1
|
Keith RE, Shen Y, Janzen-Meza JA, Abramovitz J, Antonello PC, Hameed A, Mohana Krishnan B, Antoine MW. Perirhinal cortex abnormalities impair hippocampal plasticity and learning in Scn2a, Fmr1, and Cdkl5 autism mouse models. SCIENCE ADVANCES 2025; 11:eadt0780. [PMID: 40053578 PMCID: PMC11887805 DOI: 10.1126/sciadv.adt0780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Learning and memory deficits, including spatial navigation difficulties, are common in autism spectrum disorder (ASD). Several ASD mouse models (Scn2a+/-, Fmr1-/-, Cdkl5-/-) exhibit impaired spatial learning, with these deficits often attributed to hippocampal dysfunction. However, we identify the perirhinal cortex (PRC) as a critical driver of these deficits. Cortical-wide Scn2a reduction in excitatory neurons replicated the spatial learning and long-term potentiation (LTP) impairments-a cellular correlate of learning-seen in Scn2a+/- mice, while hippocampal-wide reduction did not. PRC-specific viral-mediated Scn2a reduction in excitatory neurons decreased release probability, which consequently disrupted synaptic transmission and LTP in the hippocampus, as well as spatial learning. As PRC activity was reduced, chemogenetic activation of the PRC reversed these deficits in Scn2a+/- mice and rescued spatial learning and LTP impairments in Fmr1 and Cdkl5 knockout mice. Thus, in several genetic models of ASD, PRC abnormalities may disrupt hippocampal function to impair learning and memory.
Collapse
Affiliation(s)
- Rachel E. Keith
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yiming Shen
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph Abramovitz
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Priscila C. Antonello
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | - Baskar Mohana Krishnan
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Michelle W. Antoine
- Section on Neural Circuits, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Manns M, Juckel G, Freund N. The Balance in the Head: How Developmental Factors Explain Relationships Between Brain Asymmetries and Mental Diseases. Brain Sci 2025; 15:169. [PMID: 40002502 PMCID: PMC11852682 DOI: 10.3390/brainsci15020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute to the primary symptoms and cognitive impairments of a specific disorder. Since multiple genetic and epigenetic factors influence both the pathogenesis of mental illness and the development of brain asymmetries, it is likely that the neural developmental pathways overlap or are even causally intertwined, although the timing, magnitude, and direction of interactions may vary depending on the specific disorder. However, the underlying developmental steps and neuronal mechanisms are still unclear. In this review article, we briefly summarise what we know about structural, functional, and developmental relationships and outline hypothetical connections, which could be investigated in appropriate animal models. Altered cerebral asymmetries may causally contribute to the development of the structural and/or functional features of a disorder, as neural mechanisms that trigger neuropathogenesis are embedded in the asymmetrical organisation of the developing brain. Therefore, the occurrence and severity of impairments in neural processing and cognition probably cannot be understood independently of the development of the lateralised organisation of intra- and interhemispheric neuronal networks. Conversely, impaired cellular processes can also hinder favourable asymmetry development and lead to cognitive deficits in particular.
Collapse
Affiliation(s)
- Martina Manns
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44791 Bochum, Germany;
| | - Nadja Freund
- Research Division Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44809 Bochum, Germany;
| |
Collapse
|
3
|
Puljko B, Štracak M, Kalanj-Bognar S, Todorić Laidlaw I, Mlinac-Jerkovic K. Gangliosides and Cholesterol: Dual Regulators of Neuronal Membrane Framework in Autism Spectrum Disorder. Int J Mol Sci 2025; 26:1322. [PMID: 39941090 PMCID: PMC11818915 DOI: 10.3390/ijms26031322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with heterogeneous clinical presentation. Diagnosing ASD is complex, and the criteria for diagnosis, as well as the term ASD, have changed during the last decades. Diagnosis is made based on observation and accomplishment of specific diagnostic criteria, while a particular biomarker of ASD does not yet exist. However, studies universally report a disequilibrium in membrane lipid content, pointing to a unique neurolipid signature of ASD. This review sheds light on the possible role of cholesterol and gangliosides, complex membrane glycosphingolipids, in the development of ASD. In addition to maintaining membrane integrity, neuronal signaling, and synaptic plasticity, these lipids play a role in neurotransmitter release and calcium signaling. Evidence linking ASD to lipidome changes includes low cholesterol levels, unusual ganglioside levels, and unique metabolic profiles. ASD symptoms may be mitigated with therapeutic interventions targeting the lipid composition of membranes. However, restoring membrane equilibrium in the central nervous system remains a challenge. This review underscores the need for comprehensive research into lipid metabolism to uncover practical insights into ASD etiology and treatment as lipidomics emerges as a major area in ASD research.
Collapse
Affiliation(s)
- Borna Puljko
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Svjetlana Kalanj-Bognar
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Todorić Laidlaw
- Department for Forensic Psychiatry, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- Laboratory for Molecular Neurobiology and Neurochemistry, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (B.P.); (S.K.-B.)
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Clatot J, Thompson CH, Sotardi S, Jiang J, Trivisano M, Balestrini S, Ward DI, Ginn N, Guaragni B, Malerba L, Vakrinou A, Sherer M, Helbig I, Somarowthu A, Sisodiya SM, Ben-Shalom R, Guerrini R, Specchio N, George AL, Goldberg EM. Rare dysfunctional SCN2A variants are associated with malformation of cortical development. Epilepsia 2024. [PMID: 39707911 DOI: 10.1111/epi.18234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE SCN2A encodes the voltage-gated sodium (Na+) channel α subunit NaV1.2, which is important for the generation and forward and back propagation of action potentials in neurons. Genetic variants in SCN2A are associated with a spectrum of neurodevelopmental disorders. However, the mechanisms whereby variation in SCN2A leads to disease remains incompletely understood, and the full spectrum of SCN2A-related disorders may not be fully delineated. METHODS Here, we identified seven de novo heterozygous variants in SCN2A in eight individuals with developmental and epileptic encephalopathy (DEE) accompanied by prominent malformation of cortical development (MCD). We characterized the electrophysiological properties of Na + currents in human embryonic kidney (HEK) cells transfected with the adult (A) or neonatal (N) isoform of wild-type (WT) and variant NaV1.2 using manual and automated whole-cell voltage clamp recording. RESULTS The neonatal isoforms of all SCN2A variants studied exhibit gain of function (GoF) with a large depolarized shift in steady-state inactivation, creating a markedly enhanced window current common across all four variants tested. Computational modeling demonstrated that expression of the NaV1.2-p.Met1770Leu-N variant in a developing neocortical pyramidal neuron results in hyperexcitability. SIGNIFICANCE These results support expansion of the clinical spectrum of SCN2A-related disorders and the association of genetic variation in SCN2A with MCD, which suggests previously undescribed roles for SCN2A in fetal brain development.
Collapse
Affiliation(s)
- Jérôme Clatot
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Susan Sotardi
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jinan Jiang
- The University of California, Berkeley, California, USA
| | - Marina Trivisano
- Child Neurology, Epilepsy and Movement Disorders, Bambino Gesù, IRCCS Children's Hospital, Rome, Italy
| | - Simona Balestrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - D Isum Ward
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Natalie Ginn
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brunetta Guaragni
- Neonatology and Neonatal Intensive Care Unit, Children's Hospital, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Laura Malerba
- Unit of Child Neurology and Psychiatry, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Angeliki Vakrinou
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Mia Sherer
- Department of Neurology, The University of California, Sacramento, California, USA
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Pennsylvania, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Roy Ben-Shalom
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Renzo Guerrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Nicola Specchio
- Child Neurology, Epilepsy and Movement Disorders, Bambino Gesù, IRCCS Children's Hospital, Rome, Italy
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Pennsylvania, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Ma K, McDaniel K, Zhang D, Webb M, Qin L. Chemogenetic Inhibition of Prefrontal Cortex Ameliorates Autism-Like Social Deficits and Absence-Like Seizures in a Gene-Trap Ash1l Haploinsufficiency Mouse Model. Genes (Basel) 2024; 15:1619. [PMID: 39766886 PMCID: PMC11675260 DOI: 10.3390/genes15121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND ASH1L (absent, small, or homeotic-like 1), a histone methyltransferase, has been identified as a high-risk gene for autism spectrum disorder (ASD). We previously showed that postnatal Ash1l severe deficiency in the prefrontal cortex (PFC) of male and female mice caused seizures. However, the synaptic mechanisms underlying autism-like social deficits and seizures need to be elucidated. OBJECTIVE The goal of this study is to characterize the behavioral deficits and reveal the synaptic mechanisms in an Ash1l haploinsufficiency mouse model using a targeted gene-trap knockout (gtKO) strategy. METHOD A series of behavioral tests were used to examine behavioral deficits. Electrophysiological and chemogenetic approaches were used to examine and manipulate the excitability of pyramidal neurons in the PFC of Ash1l+/GT mice. RESULTS Ash1l+/GT mice displayed social deficits, increased self-grooming, and cognitive impairments. Epileptiform discharges were found on electroencephalograms (EEGs) of Ash1l+/GT mice, indicating absence-like seizures. Ash1l haploinsufficiency increased the susceptibility for convulsive seizures when Ash1l+/GT mice were challenged by pentylenetetrazole (PTZ, a competitive GABAA receptor antagonist). Whole-cell patch-clamp recordings showed that Ash1l haploinsufficiency increased the excitability of pyramidal neurons in the PFC by altering intrinsic neuronal properties, enhancing glutamatergic synaptic transmission, and diminishing GABAergic synaptic inhibition. Chemogenetic inhibition of pyramidal neurons in the PFC of Ash1l+/GT mice ameliorated autism-like social deficits and abolished absence-like seizures. CONCLUSIONS We demonstrated that increased neural activity in the PFC contributed to the autism-like social deficits and absence-like seizures in Ash1l+/GT mice, which provides novel insights into the therapeutic strategies for patients with ASH1L-associated ASD and epilepsy.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| | - Kylee McDaniel
- Department of Biotechnology, Mount Marty University, Yankton, SD 57078, USA;
| | - Daoqi Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| | - Maria Webb
- School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (K.M.)
