1
|
Lee R, Kim G, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction and prevent fear memory loss in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation and synaptic dysfunction in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction and fear memory loss in the amyloid pathology model mice. We thus suggest that co-activation of PV+ and SST+ cells is a novel strategy to reverse hippocampal dysfunction and cognitive decline in AD.
Collapse
|
2
|
Li S, He Y, Turner D, Wei N, Ma L, Taylor DH, Taylor DT, Ji X, Wu J. Electrophysiological Phenotypes of Hippocampal Synaptic and Network Functions in Cannabinoid Receptor 2 Knockout Mice. Cannabis Cannabinoid Res 2024; 9:1267-1276. [PMID: 38502778 DOI: 10.1089/can.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Background: The cannabinoid receptor 2 (CB2R), a cannabinoid receptor primarily expressed in immune cells, has been found in the brain, particularly in the hippocampus, where it plays crucial roles in modulating various neural functions, including synaptic plasticity, neuroprotection, neurogenesis, anxiety and stress responses, and neuroinflammation. Despite this growing understanding, the intricate electrophysiological characteristics of hippocampal neurons in CB2R knockout (CB2R KO) mice remain elusive. Aim and Methods: This study aimed to comprehensively assess the electrophysiological traits of hippocampal synaptic and network functions in CB2R KO mice. The focus was on aspects such as synaptic transmission, short- and long-term synaptic plasticity, and neural network synchrony (theta oscillations). Results: Our findings unveiled multiple functional traits in these CB2R KO mice, notably elevated synaptic transmission in hippocampal CA1 neurons, decreased both synaptic short-term plasticity (paired-pulse facilitation) and long-term potentiation (LTP), and impaired neural network synchronization. Conclusion: In essence, this study yields insightful revelations about the influence of CB2Rs on hippocampal neural functions. By illuminating the electrophysiological modifications in CB2R KO mice, our research enriches the comprehension of CB2R involvement in hippocampal function. Such insights could hold implications for advancing our understanding of the neural mechanisms under the influence of CB2Rs within the brain.
Collapse
Affiliation(s)
- Shuangtao Li
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Yongchang He
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dharshaun Turner
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Naili Wei
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Luyao Ma
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Devin H Taylor
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Biology, Utah Valley University, Orem, Utah, USA
| | | | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
McCallum RT, Perreault ML. Glycogen Synthase Kinase-3: A Focal Point for Advancing Pathogenic Inflammation in Depression. Cells 2021; 10:cells10092270. [PMID: 34571919 PMCID: PMC8470361 DOI: 10.3390/cells10092270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Increasing evidence indicates that the host immune response has a monumental role in the etiology of major depressive disorder (MDD), motivating the development of the inflammatory hypothesis of depression. Central to the involvement of chronic inflammation in MDD is a wide range of signaling deficits induced by the excessive secretion of pro-inflammatory cytokines and imbalanced T cell differentiation. Such signaling deficits include the glutamatergic, cholinergic, insulin, and neurotrophin systems, which work in concert to initiate and advance the neuropathology. Fundamental to the communication between such systems is the protein kinase glycogen synthase kinase-3 (GSK-3), a multifaceted protein critically linked to the etiology of MDD and an emerging target to treat pathogenic inflammation. Here, a consolidated overview of the widespread multi-system involvement of GSK-3 in contributing to the neuropathology of MDD will be discussed, with the feed-forward mechanistic links between all major neuronal signaling pathways highlighted.
Collapse
Affiliation(s)
- Ryan T. McCallum
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Melissa L. Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Collaborative Program in Neuroscience, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 52013)
| |
Collapse
|
4
|
El-Emam MA, El Achy S, Abdallah DM, El-Abhar HS, Gowayed MA. Neuroprotective role of galantamine with/without physical exercise in experimental autoimmune encephalomyelitis in rats. Life Sci 2021; 277:119459. [PMID: 33836162 DOI: 10.1016/j.lfs.2021.119459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
AIMS The fact that physical activity besides central cholinergic enhancement contributes in improving neuronal function and spastic plasticity, recommends the use of the anticholinesterase and cholinergic drug galantamine with/without exercise in the management of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). MATERIALS AND METHODS Sedentary and 14 days exercised male Sprague Dawley rats were subjected to EAE. Hereafter, exercised rats continued on rotarod for 30 min for 17 consecutive days. At the onset of symptoms (day 13), EAE sedentary/exercised groups were subdivided into untreated and post-treated with galantamine. The disease progression was assessed by EAE score, motor performance, and biochemically using cerebrospinal fluid (CSF). Cerebellum and brain stem samples were used for histopathology and immunohistochemistry analysis. KEY FINDINGS Galantamine decreased EAE score of sedentary/exercised rats and enhanced their motor performance. Galantamine with/without exercise inhibited CSF levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6), and Bcl-2-associated X protein (Bax), besides caspase-3 and forkhead box P3 (Foxp3) expression in the brain stem. Contrariwise, it has elevated CSF levels of brain derived neurotrophic factor (BDNF) and B-cell lymphoma (Bcl-2) and enhanced remyelination of cerebral neurons. Noteworthy, exercise boosted the drug effect on Bcl-2 and Bax. SIGNIFICANCE The neuroprotective effect of galantamine against EAE was associated with anti-inflammatory and anti-apoptotic potentials, along with increasing BDNF and remyelination. It also normalized regulatory T-cells levels in the brain stem. The impact of the add-on of exercise was markedly manifested in reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar El Achy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
The Role of Gamma Oscillations in the Pathophysiology of Substance Use Disorders. J Pers Med 2020; 11:jpm11010017. [PMID: 33379187 PMCID: PMC7824040 DOI: 10.3390/jpm11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Substance use disorders (SUDs) are a major public health problem—with over 200 million people reporting drug use in 2016. Electroencephalography (EEG) is a powerful tool that can provide insights into the impact of SUDs on cognition. Specifically, modulated gamma activity may provide an index of the pathophysiology of SUDs. Thus, the purpose of this review was to investigate the impact of alcohol, tobacco, cannabis, cocaine, and amphetamine on gamma activity, among pre-clinical and clinical populations during acute and chronic exposure and withdrawal states. We searched multiple databases for key terms related to SUDs, EEG, and gamma and ensured rigorous methods by using a standardized review reporting tool. We included 30 studies in this review and found that all substances were associated with modulation of gamma activity, across states and in both preclinical and clinical populations. Gamma oscillations appeared to be differentially modulated in clinical versus preclinical populations and had the most complex relationship with alcohol, indicating that it may act differently than other substances. The findings of this review offer insights into the pathophysiology of SUDs, providing a potential window into novel treatments for SUDs via modulation of gamma activity.
Collapse
|
6
|
Doughty PT, Hossain I, Gong C, Ponder KA, Pati S, Arumugam PU, Murray TA. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo. Sci Rep 2020; 10:12777. [PMID: 32728074 PMCID: PMC7392771 DOI: 10.1038/s41598-020-69636-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Glutamate (GLU) and γ-aminobutyric acid (GABA) are the major excitatory (E) and inhibitory (I) neurotransmitters in the brain, respectively. Dysregulation of the E/I ratio is associated with numerous neurological disorders. Enzyme-based microelectrode array biosensors present the potential for improved biocompatibility, localized sample volumes, and much faster sampling rates over existing measurement methods. However, enzymes degrade over time. To overcome the time limitation of permanently implanted microbiosensors, we created a microwire-based biosensor that can be periodically inserted into a permanently implanted cannula. Biosensor coatings were based on our previously developed GLU and reagent-free GABA shank-type biosensor. In addition, the microwire biosensors were in the same geometric plane for the improved acquisition of signals in planar tissue including rodent brain slices, cultured cells, and brain regions with laminar structure. We measured real-time dynamics of GLU and GABA in rat hippocampal slices and observed a significant, nonlinear shift in the E/I ratio from excitatory to inhibitory dominance as electrical stimulation frequency increased from 10 to 140 Hz, suggesting that GABA release is a component of a homeostatic mechanism in the hippocampus to prevent excitotoxic damage. Additionally, we recorded from a freely moving rat over fourteen weeks, inserting fresh biosensors each time, thus demonstrating that the microwire biosensor overcomes the time limitation of permanently implanted biosensors and that the biosensors detect relevant changes in GLU and GABA levels that are consistent with various behaviors.
Collapse
Affiliation(s)
- P Timothy Doughty
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Chenggong Gong
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Kayla A Ponder
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Sandipan Pati
- UAB Epilepsy Center/Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prabhu U Arumugam
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA. .,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA.
