1
|
Eskikurt G, Özerman Edis B, Dalanay AU, Özen I, Nurten A, Kara I, Karamürsel S. Long-term administration of paroxetine increases cortical EEG beta and gamma band activities in healthy awake rats. Pharmacol Biochem Behav 2024; 245:173896. [PMID: 39433160 DOI: 10.1016/j.pbb.2024.173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Understanding the electrophysiological properties of antidepressant medications is important to resolve the response heterogeneity of these drugs in clinical practice. Administration of paroxetine, a selective serotonin reuptake inhibitor, has been shown to increase serotonin levels that affect cortical activities in healthy subjects. However, the extent to which cortical oscillations can be altered by ongoing administration of paroxetine is not known. Here, we develop EEG biomarkers showing long-term effects of paroxetine. EEG changes were analyzed using Neuroscan in healthy wakeful rats administered paroxetine (4 mg/kg/day) for six weeks. Subsequent EEG recordings taken at 3 and 6 weeks after treatment showed differences in cortical oscillations obtained from both hemispheres and frontal-central-parietal regions. Chronic paroxetine administration resulted in an increase in gamma band activity. Comparison of EEG frequency bands of paroxetine and saline groups showed an enhancement in higher frequency activities at third weeks after the treatment. Higher activity of alpha oscillations in the temporal cortex was persistent at sixth week of the administration. Overall, our results suggest that chronic paroxetine administration affects cortical oscillations across an expansive network.
Collapse
Affiliation(s)
- Gökçer Eskikurt
- Department of Psychology, Faculty of Humanities and Social Sciences, Istinye University, Istanbul, Turkey; Innovative Center of Applied Neurosciences, Istinye University, Istanbul, Turkey.
| | - Bilge Özerman Edis
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, 34093 Çapa, Istanbul, Turkey.
| | - Ali Umut Dalanay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilknur Özen
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey.
| | - Ihsan Kara
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, Koç Üniversitesi School of Medicine, Istanbul, Turkey.
| |
Collapse
|
2
|
Dhume SH, Balogun K, Sarkar A, Acosta S, Mount HTJ, Cahill LS, Sled JG, Serghides L. Perinatal exposure to atazanavir-based antiretroviral regimens in a mouse model leads to differential long-term motor and cognitive deficits dependent on the NRTI backbone. Front Mol Neurosci 2024; 17:1376681. [PMID: 38646101 PMCID: PMC11027900 DOI: 10.3389/fnmol.2024.1376681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
Background Combination antiretroviral therapy (ART) use in pregnancy has been pivotal in improving maternal health and reducing perinatal HIV transmission. However, children born HIV-exposed uninfected fall behind their unexposed peers in several areas including neurodevelopment. The contribution of in utero ART exposure to these deficits is not clear. Here we present our findings of neurocognitive outcomes in adult mice exposed in utero to ART. Methods Dams were treated with a combination of ritonavir-boosted atazanavir with either abacavir plus lamivudine (ABC/3TC + ATV/r) or tenofovir disoproxil fumarate plus emtricitabine (TDF/FTC + ATV/r), or water as a control, administered daily from day of plug detection to birth. Offspring underwent a battery of behavioral tests that investigated motor performance and cognition starting at 6-weeks of age and ending at 8 months. Changes in brain structure were assessed using magnetic resonance imaging and immunohistochemistry. Expression of genes involved in neural circuitry and synaptic transmission were assessed in the hippocampus, a region strongly associated with memory formation, using qPCR. Findings Pups exposed to TDF/FTC + ATV/r showed increased motor activity and exploratory drive, and deficits in hippocampal-dependent working memory and social interaction, while pups exposed to ABC/3TC + ATV/r showed increased grooming, and deficits in working memory and social interaction. Significant volumetric reductions in the brain were seen only in the ABC/3TC + ATV/r group and were associated with reduced neuronal counts in the hippocampus. Altered neurotransmitter receptor mRNA expression as well as changes in expression of the neurotrophic factor BDNF and its receptors were observed in both ART-exposed groups in a sex-dependent manner. Interpretation In our model, in utero ART exposure had long-term effects on brain development and cognitive and motor outcomes in adulthood. Our data show that neurological outcomes can be influenced by the type of nucleoside reverse transcriptase inhibitor backbone of the regimen and not just the base drug, and display sex differences.
Collapse
Affiliation(s)
- Shreya H. Dhume
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kayode Balogun
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ambalika Sarkar
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sebastian Acosta
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Howard T. J. Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Psychiatry and Physiology, University of Toronto, Toronto, ON, Canada
| | - Lindsay S. Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
| | - John G. Sled
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Women’s College Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
4
|
Thapak P, Smith G, Ying Z, Paydar A, Harris N, Gomez-Pinilla F. The BDNF mimetic R-13 attenuates TBI pathogenesis using TrkB-related pathways and bioenergetics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166781. [PMID: 37286142 PMCID: PMC10619508 DOI: 10.1016/j.bbadis.2023.166781] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Traumatic brain injury (TBI) is major neurological burden globally, and effective treatments are urgently needed. TBI is characterized by a reduction in energy metabolism and synaptic function that seems a primary cause of neuronal dysfunction. R13, a small drug and BDNF mimetic showed promising results in improving spatial memory and anxiety-like behavior after TBI. Additionally, R13 was found to counteract reductions in molecules associated with BDNF signaling (p-TrkB, p-PI3K, p-AKT), synaptic plasticity (GluR2, PSD95, Synapsin I) as well as bioenergetic components such as mitophagy (SOD, PGC-1α, PINK1, Parkin, BNIP3, and LC3) and real-time mitochondrial respiratory capacity. Behavioral and molecular changes were accompanied by adaptations in functional connectivity assessed using MRI. Results highlight the potential of R13 as a therapeutic agent for TBI and provide valuable insights into the molecular and functional changes associated with this condition.