| |
Collapse
|
6
|
Senko K, Saddoris KL, Baus E, Soe K, Vaughn SE. Catatonia responsive to corticosteroids in a patient with an SCN2A variant. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024; 196:e32101. [PMID: 39056510 DOI: 10.1002/ajmg.c.32101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Variants in SCN2A are a known risk factor for developing autism spectrum disorder (ASD). Catatonia is a complex neuropsychiatric syndrome, which occurs at a higher rate in individuals with ASD. Catatonia has also been associated with COVID-19 infection, though the majority of these cases are associated with increased serum inflammatory markers. We present a case of a 15-year-old female with ASD and corticosteroid responsive stuporous catatonia to explore the relationship between SCN2A variants, ASD, COVID-19 exposure, and treatment refractory catatonia. Despite a lack of significantly elevated serum or CSF inflammatory markers, this patient showed significant improvement following initiation of corticosteroid therapy. This case presents a novel approach to the work-up and treatment of catatonia in individuals with SCN2A variants independent of elevated inflammatory markers.
Collapse
Affiliation(s)
- Kimberly Senko
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Child & Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelsey L Saddoris
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Child & Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ella Baus
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Child & Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine Soe
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Child & Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Samuel E Vaughn
- Division of Child & Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
8
|
Jia L, Li M, Pachernegg S, Sedo A, Jancovski N, Burbano LE, Dalby K, Nemiroff A, Reid C, Maljevic S, Petrou S. Variant-specific in vitro neuronal network phenotypes and drug sensitivity in SCN2A developmental and epileptic encephalopathy. J Neurochem 2024; 168:3950-3961. [PMID: 38544375 DOI: 10.1111/jnc.16103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/27/2024]
Abstract
De novo variants in the NaV1.2 voltage-gated sodium channel gene SCN2A are among the major causes of developmental and epileptic encephalopathies (DEE). Based on their biophysical impact on channel conductance and gating, SCN2A DEE variants can be classified into gain-of-function (GoF) or loss-of-function (LoF). Clinical and functional data have linked early seizure onset DEE to the GoF SCN2A variants, whereas late seizure onset DEE is associated with the loss of SCN2A function. This study aims to assess the impact of GoF and LoF SCN2A variants on cultured neuronal network activity and explore their modulation by selected antiseizure medications (ASM). To this end, primary cortical cultures were generated from two knock-in mouse lines carrying variants corresponding to human GoF SCN2A p.R1882Q and LoF p.R853Q DEE variant. In vitro neuronal network activity and responses to ASM were analyzed using multielectrode array (MEA) between 2 and 4 weeks in culture. The SCN2A p.R1882Q neuronal cultures showed significantly greater mean firing and burst firing. Their network synchronicity was also higher. In contrast, the SCN2A p.R853Q cultures showed lower mean firing rate, and burst firing events were less frequent. The network synchronicity was also lower. Phenytoin and levetiracetam reduced the excitability of GoF cultures, while retigabine showed differential and potentially beneficial effects on cultures with both GoF and LoF variants. We conclude that in vitro neuronal networks harboring SCN2A GoF or LoF DEE variants present with distinctive phenotypes and responses to ASM.
Collapse
Affiliation(s)
- Linghan Jia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Svenja Pachernegg
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nikola Jancovski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisseth Estefania Burbano
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelley Dalby
- RogCon Biosciences, San Diego, California, USA
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Alex Nemiroff
- RogCon Biosciences, San Diego, California, USA
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Christopher Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- RogCon Biosciences, San Diego, California, USA
- Praxis Precision Medicines, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
10
|
Thomas BR, Ludwig NN, Pelletier D, Bauer M, Hommer R, Smith-Hicks C, O'Connor JT. Cortical Vision Impairment (CVI)-informed assessment and treatment of challenging behavior in a child with SCN2A-related disorder. J Neurodev Disord 2024; 16:66. [PMID: 39609790 PMCID: PMC11603671 DOI: 10.1186/s11689-024-09580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
This report presents results of parent-implemented behavioral treatments for a child with cortical visual impairment (CVI), intellectual disability (ID), epilepsy, and autism spectrum disorder (ASD) associated with a pathogenic variant in the SCN2A gene (i.e., SCN2A-Related Disorder). Treatment evaluations were informed by combined results of functional behavior assessment (FBA) and functional vision assessment (FVA) which yielded CVI-related accommodations. The treatment of escape-maintained challenging behavior involved the evaluation of behavioral prompting strategies in accordance with CVI-related accommodations, extinction (EXT), and differential reinforcement modifications. The treatment for behavior problems maintained by access to food (tangible-edible) included functional communication training (FCT), EXT, and schedule thinning with schedule-correlated visual signals. Overall, integrating child-specific CVI-related accommodations was essential for developing effective behavioral interventions for this child. FVAs are accessible and practical for uptake by behavior analysts in vision-informed assessment and treatment of challenging behavior.
Collapse
Affiliation(s)
- Benjamin R Thomas
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, USA.
- Center for Autism Spectrum Disorders, Nationwide Children's Hospital, 189 West Schrock Rd, Westerville, OH, 43081, USA.
| | - Natasha N Ludwig
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle Pelletier
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Melanie Bauer
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Rebecca Hommer
- Connections Beyond Sight and Sound, University of Maryland, College Park, MD, USA
| | - Constance Smith-Hicks
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia T O'Connor
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Mossa A, Dierdorff L, Lukin J, Park Y, Fiorenzani C, Akpinar Z, Garcia-Forn M, De Rubeis S. Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624865. [PMID: 39605424 PMCID: PMC11601590 DOI: 10.1101/2024.11.22.624865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
DDX3X is an X-linked RNA helicases that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females. Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA translation. Female neurons display higher levels of ribosomal proteins and larger nucleoli, and these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic outgrowth in a sex- and dose-dependent manner in both female and male neurons, and dendritic spine development only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Collapse
|
12
|
Thapliyal A, Suri K, Chauhan R, Murugan NA, Maurya SK. Unveiling the role of phytochemicals in autism spectrum disorder by employing network pharmacology and molecular dynamics simulation. Metab Brain Dis 2024; 40:34. [PMID: 39570464 DOI: 10.1007/s11011-024-01467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024]
Abstract
Autism Spectrum Disorder (ASD) comprises a myriad of disorders with vast pathologies, aetiologies, and involvement of genetic and environmental risk factors. Given the polygenic aspect of ASD, targeting several genes/proteins responsible for pathogenesis at once might prove advantageous in its remediation. Various phytochemicals have been proven to possess neuroprotective, anti-inflammatory, and antioxidant properties by alleviating symptoms and targeting a complex network of genes/proteins related to disease pathology. However, the effects of many of these phytochemicals on ASD are enigmatic, and their molecular targets and molecular mechanisms are still elusive. Here, we provide a comprehensive comparative study on the therapeutic potential of 6 phytochemicals viz. Cannabidiol, Crocetin, Epigallocatechin-3-gallate, Fisetin, Quercetin, and Resveratrol based on their neuroprotective properties in managing ASD. We aimed to identify and target a network of core proteins in the pathology of ASD via phytochemicals using network pharmacology, molecular docking, and simulation studies. The methodology includes screening genes/proteins implicated in ASD as targets of each phytochemical, followed by network construction using Protein-Protein Interactions, Gene Ontology, and enrichment analysis. The constructed network was further narrowed down to the hub genes in the network, followed by their spatio-temporal analysis, molecular docking, and molecular dynamics simulation. 6 core genes were obtained for ASD, 3 of which are directly involved in disease pathogenesis. The study provides a set of novel genes that phytochemicals can target to ameliorate and regulate ASD pathogenesis. Cannabidiol can inhibit ABCG2, MAOB, and PDE4B, Resveratrol can target ABCB1, and Quercetin can regulate AKR1C4 and XDH. This study demonstrated the potential of phytochemicals to target and regulate ABCG2, ABCB1, AKR1C4, MAOB, PDE4B, and XDH, which in turn modulate the dysfunctional network present in the ASD pathology and provide therapeutic potential in the management of ASD.