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
7
|
Lucatch AM, Lowe DJE, Clark RC, Kozak K, George TP. Neurobiological Determinants of Tobacco Smoking in Schizophrenia. Front Psychiatry 2018; 9:672. [PMID: 30574101 PMCID: PMC6291492 DOI: 10.3389/fpsyt.2018.00672] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose of review: To provide an overview of the underlying neurobiology of tobacco smoking in schizophrenia, and implications for treatment of this comorbidity. Recent findings: Explanations for heavy tobacco smoking in schizophrenia include pro-cognitive effects of nicotine, and remediation of the underlying pathophysiology of schizophrenia. Nicotine may ameliorate neurochemical deficits through nicotine acetylcholine receptors (nAChRs) located on the dopamine, glutamate, and GABA neurons. Neurophysiological indices including electroencephalography, electromyography, and smooth pursuit eye movement (SPEM) paradigms may be biomarkers for underlying neuronal imbalances that contribute to the specific risk of tobacco smoking initiation, maintenance, and difficulty quitting within schizophrenia. Moreover, several social factors including socioeconomic factors and permissive smoking culture in mental health facilities, may contribute to the smoking behaviors (initiation, maintenance, and inability to quit smoking) within this disorder. Summary: Tobacco smoking may alleviate specific symptoms associated with schizophrenia. Understanding the neurobiological underpinnings and psychosocial determinants of this comorbidity may better explain these potential beneficial effects, while also providing important insights into effective treatments for smoking cessation.
Collapse
Affiliation(s)
- Aliya M. Lucatch
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Darby J. E. Lowe
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Rachel C. Clark
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Karolina Kozak
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Tony P. George
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division and Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|
9
|
Hossain I, Tan C, Doughty PT, Dutta G, Murray TA, Siddiqui S, Iasemidis L, Arumugam PU. A Novel Microbiosensor Microarray for Continuous ex Vivo Monitoring of Gamma-Aminobutyric Acid in Real-Time. Front Neurosci 2018; 12:500. [PMID: 30131664 PMCID: PMC6090213 DOI: 10.3389/fnins.2018.00500] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that is essential for normal brain function. It is involved in multiple neuronal activities, including plasticity, information processing, and network synchronization. Abnormal GABA levels result in severe brain disorders and therefore GABA has been the target of a wide range of drug therapeutics. GABA being non-electroactive is challenging to detect in real-time. To date, GABA is detected mainly via microdialysis with a high-performance liquid chromatography (HPLC) system that employs electrochemical (EC) and spectroscopic methodology. However, these systems are bulky and unsuitable for real-time continuous monitoring. As opposed to microdialysis, biosensors are easy to miniaturize and are highly suitable for in vivo studies; they selectively oxidize GABA into a secondary electroactive product (usually hydrogen peroxide, H2O2) in the presence of enzymes, which is then detected by amperometry. Unfortunately, this method requires a rather cumbersome process with prereactors and relies on externally applied reagents. Here, we report the design and implementation of a GABA microarray probe that operates on a newly conceived principle. It consists of two microbiosensors, one for glutamate (Glu) and one for GABA detection, modified with glutamate oxidase and GABASE enzymes, respectively. By simultaneously measuring and subtracting the H2O2 oxidation currents generated from these microbiosensors, GABA and Glu can be detected continuously in real-time in vitro and ex vivo and without the addition of any externally applied reagents. The detection of GABA by this probe is based upon the in-situ generation of α-ketoglutarate from the Glu oxidation that takes place at the Glu microbiosensor. A GABA sensitivity of 36 ± 2.5 pA μM-1cm-2, which is 26-fold higher than reported in the literature, and a limit of detection of 2 ± 0.12 μM were achieved in an in vitro setting. The GABA probe was successfully tested in an adult rat brain slice preparation. These results demonstrate that the developed GABA probe constitutes a novel and powerful neuroscientific tool that could be employed in the future for in vivo longitudinal studies of the combined role of GABA and Glu (a major excitatory neurotransmitter) signaling in brain disorders, such as epilepsy and traumatic brain injury, as well as in preclinical trials of potential therapeutic agents for the treatment of these disorders.
Collapse
Affiliation(s)
- Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| | - Chao Tan
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States.,Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Phillip T Doughty
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Gaurab Dutta
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Shabnam Siddiqui
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Leonidas Iasemidis
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Prabhu U Arumugam
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States.,Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| |
Collapse
|
10
|
Sun G, He Y, Ma XK, Li S, Chen D, Gao M, Qiu S, Yin J, Shi J, Wu J. Hippocampal synaptic and neural network deficits in young mice carrying the human APOE4 gene. CNS Neurosci Ther 2017; 23:748-758. [PMID: 28786172 PMCID: PMC6492660 DOI: 10.1111/cns.12720] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/24/2017] [Accepted: 06/25/2017] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Apolipoprotein E4 (APOE4) is a major genetic risk factor for late-onset sporadic Alzheimer disease. Emerging evidence demonstrates a hippocampus-associated learning and memory deficit in aged APOE4 human carriers and also in aged mice carrying human APOE4 gene. This suggests that either exogenous APOE4 or endogenous APOE4 alters the cognitive profile and hippocampal structure and function. However, little is known regarding how Apoe4 modulates hippocampal dendritic morphology, synaptic function, and neural network activity in young mice. AIM In this study, we compared hippocampal dendritic and spine morphology and synaptic function of young (4 months) mice with transgenic expression of the human APOE4 and APOE3 genes. METHODS Hippocampal dendritic and spine morphology and synaptic function were assessed by neuronal imaging and electrophysiological approaches. RESULTS Morphology results showed that shortened dendritic length and reduced spine density occurred at hippocampal CA1 neurons in Apoe4 mice compared to Apoe3 mice. Electrophysiological results demonstrated that in the hippocampal CA3-CA1 synapses of young Apoe4 mice, basic synaptic transmission, and paired-pulse facilitation were enhanced but long-term potentiation and carbachol-induced hippocampal theta oscillations were impaired compared to young Apoe3 mice. However, both Apoe genotypes responded similarly to persistent stimulations (4, 10, and 40 Hz for 4 seconds). CONCLUSION Our results suggest significant alterations in hippocampal dendritic structure and synaptic function in Apoe4 mice, even at an early age.
Collapse
Affiliation(s)
- Guo‐Zhu Sun
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurobiologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
| | - Yong‐Chang He
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
- Department of NeurobiologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
| | - Xiao Kuang Ma
- Department of NeurobiologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
- Department of PhysiologyShantou University Medical CollegeShantouGuangdongChina
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixAZUSA
| | - Shuang‐Tao Li
- Department of NeurobiologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
- Department of PhysiologyShantou University Medical CollegeShantouGuangdongChina
| | - De‐Jie Chen
- Department of NeurobiologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
| | - Ming Gao
- Department of NeurobiologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
| | - Shen‐Feng Qiu
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixAZUSA
| | - Jun‐Xiang Yin
- Department of NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
| | - Jiong Shi
- Department of NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
- Department of NeurologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
| | - Jie Wu
- Department of NeurobiologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixAZUSA
- Department of PhysiologyShantou University Medical CollegeShantouGuangdongChina
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixAZUSA
| |
Collapse
|
11
|
Wang J, He X, Guo F, Cheng X, Wang Y, Wang X, Feng Z, Vreugdenhil M, Lu C. Multiple Kinases Involved in the Nicotinic Modulation of Gamma Oscillations in the Rat Hippocampal CA3 Area. Front Cell Neurosci 2017; 11:57. [PMID: 28321180 PMCID: PMC5337687 DOI: 10.3389/fncel.2017.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022] Open
Abstract
Neuronal synchronization at gamma band frequency (20–80 Hz, γ oscillations) is closely associated with higher brain function, such as learning, memory and attention. Nicotinic acetylcholine receptors (nAChRs) are highly expressed in the hippocampus, and modulate hippocampal γ oscillations, but the intracellular mechanism underlying such modulation remains elusive. We explored multiple kinases by which nicotine can modulate γ oscillations induced by kainate in rat hippocampal area CA3 in vitro. We found that inhibitors of cyclic AMP dependent kinase (protein kinase A, PKA), protein kinase C (PKC), N-methyl-D-aspartate receptor (NMDA) receptors, Phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinases (ERK), each individually could prevent the γ oscillation-enhancing effect of 1 μM nicotine, whereas none of them affected baseline γ oscillation strength. Inhibition of the serine/threonine kinase Akt increased baseline γ oscillations and partially blocked its nicotinic enhancement. We propose that the PKA-NMDAR-PI3K-ERK pathway modifies cellular properties required for the nicotinic enhancement of γ oscillations, dependent on a PKC-ERK mediated pathway. These signaling pathways provide clues for restoring γ oscillations in pathological conditions affecting cognition. The suppression of γ oscillations at 100 μM nicotine was only dependent on PKA-NMDAR activation and may be due to very high intracellular calcium levels.
