1
|
Liao Z, Terada S, Raikov IG, Hadjiabadi D, Szoboszlay M, Soltesz I, Losonczy A. Inhibitory plasticity supports replay generalization in the hippocampus. Nat Neurosci 2024; 27:1987-1998. [PMID: 39227715 DOI: 10.1038/s41593-024-01745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Memory consolidation assimilates recent experiences into long-term memory. This process requires the replay of learned sequences, although the content of these sequences remains controversial. Recent work has shown that the statistics of replay deviate from those of experience: stimuli that are experientially salient may be either recruited or suppressed from sharp-wave ripples. In this study, we found that this phenomenon can be explained parsimoniously and biologically plausibly by a Hebbian spike-time-dependent plasticity rule at inhibitory synapses. Using models at three levels of abstraction-leaky integrate-and-fire, biophysically detailed and abstract binary-we show that this rule enables efficient generalization, and we make specific predictions about the consequences of intact and perturbed inhibitory dynamics for network dynamics and cognition. Finally, we use optogenetics to artificially implant non-generalizable representations into the network in awake behaving mice, and we find that these representations also accumulate inhibition during sharp-wave ripples, experimentally validating a major prediction of our model. Our work outlines a potential direct link between the synaptic and cognitive levels of memory consolidation, with implications for both normal learning and neurological disease.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
- Department of Neuroscience, University of Edinburgh, Edinburgh, UK.
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Georgiev Raikov
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Darian Hadjiabadi
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Ivan Soltesz
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Bocchio M, Vorobyev A, Sadeh S, Brustlein S, Dard R, Reichinnek S, Emiliani V, Baude A, Clopath C, Cossart R. Functional networks of inhibitory neurons orchestrate synchrony in the hippocampus. PLoS Biol 2024; 22:e3002837. [PMID: 39401246 PMCID: PMC11501041 DOI: 10.1371/journal.pbio.3002837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/24/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
Inhibitory interneurons are pivotal components of cortical circuits. Beyond providing inhibition, they have been proposed to coordinate the firing of excitatory neurons within cell assemblies. While the roles of specific interneuron subtypes have been extensively studied, their influence on pyramidal cell synchrony in vivo remains elusive. Employing an all-optical approach in mice, we simultaneously recorded hippocampal interneurons and pyramidal cells and probed the network influence of individual interneurons using optogenetics. We demonstrate that CA1 interneurons form a functionally interconnected network that promotes synchrony through disinhibition during awake immobility, while preserving endogenous cell assemblies. Our network model underscores the importance of both cell assemblies and dense, unspecific interneuron connectivity in explaining our experimental findings, suggesting that interneurons may operate not only via division of labor but also through concerted activity.
Collapse
Affiliation(s)
- Marco Bocchio
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Artem Vorobyev
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Sadra Sadeh
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sophie Brustlein
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Robin Dard
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Susanne Reichinnek
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Valentina Emiliani
- Wavefront-Engineering Microscopy Group, Photonics Department, Vision Institute, Sorbonne University, INSERM, CNRS, Paris, France
| | - Agnes Baude
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Rosa Cossart
- Aix Marseille, University, Inserm, INMED, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
3
|
Zheng ZS, Huszár R, Hainmueller T, Bartos M, Williams AH, Buzsáki G. Perpetual step-like restructuring of hippocampal circuit dynamics. Cell Rep 2024; 43:114702. [PMID: 39217613 PMCID: PMC11485410 DOI: 10.1016/j.celrep.2024.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Representation of the environment by hippocampal populations is known to drift even within a familiar environment, which could reflect gradual changes in single-cell activity or result from averaging across discrete switches of single neurons. Disambiguating these possibilities is crucial, as they each imply distinct mechanisms. Leveraging change point detection and model comparison, we find that CA1 population vectors decorrelate gradually within a session. In contrast, individual neurons exhibit predominantly step-like emergence and disappearance of place fields or sustained changes in within-field firing. The changes are not restricted to particular parts of the maze or trials and do not require apparent behavioral changes. The same place fields emerge, disappear, and reappear across days, suggesting that the hippocampus reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an internally driven perpetual step-like reorganization of the neuronal assemblies.
Collapse
Affiliation(s)
- Zheyang Sam Zheng
- Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Roman Huszár
- Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Hainmueller
- Department of Psychiatry, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg Medical Faculty, 79104 Freiburg, Germany
| | - Alex H Williams
- Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA; Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA.
| | - György Buzsáki
- Neuroscience Institute, NYU Grossman School of Medicine, New York University, New York, NY, USA; Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
4
|
Tuñon-Ortiz A, Tränkner D, Brockway SN, Raines O, Mahnke A, Grega M, Zelikowsky M, Williams ME. Inhibitory neurons marked by a connectivity molecule regulate memory precision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602304. [PMID: 39005261 PMCID: PMC11245094 DOI: 10.1101/2024.07.05.602304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.
