapse
|
37
|
Kinsky NR, Mau W, Sullivan DW, Levy SJ, Ruesch EA, Hasselmo ME. Trajectory-modulated hippocampal neurons persist throughout memory-guided navigation. Nat Commun 2020; 11:2443. [PMID: 32415083 PMCID: PMC7229120 DOI: 10.1038/s41467-020-16226-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Trajectory-dependent splitter neurons in the hippocampus encode information about a rodent's prior trajectory during performance of a continuous alternation task. As such, they provide valuable information for supporting memory-guided behavior. Here, we employed single-photon calcium imaging in freely moving mice to investigate the emergence and fate of trajectory-dependent activity through learning and mastery of a continuous spatial alternation task. In agreement with others, the quality of trajectory-dependent information in hippocampal neurons correlated with task performance. We thus hypothesized that, due to their utility, splitter neurons would exhibit heightened stability. We find that splitter neurons were more likely to remain active and retained more consistent spatial information across multiple days than other neurons. Furthermore, we find that both splitter neurons and place cells emerged rapidly and maintained stable trajectory-dependent/spatial activity thereafter. Our results suggest that neurons with useful functional coding exhibit heightened stability to support memory guided behavior.
Collapse
Affiliation(s)
- Nathaniel R. Kinsky
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000000086837370grid.214458.eDepartment of Anesthesiology, University of Michigan, 1301 Catherine St. Rm 7433, Ann Arbor, MI 48109 USA
| | - William Mau
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000 0001 0670 2351grid.59734.3cIcahn School of Medicine at Mount Sinai, 1470 Madison Ave, 10th Floor, New York, NY 10029 USA
| | - David W. Sullivan
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| | - Samuel J. Levy
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA ,0000 0004 1936 7558grid.189504.1Graduate Program for Neuroscience, Boston University, Boston, MA USA
| | - Evan A. Ruesch
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| | - Michael E. Hasselmo
- 0000 0004 1936 7558grid.189504.1Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, 7th Floor, Boston, MA 02215 USA
| |
Collapse
|
38
|
Lee CR, Najafizadeh L, Margolis DJ. Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Struct Funct 2020; 225:467-480. [PMID: 32006147 DOI: 10.1007/s00429-019-02001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from diverse brain regions that have been enabled by chronic in vivo cellular imaging. Insight into the neural basis of learning and decision-making, in particular, benefit from the ability to acquire longitudinal data from genetically identified neuronal populations, deep brain areas, and subcellular structures. We propose that combining chronic imaging with further experimental and computational innovations will advance our understanding of the neural circuit mechanisms of brain function.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
39
|
New Insights into the Avian Song System and Neuronal Control of Learned Vocalizations. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Rule ME, O'Leary T, Harvey CD. Causes and consequences of representational drift. Curr Opin Neurobiol 2019; 58:141-147. [PMID: 31569062 PMCID: PMC7385530 DOI: 10.1016/j.conb.2019.08.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 01/27/2023]
Abstract
The nervous system learns new associations while maintaining memories over long periods, exhibiting a balance between flexibility and stability. Recent experiments reveal that neuronal representations of learned sensorimotor tasks continually change over days and weeks, even after animals have achieved expert behavioral performance. How is learned information stored to allow consistent behavior despite ongoing changes in neuronal activity? What functions could ongoing reconfiguration serve? We highlight recent experimental evidence for such representational drift in sensorimotor systems, and discuss how this fits into a framework of distributed population codes. We identify recent theoretical work that suggests computational roles for drift and argue that the recurrent and distributed nature of sensorimotor representations permits drift while limiting disruptive effects. We propose that representational drift may create error signals between interconnected brain regions that can be used to keep neural codes consistent in the presence of continual change. These concepts suggest experimental and theoretical approaches to studying both learning and maintenance of distributed and adaptive population codes.
Collapse
Affiliation(s)
- Michael E Rule
- Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, Cambridge CB21PZ, United Kingdom.
| | | |
Collapse
|
41
|
Chen R, Bollu T, Goldberg JH. A Stable Neural Code for Birdsong. Neuron 2019; 98:1057-1059. [PMID: 29953865 DOI: 10.1016/j.neuron.2018.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proteins, synapses, and neural connections are in constant flux, yet motor behaviors somehow remain stable. In this issue of Neuron, Katlowitz et al. (2018) show that temporally precise neural activity driving birdsong production is stable for weeks.
Collapse
Affiliation(s)
- Ruidong Chen
- Department of Neurobiology and Behavior, W121 Corson Mudd Hall, Cornell University, Ithaca, NY 14853, USA
| | - Tejapratap Bollu
- Department of Neurobiology and Behavior, W121 Corson Mudd Hall, Cornell University, Ithaca, NY 14853, USA
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, W121 Corson Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Daliparthi VK, Tachibana RO, Cooper BG, Hahnloser RH, Kojima S, Sober SJ, Roberts TF. Transitioning between preparatory and precisely sequenced neuronal activity in production of a skilled behavior. eLife 2019; 8:43732. [PMID: 31184589 PMCID: PMC6592689 DOI: 10.7554/elife.43732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/10/2019] [Indexed: 11/13/2022] Open
Abstract
Precise neural sequences are associated with the production of well-learned skilled behaviors. Yet, how neural sequences arise in the brain remains unclear. In songbirds, premotor projection neurons in the cortical song nucleus HVC are necessary for producing learned song and exhibit precise sequential activity during singing. Using cell-type specific calcium imaging we identify populations of HVC premotor neurons associated with the beginning and ending of singing-related neural sequences. We characterize neurons that bookend singing-related sequences and neuronal populations that transition from sparse preparatory activity prior to song to precise neural sequences during singing. Recordings from downstream premotor neurons or the respiratory system suggest that pre-song activity may be involved in motor preparation to sing. These findings reveal population mechanisms associated with moving from non-vocal to vocal behavioral states and suggest that precise neural sequences begin and end as part of orchestrated activity across functionally diverse populations of cortical premotor neurons.
Collapse
Affiliation(s)
- Vamsi K Daliparthi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ryosuke O Tachibana
- Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Brenton G Cooper
- Department of Psychology, Texas Christian University, Fort Worth, United States
| | - Richard Hr Hahnloser
- Institute of Neuroinformatics, University of Zurich/ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Satoshi Kojima
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, United States
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
43
|
Variation in sequence dynamics improves maintenance of stereotyped behavior in an example from bird song. Proc Natl Acad Sci U S A 2019; 116:9592-9597. [PMID: 31015294 DOI: 10.1073/pnas.1815910116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Performing a stereotyped behavior successfully over time requires both maintaining performance quality and adapting efficiently to environmental or physical changes affecting performance. The bird song system is a paradigmatic example of learning a stereotyped behavior and therefore is a good place to study the interaction of these two goals. Through a model of bird song learning, we show how instability in neural representation of stable behavior confers advantages for adaptation and maintenance with minimal cost to performance quality. A precise, temporally sparse sequence from the premotor nucleus HVC is crucial to the performance of song in songbirds. We find that learning in the presence of sequence variations facilitates rapid relearning after shifts in the target song or muscle structure and results in decreased error with neuron loss. This robustness is due to the prevention of the buildup of correlations in the learned connectivity. In the absence of sequence variations, these correlations grow, due to the relatively low dimensionality of the exploratory variation in comparison with the number of plastic synapses. Our results suggest one would expect to see variability in neural systems executing stereotyped behaviors, and this variability is an advantageous feature rather than a challenge to overcome.
Collapse
|