Collapse
Affiliation(s)
- JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Pathophysiology, Xinxiang Medical UniversityXinxinang, China
| | - XiaoLong He
- Key Laboratory of Neuronal Oscillation and Disease, Yantze University Medical School JingZhou, China
| | - Fangli Guo
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| | - XiangLin Cheng
- Department of Laboratory Medicine, Yantze University Affiliated Hospital JingZhou, China
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| | - XiaoFang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University Xinxinang, China
| | - ZhiWei Feng
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University Xinxinang, China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical UniversityXinxinang, China; School of Life Sciences, Birmingham City UniversityBirmingham, UK
| | - ChengBiao Lu
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxinang, China; Key Laboratory of Neuronal Oscillation and Disease, Yantze University Medical SchoolJingZhou, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxinang, China
| |
Collapse
|
12
|
Nikiforuk A, Kos T, Hołuj M, Potasiewicz A, Popik P. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats. Neuropharmacology 2016; 101:389-400. [DOI: 10.1016/j.neuropharm.2015.07.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
|
13
|
Lee SA, Holly KS, Voziyanov V, Villalba SL, Tong R, Grigsby HE, Glasscock E, Szele FG, Vlachos I, Murray TA. Gradient Index Microlens Implanted in Prefrontal Cortex of Mouse Does Not Affect Behavioral Test Performance over Time. PLoS One 2016; 11:e0146533. [PMID: 26799938 PMCID: PMC4723314 DOI: 10.1371/journal.pone.0146533] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/19/2015] [Indexed: 12/11/2022] Open
Abstract
Implanted gradient index lenses have extended the reach of standard multiphoton microscopy from the upper layers of the mouse cortex to the lower cortical layers and even subcortical regions. These lenses have the clarity to visualize dynamic activities, such as calcium transients, with subcellular and millisecond resolution and the stability to facilitate repeated imaging over weeks and months. In addition, behavioral tests can be used to correlate performance with observed changes in network function and structure that occur over time. Yet, this raises the questions, does an implanted microlens have an effect on behavioral tests, and if so, what is the extent of the effect? To answer these questions, we compared the performance of three groups of mice in three common behavioral tests. A gradient index lens was implanted in the prefrontal cortex of experimental mice. We compared their performance with mice that had either a cranial window or a sham surgery. Three presurgical and five postsurgical sets of behavioral tests were performed over seven weeks. Behavioral tests included rotarod, foot fault, and Morris water maze. No significant differences were found between the three groups, suggesting that microlens implantation did not affect performance. The results for the current study clear the way for combining behavioral studies with gradient index lens imaging in the prefrontal cortex, and potentially other regions of the mouse brain, to study structural, functional, and behavioral relationships in the brain.
Collapse
Affiliation(s)
- Seon A. Lee
- Center for Biomedical Research and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, United States of America
| | - Kevin S. Holly
- Center for Biomedical Research and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, United States of America
| | - Vladislav Voziyanov
- Center for Biomedical Research and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, United States of America
| | - Stephanie L. Villalba
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Rudi Tong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Holly E. Grigsby
- Center for Biomedical Research and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, United States of America
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ioannis Vlachos
- Center for Biomedical Research and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, United States of America
| | - Teresa A. Murray
- Center for Biomedical Research and Rehabilitation Sciences, Louisiana Tech University, Ruston, Louisiana, United States of America
| |
Collapse
|
14
|
Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease. J Neurosci 2016; 35:14042-56. [PMID: 26468204 DOI: 10.1523/jneurosci.2781-15.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Aging is the most important risk factor associated with Alzheimer's disease (AD); however, the molecular mechanisms linking aging to AD remain unclear. Suppression of the ribosomal protein S6 kinase 1 (S6K1) increases healthspan and lifespan in several organisms, from nematodes to mammals. Here we show that S6K1 expression is upregulated in the brains of AD patients. Using a mouse model of AD, we found that genetic reduction of S6K1 improved synaptic plasticity and spatial memory deficits, and reduced the accumulation of amyloid-β and tau, the two neuropathological hallmarks of AD. Mechanistically, these changes were linked to reduced translation of tau and the β-site amyloid precursor protein cleaving enzyme 1, a key enzyme in the generation of amyloid-β. Our results implicate S6K1 dysregulation as a previously unidentified molecular mechanism underlying synaptic and memory deficits in AD. These findings further suggest that therapeutic manipulation of S6K1 could be a valid approach to mitigate AD pathology. SIGNIFICANCE STATEMENT Aging is the most important risk factor for Alzheimer's disease (AD). However, little is known about how it contributes to AD pathogenesis. S6 kinase 1 (S6K1) is a protein kinase involved in regulation of protein translation. Reducing S6K1 activity increases lifespan and healthspan. We report the novel finding that reducing S6K1 activity in 3xTg-AD mice ameliorates synaptic and cognitive deficits. These improvement were associated with a reduction in amyloid-β and tau pathology. Mechanistically, lowering S6K1 levels reduced translation of β-site amyloid precursor protein cleaving enzyme 1 and tau, two key proteins involved in AD pathogenesis. These data suggest that S6K1 may represent a molecular link between aging and AD. Given that aging is the most important risk factor for most neurodegenerative diseases, our results may have far-reaching implications into other diseases.
Collapse
|
15
|
John D, Berg DK. Long-lasting changes in neural networks to compensate for altered nicotinic input. Biochem Pharmacol 2015; 97:418-424. [PMID: 26206188 PMCID: PMC4600434 DOI: 10.1016/j.bcp.2015.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
The nervous system must balance excitatory and inhibitory input to constrain network activity levels within a proper dynamic range. This is a demanding requirement during development, when networks form and throughout adulthood as networks respond to constantly changing environments. Defects in the ability to sustain a proper balance of excitatory and inhibitory activity are characteristic of numerous neurological disorders such as schizophrenia, Alzheimer's disease, and autism. A variety of homeostatic mechanisms appear to be critical for balancing excitatory and inhibitory activity in a network. These are operative at the level of individual neurons, regulating their excitability by adjusting the numbers and types of ion channels, and at the level of synaptic connections, determining the relative numbers of excitatory versus inhibitory connections a neuron receives. Nicotinic cholinergic signaling is well positioned to contribute at both levels because it appears early in development, extends across much of the nervous system, and modulates transmission at many kinds of synapses. Further, it is known to influence the ratio of excitatory-to-inhibitory synapses formed on neurons during development. GABAergic inhibitory neurons are likely to be key for maintaining network homeostasis (limiting excitatory output), and nicotinic signaling is known to prominently regulate the activity of several GABAergic neuronal subtypes. But how nicotinic signaling achieves this and how networks may compensate for the loss of such input are important questions remaining unanswered. These issues are reviewed.
Collapse
Affiliation(s)
- Danielle John
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States
| | - Darwin K Berg
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357, United States; Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92093-0357, United States.
| |
Collapse
|
16
|
Stoiljkovic M, Kelley C, Nagy D, Hajós M. Modulation of hippocampal neuronal network oscillations by α7 nACh receptors. Biochem Pharmacol 2015. [DOI: 10.1016/j.bcp.2015.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Stoiljkovic M, Leventhal L, Chen A, Chen T, Driscoll R, Flood D, Hodgdon H, Hurst R, Nagy D, Piser T, Tang C, Townsend M, Tu Z, Bertrand D, Koenig G, Hajós M. Concentration-response relationship of the α7 nicotinic acetylcholine receptor agonist FRM-17874 across multiple in vitro and in vivo assays. Biochem Pharmacol 2015. [PMID: 26206187 DOI: 10.1016/j.bcp.2015.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pharmacological activation of α7 nicotinic acetylcholine receptors (α7 nAChRs) may improve cognition in schizophrenia and Alzheimer's disease. The present studies describe an integrated pharmacological analysis of the effects of FRM-17874, an analogue of encenicline, on α7 nAChRs in vitro and in behavioral and neurophysiological assays relevant to cognitive function. FRM-17874 demonstrated high affinity binding to human α7 nAChRs, displacing [(3)H]-methyllacaconitine (Ki=4.3nM). In Xenopus laevis oocytes expressing human α7 nAChRs, FRM-17874 acted as an agonist, evoking inward currents with an EC50 of 0.42μM. Lower concentrations of FRM-17874 (0.01-3nM) elicited no detectable current, but primed receptors to respond to sub-maximal concentrations of acetylcholine. FRM-17874 improved novel object recognition in rats, and enhanced memory acquisition and reversal learning in the mouse water T-maze. Neurophysiological correlates of cognitive effects of drug treatment, such as synaptic transmission, long-term potentiation, and hippocampal theta oscillation were also evaluated. Modulation of synaptic transmission and plasticity was observed in rat hippocampal slices at concentrations of 3.2 and 5nM. FRM-17874 showed a dose-dependent facilitation of stimulation-induced hippocampal theta oscillation in mice and rats. The FRM-17874 unbound brain concentration-response relationship for increased theta oscillation power was similar in both species, exhibited a biphasic pattern peaking around 3nM, and overlapped with active doses and exposures observed in cognition assays. In summary, behavioral and neurophysiological assays indicate a bell-shaped effective concentration range and this report represents the first attempt to explain the concentration-response function of α7 nAChR-mediated pro-cognitive effects in terms of receptor pharmacology.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA.
| | - Liza Leventhal
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Angela Chen
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Ting Chen
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Rachelle Driscoll
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Dorothy Flood
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Hilliary Hodgdon
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Raymond Hurst
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - David Nagy
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA.
| | - Timothy Piser
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Cuyue Tang
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Matthew Townsend
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Zhiming Tu
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland.
| | - Gerhard Koenig
- FORUM Pharmaceuticals Inc., 225 Second Avenue, Waltham, MA 02451, USA.
| | - Mihaly Hajós
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, 310 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, Li PP, Lu CB. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience 2015; 301:49-60. [PMID: 26049144 DOI: 10.1016/j.neuroscience.2015.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.