Collapse
Affiliation(s)
- Arnulfo Tuñon-Ortiz
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Dimitri Tränkner
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Sarah N Brockway
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Olivia Raines
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Abbey Mahnke
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Matthew Grega
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Megan E Williams
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
5
|
Liao Z, Losonczy A. Learning, Fast and Slow: Single- and Many-Shot Learning in the Hippocampus. Annu Rev Neurosci 2024; 47:187-209. [PMID: 38663090 PMCID: PMC11519319 DOI: 10.1146/annurev-neuro-102423-100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The hippocampus is critical for memory and spatial navigation. The ability to map novel environments, as well as more abstract conceptual relationships, is fundamental to the cognitive flexibility that humans and other animals require to survive in a dynamic world. In this review, we survey recent advances in our understanding of how this flexibility is implemented anatomically and functionally by hippocampal circuitry, during both active exploration (online) and rest (offline). We discuss the advantages and limitations of spike timing-dependent plasticity and the more recently discovered behavioral timescale synaptic plasticity in supporting distinct learning modes in the hippocampus. Finally, we suggest complementary roles for these plasticity types in explaining many-shot and single-shot learning in the hippocampus and discuss how these rules could work together to support the learning of cognitive maps.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| | - Attila Losonczy
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
6
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Simko J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. Nat Commun 2024; 15:6295. [PMID: 39060234 PMCID: PMC11282248 DOI: 10.1038/s41467-024-50546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Deborah M Li
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Catalina M Yang
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Natalie E McClain
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, USA
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, USA
- The Boulder Creek Research Institute, Los Altos, USA
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Jane Simko
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Christopher D Makinson
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, USA
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Kavli Institute for Brain Science, Columbia University, New York, USA.
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Allen Institute for Neural Dynamics, Seattle, USA.
| |
Collapse
|
7
|
Fenton AA. Remapping revisited: how the hippocampus represents different spaces. Nat Rev Neurosci 2024; 25:428-448. [PMID: 38714834 DOI: 10.1038/s41583-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
The representation of distinct spaces by hippocampal place cells has been linked to changes in their place fields (the locations in the environment where the place cells discharge strongly), a phenomenon that has been termed 'remapping'. Remapping has been assumed to be accompanied by the reorganization of subsecond cofiring relationships among the place cells, potentially maximizing hippocampal information coding capacity. However, several observations challenge this standard view. For example, place cells exhibit mixed selectivity, encode non-positional variables, can have multiple place fields and exhibit unreliable discharge in fixed environments. Furthermore, recent evidence suggests that, when measured at subsecond timescales, the moment-to-moment cofiring of a pair of cells in one environment is remarkably similar in another environment, despite remapping. Here, I propose that remapping is a misnomer for the changes in place fields across environments and suggest instead that internally organized manifold representations of hippocampal activity are actively registered to different environments to enable navigation, promote memory and organize knowledge.
Collapse
Affiliation(s)
- André A Fenton
- Center for Neural Science, New York University, New York, NY, USA.
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Park P, Wong-Campos D, Itkis DG, Lee BH, Qi Y, Davis H, Antin B, Pasarkar A, Grimm JB, Plutkis SE, Holland KL, Paninski L, Lavis LD, Cohen AE. Dendritic excitations govern back-propagation via a spike-rate accelerometer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.02.543490. [PMID: 37398232 PMCID: PMC10312650 DOI: 10.1101/2023.06.02.543490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Dendrites on neurons support nonlinear electrical excitations, but the computational significance of these events is not well understood. We developed molecular, optical, and analytical tools to map sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. We observed history-dependent spike back-propagation in distal dendrites, driven by locally generated Na+ spikes (dSpikes). Dendritic depolarization created a transient window for dSpike propagation, opened by A-type K V channel inactivation, and closed by slow N a V inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent plateau potentials, with accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture of how dendritic excitations shape associative plasticity rules.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel G Itkis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Byung Hun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hunter Davis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin Antin
- Departments of Statistics and Neuroscience, Columbia University, New York, NY, USA
| | - Amol Pasarkar
- Departments of Statistics and Neuroscience, Columbia University, New York, NY, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sarah E Plutkis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Katie L Holland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Liam Paninski
- Departments of Statistics and Neuroscience, Columbia University, New York, NY, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
9
|
Zheng Z(S, Huszár R, Hainmueller T, Bartos M, Williams A, Buzsáki G. Perpetual step-like restructuring of hippocampal circuit dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590576. [PMID: 38712105 PMCID: PMC11071370 DOI: 10.1101/2024.04.22.590576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Representation of the environment by hippocampal populations is known to drift even within a familiar environment, which could reflect gradual changes in single cell activity or result from averaging across discrete switches of single neurons. Disambiguating these possibilities is crucial, as they each imply distinct mechanisms. Leveraging change point detection and model comparison, we found that CA1 population vectors decorrelated gradually within a session. In contrast, individual neurons exhibited predominantly step-like emergence and disappearance of place fields or sustained change in within-field firing. The changes were not restricted to particular parts of the maze or trials and did not require apparent behavioral changes. The same place fields emerged, disappeared, and reappeared across days, suggesting that the hippocampus reuses pre-existing assemblies, rather than forming new fields de novo. Our results suggest an internally-driven perpetual step-like reorganization of the neuronal assemblies.
Collapse
Affiliation(s)
| | - Roman Huszár
- Center for Neural Science, New York University, New York, NY, USA
- Neuroscience Institute, New York University, New York, NY, USA
| | - Thomas Hainmueller
- Department of Psychiatry, NYU Grossman School of Medicine, New York University, New York, NY, USA
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104 Freiburg, Germany
| | - Alex Williams
- Center for Neural Science, New York University, New York, NY, USA
- Neuroscience Institute, New York University, New York, NY, USA
- Center for Computational Neuroscience, Flatiron Institute
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, USA
- Department of Neurology, and New York University, New York, NY, USA
| |
Collapse
|
10
|
Tamboli S, Singh S, Topolnik D, El Amine Barkat M, Radhakrishnan R, Guet-McCreight A, Topolnik L. Mouse hippocampal CA1 VIP interneurons detect novelty in the environment and support recognition memory. Cell Rep 2024; 43:114115. [PMID: 38607918 DOI: 10.1016/j.celrep.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.