Collapse
Affiliation(s)
- Anurag Thapliyal
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Kapali Suri
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
| | - Rudrakshi Chauhan
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
- Center for Excellence in Healthcare, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
13
|
Scott KE, Hermosillo Arrieta MF, Williams AJ. Deciphering SCN2A: A comprehensive review of rodent models of Scn2a dysfunction. ARXIV 2024:arXiv:2411.10421v1. [PMID: 39606727 PMCID: PMC11601800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Affiliation(s)
- Katelin E.J Scott
- Interdisciplinary Neuroscience Graduate Program
- Iowa Neuroscience Institute
- Department of Psychiatry
| | | | | |
Collapse
|
14
|
Ma K, Zhang D, McDaniel K, Webb M, Newton SS, Lee FS, Qin L. A sexually dimorphic signature of activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the prefrontal cortex. Front Cell Neurosci 2024; 18:1496930. [PMID: 39569070 PMCID: PMC11576208 DOI: 10.3389/fncel.2024.1496930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with strong genetic heterogeneity and more prevalent in males than females. We and others hypothesize that diminished activity-dependent neural signaling is a common molecular pathway dysregulated in ASD caused by diverse genetic mutations. Brain-derived neurotrophic factor (BDNF) is a key growth factor mediating activity-dependent neural signaling in the brain. A common single nucleotide polymorphism (SNP) in the pro-domain of the human BDNF gene that leads to a methionine (Met) substitution for valine (Val) at codon 66 (Val66Met) significantly decreases activity-dependent BDNF release without affecting basal BDNF secretion. By using mice with genetic knock-in of this human BDNF methionine (Met) allele, our previous studies have shown differential severity of autism-like social deficits in male and female BDNF+/Met mice. Pyramidal neurons are the principal neurons in the prefrontal cortex (PFC), a key brain region for social behaviors. Here, we investigated the impact of diminished activity-dependent BDNF signaling on the intrinsic excitability of pyramidal neurons in the PFC. Surprisingly, diminished activity-dependent BDNF signaling significantly increased the intrinsic excitability of pyramidal neurons in male mice, but not in female mice. Notably, significantly decreased thresholds of action potentials were observed in male BDNF+/Met mice, but not in female BDNF+/Met mice. Voltage-clamp recordings revealed that the sodium current densities were significantly increased in the pyramidal neurons of male BDNF+/Met mice, which were mediated by increased transcriptional level of Scn2a encoding sodium channel NaV 1.2. Medium after hyperpolarization (mAHP), another important parameter to determine intrinsic neuronal excitability, is strongly associated with neuronal firing frequency. Further, the amplitudes of mAHP were significantly decreased in male BDNF+/Met mice only, which were mediated by the downregulation of Kcnn2 encoding small conductance calcium-activated potassium channel 2 (SK2). This study reveals a sexually dimorphic signature of diminished activity-dependent BDNF signaling on the intrinsic neuronal excitability of pyramidal neurons in the PFC, which provides possible cellular and molecular mechanisms underpinning the sex differences in idiopathic ASD patients and human autism victims who carry BDNF Val66Met SNP.
Collapse
Affiliation(s)
- Kaijie Ma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Daoqi Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kylee McDaniel
- Department of Biotechnology, Mount Marty University, Yankton, SD, United States
| | - Maria Webb
- School of Health Sciences, University of South Dakota, Vermillion, SD, United States
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Francis S. Lee
- Department of Psychiatry, Department of Pharmacology, Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, United States
| | - Luye Qin
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
15
|
Ghosh A, Nadella N, Monaghan-Nichols AP, Chu XP. Gene therapy as an emerging treatment for Scn2a mutation-induced autism spectrum disorders. FUNDAMENTAL RESEARCH 2024; 4:1401-1404. [PMID: 39734530 PMCID: PMC11670658 DOI: 10.1016/j.fmre.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurological and developmental disorder that affects how a person acts, communicates, learns, and interacts with others. It affects the structure and function of the brain and nervous system. How ASD is caused remains uncertain and there is no effective treatment for this disorder. Searching for new technologies for treatment of this disorder becomes a priority. Genetic alterations have been implicated in the generation of this disorder. One of the most promising genes for potential treatment of ASD is sodium voltage-gated channel alpha subunit 2 gene (SCN2A). SCN2A, encoding the neuronal voltage-gated Na+ channel NaV1.2, is one of the most commonly affected loci linked to ASD. Here, we discuss the implications of loss of function (LOF) mutations in SCN2A and the potential efficacy of gene therapy by highlighting the usage of CRISPR restoration of various Scn2a-insufficiencies. Various therapeutics exist that can be extrapolated to address the needs of Scn2a LOF induced ASD. The current treatment that exists for ASD can be seen as outdated in comparison to the advent of new technologies that build upon CRISPR. Due to complications in treatment of ASD, genetic therapies may induce alterations such as insertion-deletion mutations, which may lead to further complications along with a negative public outlook on CRISPR technologies. Gene therapy can be applied to ASD but much work is yet to be done in order to address both biochemical and ethical considerations.
Collapse
Affiliation(s)
- Arkadeep Ghosh
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, United States
| | - Nitin Nadella
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, United States
| | - A Paula Monaghan-Nichols
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, United States
| | - Xiang-Ping Chu
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, United States
| |
Collapse
|
16
|
Shabani K, Krupp J, Lemesre E, Lévy N, Tran H. Voltage-Gated Ion Channel Compensatory Effect in DEE: Implications for Future Therapies. Cells 2024; 13:1763. [PMID: 39513870 PMCID: PMC11544952 DOI: 10.3390/cells13211763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs. In this context, genes encoding voltage-gated ion channels (VGCs) play a significant role, and part of the large phenotypic variability observed in DEE patients carrying VGC mutations could be explained by the presence of genetic modifier alleles that can compensate for these mutations. This review will focus on the current knowledge of the compensatory effect of DEE-associated voltage-gated ion channels and their therapeutic implications in DEE. We will enter into detailed considerations regarding the sodium channels SCN1A, SCN2A, and SCN8A; the potassium channels KCNA1, KCNQ2, and KCNT1; and the calcium channels CACNA1A and CACNA1G.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| | | | | | | | - Helene Tran
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| |
Collapse
|
17
|
Jones SP, O'Neill N, Carpenter JC, Muggeo S, Colasante G, Kullmann DM, Lignani G. Early developmental alterations of CA1 pyramidal cells in Dravet syndrome. Neurobiol Dis 2024; 201:106688. [PMID: 39368670 DOI: 10.1016/j.nbd.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024] Open
Abstract
Dravet Syndrome (DS) is most often caused by heterozygous loss-of-function mutations in the voltage-gated sodium channel gene SCN1A (Nav1.1), resulting in severe epilepsy and neurodevelopmental impairment thought to be cause by reduced interneuron excitability. However, recent studies in mouse models suggest that interneuron dysfunction alone does not completely explain all the cellular and network impairments seen in DS. Here, we investigated the development of the intrinsic, synaptic, and network properties of CA1 pyramidal cells in a DS model prior to the appearance of overt seizures. We report that CA1 pyramidal cell development is altered by heterozygous reduction of Scn1a, and propose that this is explained by a period of reduced intrinsic excitability in early postnatal life, during which Scn1a is normally expressed in hippocampal pyramidal cells. We also use a novel ex vivo model of homeostatic plasticity to show an instability in homeostatic response during DS epileptogenesis. This study provides evidence for the early effects of Scn1a haploinsufficiency in pyramidal cells in contributing to the pathophysiology of DS.
Collapse
Affiliation(s)
- Steffan P Jones
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Nathanael O'Neill
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Sharon Muggeo
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Gaia Colasante
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
18
|
Kurekci F, Akif Kilic M, Akbas S, Avci R, Oney C, Dilruba Aslanger A, Maras Genc H, Aydinli N, Pembegul Yildiz E. Voltage-gated sodium channel epilepsies in a tertiary care center: Phenotypic spectrum with correlation to predicted functional effects. Epilepsy Behav 2024; 158:109930. [PMID: 38964184 DOI: 10.1016/j.yebeh.2024.109930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Variants in sodium channel genes (SCN) are strongly associated with epilepsy phenotypes. Our aim in this study to evaluate the genotype and phenotype correlation of patients with SCN variants in our tertiary care center. METHODS In this retrospective study, patients with SCN variants and epilepsy who were followed up at our clinic between 2018 and 2022 were evaluated. Our study discussed the demographics of the patients, the seizure types, the age of seizure onset, the SCN variants, the domains and the functions of the variants, the magnetic resonance imaging findings, the motor, cognitive, and psychiatric comorbidities, and the response to anti-seizure medication. Genetic testing was conducted using a next-generation sequencing gene panel (epilepsy panel) or a whole-exome sequencing. For evaluating variant function, we used a prediction tool (https://funnc.shinyapps.io/shinyappweb/ site). To assess protein domains, we used the PER viewer (http://per.broadinstitute.org/). RESULTS Twenty-three patients with SCN variants and epilepsy have been identified. Sixteen patients had variants in the SCN1A, six patients had variants in the SCN2A, and one patient had a variant in the SCN3A. Two novel SCN1A variants and two novel SCN2A variants were identified. The analysis revealed 14/23 missense, 6/23 nonsense, 2/23 frameshift, and 1/23 splice site variants in the SCN. There are seven variants predicted to be gain-of-function and 13 predicted to be loss-of-function. Among 23 patients; 11 had Dravet Syndrome, 6 had early infantile developmental and epileptic encephalopathy, three had genetic epilepsy with febrile seizures plus spectrum disorder, one had self-limited familial neonatal-infantile epilepsy, one had self-limited infantile epilepsy and one had infantile childhood development epileptic encephalopathy. CONCLUSION Our cohort consists of mainly SCN1 variants, most of them were predicted to be loss of function. Dravet syndrome was the most common phenotype. The prediction tool used in our study demonstrated overall compatibility with clinical findings. Due to the diverse clinical manifestations of variant functions, it may assist in guiding medication selection and predicting outcomes. We believe that such a tool will help the clinician in both prognosis prediction and solving therapeutic challenges in this group where refractory seizures are common.