Collapse
Affiliation(s)
- X Zhang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - X Y Ge
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - J G Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y L Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Yu
- Department of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - P P Li
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - C B Lu
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
19
|
Wang Y, Wang Z, Wang J, Wang Y, Henderson Z, Wang X, Zhang X, Song J, Lu C. The modulation of nicotinic acetylcholine receptors on the neuronal network oscillations in rat hippocampal CA3 area. Sci Rep 2015; 5:9493. [PMID: 25810076 PMCID: PMC4374140 DOI: 10.1038/srep09493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/05/2015] [Indexed: 11/28/2022] Open
Abstract
γ oscillations are associated with higher brain functions such as memory, perception and consciousness. Disruption of γ oscillations occur in various neuro-psychological disorders such as schizophrenia. Nicotinic acetylcholine receptors (nAChR) are highly expressed in the hippocampus, however, little is known about the role on hippocampal persistent γ oscillation. This study examined the effects of nicotine and selective nAChR agonists and antagonists on kainate-induced persistent γ oscillation in rat hippocampal slices. Nicotine enhanced γ oscillation at concentrations of 0.1–10 μM, but reduced it at a higher concentration of 100 μM. The enhancement on γ oscillation can be best mimicked by co-application of α4β2- and α7- nAChR agonist and reduced by a combination of nAChR antagonists, DhβE and MLA. However, these nAChR antagonists failed to block the suppressing role of nicotine on γ. Furthermore, we found that the NMDA receptor antagonist D-AP5 completely blocked the effect of nicotine. These results demonstrate that nicotine modulates γ oscillations via α7 and α4β2 nAChR as well as NMDA activation, suggesting that nAChR activation may have a therapeutic role for the clinical disorder such as schizophrenia, which is known to have impaired γ oscillation and hypo-NMDA receptor function.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Zhan Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Jiangang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Zaineb Henderson
- Institute of Membrane and System Biology, University of Leeds, Leeds, England
| | - Xiaofang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Xi Zhang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China
| | - Jinggui Song
- Psychiatric Hospital of Henan Province, 2nd Affiliated Hospital of Xinxiang Medical University
| | - Chengbiao Lu
- 1] Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Henan Province, Henan PR. China [2] Psychiatric Hospital of Henan Province, 2nd Affiliated Hospital of Xinxiang Medical University
| |
Collapse
|
20
|
Interleukin-17 inhibits adult hippocampal neurogenesis. Sci Rep 2014; 4:7554. [PMID: 25523081 PMCID: PMC4271266 DOI: 10.1038/srep07554] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
Interleukin 17(A) (IL-17) is a potent pro-inflammatory cytokine that acts as a central regulator of inflammatory response within the brain, but its physiological roles under non-inflammatory conditions remain elusive. Here we report that endogenous IL-17 ablates neurogenesis in the adult dentate gyrus (DG) of hippocampus. Genetic deletion of IL-17 increased the number of adult-born neurons in the DG. Further, we found that IL-17 deletion altered cytokine network, facilitated basal excitatory synaptic transmission, enhanced intrinsic neuronal excitability, and increased expression of proneuronal genes in neuronal progenitor cells (NPCs). Our findings suggest a profound role of IL-17 in the negative regulation of adult hippocampal neurogenesis under physiology conditions.
Collapse
|
21
|
Ma LY, Wu C, Jin Y, Gao M, Li GH, Turner D, Shen JX, Zhang SJ, Narayanan V, Jentarra G, Wu J. Electrophysiological phenotypes of MeCP2 A140V mutant mouse model. CNS Neurosci Ther 2014; 20:420-8. [PMID: 24750778 DOI: 10.1111/cns.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 11/27/2022] Open
Abstract
AIMS MeCP2 gene mutations are associated with Rett syndrome and X-linked mental retardation (XLMR), diseases characterized by abnormal brain development and function. Recently, we created a novel MeCP2 A140V mutation mouse model that exhibited abnormalities of cell packing density and dendritic branching consistent with that seen in Rett syndrome patients as well as other MeCP2 mutant mouse models. Therefore, we hypothesized that some deficits of neuronal and synaptic functions might also be present in the A140V mutant model. METHODS Here, we tested our hypothesis in hippocampal slices using electrophysiological recordings. RESULTS We found that in young A140V mutant mice (3- to 4-week-old), hippocampal CA1 pyramidal neurons exhibited more positive resting membrane potential, increased action potential (AP) firing frequency induced by injection of depolarizing current, wider AP duration, and smaller after hyperpolarization potential compared to neurons prepared from age-matched wild-type mice, suggesting a neuronal hyperexcitation. At the synaptic level, A140V mutant neurons exhibited a reduced frequency of spontaneous IPSCs (inhibitory postsynaptic potentials) and an enhanced probability of evoked glutamate release, both suggesting neuronal hyperexcitation. However, hippocampal CA1 long-term potentiation was not significantly different between A140V and WT mice. In adult mice (11- to 13-month-old), in addition to neuronal hyperexcitation, we also found significant deficits of both short-term and long-term potentiation of CA3-CA1 synapses in A140V mice compared to WT mice. CONCLUSIONS These results clearly illustrate the age-dependent abnormalities of neuronal and synaptic function in the MeCP2 A140V mutant mouse model, which provides new insights into the understanding of the pathogenesis of Rett syndrome.
Collapse
|
22
|
Demars MP, Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain 2014; 7:75. [PMID: 25359633 PMCID: PMC4228157 DOI: 10.1186/s13041-014-0075-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inhibition from GABAergic interneurons in brain circuits is a critical component of cognitive function. This inhibition is regulated through a diverse network of neuromodulation. A number of recent studies suggest that one of the major regulators of interneuron function is nicotinic acetylcholinergic transmission and dysregulation of both systems is common in psychiatric conditions. However, how nicotinic modulation impacts specific subpopulations of diverse GABAergic interneurons remains in question. One potential way of conferring specificity to the convergence of GABAergic and nicotinic signaling is through the expression of a unique family of nicotinic acetycholine receptor modulators, the Lynx family. The present study sought to identify members of the Lynx family enriched in cortical interneurons and to elucidate subpopulations of GABAergic neurons that express unique nicotinic modulators. RESULTS We utilize double fluorescence in situ hybridization to examine the interneuronal expression of the Lynx family in adult mouse visual cortex. We find that two of the Lynx family members, Lynx1 and Lypd6, are enriched in interneuron populations in cortex. Nearly all parvalbumin interneurons express Lynx1 but we did not detect Lypd6 in this population. Conversely, in somatostatin interneurons Lypd6 was found in a subset localized to deep cortical layers but no somatostatin neurons show detectable levels of Lynx1. Using a combination of genetic and viral manipulations we further show that a subpopulation of deep-layer cortico-cortical long-range somatostatin neurons also express Lypd6. CONCLUSIONS This work shows that distinct subpopulations of GABAergic interneurons express unique Lynx family members. The pattern of expression of Lynx family members within interneurons places them in a unique position to potentially regulate the convergence of GABAergic and nicotinic systems, dysfunction of which are characteristic of psychiatric disorders.