Collapse
Affiliation(s)
- Suhel Tamboli
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Sanjay Singh
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Mohamed El Amine Barkat
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Risna Radhakrishnan
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | | | - Lisa Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
11
|
Bowler JC, Zakka G, Yong HC, Li W, Rao B, Liao Z, Priestley JB, Losonczy A. behaviorMate: An Intranet of Things Approach for Adaptable Control of Behavioral and Navigation-Based Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569989. [PMID: 38116032 PMCID: PMC10729741 DOI: 10.1101/2023.12.04.569989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Investigators conducting behavioral experiments often need precise control over the timing of the delivery of stimuli to subjects and to collect the precise times of the subsequent behavioral responses. Furthermore, investigators want fine-tuned control over how various multi-modal cues are presented. behaviorMate takes an "Intranet of Things" approach, using a networked system of hardware and software components for achieving these goals. The system outputs a file with integrated timestamp-event pairs that investigators can then format and process using their own analysis pipelines. We present an overview of the electronic components and GUI application that make up behaviorMate as well as mechanical designs for compatible experimental rigs to provide the reader with the ability to set up their own system. A wide variety of paradigms are supported, including goal-oriented learning, random foraging, and context switching. We demonstrate behaviorMate's utility and reliability with a range of use cases from several published studies and benchmark tests. Finally, we present experimental validation demonstrating different modalities of hippocampal place field studies. Both treadmill with burlap belt and virtual reality with running wheel paradigms were performed to confirm the efficacy and flexibility of the approach. Previous solutions rely on proprietary systems that may have large upfront costs or present frameworks that require customized software to be developed. behaviorMate uses open-source software and a flexible configuration system to mitigate both concerns. behaviorMate has a proven record for head-fixed imaging experiments and could be easily adopted for task control in a variety of experimental situations.
Collapse
Affiliation(s)
- John C. Bowler
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
- Department of Neurobiology University of Utah, Salt Lake City, UT 84112, USA
| | - George Zakka
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Hyun Choong Yong
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Wenke Li
- Aquabyte, San Francisco, CA 94111
| | - Bovey Rao
- Department of Neuroscience
- Doctoral Program in Neurobiology and Behavior
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Zhenrui Liao
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | | | - Attila Losonczy
- Department of Neuroscience
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| |
Collapse
|
12
|
Adaikkan C, Joseph J, Foustoukos G, Wang J, Polygalov D, Boehringer R, Middleton SJ, Huang AJY, Tsai LH, McHugh TJ. Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations. Nat Commun 2024; 15:2190. [PMID: 38467602 PMCID: PMC10928166 DOI: 10.1038/s41467-024-46478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.
Collapse
Affiliation(s)
| | - Justin Joseph
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Georgios Foustoukos
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jun Wang
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Roman Boehringer
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Steven J Middleton
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Arthur J Y Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan.
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Virga DM, Hamilton S, Osei B, Morgan A, Kneis P, Zamponi E, Park NJ, Hewitt VL, Zhang D, Gonzalez KC, Russell FM, Grahame Hardie D, Prudent J, Bloss E, Losonczy A, Polleux F, Lewis TL. Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion-fission balance in neurons in vivo. Nat Commun 2024; 15:2142. [PMID: 38459070 PMCID: PMC10923867 DOI: 10.1038/s41467-024-46463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.
Collapse
Affiliation(s)
- Daniel M Virga
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Stevie Hamilton
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Bertha Osei
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Emiliano Zamponi
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Natalie J Park
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Victoria L Hewitt
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - David Zhang
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Fiona M Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY, Cambridge, UK
| | - Erik Bloss
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Neuroscience, Biochemistry & Molecular Biology, Oklahoma University Health Science Campus, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Dudok B, Fan LZ, Farrell JS, Malhotra S, Homidan J, Kim DK, Wenardy C, Ramakrishnan C, Li Y, Deisseroth K, Soltesz I. Retrograde endocannabinoid signaling at inhibitory synapses in vivo. Science 2024; 383:967-970. [PMID: 38422134 PMCID: PMC10921710 DOI: 10.1126/science.adk3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Endocannabinoid (eCB)-mediated suppression of inhibitory synapses has been hypothesized, but this has not yet been demonstrated to occur in vivo because of the difficulty in tracking eCB dynamics and synaptic plasticity during behavior. In mice navigating a linear track, we observed location-specific eCB signaling in hippocampal CA1 place cells, and this was detected both in the postsynaptic membrane and the presynaptic inhibitory axons. All-optical in vivo investigation of synaptic responses revealed that postsynaptic depolarization was followed by a suppression of inhibitory synaptic potentials. Furthermore, interneuron-specific cannabinoid receptor deletion altered place cell tuning. Therefore, rapid, postsynaptic, activity-dependent eCB signaling modulates inhibitory synapses on a timescale of seconds during behavior.