Collapse
Affiliation(s)
- Fulya Kurekci
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye.
| | - Mehmet Akif Kilic
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Sinan Akbas
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Rıdvan Avci
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Ceyda Oney
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Ayca Dilruba Aslanger
- Department of Medical Genetics, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Hulya Maras Genc
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Nur Aydinli
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| | - Edibe Pembegul Yildiz
- Department of Pediatrics, Division of Pediatric Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkiye
| |
Collapse
|
19
|
Kim JH, Bae HG, Wu WC, Nip K, Gould E. SCN2A-linked myelination deficits and synaptic plasticity alterations drive auditory processing disorders in ASD. RESEARCH SQUARE 2024:rs.3.rs-4925935. [PMID: 39257993 PMCID: PMC11384822 DOI: 10.21203/rs.3.rs-4925935/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by complex sensory processing deficits. A key unresolved question is how alterations in neural connectivity and communication translate into the behavioral manifestations seen in ASD. Here, we investigate how oligodendrocyte dysfunction alters myelin plasticity and neuronal activity, leading to auditory processing disorder associated with ASD. We focus on the SCN2A gene, an ASD-risk factor, to understand its role in myelination and neural processing within the auditory nervous system. Through transcriptional profiling, we identified alterations in the expression of myelin-associated genes in Scn2a conditional knockout mice, highlighting the cellular consequences engendered by Scn2a deletion in oligodendrocytes. The results reveal a nuanced interplay between oligodendrocytes and axons, where Scn2a deletion causes alterations in the intricate process of myelination. This disruption instigates changes in axonal properties, presynaptic excitability, and synaptic plasticity at the single cell level. Furthermore, oligodendrocyte-specific Scn2a deletion compromises the integrity of neural circuitry within auditory pathways, leading to auditory hypersensitivity. Our findings reveal a novel pathway linking myelin deficits to synaptic activity and sensory abnormalities in ASD.
Collapse
|
20
|
Dong J, Zhu XN, Zeng PM, Cao DD, Yang Y, Hu J, Luo ZG. A hominoid-specific signaling axis regulating the tempo of synaptic maturation. Cell Rep 2024; 43:114548. [PMID: 39052482 DOI: 10.1016/j.celrep.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Human cortical neurons (hCNs) exhibit high dendritic complexity and synaptic density, and the maturation process is greatly protracted. However, the molecular mechanism governing these specific features remains unclear. Here, we report that the hominoid-specific gene TBC1D3 promotes dendritic arborization and protracts the pace of synaptogenesis. Ablation of TBC1D3 in induced hCNs causes reduction of dendritic growth and precocious synaptic maturation. Forced expression of TBC1D3 in the mouse cortex protracts synaptic maturation while increasing dendritic growth. Mechanistically, TBC1D3 functions via interaction with MICAL1, a monooxygenase that mediates oxidation of actin filament. At the early stage of differentiation, the TBC1D3/MICAL1 interaction in the cytosol promotes dendritic growth via F-actin oxidation and enhanced actin dynamics. At late stages, TBC1D3 escorts MICAL1 into the nucleus and downregulates the expression of genes related with synaptic maturation through interaction with the chromatin remodeling factor ATRX. Thus, this study delineates the molecular mechanisms underlying human neuron development.
Collapse
Affiliation(s)
- Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Dong-Dong Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
21
|
Gao Y, Shonai D, Trn M, Zhao J, Soderblom EJ, Garcia-Moreno SA, Gersbach CA, Wetsel WC, Dawson G, Velmeshev D, Jiang YH, Sloofman LG, Buxbaum JD, Soderling SH. Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions. Nat Commun 2024; 15:6801. [PMID: 39122707 PMCID: PMC11316102 DOI: 10.1038/s41467-024-51037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
One of the main drivers of autism spectrum disorder is risk alleles within hundreds of genes, which may interact within shared but unknown protein complexes. Here we develop a scalable genome-editing-mediated approach to target 14 high-confidence autism risk genes within the mouse brain for proximity-based endogenous proteomics, achieving the identification of high-specificity spatial proteomes. The resulting native proximity proteomes are enriched for human genes dysregulated in the brain of autistic individuals, and reveal proximity interactions between proteins from high-confidence risk genes with those of lower-confidence that may provide new avenues to prioritize genetic risk. Importantly, the datasets are enriched for shared cellular functions and genetic interactions that may underlie the condition. We test this notion by spatial proteomics and CRISPR-based regulation of expression in two autism models, demonstrating functional interactions that modulate mechanisms of their dysregulation. Together, these results reveal native proteome networks in vivo relevant to autism, providing new inroads for understanding and manipulating the cellular drivers underpinning its etiology.
Collapse
Affiliation(s)
- Yudong Gao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Daichi Shonai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Matthew Trn
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jieqing Zhao
- Department of Biology, Duke University, Durham, NC, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | | | - Charles A Gersbach
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Geraldine Dawson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Laura G Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
Feierman ER, Louzon S, Prescott NA, Biaco T, Gao Q, Qiu Q, Choi K, Palozola KC, Voss AJ, Mehta SD, Quaye CN, Lynch KT, Fuccillo MV, Wu H, David Y, Korb E. Histone variant H2BE enhances chromatin accessibility in neurons to promote synaptic gene expression and long-term memory. Mol Cell 2024; 84:2822-2837.e11. [PMID: 39025074 PMCID: PMC11316635 DOI: 10.1016/j.molcel.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Histone proteins affect gene expression through multiple mechanisms, including through exchange with histone variants. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. Most notably, widely expressed variants of H2B remain elusive. We applied recently developed antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters, and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Further, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a mechanism linking histone variants to chromatin accessibility, transcriptional regulation, neuronal function, and memory. This work further identifies a widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.
Collapse
Affiliation(s)
- Emily R Feierman
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sean Louzon
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas A Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Qingzeng Gao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyuhyun Choi
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine C Palozola
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Anna J Voss
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shreya D Mehta
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Camille N Quaye
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine T Lynch
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Erica Korb
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Luo Y, Wang L, Cao Y, Shen Y, Gu Y, Wang L. Reduced excitatory activity in the developing mPFC mediates a PV H-to-PV L transition and impaired social cognition in autism spectrum disorders. Transl Psychiatry 2024; 14:325. [PMID: 39107319 PMCID: PMC11303698 DOI: 10.1038/s41398-024-03043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the neuropathogenesis of impaired social cognition in autism spectrum disorders (ASD) is challenging. Altered cortical parvalbumin-positive (PV+) interneurons have been consistently observed in ASD, but their roles and the underlying mechanisms remain poorly understood. In our study, we observed a downward-shifted spectrum of PV expression in the developing medial prefrontal cortex (mPFC) of ASD mouse models due to decreased activity of PV+ neurons. Surprisingly, chemogenetically suppressing PV+ neuron activity during postnatal development failed to induce ASD-like behaviors. In contrast, lowering excitatory activity in the developing mPFC not only dampened the activity state and PV expression of individual PV+ neurons, but also replicated ASD-like social deficits. Furthermore, enhancing excitation, but not PV+ interneuron-mediated inhibition, rescued social deficits in ASD mouse models. Collectively, our findings propose that reduced excitatory activity in the developing mPFC may serve as a shared local circuitry mechanism triggering alterations in PV+ interneurons and mediating impaired social functions in ASD.