Collapse
Affiliation(s)
- Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Lin H, Hsu FC, Baumann BH, Coulter DA, Anderson SA, Lynch DR. Cortical parvalbumin GABAergic deficits with α7 nicotinic acetylcholine receptor deletion: implications for schizophrenia. Mol Cell Neurosci 2014; 61:163-75. [PMID: 24983521 DOI: 10.1016/j.mcn.2014.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/23/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Dysfunction of cortical parvalbumin (PV)-containing GABAergic interneurons has been implicated in cognitive deficits of schizophrenia. In humans microdeletion of the CHRNA7 (α7 nicotinic acetylcholine receptor, nAChR) gene is associated with cortical dysfunction in a broad spectrum of neurodevelopmental and neuropsychiatric disorders including schizophrenia while in mice similar deletion causes analogous abnormalities including impaired attention, working-memory and learning. However, the pathophysiological roles of α7 nAChRs in cortical PV GABAergic development remain largely uncharacterized. In both in vivo and in vitro models, we identify here that deletion of the α7 nAChR gene in mice impairs cortical PV GABAergic development and recapitulates many of the characteristic neurochemical deficits in PV-positive GABAergic interneurons found in schizophrenia. α7 nAChR null mice had decreased cortical levels of GABAergic markers including PV, glutamic acid decarboxylase 65/67 (GAD65/67) and the α1 subunit of GABAA receptors, particularly reductions of PV and GAD67 levels in cortical PV-positive interneurons during late postnatal life and adulthood. Cortical GABAergic synaptic deficits were identified in the prefrontal cortex of α7 nAChR null mice and α7 nAChR null cortical cultures. Similar disruptions in development of PV-positive GABAergic interneurons and perisomatic synapses were found in cortical cultures lacking α7 nAChRs. Moreover, NMDA receptor expression was reduced in GABAergic interneurons, implicating NMDA receptor hypofunction in GABAergic deficits in α7 nAChR null mice. Our findings thus demonstrate impaired cortical PV GABAergic development and multiple characteristic neurochemical deficits reminiscent of schizophrenia in cortical PV-positive interneurons in α7 nAChR gene deletion models. This implicates crucial roles of α7 nAChRs in cortical PV GABAergic development and dysfunction in schizophrenia and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hong Lin
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Fu-Chun Hsu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Bailey H Baumann
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Douglas A Coulter
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Stewart A Anderson
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Child Psychiatry, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David R Lynch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
24
|
Ma L, Turner D, Zhang J, Wang Q, Wang M, Shen J, Zhang S, Wu J. Deficits of synaptic functions in hippocampal slices prepared from aged mice null α7 nicotinic acetylcholine receptors. Neurosci Lett 2014; 570:97-101. [DOI: 10.1016/j.neulet.2014.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
|
25
|
Co-activation of nAChR and mGluR induces γ oscillation in rat medial septum diagonal band of Broca slices. Acta Pharmacol Sin 2014; 35:175-84. [PMID: 24389946 DOI: 10.1038/aps.2013.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/28/2013] [Indexed: 01/12/2023] Open
Abstract
AIM To examine whether co-activation of nAChR and mGluR1 induced γ oscillation (20-60 Hz) in rat medial septum diagonal band of Broca (MSDB) slices. METHODS Rat brain sagittal slices containing the MSDB were prepared. Extracellular field potentials were recorded with glass microelectrodes. The nAChR and mGluR1 agonists were applied to the slices to induce network activity. Data analysis was performed off-line using software Spike 2. RESULTS Co-application of the nAChR agonist nicotine (1 μmol/L) and the mGluR1 agonist dihydroxyphenylglycine (DHPG, 25 μmol/L) was able to induce γ oscillation in MSDB slices. The intensity of nAChR and mGluR1 activation was critical for induction of network oscillation at a low (θ oscillation) or high frequency (γ oscillation): co-application of low concentrations of the two agonists only increased the power and frequency of oscillation within the range of θ, whereas γ oscillation mostly appeared when high concentrations of the two agonists were applied. CONCLUSION Activation of mGluR1 and nAChR is able to program slow or fast network oscillation by altering the intensity of receptor activation, which may provide a mechanism for modulation of learning and memory.
Collapse
|
26
|
Takács VT, Freund TF, Nyiri G. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 2013; 8:e72450. [PMID: 24039767 PMCID: PMC3764118 DOI: 10.1371/journal.pone.0072450] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 01/17/2023] Open
Abstract
Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum). In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties of brain circuits and behavior.
Collapse
Affiliation(s)
- Virág T. Takács
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F. Freund
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
27
|
Jin Y, Su QX, Shen JX, Marks MJ, Wu J. Impaired hippocampal theta oscillations in the mice null alpha7 nicotinic acetylcholine receptors. CNS Neurosci Ther 2013; 19:721-3. [PMID: 23795917 DOI: 10.1111/cns.12138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/18/2013] [Accepted: 05/19/2013] [Indexed: 02/03/2023] Open
|
28
|
Wallace T, Bertrand D. Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 2013; 85:1713-20. [DOI: 10.1016/j.bcp.2013.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 11/27/2022]
|
29
|
Wen D, Peng C, Ou-yang GX, Henderson Z, Li XL, Lu CB. Effects of nicotine stimulation on spikes, theta frequency oscillations, and spike-theta oscillation relationship in rat medial septum diagonal band Broca slices. Acta Pharmacol Sin 2013; 34:464-72. [PMID: 23474704 DOI: 10.1038/aps.2012.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM Spiking activities and neuronal network oscillations in the theta frequency range have been found in many cortical areas during information processing. The aim of this study is to determine whether nicotinic acetylcholine receptors (nAChRs) mediate neuronal network activity in rat medial septum diagonal band Broca (MSDB) slices. METHODS Extracellular field potentials were recorded in the slices using an Axoprobe 1A amplifier. Data analysis was performed off-line. Spike sorting and local field potential (LFP) analyses were performed using Spike2 software. The role of spiking activity in the generation of LFP oscillations in the slices was determined by analyzing the phase-time relationship between the spikes and LFP oscillations. Circular statistic analysis based on the Rayleigh test was used to determine the significance of phase relationships between the spikes and LFP oscillations. The timing relationship was examined by quantifying the spike-field coherence (SFC). RESULTS Application of nicotine (250 nmol/L) induced prominent LFP oscillations in the theta frequency band and both small- and large-amplitude population spiking activity in the slices. These spikes were phase-locked to theta oscillations at specific phases. The Rayleigh test showed a statistically significant relationship in phase-locking between the spikes and theta oscillations. Larger changes in the SFC were observed for large-amplitude spikes, indicating an accurate timing relationship between this type of spike and LFP oscillations. The nicotine-induced spiking activity (large-amplitude population spikes) was suppressed by the nAChR antagonist dihydro-β-erythroidine (0.3 μmol/L). CONCLUSION The results demonstrate that large-amplitude spikes are phase-locked to theta oscillations and have a high spike-timing accuracy, which are likely a main contributor to the theta oscillations generated in MSDB during nicotine receptor activation.
Collapse
|
30
|
Reed S, Plourde G, Tobin S, Chapman C. Partial antagonism of propofol anaesthesia by physostigmine in rats is associated with potentiation of fast (80–200 Hz) oscillations in the thalamus. Br J Anaesth 2013; 110:646-53. [DOI: 10.1093/bja/aes432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Alkondon M, Albuquerque EX, Pereira EFR. Acetylcholinesterase inhibition reveals endogenous nicotinic modulation of glutamate inputs to CA1 stratum radiatum interneurons in hippocampal slices. Neurotoxicology 2013; 36:72-81. [PMID: 23511125 DOI: 10.1016/j.neuro.2013.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20-100ms) inter-event intervals. Donepezil's effects were suppressed significantly in presence of 10μM mecamylamine or 10nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman.
Collapse
Affiliation(s)
- Manickavasagom Alkondon
- Division of Translational Toxicology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | | |
Collapse
|
32
|
Wallace TL, Bertrand D. Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia. Expert Opin Ther Targets 2012; 17:139-55. [PMID: 23231385 DOI: 10.1517/14728222.2013.736498] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Schizophrenia is a profoundly debilitating disease that represents not only an individual, but a societal problem. Once characterized solely by the hyperactivity of the dopaminergic system, therapies directed to dampen dopaminergic neurotransmission were developed. However, these drugs do not address the significant impairments in cognition and the negative symptoms of the disease, and it is now apparent that disequilibrium of many neurotransmitter systems is involved. Despite enormous efforts, minimal progress has been made toward the development of safer, more effective therapies to date. AREAS COVERED The high preponderance of smoking in schizophrenics suggests that nicotine may provide symptomatic improvement, which has led to investigation for selective molecules targeted to individual nicotinic receptor (nAChR) subtypes. Of special interest is activation of the homomeric α7nAChR, which is widely distributed in the brain and has been implicated in the pathophysiology of schizophrenia through numerous approaches. EXPERT OPINION Preclinical and clinical data suggest that neuronal α7nAChRs play an important role in cognitive functions. Moreover, some, but not all, early clinical trials conducted with α7nAChR agonists show cognitive benefits in schizophrenics. These encouraging results suggest that development of compounds targeting α7nAChRs will represent a valuable tool to mitigate symptoms associated with schizophrenia, and open new strategies for better pharmacological treatment of these patients.