Collapse
Affiliation(s)
- Barna Dudok
- Departments of Neurology and Neuroscience, Baylor College of Medicine; Houston, TX, 77030, USA
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| | - Linlin Z. Fan
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
| | - Jordan S. Farrell
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
- F.M. Kirby Neurobiology Center and Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital; Boston, MA, 02115, USA
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Shreya Malhotra
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
| | - Celestine Wenardy
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
| | - Charu Ramakrishnan
- Cracking the Neural Code (CNC) Program, Stanford University; Stanford, CA, 94305, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University; Beijing, 100871, China
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University; Stanford, CA, 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University; Stanford, CA, 94305, USA
- Howard Hughes Medical Institute; Stanford, CA, 94305, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University; Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Yi J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579750. [PMID: 38405778 PMCID: PMC10888786 DOI: 10.1101/2024.02.12.579750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions and report an advancing gradient of dendritic theta phase along the basal-tuft axis, then describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Deborah M. Li
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Catalina M. Yang
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Natalie E. McClain
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Stephen W. Evans
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Jane Yi
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Christopher D. Makinson
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, United States
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
- Kavli Institute for Brain Science, Columbia University, New York, United States
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
16
|
Hainmueller T, Cazala A, Huang LW, Bartos M. Subfield-specific interneuron circuits govern the hippocampal response to novelty in male mice. Nat Commun 2024; 15:714. [PMID: 38267409 PMCID: PMC10808551 DOI: 10.1038/s41467-024-44882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
The hippocampus is the brain's center for episodic memories. Its subregions, the dentate gyrus and CA1-3, are differentially involved in memory encoding and recall. Hippocampal principal cells represent episodic features like movement, space, and context, but less is known about GABAergic interneurons. Here, we performed two-photon calcium imaging of parvalbumin- and somatostatin-expressing interneurons in the dentate gyrus and CA1-3 of male mice exploring virtual environments. Parvalbumin-interneurons increased activity with running-speed and reduced it in novel environments. Somatostatin-interneurons in CA1-3 behaved similar to parvalbumin-expressing cells, but their dentate gyrus counterparts increased activity during rest and in novel environments. Congruently, chemogenetic silencing of dentate parvalbumin-interneurons had prominent effects in familiar contexts, while silencing somatostatin-expressing cells increased similarity of granule cell representations between novel and familiar environments. Our data indicate unique roles for parvalbumin- and somatostatin-positive interneurons in the dentate gyrus that are distinct from those in CA1-3 and may support routing of novel information.
Collapse
Affiliation(s)
- Thomas Hainmueller
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
- NYU Neuroscience Institute, 435 East 30th Street, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| | - Aurore Cazala
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Li-Wen Huang
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, University of Freiburg, Medical Faculty, 79104, Freiburg, Germany.
| |
Collapse
|
17
|
Spivak L, Someck S, Levi A, Sivroni S, Stark E. Wired together, change together: Spike timing modifies transmission in converging assemblies. SCIENCE ADVANCES 2024; 10:eadj4411. [PMID: 38232172 DOI: 10.1126/sciadv.adj4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
The precise timing of neuronal spikes may lead to changes in synaptic connectivity and is thought to be crucial for learning and memory. However, the effect of spike timing on neuronal connectivity in the intact brain remains unknown. Using closed-loop optogenetic stimulation in CA1 of freely moving mice, we generated unique spike patterns between presynaptic pyramidal cells (PYRs) and postsynaptic parvalbumin (PV)-immunoreactive cells. The stimulation led to spike transmission changes that occurred together across all presynaptic PYRs connected to the same postsynaptic PV cell. The precise timing of all presynaptic and postsynaptic cell spikes affected transmission changes. These findings reveal an unexpected plasticity mechanism, in which the spike timing of an entire cell assembly has a more substantial impact on effective connectivity than that of individual cell pairs.
Collapse
Affiliation(s)
- Lidor Spivak
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shir Sivroni
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Mathematics, Afeka-Tel Aviv College of Engineering, Tel-Aviv 6910717, Israel
- Department of Mathematics, The Open University of Israel, Ra'anana 4353701, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, Haifa University, Haifa 3103301, Israel
| |
Collapse
|
18
|
Bowler JC, Losonczy A. Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation. Neuron 2023; 111:4071-4085.e6. [PMID: 37816349 PMCID: PMC11490304 DOI: 10.1016/j.neuron.2023.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023]
Abstract
The subregions of the entorhinal cortex (EC) are conventionally thought to compute dichotomous representations for spatial processing, with the medial EC (MEC) providing a global spatial map and the lateral EC (LEC) encoding specific sensory details of experience. Yet, little is known about the specific types of information EC transmits downstream to the hippocampus. Here, we exploit in vivo sub-cellular imaging to record from EC axons in CA1 while mice perform navigational tasks in virtual reality (VR). We uncover distinct yet overlapping representations of task, location, and context in both MEC and LEC axons. MEC transmitted highly location- and context-specific codes; LEC inputs were biased by ongoing navigational goals. However, during tasks with reliable reward locations, the animals' position could be accurately decoded from either subregion. Our results revise the prevailing dogma about EC information processing, revealing novel ways spatial and non-spatial information is routed and combined upstream of the hippocampus.