Collapse
Affiliation(s)
- Yujian Luo
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yirong Cao
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China.
| | - Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Wang Y, Yang H, Li N, Wang L, Guo C, Ma W, Liu S, Peng C, Chen J, Song H, Chen H, Ma X, Yi J, Lian J, Kong W, Dong J, Tu X, Shah M, Tian X, Huang Z. A Novel Ubiquitin Ligase Adaptor PTPRN Suppresses Seizure Susceptibility through Endocytosis of Na V1.2 Sodium Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400560. [PMID: 38874331 PMCID: PMC11304301 DOI: 10.1002/advs.202400560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hui Yang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Na Li
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Wang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chang Guo
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weining Ma
- Department of NeurologyShengjing Hospital Affiliated to China Medical UniversityShenyang110022China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Chao Peng
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jiexin Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Huifang Song
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Hedan Chen
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingyun Yi
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jingjing Lian
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Weikaixin Kong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Dong
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Mala Shah
- UCL School of PharmacyUniversity College LondonLondonWC1N 1AXUK
| | - Xin Tian
- Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing Key Laboratory of NeurologyChongqing400016China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic DrugsDepartment of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
25
|
Akaboshi S, Okanishi T, Iwasaki M, Saito T, Maegaki Y. Microduplication of SCN2A Gene in a Child with Drug-Resistant Epilepsy and Developmental/Epileptic Encephalopathy with Spike Wave Activation During Sleep. Yonago Acta Med 2024; 67:242-245. [PMID: 39176185 PMCID: PMC11335920 DOI: 10.33160/yam.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 08/24/2024]
Abstract
Duplications in chromosomal locus 2q24.3 region that solely involve SCN2A remain less explored. Favorable outcomes have been reported in patients with SCN2A gene duplications in cases of mild epilepsy with onset during the neonatal to infantile period, or in infantile epileptic spasm syndrome. Herein, we report a case of microduplications, including SCN2A gene duplications, wherein developmental/epileptic encephalopathy with spike-wave activation during sleep (D/EE-SWAS) developed. A 3-day-old girl without birth complications exhibited tonic seizures in her right limb with eye deviation to the right. She developed drug-resistant seizures, including atypical absence seizures, at 1 year and 6 months old. Despite achieving seizure freedom at 9 years old, she experienced academic difficulties. D/EE-SWAS was diagnosed based on the long-term electroencephalogram findings. Following a corpus callosotomy at 11 years old, her academic performance and emotional expression improved. Comprehensive genetic analysis at 10 years old revealed a microduplication spanning approximately 300 kb within the 2q24.3 region, which included a segment of the SCN2A gene and an adjacent CSRNP3 gene. In conclusion, we reported a rare case of duplications solely encompassing SCN2A. Corpus callosotomy resolved the D/EE-SWAS.
Collapse
Affiliation(s)
- Shun Akaboshi
- Division of Pediatrics, Department of Pediatrics, Tottori Prefectural Health Center Hospital, Kurayoshi 682-0804, Japan
| | - Tohru Okanishi
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Masaki Iwasaki
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Takashi Saito
- Department of Child Neurosurgery, National Center of Neurology and Psychiatry, Tokyo187-8551, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
26
|
Wu J, Zhang J, Chen X, Wettschurack K, Que Z, Deming BA, Olivero-Acosta MI, Cui N, Eaton M, Zhao Y, Li SM, Suzuki M, Chen I, Xiao T, Halurkar MS, Mandal P, Yuan C, Xu R, Koss WA, Du D, Chen F, Wu LJ, Yang Y. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. Mol Psychiatry 2024; 29:2424-2437. [PMID: 38499656 DOI: 10.1038/s41380-024-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Kyle Wettschurack
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Brody A Deming
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ningren Cui
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuanrui Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Sophia M Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Suzuki
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manasi S Halurkar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Purba Mandal
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
27
|
Hudac CM, Dommer K, Mahony M, DesChamps TD, Cairney B, Earl R, Kurtz-Nelson EC, Bradshaw J, Bernier RA, Eichler EE, Neuhaus E, Webb SJ, Shic F. Visual and auditory attention in individuals with DYRK1A and SCN2A disruptive variants. Autism Res 2024:10.1002/aur.3202. [PMID: 39080977 PMCID: PMC11779982 DOI: 10.1002/aur.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
This preliminary study sought to assess biomarkers of attention using electroencephalography (EEG) and eye tracking in two ultra-rare monogenic populations associated with autism spectrum disorder (ASD). Relative to idiopathic ASD (n = 12) and neurotypical comparison (n = 49) groups, divergent attention profiles were observed for the monogenic groups, such that individuals with DYRK1A (n = 9) exhibited diminished auditory attention condition differences during an oddball EEG paradigm whereas individuals with SCN2A (n = 5) exhibited diminished visual attention condition differences noted by eye gaze tracking when viewing social interactions. Findings provide initial support for alignment of auditory and visual attention markers in idiopathic ASD and neurotypical development but not monogenic groups. These results support ongoing efforts to develop translational ASD biomarkers within the attention domain.
Collapse
Affiliation(s)
- Caitlin M. Hudac
- Department of Psychology, University of South Carolina, Columbia, SC USA
- Center for Autism and Neurodevelopment (CAN) Research Center, University of South Carolina, Columbia, SC USA
- Institute for Mind and Brain, University of South Carolina, Columbia, SC USA
| | - Kelsey Dommer
- Seattle Children’s Research Institute, Seattle, WA USA
| | | | - Trent D. DesChamps
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Brianna Cairney
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | | | - Jessica Bradshaw
- Department of Psychology, University of South Carolina, Columbia, SC USA
- Center for Autism and Neurodevelopment (CAN) Research Center, University of South Carolina, Columbia, SC USA
- Institute for Mind and Brain, University of South Carolina, Columbia, SC USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Sara Jane Webb
- Seattle Children’s Research Institute, Seattle, WA USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| | - Frederick Shic
- Seattle Children’s Research Institute, Seattle, WA USA
- Department of Pediatrics, University of Washington, Seattle WA USA
| |
Collapse
|
28
|
Singh AK, Singh J, Goode NA, Laezza F. Crosstalk among WEE1 Kinase, AKT, and GSK3 in Nav1.2 Channelosome Regulation. Int J Mol Sci 2024; 25:8069. [PMID: 39125637 PMCID: PMC11311446 DOI: 10.3390/ijms25158069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1-critical to the cell cycle-selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor's opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase-in concert with the AKT/GSK3 pathway-in regulating the Nav1.2 channelosome.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (J.S.); (N.A.G.); (F.L.)
| | | | | | | |
Collapse
|
29
|
Feierman ER, Louzon S, Prescott NA, Biaco T, Gao Q, Qiu Q, Choi K, Palozola KC, Voss AJ, Mehta SD, Quaye CN, Lynch KT, Fuccillo MV, Wu H, David Y, Korb E. Histone variant H2BE enhances chromatin accessibility in neurons to promote synaptic gene expression and long-term memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.575103. [PMID: 38352334 PMCID: PMC10862743 DOI: 10.1101/2024.01.29.575103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Regulation of histone proteins affects gene expression through multiple mechanisms including exchange with histone variants. However, widely expressed variants of H2B remain elusive. Recent findings link histone variants to neurological disorders, yet few are well studied in the brain. We applied new tools including novel antibodies, biochemical assays, and sequencing approaches to reveal broad expression of the H2B variant H2BE, and defined its role in regulating chromatin structure, neuronal transcription, and mouse behavior. We find that H2BE is enriched at promoters and a single unique amino acid allows it to dramatically enhance chromatin accessibility. Lastly, we show that H2BE is critical for synaptic gene expression and long-term memory. Together, these data reveal a novel mechanism linking histone variants to chromatin regulation, neuronal function, and memory. This work further identifies the first widely expressed H2B variant and uncovers a single histone amino acid with profound effects on genomic structure.
Collapse
Affiliation(s)
- Emily R. Feierman
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sean Louzon
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nicholas A. Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Qingzeng Gao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Qi Qiu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kyuhyun Choi
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katherine C. Palozola
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Anna J. Voss
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Shreya D. Mehta
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Camille N. Quaye
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katherine T. Lynch
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Marc V. Fuccillo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Tri-institutional PhD Program in Chemical Biology, New York, NY
| | - Erica Korb
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
30
|
Hudac CM, Friedman NR, Ward VR, Estreicher RE, Dorsey GC, Bernier RA, Kurtz-Nelson EC, Earl RK, Eichler EE, Neuhaus E. Characterizing Sensory Phenotypes of Subgroups with a Known Genetic Etiology Pertaining to Diagnoses of Autism Spectrum Disorder and Intellectual Disability. J Autism Dev Disord 2024; 54:2386-2401. [PMID: 37031308 PMCID: PMC10083138 DOI: 10.1007/s10803-023-05897-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 04/10/2023]
Abstract
We aimed to identify unique constellations of sensory phenotypes for genetic etiologies associated with diagnoses of autism spectrum disorder (ASD) and intellectual disability (ID). Caregivers reported on sensory behaviors via the Sensory Profile for 290 participants (younger than 25 years of age) with ASD and/or ID diagnoses, of which ~ 70% have a known pathogenic genetic etiology. Caregivers endorsed poor registration (i.e., high sensory threshold, passive behaviors) for all genetic subgroups relative to an "idiopathic" comparison group with an ASD diagnosis and without a known genetic etiology. Genetic profiles indicated prominent sensory seeking in ADNP, CHD8, and DYRK1A, prominent sensory sensitivities in SCN2A, and fewer sensation avoidance behaviors in GRIN2B (relative to the idiopathic ASD comparison group).
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychology, University of South Carolina, 1800 Gervais Street, Columbia, SC, 29201, USA.
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA.