Collapse
Affiliation(s)
- Tanya L Wallace
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, USA
| | | |
Collapse
|
33
|
Kimura R, Ma L, Wu C, Turner D, Shen J, Ellsworth K, Wakui M, Maalouf M, Wu J. Acute exposure to the mitochondrial complex I toxin rotenone impairs synaptic long-term potentiation in rat hippocampal slices. CNS Neurosci Ther 2012; 18:641-6. [PMID: 22613619 PMCID: PMC6493358 DOI: 10.1111/j.1755-5949.2012.00337.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIMS To evaluate the acute effects of the mitochondrial complex I inhibitor rotenone on rat hippocampal synaptic plasticity. METHODS Electrophysiological field potential recordings were used to measure basal synaptic transmission and synaptic plasticity in rat coronal hippocampal slices. Synaptic long-term potentiation (LTP) was induced by high-frequency stimulation (100 Hz, 1 second × 3 at an interval of 20 seconds). In addition, mitochondrial complex I function was measured using MitoSOX imaging in mitochondrial preparations. RESULTS Acute exposure of hippocampal slices to 50 nM rotenone for 1 h did not alter basal CA3-CA1 synaptic transmission though 500 nM rotenone significantly reduced basal synaptic transmission. However, 50 nM rotenone significantly impaired LTP and this rotenone's effect was prevented by co-application of rotenone plus the ketones acetoacetate and β-hydroxybutyrate (1 mM each). Finally, we measured mitochondrial function using MitoSOX imaging in mitochondrial preparations and found that 50 nM rotenone partially reduced mitochondrial function whereas 500 nM rotenone completely eliminated mitochondrial function. CONCLUSIONS Our findings suggest that mitochondrial activity driven by complex I is a sensitive modulator of synaptic plasticity in the hippocampus. Acute exposure of the hippocampus to rotenone eliminates complex I function and in turn impairs LTP.
Collapse
Affiliation(s)
- Ryoichi Kimura
- Department of Physiology, Shantou University Medical College, Shantou, China
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Lu‐Yao Ma
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Chen Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Dharshaun Turner
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jian‐Xin Shen
- Department of Physiology, Shantou University Medical College, Shantou, China
| | - Kevin Ellsworth
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Makoto Wakui
- Clinical Research, Hirosaki National Hospital, Hirosaki, Japan
| | - Marwan Maalouf
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jie Wu
- Department of Physiology, Shantou University Medical College, Shantou, China
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
- Department of Basic Medical Science, the University of Arizona College of Medicine‐Phoenix, AZ, USA
| |
Collapse
|
34
|
Hellyer SD, Selwood AI, Rhodes L, Kerr DS. Marine algal pinnatoxins E and F cause neuromuscular block in an in vitro hemidiaphragm preparation. Toxicon 2011; 58:693-9. [DOI: 10.1016/j.toxicon.2011.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
35
|
Timofeeva OA, Levin ED. Glutamate and nicotinic receptor interactions in working memory: importance for the cognitive impairment of schizophrenia. Neuroscience 2011; 195:21-36. [PMID: 21884762 DOI: 10.1016/j.neuroscience.2011.08.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 12/15/2022]
Abstract
This article reaches across disciplines to correlate results in molecular, cellular, behavioral, and clinical research to develop a more complete picture of how working memory (WM) functions. It identifies a new idea that deserves further investigation. NMDA glutamate receptors (NMDAR) are critical for memory function. NMDAR inhibition effectively reproduces principal manifestations of schizophrenia (SP), such as WM impairment and GABAergic deficit (mainly reduction of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV) content). Nicotine and selective α7 nicotinic acetylcholine receptor (nAChR) agonists reduce WM impairments in patients with SP and reverse WM deficits in animals treated with NMDAR antagonists. The mechanism of this effect is unknown. Importantly, WM recovery occurs even before restoration of NMDAR blockade-induced molecular alterations, including reduced GAD67 in interneurons. Our insight into the cognitive-enhancing effect of α7 nAChR agonists, particularly in the animal models of SP, combines reviews of recent findings on glutamate and nicotinic receptor expression in the neuronal circuits involved in WM, the properties of these receptors, their implication in WM regulation, generation of rhythmic neuronal activity, resulting in a proposed hypothesis for further investigations. We suggest that (1) cortical/hippocampal interneurons, particularly PV positive, play a crucial role in WM and that impairment of these cells in SP could be behind the WM deficit; (2) activation of α7 nAChRs could restore calcium signaling and intrinsic properties of these interneurons, and associated with these events, computational capacity, gamma rhythmic activity, and WM would also be restored.
Collapse
Affiliation(s)
- O A Timofeeva
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA.
| | | |
Collapse
|
36
|
Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 2011; 62:1504-18. [PMID: 21349276 DOI: 10.1016/j.neuropharm.2011.02.007] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 12/22/2022]
Abstract
The lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target these symptoms requires appropriate neural biomarkers that can be investigated in model organisms, be used to track treatment response, and provide insight into pathophysiological disease mechanisms. A growing body of evidence indicates that neural oscillations in the gamma frequency range (30-80 Hz) are disturbed in schizophrenia. Gamma synchrony has been shown to mediate a host of sensory and cognitive functions, including perceptual encoding, selective attention, salience, and working memory - neurocognitive processes that are dysfunctional in schizophrenia and largely refractory to treatment. This review summarizes the current state of clinical literature with respect to gamma-band responses (GBRs) in schizophrenia, focusing on resting and auditory paradigms. Next, preclinical studies of schizophrenia that have investigated gamma-band activity are reviewed to gain insight into neural mechanisms associated with these deficits. We conclude that abnormalities in gamma synchrony are ubiquitous in schizophrenia and likely reflect an elevation in baseline cortical gamma synchrony ('noise') coupled with reduced stimulus-evoked GBRs ('signal'). Such a model likely reflects hippocampal and cortical dysfunction, as well as reduced glutamatergic signaling with downstream GABAergic deficits, but is probably less influenced by dopaminergic abnormalities implicated in schizophrenia. Finally, we propose that analogous signal-to-noise deficits in the flow of cortical information in preclinical models are useful targets for the development of new drugs that target the treatment-resistant symptoms of schizophrenia.
Collapse
|
37
|
Akkurt D, Akay YM, Akay M. Investigating the synchronization of hippocampal neural network in response to acute nicotine exposure. J Neuroeng Rehabil 2010; 7:31. [PMID: 20626893 PMCID: PMC2912318 DOI: 10.1186/1743-0003-7-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/13/2010] [Indexed: 11/18/2022] Open
Abstract
Previous studies suggested that γ oscillations in the brain are associated with higher order cognitive function including selective visual attention, motor task planning, sensory perception, working memory and dreaming REM sleep. These oscillations are mainly observed in cortical regions and also occur in neocortical and subcortical areas and the hippocampus. In this paper, we investigate the influence of acute exposure to nicotine on the complexity of hippocampal γ oscillations. Using the approximate entropy method, the influence of acute nicotine exposure on the hippocampal γ oscillations was investigated. The hippocampal γ oscillations have been generated in response to the 100 Hz stimulus and isolated using the visual inspection and spectral analysis method. Our central hypothesis is that acute exposure to nicotine significantly reduces the complexity of hippocampal γ oscillations. We used brain-slice recordings and the approximate entropy method to test this hypothesis. The approximate entropy (complexity) values of the hippocampal γ oscillations are estimated from the 14 hippocampal slices. Our results show that it takes at least 100 msec to see any hippocampal activities in response to the 100 Hz stimulus. These patterns noticeably changed after 100 msec until 300 msec after the stimulus Finally, they were less prominent after 300 msec. We have analyzed the isolated hippocampal γ oscillations (between 150 and 250 msec after the stimulus) using the approximate entropy (ApEn) method. Our results showed that the ApEn (complexity) values of hippocampal γ oscillations during nicotine exposure were reduced compared to those of hippocampal γ oscillations during control, and washout. This reduction was much more significant in response to acute nicotine exposure (p < 0.05) compared to those during control and washout conditions. These results suggest that the neural firing becomes regular and the hippocampal networks become synchronized in response to nicotine exposure.
Collapse
Affiliation(s)
- David Akkurt
- Harrington Department of Bioengineering, Fulton School of Engineering ASU, Tempe AZ, USA
| | | | | |
Collapse
|
38
|
The Roles of GABAB Receptors in Cortical Network Activity. GABABRECEPTOR PHARMACOLOGY - A TRIBUTE TO NORMAN BOWERY 2010; 58:205-29. [DOI: 10.1016/s1054-3589(10)58009-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Nicotine induction of theta frequency oscillations in rodent hippocampus in vitro. Neuroscience 2009; 166:84-93. [PMID: 20004706 DOI: 10.1016/j.neuroscience.2009.11.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/30/2009] [Accepted: 11/25/2009] [Indexed: 11/21/2022]
Abstract
The hippocampus is an area important for learning and memory and exhibits prominent and behaviourally relevant theta (4-12 Hz) and gamma (30-100 Hz) frequency oscillations in vivo. Hippocampal slices produce similar types of oscillatory activity in response to bath-application of neurotransmitter receptor agonists. The medial septum diagonal band area (MS/DB) provides both a cholinergic and GABAergic projection to the hippocampus, and although it plays a major role in the generation and maintenance of the hippocampal theta rhythm in vivo, there is evidence for intrinsic theta generation mechanisms in the hippocampus, especially in area CA3. The aim of this study was to examine the role of the nicotinic receptor (nAChR) in the induction of oscillatory field activity in the in vitro preparation of the rat hippocampus. Bath-application of a low concentration of nicotine (1 muM) to transversely-cut hippocampal slices produced persistent theta-frequency oscillations in area CA3 of the hippocampus. These oscillations were reduced by both GABA(A) receptor antagonists and ionotropic glutamate receptor antagonists, indicating the involvement of local GABAergic and glutamatergic neurons in the production of the rhythmic theta activity. The nicotine-induced theta activity was inhibited by non-selective nAChR antagonists and partially by an alpha7* nAChR antagonist. The induction of theta frequency oscillations in CA3 by nicotine was mimicked alpha7* nAChR agonists but not by non-alpha7* nAChR agonists. In conclusion, theta activity in the hippocampus may be promoted by tonic stimulation of alpha7* nAChRs, possibly via selective stimulation of theta-preferring interneurons in the hippocampus that express post-synaptic alpha7* nAChRs.