Collapse
Affiliation(s)
- John C Bowler
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
19
|
Aoki Y, Yokoi T, Morikawa S, Kuga N, Ikegaya Y, Sasaki T. Effects of theta phase precessing optogenetic intervention on hippocampal neuronal reactivation and spatial maps. iScience 2023; 26:107233. [PMID: 37534136 PMCID: PMC10392074 DOI: 10.1016/j.isci.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
As animals explore environments, hippocampal place cells sequentially fire at progressively earlier phases of theta oscillations in hippocampal local field potentials. In this study, we evaluated the network-level significance of theta phase-entrained neuronal activity in organizing place cell spike patterns. A closed-loop system was developed in which optogenetic stimulation with a temporal pattern replicating theta phase precession is delivered to hippocampal CA1 neurons when rats traversed a particular region on a linear track. Place cells that had place fields during phase precessing stimulation, but not random phase stimulation, showed stronger reactivation during hippocampal sharp-wave ripples in a subsequent rest period. After the rest period, place cells with place fields that emerged during phase precessing stimulation showed more stable place fields. These results imply that neuronal reactivation and stability of spatial maps are mediated by theta phase precession in the hippocampus.
Collapse
Affiliation(s)
- Yuki Aoki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Michon FX, Laplante I, Bosson A, Robitaille R, Lacaille JC. mTORC1-mediated acquisition of reward-related representations by hippocampal somatostatin interneurons. Mol Brain 2023; 16:55. [PMID: 37400913 DOI: 10.1186/s13041-023-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 07/05/2023] Open
Abstract
Plasticity of principal cells and inhibitory interneurons underlies hippocampal memory. Bidirectional modulation of somatostatin cell mTORC1 activity, a crucial translational control mechanism in synaptic plasticity, causes parallel changes in hippocampal CA1 somatostatin interneuron (SOM-IN) long-term potentiation and hippocampus-dependent memory, indicating a key role in learning. However, SOM-IN activity changes and behavioral correlates during learning, and the role of mTORC1 in these processes, remain ill-defined. To address these questions, we used two-photon Ca2+ imaging from SOM-INs during a virtual reality goal-directed spatial memory task in head-fixed control mice (SOM-IRES-Cre mice) or in mice with conditional knockout of Rptor (SOM-Rptor-KO mice) to block mTORC1 activity in SOM-INs. We found that control mice learn the task, but SOM-Raptor-KO mice exhibit a deficit. Also, SOM-IN Ca2+ activity became increasingly related to reward during learning in control mice but not in SOM-Rptor-KO mice. Four types of SOM-IN activity patterns related to reward location were observed, "reward off sustained", "reward off transient", "reward on sustained" and "reward on transient", and these responses showed reorganization after reward relocation in control but not SOM-Rptor-KO mice. Thus, SOM-INs develop mTORC1-dependent reward- related activity during learning. This coding may bi-directionally interact with pyramidal cells and other structures to represent and consolidate reward location.
Collapse
Affiliation(s)
- François-Xavier Michon
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Isabel Laplante
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Anthony Bosson
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Richard Robitaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
21
|
Forro T, Klausberger T. Differential behavior-related activity of distinct hippocampal interneuron types during odor-associated spatial navigation. Neuron 2023:S0896-6273(23)00380-X. [PMID: 37279749 DOI: 10.1016/j.neuron.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Hippocampal pyramidal cells represent an animal's position in space together with specific contexts and events. However, it is largely unknown how distinct types of GABAergic interneurons contribute to such computations. We recorded from the intermediate CA1 hippocampus of head-fixed mice exhibiting odor-to-place memory associations during navigation in a virtual reality (VR). The presence of an odor cue and its prediction of a different reward location induced a remapping of place cell activity in the virtual maze. Based on this, we performed extracellular recording and juxtacellular labeling of identified interneurons during task performance. The activity of parvalbumin (PV)-expressing basket, but not of PV-expressing bistratified cells, reflected the expected contextual change in the working-memory-related sections of the maze. Some interneurons, including identified cholecystokinin-expressing cells, decreased activity during visuospatial navigation and increased activity during reward. Our findings suggest that distinct types of GABAergic interneuron are differentially involved in cognitive processes of the hippocampus.
Collapse
Affiliation(s)
- Thomas Forro
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Klausberger
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Vancura B, Geiller T, Grosmark A, Zhao V, Losonczy A. Inhibitory control of sharp-wave ripple duration during learning in hippocampal recurrent networks. Nat Neurosci 2023; 26:788-797. [PMID: 37081295 PMCID: PMC10209669 DOI: 10.1038/s41593-023-01306-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
Recurrent excitatory connections in hippocampal regions CA3 and CA2 are thought to play a key role in the generation of sharp-wave ripples (SWRs), electrophysiological oscillations tightly linked with learning and memory consolidation. However, it remains unknown how defined populations of inhibitory interneurons regulate these events during behavior. Here, we use large-scale, three-dimensional calcium imaging and retrospective molecular identification in the mouse hippocampus to characterize molecularly identified CA3 and CA2 interneuron activity during SWR-associated memory consolidation and spatial navigation. We describe subtype- and region-specific responses during behaviorally distinct brain states and find that SWRs are preceded by decreased cholecystokinin-expressing interneuron activity and followed by increased parvalbumin-expressing basket cell activity. The magnitude of these dynamics correlates with both SWR duration and behavior during hippocampal-dependent learning. Together these results assign subtype- and region-specific roles for inhibitory circuits in coordinating operations and learning-related plasticity in hippocampal recurrent circuits.