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC, USA.
| | - Nicole R Friedman
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Victoria R Ward
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Rachel E Estreicher
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Grace C Dorsey
- Center for Youth Development and Intervention, University of Alabama, Tuscaloosa, AL, USA
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
31
|
Quinn S, Zhang N, Fenton TA, Brusel M, Muruganandam P, Peleg Y, Giladi M, Haitin Y, Lerche H, Bassan H, Liu Y, Ben-Shalom R, Rubinstein M. Complex biophysical changes and reduced neuronal firing in an SCN8A variant associated with developmental delay and epilepsy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167127. [PMID: 38519006 DOI: 10.1016/j.bbadis.2024.167127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.
Collapse
Affiliation(s)
- Shir Quinn
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nan Zhang
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Timothy A Fenton
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Marina Brusel
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Preethi Muruganandam
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Haim Bassan
- Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| | - Roy Ben-Shalom
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States.
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
32
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. Neuron 2024; 112:1444-1455.e5. [PMID: 38412857 PMCID: PMC11065582 DOI: 10.1016/j.neuron.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Bae HG, Wu WC, Nip K, Gould E, Kim JH. Scn2a deletion disrupts oligodendroglia function: Implication for myelination, neural circuitry, and auditory hypersensitivity in ASD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589242. [PMID: 38659965 PMCID: PMC11042360 DOI: 10.1101/2024.04.15.589242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by a complex etiology, with genetic determinants significantly influencing its manifestation. Among these, the Scn2a gene emerges as a pivotal player, crucially involved in both glial and neuronal functionality. This study elucidates the underexplored roles of Scn2a in oligodendrocytes, and its subsequent impact on myelination and auditory neural processes. The results reveal a nuanced interplay between oligodendrocytes and axons, where Scn2a deletion causes alterations in the intricate process of myelination. This disruption, in turn, instigates changes in axonal properties and neuronal activities at the single cell level. Furthermore, oligodendrocyte-specific Scn2a deletion compromises the integrity of neural circuitry within auditory pathways, leading to auditory hypersensitivity-a common sensory abnormality observed in ASD. Through transcriptional profiling, we identified alterations in the expression of myelin-associated genes, highlighting the cellular consequences engendered by Scn2a deletion. In summary, the findings provide unprecedented insights into the pathway from Scn2a deletion in oligodendrocytes to sensory abnormalities in ASD, underscoring the integral role of Scn2a -mediated myelination in auditory responses. This research thereby provides novel insights into the intricate tapestry of genetic and cellular interactions inherent in ASD.
Collapse
|
34
|
Eltokhi A, Lundstrom BN, Li J, Zweifel LS, Catterall WA, Gamal El-Din TM. Pathogenic gating pore current conducted by autism-related mutations in the Na V1.2 brain sodium channel. Proc Natl Acad Sci U S A 2024; 121:e2317769121. [PMID: 38564633 PMCID: PMC11009634 DOI: 10.1073/pnas.2317769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Brian Nils Lundstrom
- Department of Neurology in the Division of Epilepsy, Mayo Clinic, Rochester, MN55905
| | - Jin Li
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA98195
| | | | | |
Collapse
|
35
|
Nelson AD, Catalfio AM, Gupta JP, Min L, Caballero-Florán RN, Dean KP, Elvira CC, Derderian KD, Kyoung H, Sahagun A, Sanders SJ, Bender KJ, Jenkins PM. Physical and functional convergence of the autism risk genes Scn2a and Ank2 in neocortical pyramidal cell dendrites. Neuron 2024; 112:1133-1149.e6. [PMID: 38290518 PMCID: PMC11097922 DOI: 10.1016/j.neuron.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/26/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.
Collapse
Affiliation(s)
- Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kendall P Dean
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carina C Elvira
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly D Derderian
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Atehsa Sahagun
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Chen GT, Nair G, Osorio AJ, Holley SM, Ghassemzadeh K, Gonzalez J, Lu C, Sanjana NE, Cepeda C, Geschwind DH. Enhancer-targeted CRISPR-Activation Rescues Haploinsufficient Autism Susceptibility Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584921. [PMID: 38559217 PMCID: PMC10980046 DOI: 10.1101/2024.03.13.584921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Autism Spectrum Disorder (ASD) is a highly heritable condition with diverse clinical presentations. Approximately 20% of ASD's genetic susceptibility is imparted by de novo mutations of major effect, most of which cause haploinsufficiency. We mapped enhancers of two high confidence autism genes - CHD8 and SCN2A and used CRISPR-based gene activation (CRISPR-A) in hPSC-derived excitatory neurons and cerebral forebrain organoids to correct the effects of haploinsufficiency, taking advantage of the presence of a wildtype allele of each gene and endogenous gene regulation. We found that CRISPR-A induced a sustained increase in CHD8 and SCN2A expression in treated neurons and organoids, with rescue of gene expression levels and mutation-associated phenotypes, including gene expression and physiology. These data support gene activation via targeting enhancers of haploinsufficient genes, as a therapeutic intervention in ASD and other neurodevelopmental disorders.
Collapse
|
37
|
Barlow BSM, Longtin A, Joós B. Impact on backpropagation of the spatial heterogeneity of sodium channel kinetics in the axon initial segment. PLoS Comput Biol 2024; 20:e1011846. [PMID: 38489374 PMCID: PMC10942053 DOI: 10.1371/journal.pcbi.1011846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/21/2024] [Indexed: 03/17/2024] Open
Abstract
In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.
Collapse
Affiliation(s)
- Benjamin S. M. Barlow
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada
- Center for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Béla Joós
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis-Pasteur Pvt, Ottawa, Ontario, Canada
- Center for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Severino L, Kim J, Nam MH, McHugh TJ. From synapses to circuits: What mouse models have taught us about how autism spectrum disorder impacts hippocampal function. Neurosci Biobehav Rev 2024; 158:105559. [PMID: 38246230 DOI: 10.1016/j.neubiorev.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD's impact on hippocampal circuit function.
Collapse
Affiliation(s)
- Leandra Severino
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science & Technology, KIST-School, University of Science and Technology, Seoul, South Korea.
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi Saitama, Japan.
| |
Collapse
|
39
|
Mao M, Mattei C, Rollo B, Byars S, Cuddy C, Berecki G, Heighway J, Pachernegg S, Menheniott T, Apted D, Jia L, Dalby K, Nemiroff A, Mullen S, Reid CA, Maljevic S, Petrou S. Distinctive In Vitro Phenotypes in iPSC-Derived Neurons From Patients With Gain- and Loss-of-Function SCN2A Developmental and Epileptic Encephalopathy. J Neurosci 2024; 44:e0692232023. [PMID: 38148154 PMCID: PMC10883610 DOI: 10.1523/jneurosci.0692-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023] Open
Abstract
SCN2A encodes NaV1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of SCN2A variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. We established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Two male patient-derived iPSC isogenic pairs were differentiated using Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Functional properties were assessed using patch clamp and multielectrode array recordings and transcriptomic profiles obtained with total mRNA sequencing after 2-4 weeks in culture. At 3 weeks of differentiation, increased neuronal activity at cellular and network levels was observed for R1882Q iPSC-derived neurons. In contrast, R853Q neurons showed only subtle changes in excitability after 4 weeks and an overall reduced network activity after 7 weeks in vitro. Consistent with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced the excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways suggested potential shared mechanisms underlying SCN2A DEE. In summary, patient iPSC-derived neuronal models of SCN2A GoF and LoF pathogenic variants causing DEE show specific functional and transcriptomic in vitro phenotypes.
Collapse
Affiliation(s)
- Miaomiao Mao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Cristiana Mattei
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ben Rollo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | - Sean Byars
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Claire Cuddy
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Geza Berecki
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Jacqueline Heighway
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Svenja Pachernegg
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Trevelyan Menheniott
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Danielle Apted
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Linghan Jia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Kelley Dalby
- Rogcon Biosciences, Cambridge, MA 02142
- Praxis Precision Medicines, Inc., Cambridge, MA 02142
| | - Alex Nemiroff
- Rogcon Biosciences, Cambridge, MA 02142
- Praxis Precision Medicines, Inc., Cambridge, MA 02142
| | - Saul Mullen
- Austin Health, University of Melbourne, Melbourne, Victoria 3084, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
- Praxis Precision Medicines, Inc., Cambridge, MA 02142
| |
Collapse
|
40
|
Tang T, Li X, Yu E, Li M, Pan X. Identification of common core ion channel genes in epilepsy and Alzheimer's disease. Ir J Med Sci 2024; 193:417-424. [PMID: 37477849 DOI: 10.1007/s11845-023-03447-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Although available literature indicates that the incidence of dementia in the epilepsy population and the risk of seizures in the Alzheimer's disease (AD) population are high, the specific genetic risk factors and the interaction mechanism are unclear, rendering rational genetic interpretation rather challenging. AIMS Our work aims to identify the common core ion channel genes in epilepsy and AD. METHODS In this study, we first integrated gene expression omnibus datasets (GSE48350 and GSE6834) on AD and epilepsy to identify differentially expressed genes (DEGs), performing Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. The related protein-protein interaction (PPI) network was constructed for DEGs, and the hub gene was evaluated. RESULTS A total of 2800 and 35 genes were identified in GSE48350 and GSE6834, and 12 DEGs were significantly differentially expressed between the datasets. KEGG pathway analysis showed that DEGs were primarily enriched in glutamatergic synapse and dopaminergic synapse pathways. SCN2A, GRIA1, and KCNJ9 were the hub genes with high connectivity. CONCLUSIONS The findings suggest that the three genes, SCN2A, GRIA1, and KCNJ9, may serve as potential targets for treating AD comorbid with epilepsy.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, Fujian, 362000, People's Republic of China
| | - Xiang Li
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Erhan Yu
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Man Li
- Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
41
|
Brown CO, Uy JA, Murtaza N, Rosa E, Alfonso A, Dave BM, Kilpatrick S, Cheng AA, White SH, Scherer SW, Singh KK. Disruption of the autism-associated gene SCN2A alters synaptic development and neuronal signaling in patient iPSC-glutamatergic neurons. Front Cell Neurosci 2024; 17:1239069. [PMID: 38293651 PMCID: PMC10824931 DOI: 10.3389/fncel.2023.1239069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
SCN2A is an autism spectrum disorder (ASD) risk gene and encodes a voltage-gated sodium channel. However, the impact of ASD-associated SCN2A de novo variants on human neuron development is unknown. We studied SCN2A using isogenic SCN2A-/- induced pluripotent stem cells (iPSCs), and patient-derived iPSCs harboring a de novo R607* truncating variant. We used Neurogenin2 to generate excitatory (glutamatergic) neurons and found that SCN2A+/R607* and SCN2A-/- neurons displayed a reduction in synapse formation and excitatory synaptic activity. We found differential impact on actional potential dynamics and neuronal excitability that reveals a loss-of-function effect of the R607* variant. Our study reveals that a de novo truncating SCN2A variant impairs the development of human neuronal function.