Collapse
|
40
|
Akay YM, Dragomir A, Song C, Wu J, Akay M. Hippocampal gamma oscillations in rats. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2009; 28:92-95. [PMID: 19914894 DOI: 10.1109/memb.2009.934619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Previous studies suggested that gamma oscillations in the brain are associated with higher order cognitive functions, including selective visual attention, motor task planning, sensory perception, working memory, and dreaming rapid eye movement (REM) sleep. These oscillations are mainly observed in the cortical regions and also occur in neocortical and subcortical areas and hippocampus. These oscillations may occur under certain pathological conditions, such as epilepsy, and are mainly observed in the cortical regions and hippocampus. The previous studies have suggested that epilepsy may be associated with disturbances of autonomic nervous system(ANS) and with changes in autonomic cardioregulatory function. In this article, we investigate the influence of acute exposure to 2-aminoethoxy-diphenylborate (2-APB), a membrane-permeable inositol 1,4,5-trisphosphate (IP) receptor, and store-operated Ca(2+) channel (SOC) blocker on the complexity of hippocampal gamma oscillations. Our central hypothesis is that acute exposure to 2-APB significantly reduces the hippocampal gamma oscillations. To test this hypothesis, we use brain-slice recordings and the advanced nonlinear dynamical analysis method based on the Lempel-Ziv (LZ) estimator. Our nonlinear dynamical analysis results estimated from brain-slice recordings suggested that 2-APB exposure significantly reduces the hippocampal gamma oscillations.
Collapse
Affiliation(s)
- Yasemin M Akay
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, Arizona, USA. yasemin.Akay@asuedu
| | | | | | | | | |
Collapse
|
41
|
López-Hernández GY, Thinschmidt JS, Morain P, Trocme-Thibierge C, Kem WR, Soti F, Papke RL. Positive modulation of alpha7 nAChR responses in rat hippocampal interneurons to full agonists and the alpha7-selective partial agonists, 4OH-GTS-21 and S 24795. Neuropharmacology 2009; 56:821-30. [PMID: 19705574 DOI: 10.1016/j.neuropharm.2009.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
One approach for the identification of therapeutic agents for Alzheimer's disease has focused on the research of alpha7 nAChR-selective agonists such as the partial agonists 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) and, more recently, 2-[2-(4-bromophenyl)-2-oxoethyl]-1-methyl pyridinium (S 24795). An alternative approach for targeting alpha7 nAChR has been the development of positive modulators for this receptor. In this study we examined the interactions between full or partial agonists and positive modulators of alpha7 nAChRs in situ in brain tissue. Three positive modulators were used, 5-hydroxyindole (5-HI), 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), and genistein. Whole-cell recordings were performed in stratum radiatum interneurons from rat brain slices. Hippocampal interneurons were stimulated by ACh, choline, S 24795, or 4OH-GTS-21, before and after bath perfusion with the positive modulators. 5-HI was not effective at potentiating 200 microM 4OH-GTS-21-evoked responses, however 5-HI induced a sustained potentiation of responses evoked by 30 microM 4OH-GTS-21. When 1 mM ACh and 200 microM 4OH-GTS-21 were applied alternately alpha7-mediated responses to both agonists were reduced, suggesting that high concentration of 4OH-GTS-21 produces residual inhibition or desensitization and that 5-HI is not effective at overcoming receptor desensitization. Similar results were obtained with alpha7 receptors expressed in Xenopus oocytes. Interestingly, responses evoked by S 24795 were potentiated by 5-HI but not by genistein. Additionally, PNU-120596 was able to potentiate alpha7-mediated responses, regardless of the nature of the agonist. We demonstrated that the potentiation of alpha7 nAChR response would depend on the nature and the effective concentration of the agonist involved and its particular interaction with the positive modulator.
Collapse
Affiliation(s)
- Gretchen Y López-Hernández
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610-0267, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Akay YM, Dragomir A, Wu J, Akay M. The effects of 2-APB on the time-frequency distributions of gamma oscillations in rat hippocampal slices. J Neural Eng 2009; 6:056006. [PMID: 19717894 DOI: 10.1088/1741-2560/6/5/056006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the influence of 2-APB (2-aminoethoxy-diphenylborate) acute exposure on hippocampal oscillations using time-frequency analysis methods including continuous wavelet transform and short-time Fourier transform. We hypothesized that acute exposure to 2-APB drastically reduced the hippocampal gamma oscillations. We estimated the hippocampal oscillations' time-frequency representations from 24 hippocampal slices in five rats. Our results indicated that it took at least 100 ms to see any hippocampal activities in response to the 100 Hz stimulus. The hippocampal oscillations' spectral energies dominated in the 31-60 Hz and 61-90 Hz frequency bands in the early time (100-200 ms) segment post-stimulus and in the 31-60 Hz and 61-90 Hz frequency bands after 200 ms until 400 ms post-stimulus. They were noticeably reduced in the late time segment (above 400 ms). The hippocampal oscillations' spectral energies in the 31-60 and 61-90 Hz frequency bands still dominated the early time segment after the acute 2-APB exposure. The 2-APB exposure never changed the energy content in all three frequency bands in the early time segment (p > 0.01). The exposure significantly reduced the energy content in both the mid-time segment and in the 31-60 Hz frequency band (p < 0.001) and in both the second time segment and in the 61-90 Hz frequency band (p < 0.01). Additionally, in the late time segment, the energy content in all three frequency bands was notably reduced post-drug exposure (p < 0.001).
Collapse
|
43
|
Placzek AN, Zhang TA, Dani JA. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin 2009; 30:752-60. [PMID: 19434057 DOI: 10.1038/aps.2009.39] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.
Collapse
|
44
|
Nicotinic acetylcholine receptor alpha7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors. Acta Pharmacol Sin 2009; 30:828-41. [PMID: 19498423 DOI: 10.1038/aps.2009.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM Several nicotinic acetylcholine receptor (nAChR) subunits have been engineered as fluorescent protein (FP) fusions and exploited to illuminate features of nAChRs. The aim of this work was to create a FP fusion in the nAChR alpha7 subunit without compromising formation of functional receptors. METHODS A gene construct was generated to introduce yellow fluorescent protein (YFP), in frame, into the otherwise unaltered, large, second cytoplasmic loop between the third and fourth transmembrane domains of the mouse nAChR alpha7 subunit (alpha7Y). SH-EP1 cells were transfected with mouse nAChR wild type alpha7 subunits (alpha7) or with alpha7Y subunits, alone or with the chaperone protein, hRIC-3. Receptor function was assessed using whole-cell current recording. Receptor expression was measured with (125)I-labeled alpha-bungarotoxin (I-Bgt) binding, laser scanning confocal microscopy, and total internal reflectance fluorescence (TIRF) microscopy. RESULTS Whole-cell currents revealed that alpha7Y nAChRs and alpha7 nAChRs were functional with comparable EC(50) values for the alpha7 nAChR-selective agonist, choline, and IC(50) values for the alpha7 nAChR-selective antagonist, methyllycaconitine. I-Bgt binding was detected only after co-expression with hRIC-3. Confocal microscopy revealed that alpha7Y had primarily intracellular rather than surface expression. TIRF microscopy confirmed that little alpha7Y localized to the plasma membrane, typical of alpha7 nAChRs. CONCLUSION nAChRs composed as homooligomers of alpha7Y subunits containing cytoplasmic loop YFP have functional, ligand binding, and trafficking characteristics similar to those of alpha7 nAChRs. alpha7Y nAChRs may be used to elucidate properties of alpha7 nAChRs and to identify and develop novel probes for these receptors, perhaps in high-throughput fashion.