Collapse
Affiliation(s)
- Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Andres Grosmark
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- University of Connecticut Medical School, Farmington, CT, USA
| | - Vivian Zhao
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Geiller T, Priestley JB, Losonczy A. A local circuit-basis for spatial navigation and memory processes in hippocampal area CA1. Curr Opin Neurobiol 2023; 79:102701. [PMID: 36878147 PMCID: PMC10020891 DOI: 10.1016/j.conb.2023.102701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
The hippocampus is a multi-stage neural circuit that is critical for memory formation. Its distinct anatomy has long inspired theories that rely on local interactions between neurons within each subregion in order to perform serial operations important for memory encoding and storage. These local computations have received less attention in CA1 area, the primary output node of the hippocampus, where excitatory neurons are thought to be only very sparsely interconnected. However, recent findings have demonstrated the power of local circuitry in CA1, with evidence for strong functional interactions among excitatory neurons, regulation by diverse inhibitory microcircuits, and novel plasticity rules that can profoundly reshape the hippocampal ensemble code. Here we review how these properties expand the dynamical repertoire of CA1 beyond the confines of feedforward processing, and what implications they have for hippocampo-cortical functions in memory formation.
Collapse
Affiliation(s)
- Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA. https://twitter.com/tgeiller
| | - James B Priestley
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, 10027, USA. https://twitter.com/jamespriestley4
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
24
|
Virga DM, Hamilton S, Osei B, Morgan A, Zamponi E, Park NJ, Hewitt VL, Zhang D, Gonzalez KC, Bloss E, Polleux F, Lewis TL. Activity-dependent subcellular compartmentalization of dendritic mitochondria structure in CA1 pyramidal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534233. [PMID: 36993655 PMCID: PMC10055421 DOI: 10.1101/2023.03.25.534233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly in the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a new activity-dependent molecular mechanism underlying the extreme subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise regulation of mitochondria fission/fusion balance.
Collapse
Affiliation(s)
- Daniel M. Virga
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Stevie Hamilton
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Bertha Osei
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| | - Emiliano Zamponi
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Natalie J. Park
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Victoria L. Hewitt
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - David Zhang
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Erik Bloss
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia Medical School, New York, NY- USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY- USA
| | - Tommy L. Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience, Oklahoma University Health Science Campus, Oklahoma City, OK, USA
| |
Collapse
|
25
|
Sheintuch L, Geva N, Deitch D, Rubin A, Ziv Y. Organization of hippocampal CA3 into correlated cell assemblies supports a stable spatial code. Cell Rep 2023; 42:112119. [PMID: 36807137 PMCID: PMC9989830 DOI: 10.1016/j.celrep.2023.112119] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Hippocampal subfield CA3 is thought to stably store memories in assemblies of recurrently connected cells functioning as a collective. However, the collective hippocampal coding properties that are unique to CA3 and how such properties facilitate the stability or precision of the neural code remain unclear. Here, we performed large-scale Ca2+ imaging in hippocampal CA1 and CA3 of freely behaving mice that repeatedly explored the same, initially novel environments over weeks. CA3 place cells have more precise and more stable tuning and show a higher statistical dependence with their peers compared with CA1 place cells, uncovering a cell assembly organization in CA3. Surprisingly, although tuning precision and long-term stability are correlated, cells with stronger peer dependence exhibit higher stability but not higher precision. Overall, our results expose the three-way relationship between tuning precision, long-term stability, and peer dependence, suggesting that a cell assembly organization underlies long-term storage of information in the hippocampus.
Collapse
Affiliation(s)
- Liron Sheintuch
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Geva
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Deitch
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Rubin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Yaniv Ziv
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
26
|
Fan LZ, Kim DK, Jennings JH, Tian H, Wang PY, Ramakrishnan C, Randles S, Sun Y, Thadhani E, Kim YS, Quirin S, Giocomo L, Cohen AE, Deisseroth K. All-optical physiology resolves a synaptic basis for behavioral timescale plasticity. Cell 2023; 186:543-559.e19. [PMID: 36669484 PMCID: PMC10327443 DOI: 10.1016/j.cell.2022.12.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Learning has been associated with modifications of synaptic and circuit properties, but the precise changes storing information in mammals have remained largely unclear. We combined genetically targeted voltage imaging with targeted optogenetic activation and silencing of pre- and post-synaptic neurons to study the mechanisms underlying hippocampal behavioral timescale plasticity. In mice navigating a virtual-reality environment, targeted optogenetic activation of individual CA1 cells at specific places induced stable representations of these places in the targeted cells. Optical elicitation, recording, and modulation of synaptic transmission in behaving mice revealed that activity in presynaptic CA2/3 cells was required for the induction of plasticity in CA1 and, furthermore, that during induction of these place fields in single CA1 cells, synaptic input from CA2/3 onto these same cells was potentiated. These results reveal synaptic implementation of hippocampal behavioral timescale plasticity and define a methodology to resolve synaptic plasticity during learning and memory in behaving mammals.
Collapse
Affiliation(s)
- Linlin Z Fan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joshua H Jennings
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Peter Y Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Sawyer Randles
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yanjun Sun
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Elina Thadhani
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sean Quirin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lisa Giocomo
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Department of Physics, Harvard University, Cambridge, MA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
27
|
Aery Jones EA, Giocomo LM. Neural ensembles in navigation: From single cells to population codes. Curr Opin Neurobiol 2023; 78:102665. [PMID: 36542882 PMCID: PMC9845194 DOI: 10.1016/j.conb.2022.102665] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
The brain can represent behaviorally relevant information through the firing of individual neurons as well as the coordinated firing of ensembles of neurons. Neurons in the hippocampus and associated cortical regions participate in a variety of types of ensembles to support navigation. These ensemble types include single cell codes, population codes, time-compressed sequences, behavioral sequences, and engrams. We present the physiological basis and behavioral relevance of ensemble firing. We discuss how these traditional definitions of ensembles can constrain or expand potential analyses due to the underlying assumptions and abstractions made. We highlight how coding can change at the ensemble level while underlying single cell codes remain intact. Finally, we present how ensemble definitions could be broadened to better understand the full complexity of the brain.