Collapse
Affiliation(s)
- Chad O. Brown
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jarryll A. Uy
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nadeem Murtaza
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Elyse Rosa
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandria Alfonso
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Biren M. Dave
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Savannah Kilpatrick
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Annie A. Cheng
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sean H. White
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Stephen W. Scherer
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karun K. Singh
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Schamiloglu S, Wu H, Zhou M, Kwan AC, Bender KJ. Dynamic Foraging Behavior Performance Is Not Affected by Scn2a Haploinsufficiency. eNeuro 2023; 10:ENEURO.0367-23.2023. [PMID: 38151324 PMCID: PMC10755640 DOI: 10.1523/eneuro.0367-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Hao Wu
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
| | - Mingkang Zhou
- Neuroscience Graduate Program, University of California, San Francisco, CA 94158
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| | - Alex C Kwan
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Kevin J Bender
- Center for Integrative Neuroscience, Department of Neurology, University of California, San Francisco, CA 94158
| |
Collapse
|
43
|
Stein D, Kars ME, Wu Y, Bayrak ÇS, Stenson PD, Cooper DN, Schlessinger A, Itan Y. Genome-wide prediction of pathogenic gain- and loss-of-function variants from ensemble learning of a diverse feature set. Genome Med 2023; 15:103. [PMID: 38037155 PMCID: PMC10688473 DOI: 10.1186/s13073-023-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Gain-of-function (GOF) variants give rise to increased/novel protein functions whereas loss-of-function (LOF) variants lead to diminished protein function. Experimental approaches for identifying GOF and LOF are generally slow and costly, whilst available computational methods have not been optimized to discriminate between GOF and LOF variants. We have developed LoGoFunc, a machine learning method for predicting pathogenic GOF, pathogenic LOF, and neutral genetic variants, trained on a broad range of gene-, protein-, and variant-level features describing diverse biological characteristics. LoGoFunc outperforms other tools trained solely to predict pathogenicity for identifying pathogenic GOF and LOF variants and is available at https://itanlab.shinyapps.io/goflof/ .
Collapse
Affiliation(s)
- David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Meltem Ece Kars
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- College of Life Science, China West Normal University, Nan Chong, Si Chuan, 637009, China
| | - Çiğdem Sevim Bayrak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
44
|
Nomura T, Taniguchi S, Wang YZ, Yeh NH, Wilen AP, Castillon CCM, Foote KM, Xu J, Armstrong JN, Savas JN, Swanson GT, Contractor A. A Pathogenic Missense Mutation in Kainate Receptors Elevates Dendritic Excitability and Synaptic Integration through Dysregulation of SK Channels. J Neurosci 2023; 43:7913-7928. [PMID: 37802657 PMCID: PMC10669804 DOI: 10.1523/jneurosci.1259-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 10/08/2023] Open
Abstract
Numerous rare variants that cause neurodevelopmental disorders (NDDs) occur within genes encoding synaptic proteins, including ionotropic glutamate receptors. However, in many cases, it remains unclear how damaging missense variants affect brain function. We determined the physiological consequences of an NDD causing missense mutation in the GRIK2 kainate receptor (KAR) gene, that results in a single amino acid change p.Ala657Thr in the GluK2 receptor subunit. We engineered this mutation in the mouse Grik2 gene, yielding a GluK2(A657T) mouse, and studied mice of both sexes to determine how hippocampal neuronal function is disrupted. Synaptic KAR currents in hippocampal CA3 pyramidal neurons from heterozygous A657T mice exhibited slow decay kinetics, consistent with incorporation of the mutant subunit into functional receptors. Unexpectedly, CA3 neurons demonstrated elevated action potential spiking because of downregulation of the small-conductance Ca2+ activated K+ channel (SK), which mediates the post-spike afterhyperpolarization. The reduction in SK activity resulted in increased CA3 dendritic excitability, increased EPSP-spike coupling, and lowered the threshold for the induction of LTP of the associational-commissural synapses in CA3 neurons. Pharmacological inhibition of SK channels in WT mice increased dendritic excitability and EPSP-spike coupling, mimicking the phenotype in A657T mice and suggesting a causative role for attenuated SK activity in aberrant excitability observed in the mutant mice. These findings demonstrate that a disease-associated missense mutation in GRIK2 leads to altered signaling through neuronal KARs, pleiotropic effects on neuronal and dendritic excitability, and implicate these processes in neuropathology in patients with genetic NDDs.SIGNIFICANCE STATEMENT Damaging mutations in genes encoding synaptic proteins have been identified in various neurodevelopmental disorders, but the functional consequences at the cellular and circuit level remain elusive. By generating a novel knock-in mutant mouse, this study examined the role of a pathogenic mutation in the GluK2 kainate receptor (KAR) subunit, a subclass of ionotropic glutamate receptors. Analyses of hippocampal CA3 pyramidal neurons determined elevated action potential firing because of an increase in dendritic excitability. Increased dendritic excitability was attributable to reduced activity of a Ca2+ activated K+ channel. These results indicate that a pathogenic KAR mutation results in dysregulation of dendritic K+ channels, which leads to an increase in synaptic integration and backpropagation of action potentials into distal dendrites.
Collapse
Affiliation(s)
- Toshihiro Nomura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Sakiko Taniguchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nai-Hsing Yeh
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Anika P Wilen
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Charlotte C M Castillon
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kendall M Foote
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John N Armstrong
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Psychiatry and Behavioral Sciences Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
- Department of Neurobiology, Weinberg College of Arts and Sciences Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
45
|
Li M, Eltabbal M, Tran HD, Kuhn B. Scn2a insufficiency alters spontaneous neuronal Ca 2+ activity in somatosensory cortex during wakefulness. iScience 2023; 26:108138. [PMID: 37876801 PMCID: PMC10590963 DOI: 10.1016/j.isci.2023.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
SCN2A protein-truncating variants (PTV) can result in neurological disorders such as autism spectrum disorder and intellectual disability, but they are less likely to cause epilepsy in comparison to missense variants. While in vitro studies showed PTV reduce action potential firing, consequences at in vivo network level remain elusive. Here, we generated a mouse model of Scn2a insufficiency using antisense oligonucleotides (Scn2a ASO mice), which recapitulated key clinical feature of SCN2A PTV disorders. Simultaneous two-photon Ca2+ imaging and electrocorticography (ECoG) in awake mice showed that spontaneous Ca2+ transients in somatosensory cortical neurons, as well as their pairwise co-activities were generally decreased in Scn2a ASO mice during spontaneous awake state and induced seizure state. The reduction of neuronal activities and paired co-activity are mechanisms associated with motor, social and cognitive deficits observed in our mouse model of severe Scn2a insufficiency, indicating these are likely mechanisms driving SCN2A PTV pathology.
Collapse
Affiliation(s)
- Melody Li
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Mohamed Eltabbal
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Hoang-Dai Tran
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Bernd Kuhn
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
46
|
Bortolami A, Sesti F. Ion channels in neurodevelopment: lessons from the Integrin-KCNB1 channel complex. Neural Regen Res 2023; 18:2365-2369. [PMID: 37282454 PMCID: PMC10360111 DOI: 10.4103/1673-5374.371347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Ion channels modulate cellular excitability by regulating ionic fluxes across biological membranes. Pathogenic mutations in ion channel genes give rise to epileptic disorders that are among the most frequent neurological diseases affecting millions of individuals worldwide. Epilepsies are triggered by an imbalance between excitatory and inhibitory conductances. However, pathogenic mutations in the same allele can give rise to loss-of-function and/or gain-of-function variants, all able to trigger epilepsy. Furthermore, certain alleles are associated with brain malformations even in the absence of a clear electrical phenotype. This body of evidence argues that the underlying epileptogenic mechanisms of ion channels are more diverse than originally thought. Studies focusing on ion channels in prenatal cortical development have shed light on this apparent paradox. The picture that emerges is that ion channels play crucial roles in landmark neurodevelopmental processes, including neuronal migration, neurite outgrowth, and synapse formation. Thus, pathogenic channel mutants can not only cause epileptic disorders by altering excitability, but further, by inducing morphological and synaptic abnormalities that are initiated during neocortex formation and may persist into the adult brain.