Collapse
|
45
|
Akay YM, Dragomire A, Wu J, Akay M. 2-APB reduces the complexity of hippocampal gamma oscillations in rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:3680-1. [PMID: 19163510 DOI: 10.1109/iembs.2008.4650007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies suggested that gamma oscillations in the brain are associated with higher order cognitive function including selective visual attention, motor task planning, sensory perception, working memory and dreaming REM sleep. These oscillations are mainly observed in cortical regions and also occurs in neocortical and subcortical areas and the hippocampus. In this paper, we investigate the influence of acute exposure to 2-APB exposure on the complexity of hippocampal gamma gamma oscillations. Our central hypothesis is that acute exposure to 2 APB significantly reduce the hippocampal gamma oscillations. In order to test this hypothesis, we use brain-slice recordings and the advanced nonlinear dynamical analysis method based on the Lempel-Ziv estimator. Our nonlinear dynamical analysis of brain slice recordings results suggested that 2-APB exposure significantly reduces the hippocampal gamma oscillations.
Collapse
Affiliation(s)
- Yasemin M Akay
- Harrington Department of Bioengineering, Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ, USA
| | | | | | | |
Collapse
|
46
|
Cheng RK, Williams CL, Meck WH. Oscillatory bands, neuronal synchrony and hippocampal function: implications of the effects of prenatal choline supplementation for sleep-dependent memory consolidation. Brain Res 2008; 1237:176-94. [PMID: 18793620 DOI: 10.1016/j.brainres.2008.08.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 01/27/2023]
Abstract
Choline supplementation of the maternal diet has long-term facilitative effects on spatial and temporal memory processes in the offspring. To further delineate the impact of early nutritional status on brain and behavior, we examined effects of prenatal-choline availability on hippocampal oscillatory frequency bands in 12 month-old male and female rats. Adult offspring of time-pregnant dams that were given a deficient level of choline (DEF=0.0 g/kg), sufficient choline (CON=1.1 g/kg) or supplemental choline (SUP=3.5 g/kg) in their chow during embryonic days (ED) 12-17 were implanted with an electroencephalograph (EEG) electrode in the hippocampal dentate gyrus in combination with an electromyograph (EMG) electrode patch implanted in the nuchal muscle. Five consecutive 8-h recording sessions revealed differential patterns of EEG activity as a function of awake, slow-wave sleep (SWS) and rapid-eye movement (REM) sleep states and prenatal choline status. The main finding was that SUP rats displayed increased power levels of gamma (30-100 Hz) band oscillations during all phases of the sleep/wake cycle. These findings are discussed within the context of a general review of neuronal oscillations (e.g., delta, theta, and gamma bands) and synchronization across multiple brain regions in relation to sleep-dependent memory consolidation in the hippocampus.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Department of Psychology and Neuroscience,572 Research Drive, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
47
|
Wang K, Zheng C, Wu C, Gao M, Liu Q, Yang K, Ellsworth K, Xu L, Wu J. alpha-Chloralose diminishes gamma oscillations in rat hippocampal slices. Neurosci Lett 2008; 441:66-71. [PMID: 18597935 DOI: 10.1016/j.neulet.2008.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 12/01/2022]
Abstract
alpha-Chloralose is an anesthetic characterized by its ability to maintain animals in physiological conditions though immobilized and anesthetized. In addition, alpha-chloralose induces a loss of consciousness with little influence on either pain response or cardiovascular reflexes. The pharmacological mechanisms of alpha-chloralose's actions are poorly understood. In vitro experiments have demonstrated alpha-chloralose enhances GABA(A) receptor function, which may underlie its anesthetic effect. However, how alpha-chloralose affects hippocampal synaptic function and neuronal network synchronization is unknown. In the present study, we performed electrophysiological recordings to examine the effects of alpha-chloralose on synaptic transmission, tetanic stimulation-induced gamma oscillations (30-80 Hz) and neuronal receptor function in rat hippocampal slices and dissociated hippocampal CA1 pyramidal neurons. The results demonstrated that alpha-chloralose (30-100 microM) diminished tetanic stimulation-induced gamma oscillations without affecting single stimulation-induced field potential responses. In single, dissociated hippocampal CA1 pyramidal neurons, alpha-chloralose activated GABA(A) receptors at a high concentration while it potentiated GABA(A) receptor-mediated currents at low concentrations. However, alpha-chloralose did not affect glutamate-, glycine-, or ACh-induced currents. Slice-patch recordings revealed alpha-chloralose enhanced GABAergic leak current and prolonged the decay constant of spontaneous inhibitory postsynaptic currents (sIPSCs). It is concluded that alpha-chloralose suppresses hippocampal gamma oscillations without significantly affecting basic synaptic transmission or ionotropic glutamate, choline and glycine receptor function. Enhancement of GABAergic leak current and prolongation of GABAergic sIPSCs by alpha-chloralose likely underlie its disruption of neuronal network synchronization in the hippocampus.
Collapse
Affiliation(s)
- Kui Wang
- Neurophysiology Laboratory, Division of Neurology, NRC 444, St Joseph's Hospital & Medical Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 16:e43-71. [PMID: 18395805 DOI: 10.1111/j.1755-5949.2010.00163.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many risk genes interact synergistically to produce schizophrenia and many neurotransmitter interactions have been implicated. We have developed a circuit-based framework for understanding gene and neurotransmitter interactions. NMDAR hypofunction has been implicated in schizophrenia because NMDAR antagonists reproduce symptoms of the disease. One action of antagonists is to reduce the excitation of fast-spiking interneurons, resulting in disinhibition of pyramidal cells. Overactive pyramidal cells, notably those in the hippocampus, can drive a hyperdopaminergic state that produces psychosis. Additional aspects of interneuron function can be understood in this framework, as follows. (i) In animal models, NMDAR antagonists reduce parvalbumin and GAD67, as found in schizophrenia. These changes produce further disinhibition and can be viewed as the aberrant response of a homeostatic system having a faulty activity sensor (the NMDAR). (ii) Disinhibition decreases the power of gamma oscillation and might thereby produce negative and cognitive symptoms. (iii) Nicotine enhances the output of interneurons, and might thereby contribute to its therapeutic effect in schizophrenia.
Collapse
Affiliation(s)
- John E Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 31:234-42. [PMID: 18395805 DOI: 10.1016/j.tins.2008.02.005] [Citation(s) in RCA: 757] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/12/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Many risk genes interact synergistically to produce schizophrenia and many neurotransmitter interactions have been implicated. We have developed a circuit-based framework for understanding gene and neurotransmitter interactions. NMDAR hypofunction has been implicated in schizophrenia because NMDAR antagonists reproduce symptoms of the disease. One action of antagonists is to reduce the excitation of fast-spiking interneurons, resulting in disinhibition of pyramidal cells. Overactive pyramidal cells, notably those in the hippocampus, can drive a hyperdopaminergic state that produces psychosis. Additional aspects of interneuron function can be understood in this framework, as follows. (i) In animal models, NMDAR antagonists reduce parvalbumin and GAD67, as found in schizophrenia. These changes produce further disinhibition and can be viewed as the aberrant response of a homeostatic system having a faulty activity sensor (the NMDAR). (ii) Disinhibition decreases the power of gamma oscillation and might thereby produce negative and cognitive symptoms. (iii) Nicotine enhances the output of interneurons, and might thereby contribute to its therapeutic effect in schizophrenia.
Collapse
Affiliation(s)
- John E Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Prenatal choline supplementation increases sensitivity to time by reducing non-scalar sources of variance in adult temporal processing. Brain Res 2007; 1186:242-54. [PMID: 17996223 DOI: 10.1016/j.brainres.2007.10.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/01/2007] [Accepted: 10/03/2007] [Indexed: 11/21/2022]
Abstract
Choline supplementation of the maternal diet has a long-term facilitative effect on timing and temporal memory of the offspring. To further delineate the impact of early nutritional status on interval timing, we examined effects of prenatal choline supplementation on the temporal sensitivity of adult (6 months) male rats. Rats that were given sufficient choline in their chow (CON: 1.1 g/kg) or supplemental choline added to their drinking water (SUP: 3.5 g/kg) during embryonic days (ED) 12-17 were trained with a peak-interval procedure that was shifted among 75%, 50%, and 25% probabilities of reinforcement with transitions from 18 s-->36 s-->72 s temporal criteria. Prenatal choline supplementation systematically sharpened interval timing functions by reducing the associative/non-temporal response enhancing effects of reinforcement probability on the Start response threshold, thereby reducing non-scalar sources of variance in the left-hand portion of the Gaussian-shaped response functions. No effect was observed for the Stop response threshold as a function of any of these manipulations. In addition, independence of peak time and peak rate was demonstrated as a function of reinforcement probability for both prenatal choline-supplemented and control rats. Overall, these results suggest that prenatal choline supplementation facilitates timing by reducing impulsive responding early in the interval, thereby improving the superimposition of peak functions for different temporal criteria.
Collapse
|