Collapse
Affiliation(s)
- Emily A Aery Jones
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
28
|
Qin S, Farashahi S, Lipshutz D, Sengupta AM, Chklovskii DB, Pehlevan C. Coordinated drift of receptive fields in Hebbian/anti-Hebbian network models during noisy representation learning. Nat Neurosci 2023; 26:339-349. [PMID: 36635497 DOI: 10.1038/s41593-022-01225-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2022] [Indexed: 01/13/2023]
Abstract
Recent experiments have revealed that neural population codes in many brain areas continuously change even when animals have fully learned and stably perform their tasks. This representational 'drift' naturally leads to questions about its causes, dynamics and functions. Here we explore the hypothesis that neural representations optimize a representational objective with a degenerate solution space, and noisy synaptic updates drive the network to explore this (near-)optimal space causing representational drift. We illustrate this idea and explore its consequences in simple, biologically plausible Hebbian/anti-Hebbian network models of representation learning. We find that the drifting receptive fields of individual neurons can be characterized by a coordinated random walk, with effective diffusion constants depending on various parameters such as learning rate, noise amplitude and input statistics. Despite such drift, the representational similarity of population codes is stable over time. Our model recapitulates experimental observations in the hippocampus and posterior parietal cortex and makes testable predictions that can be probed in future experiments.
Collapse
Affiliation(s)
- Shanshan Qin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Shiva Farashahi
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - David Lipshutz
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Anirvan M Sengupta
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ, USA
| | - Dmitri B Chklovskii
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- NYU Langone Medical Center, New York, NY, USA
| | - Cengiz Pehlevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
29
|
Goldt S, Krzakala F, Zdeborová L, Brunel N. Bayesian reconstruction of memories stored in neural networks from their connectivity. PLoS Comput Biol 2023; 19:e1010813. [PMID: 36716332 PMCID: PMC9910750 DOI: 10.1371/journal.pcbi.1010813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 02/09/2023] [Accepted: 12/12/2022] [Indexed: 02/01/2023] Open
Abstract
The advent of comprehensive synaptic wiring diagrams of large neural circuits has created the field of connectomics and given rise to a number of open research questions. One such question is whether it is possible to reconstruct the information stored in a recurrent network of neurons, given its synaptic connectivity matrix. Here, we address this question by determining when solving such an inference problem is theoretically possible in specific attractor network models and by providing a practical algorithm to do so. The algorithm builds on ideas from statistical physics to perform approximate Bayesian inference and is amenable to exact analysis. We study its performance on three different models, compare the algorithm to standard algorithms such as PCA, and explore the limitations of reconstructing stored patterns from synaptic connectivity.
Collapse
Affiliation(s)
- Sebastian Goldt
- International School of Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| | - Florent Krzakala
- IdePHICS laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Lenka Zdeborová
- SPOC laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, North Carolina, United States of America
- Department of Physics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
30
|
Entorhinal cortex directs learning-related changes in CA1 representations. Nature 2022; 611:554-562. [DOI: 10.1038/s41586-022-05378-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
AbstractLearning-related changes in brain activity are thought to underlie adaptive behaviours1,2. For instance, the learning of a reward site by rodents requires the development of an over-representation of that location in the hippocampus3–6. How this learning-related change occurs remains unknown. Here we recorded hippocampal CA1 population activity as mice learned a reward location on a linear treadmill. Physiological and pharmacological evidence suggests that the adaptive over-representation required behavioural timescale synaptic plasticity (BTSP)7. BTSP is known to be driven by dendritic voltage signals that we proposed were initiated by input from entorhinal cortex layer 3 (EC3). Accordingly, the CA1 over-representation was largely removed by optogenetic inhibition of EC3 activity. Recordings from EC3 neurons revealed an activity pattern that could provide an instructive signal directing BTSP to generate the over-representation. Consistent with this function, our observations show that exposure to a second environment possessing a prominent reward-predictive cue resulted in both EC3 activity and CA1 place field density that were more elevated at the cue than at the reward. These data indicate that learning-related changes in the hippocampus are produced by synaptic plasticity directed by an instructive signal from the EC3 that seems to be specifically adapted to the behaviourally relevant features of the environment.
Collapse
|
31
|
Jeong N, Singer AC. Learning from inhibition: Functional roles of hippocampal CA1 inhibition in spatial learning and memory. Curr Opin Neurobiol 2022; 76:102604. [PMID: 35810533 PMCID: PMC11414469 DOI: 10.1016/j.conb.2022.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Hippocampal inhibitory interneurons exert a powerful influence on learning and memory. Inhibitory interneurons are known to play a major role in many diseases that affect memory, and to strongly influence brain functions required for memory-related tasks. While previous studies involving genetic, optogenetic, and pharmacological manipulations have shown that hippocampal interneurons play essential roles in spatial and episodic learning and memory, exactly how interneurons affect local circuit computations during spatial navigation is not well understood. Given the significant anatomical, morphological, and functional heterogeneity in hippocampal interneurons, one may suspect cell-type specific roles in circuit computations. Here, we review emerging evidence of CA1 hippocampal interneurons' role in local circuit computations that support spatial learning and memory and discuss open questions about CA1 interneurons in spatial learning.