Collapse
Affiliation(s)
- Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, West Piscataway, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, West Piscataway, NJ, USA
| |
Collapse
|
47
|
Wang X, Zhao Z, Guo J, Mei D, Duan Y, Zhang Y, Gou L. GABA B1 receptor knockdown in prefrontal cortex induces behavioral aberrations associated with autism spectrum disorder in mice. Brain Res Bull 2023; 202:110755. [PMID: 37678443 DOI: 10.1016/j.brainresbull.2023.110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental disorders, characterized by social interaction deficit, stereotyped or repetitive behaviors. Apart from these core symptoms, a great number of individuals with ASD exhibit higher levels of anxiety and memory deficits. Previous studies demonstrate pronounced decrease of γ-aminobutyric acid B1 receptor (GABAB1R) protein level of frontal lobe in both ASD patients and animal models. The aim of the present study was to determine the role of GABAB1R in ASD-related behavioral aberrations. Herein, the protein and mRNA levels of GABAB1R in the prefrontal cortex (PFC) of sodium valproic acid (VPA)-induced mouse ASD model were determined by Western blot and qRT-PCR analysis, respectively. Moreover, the behavioral abnormalities in naive mice with GABAB1R knockdown mediated by recombinant adeno-associated virus (rAAV) were assessed in a comprehensive test battery consisted of social interaction, marble burying, self-grooming, open-field, Y-maze and novel object recognition tests. Furthermore, the action potential changes induced by GABAB1R deficiency were examined in neurons within the PFC of mouse. The results show that the mRNA and protein levels of GABAB1R in the PFC of prenatal VPA-induced mouse ASD model were decreased. Concomitantly, naive mice with GABAB1R knockdown exhibited ASD-like behaviors, such as impaired social interaction and communication, elevated stereotypes, anxiety and memory deficits. Patch-clamp recordings also revealed that GABAB1R knockdown provoked enhanced neuronal excitability by increasing action potential discharge frequencies. Overall, these findings support a notion that GABAB1R deficiency might contribute to ASD-like phenotypes, with the pathogenesis most likely resulting from enhanced neuronal excitability. SUBHEADINGS: GABAB1 Knockdown Induces Behavioral Aberrations with ASD.
Collapse
Affiliation(s)
- Xiaona Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Zhengqin Zhao
- Department of Nuclear Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jisheng Guo
- School of Basic Medical Sciences, Yantai Campus of Binzhou Medical University, Yantai City, Shandong, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Zhengzhou, China.
| | - Lingshan Gou
- Peninsula Cancer Research Center, Binzhou Medical University, Yantai, Shandong, China.
| |
Collapse
|
48
|
Bashiri H, Rostamzadeh F, Sabet N, Moslemizadeh A, Rajizadeh MA, Jafari E. Sex-related beneficial effects of exercise on cardiac function and rhythm in autistic rats. Birth Defects Res 2023; 115:1486-1499. [PMID: 37522293 DOI: 10.1002/bdr2.2230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Cardiovascular diseases are prevalent in autistic patients. As exercise is useful in the treatment of medical conditions, this study aimed to identify the effect of low-intensity endurance exercise (LIEE) and moderate-intensity endurance exercise (MIEE) on cardiovascular events in autistic rats. METHODS Valproic acid (VPA) was administrated once on gestational day 12.5 to pregnant rats to produce autism-like symptoms in offspring. Thirty-day-old offspring were divided into 12 groups: Male-CTL, Male-VPA, Male-CTL + LIEE, Male-CTL + MIEE, Male-VPA + LIEE, Male-VPA + MIEE, Female-CTL, Female-VPA, Female-CTL + LIEE, Female-CTL + MIEE, Female-VPA + LIEE, and Female-VPA + MIEE. LIEE and MIEE were performed 5 days a week for 30 days. Twenty-four hours after the last exercise session, electrocardiogram and hemodynamic and cardiac function indices were recorded. RESULTS The results indicated that +dp/dt max and contractility index (CI) decreased in the Female-VPA group compared to the Female-CTL group. LIEE increased these parameters in the Female-VPA + LIEE group. However, MIEE normalized CI in the Male-VPA + MIEE compared to the Male-VPA group. Tau increased in the Female-VPA group compared to the Female-CTL group and it decreased in the Female-VPA + MIEE group compared to the Female-VPA group. LIEE and MIEE recovered the reduction of heart rate and the increase in P, R, and T amplitudes in Male-VPA group. LIEE and MIEE increased heart rate variability in the Male-VPA and Female-VPA groups. CONCLUSIONS The findings showed that LIEE and MIEE alleviated cardiac dysfunction and disturbances in heart rhythm in the autistic offspring. Exercise may be recommended as a routine program for autistic patients to prevent and treat the harmful cardiovascular consequences of autism.
Collapse
Affiliation(s)
- Hamideh Bashiri
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Sabet
- Physiology Research Center, Institute of Neuropharmacology, Department of Physiology and Pharmacology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cells Research Center, Department of Pathology, Kerman University of Medical Science, Kerman, Iran
| |
Collapse
|
49
|
Yang Y, Wu J, Zhang J, Chen X, Que Z, Wettschurack K, Deming B, Acosta M, Cui N, Eaton M, Zhao Y, Halurkar M, Purba M, Chen I, Xiao T, Suzuki M, Yuan C, Xu R, Koss W, Du D, Chen F, Wu LJ, Clinic M. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. RESEARCH SQUARE 2023:rs.3.rs-3270664. [PMID: 37841865 PMCID: PMC10571631 DOI: 10.21203/rs.3.rs-3270664/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus to understand ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglial-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Yang Yang
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Jiaxiang Wu
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Jingliang Zhang
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Xiaoling Chen
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Zhefu Que
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Kyle Wettschurack
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Brody Deming
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Maria Acosta
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Ningren Cui
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Muriel Eaton
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Yuanrui Zhao
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Manasi Halurkar
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Mandal Purba
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Ian Chen
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee IH, Walker DI, Lin Y, Smith MR, Mandl KD, Jones DP, Kong SW. Association between Neuroligin-1 polymorphism and plasma glutamine levels in individuals with autism spectrum disorder. EBioMedicine 2023; 95:104746. [PMID: 37544204 PMCID: PMC10427990 DOI: 10.1016/j.ebiom.2023.104746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Unravelling the relationships between candidate genes and autism spectrum disorder (ASD) phenotypes remains an outstanding challenge. Endophenotypes, defined as inheritable, measurable quantitative traits, might provide intermediary links between genetic risk factors and multifaceted ASD phenotypes. In this study, we sought to determine whether plasma metabolite levels could serve as endophenotypes in individuals with ASD and their family members. METHODS We employed an untargeted, high-resolution metabolomics platform to analyse 14,342 features across 1099 plasma samples. These samples were collected from probands and their family members participating in the Autism Genetic Resource Exchange (AGRE) (N = 658), compared with neurotypical individuals enrolled in the PrecisionLink Health Discovery (PLHD) program at Boston Children's Hospital (N = 441). We conducted a metabolite quantitative trait loci (mQTL) analysis using whole-genome genotyping data from each cohort in AGRE and PLHD, aiming to prioritize significant mQTL and metabolite pairs that were exclusively observed in AGRE. FINDINGS Within the AGRE group, we identified 54 significant associations between genotypes and metabolite levels (P < 5.27 × 10-11), 44 of which were not observed in the PLHD group. Plasma glutamine levels were found to be associated with variants in the NLGN1 gene, a gene that encodes post-synaptic cell-adhesion molecules in excitatory neurons. This association was not detected in the PLHD group. Notably, a significant negative correlation between plasma glutamine and glutamate levels was observed in the AGRE group, but not in the PLHD group. Furthermore, plasma glutamine levels showed a negative correlation with the severity of restrictive and repetitive behaviours (RRB) in ASD, although no direct association was observed between RRB severity and the NLGN1 genotype. INTERPRETATION Our findings suggest that plasma glutamine levels could potentially serve as an endophenotype, thus establishing a link between the genetic risk associated with NLGN1 and the severity of RRB in ASD. This identified association could facilitate the development of novel therapeutic targets, assist in selecting specific cohorts for clinical trials, and provide insights into target symptoms for future ASD treatment strategies. FUNDING This work was supported by the National Institute of Health (grant numbers: R01MH107205, U01TR002623, R24OD024622, OT2OD032720, and R01NS129188) and the PrecisionLink Biobank for Health Discovery at Boston Children's Hospital.
Collapse
Affiliation(s)
- In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Yufei Lin
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, 30602, USA; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Kenneth D Mandl
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, 30602, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|