Collapse
Affiliation(s)
- Nuri Jeong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA. https://twitter.com/nuriscientist
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
32
|
Papaioannou S, Medini P. Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo. Front Neurosci 2022; 16:859803. [PMID: 35837124 PMCID: PMC9274136 DOI: 10.3389/fnins.2022.859803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist.
Collapse
|
33
|
Priestley JB, Bowler JC, Rolotti SV, Fusi S, Losonczy A. Signatures of rapid plasticity in hippocampal CA1 representations during novel experiences. Neuron 2022; 110:1978-1992.e6. [PMID: 35447088 PMCID: PMC9233041 DOI: 10.1016/j.neuron.2022.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Neurons in the hippocampus exhibit a striking selectivity for specific combinations of sensory features, forming representations that are thought to subserve episodic memory. Even during completely novel experiences, hippocampal "place cells" are rapidly configured such that the population sparsely encodes visited locations, stabilizing within minutes of the first exposure to a new environment. What mechanisms enable this fast encoding of experience? Using virtual reality and neural population recordings in mice, we dissected the effects of novelty and experience on the dynamics of place field formation. During place field formation, many CA1 neurons immediately modulated the amplitude of their activity and shifted the location of their field, rapid changes in tuning predicted by behavioral timescale synaptic plasticity (BTSP). Signatures of BTSP were particularly enriched during the exploration of a novel context and decayed with experience. Our data suggest that novelty modulates the effective learning rate in CA1, favoring rapid mechanisms of field formation to encode a new experience.
Collapse
Affiliation(s)
- James B Priestley
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA.
| | - John C Bowler
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Sebi V Rolotti
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Stefano Fusi
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
34
|
Burns TF, Haga 芳賀 達也 T, Fukai 深井朋樹 T. Multiscale and Extended Retrieval of Associative Memory Structures in a Cortical Model of Local-Global Inhibition Balance. eNeuro 2022; 9:ENEURO.0023-22.2022. [PMID: 35606151 PMCID: PMC9186110 DOI: 10.1523/eneuro.0023-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Inhibitory neurons take on many forms and functions. How this diversity contributes to memory function is not completely known. Previous formal studies indicate inhibition differentiated by local and global connectivity in associative memory networks functions to rescale the level of retrieval of excitatory assemblies. However, such studies lack biological details such as a distinction between types of neurons (excitatory and inhibitory), unrealistic connection schemas, and nonsparse assemblies. In this study, we present a rate-based cortical model where neurons are distinguished (as excitatory, local inhibitory, or global inhibitory), connected more realistically, and where memory items correspond to sparse excitatory assemblies. We use this model to study how local-global inhibition balance can alter memory retrieval in associative memory structures, including naturalistic and artificial structures. Experimental studies have reported inhibitory neurons and their subtypes uniquely respond to specific stimuli and can form sophisticated, joint excitatory-inhibitory assemblies. Our model suggests such joint assemblies, as well as a distribution and rebalancing of overall inhibition between two inhibitory subpopulations, one connected to excitatory assemblies locally and the other connected globally, can quadruple the range of retrieval across related memories. We identify a possible functional role for local-global inhibitory balance to, in the context of choice or preference of relationships, permit and maintain a broader range of memory items when local inhibition is dominant and conversely consolidate and strengthen a smaller range of memory items when global inhibition is dominant. This model, while still theoretical, therefore highlights a potentially biologically-plausible and behaviorally-useful function of inhibitory diversity in memory.
Collapse
Affiliation(s)
- Thomas F Burns
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Tatsuya Haga 芳賀 達也
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Tomoki Fukai 深井朋樹
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
35
|
Musa A, Khan S, Mujahid M, El-Gaby M. The shallow cognitive map hypothesis: A hippocampal framework for thought disorder in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:34. [PMID: 35853896 PMCID: PMC9261089 DOI: 10.1038/s41537-022-00247-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/11/2022] [Indexed: 12/31/2022]
Abstract
Memories are not formed in isolation. They are associated and organized into relational knowledge structures that allow coherent thought. Failure to express such coherent thought is a key hallmark of Schizophrenia. Here we explore the hypothesis that thought disorder arises from disorganized Hippocampal cognitive maps. In doing so, we combine insights from two key lines of investigation, one concerning the neural signatures of cognitive mapping, and another that seeks to understand lower-level cellular mechanisms of cognition within a dynamical systems framework. Specifically, we propose that multiple distinct pathological pathways converge on the shallowing of Hippocampal attractors, giving rise to disorganized Hippocampal cognitive maps and driving conceptual disorganization. We discuss the available evidence at the computational, behavioural, network, and cellular levels. We also outline testable predictions from this framework, including how it could unify major chemical and psychological theories of schizophrenia and how it can provide a rationale for understanding the aetiology and treatment of the disease.
Collapse
Affiliation(s)
- Ayesha Musa
- Green Templeton College, University of Oxford, Oxford, OX2 6HG, UK
| | - Safia Khan
- Green Templeton College, University of Oxford, Oxford, OX2 6HG, UK
| | - Minahil Mujahid
- St Anne's college, University of Oxford, Oxford, OX2 6HS, UK
| | - Mohamady El-Gaby
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3SR, UK.
| |
Collapse
|
36
|
Place-cell crowd control. Nat Rev Neurosci 2022; 23:130-131. [PMID: 35039666 DOI: 10.1038/s41583-022-00557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|