Collapse
Affiliation(s)
- Pavan Thapak
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Gregory Smith
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Zhe Ying
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Afshin Paydar
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Neil Harris
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America; Intellectual Development and Disabilities Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America; Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America.
| |
Collapse
|
5
|
Holvoet H, Long DM, Yang L, Choi J, Marney L, Poeck B, Maier CS, Soumyanath A, Kretzschmar D, Strauss R. Chlorogenic Acids, Acting via Calcineurin, Are the Main Compounds in Centella asiatica Extracts That Mediate Resilience to Chronic Stress in Drosophila melanogaster. Nutrients 2023; 15:4016. [PMID: 37764799 PMCID: PMC10537055 DOI: 10.3390/nu15184016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Common symptoms of depressive disorders include anhedonia, sleep problems, and reduced physical activity. Drugs used to treat depression mostly aim to increase serotonin signaling but these can have unwanted side effects. Depression has also been treated by traditional medicine using plants like Centella asiatica (CA) and this has been found to be well tolerated. However, very few controlled studies have addressed CA's protective role in depression, nor have the active compounds or mechanisms that mediate this function been identified. To address this issue, we used Drosophila melanogaster to investigate whether CA can improve depression-associated symptoms like anhedonia and decreased climbing activity. We found that a water extract of CA provides resilience to stress induced phenotypes and that this effect is primarily due to mono-caffeoylquinic acids found in CA. Furthermore, we describe that the protective function of CA is due to a synergy between chlorogenic acid and one of its isomers also present in CA. However, increasing the concentration of chlorogenic acid can overcome the requirement for the second isomer. Lastly, we found that chlorogenic acid acts via calcineurin, a multifunctional phosphatase that can regulate synaptic transmission and plasticity and is also involved in neuronal maintenance.
Collapse
Affiliation(s)
- Helen Holvoet
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Dani M. Long
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Liping Yang
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Luke Marney
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Burkhard Poeck
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| | - Claudia S. Maier
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Amala Soumyanath
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Doris Kretzschmar
- BENFRA Botanical Dietary Supplements Research Center, Oregon Health & Science University, Portland, OR 97239, USA (L.Y.); (J.C.); (A.S.)
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Roland Strauss
- Institut für Entwicklungsbiologie und Neurobiologie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (H.H.)
| |
Collapse
|
6
|
Yang L, Cheng Y, Zhu Y, Cui L, Li X. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cell Mol Neurobiol 2023:10.1007/s10571-023-01320-0. [PMID: 36729314 DOI: 10.1007/s10571-023-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the premature death of motor neurons. Serotonin (5-HT) is a crucial neurotransmitter, and its dysfunction, whether as a contributor or by-product, has been implicated in ALS pathogenesis. Here, we summarize current evidence linking serotonergic alterations to ALS, including results from post-mortem and neuroimaging studies, biofluid testing, and studies of ALS animal models. We also discuss the possible role of 5-HT in modulating some important mechanisms of ALS (i.e. glutamate excitotoxity and neuroinflammation) and in regulating ALS phenotypes (i.e. breathing dysfunction and metabolic defects). Finally, we discuss the promise and limitations of the serotonergic system as a target for the development of ALS biomarkers and therapeutic approaches. However, due to a relative paucity of data and standardized methodologies in previous studies, proper interpretation of existing results remains a challenge. Future research is needed to unravel the mechanisms linking serotonergic pathways and ALS and to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China. .,Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
7
|
Gerace E, Polenzani L, Magnani M, Zianni E, Stocca G, Gardoni F, Pellegrini-Giampietro DE, Corradetti R. Antidepressant-induced increase in GluA2 expression does not translate in changes of AMPA receptor-mediated synaptic transmission at CA3/CA1 synapses in rats. Neuropharmacology 2023; 223:109307. [PMID: 36334766 DOI: 10.1016/j.neuropharm.2022.109307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Chronic treatment with serotonin selective reuptake inhibitors or tryciclic antidepressant drugs in rodents has been shown to increase the expression of GluA1 and/or GluA2 AMPA receptor (AMPAR) subunits in several brain areas, including the hippocampus. These changes in AMPAR composition have been suggested to result in increased glutamatergic neurotransmission and possibly underlie enhanced hippocampal synaptic plasticity through the increased availability of calcium-permeable AMPARs, specifically at CA3/CA1 synapses. However, the possibility that chronic treatment with antidepressants actually results in strengthened glutamatergic neurotransmission in CA1 has poorly been investigated. Here, we studied whether chronic treatment with the multimodal antidepressant drug trazodone mimicked the effect of paroxetine on the expression of AMPAR subunits in male wistar rat hippocampus and whether these drugs produced a parallel facilitation of field excitatory postsynaptic potentials (fEPSP) responses evoked by activation of CA3/CA1 synapses in dorsal hippocampal slices. In addition, we investigated whether the quality of glutamatergic AMPARs involved in basal neurotransmission was changed by altered subunit expression, e.g. leading to appearance of calcium-permeable AMPARs. We found a significant increase in GluA2 subunit expression following treatment with trazodone or paroxetine for twenty-one days, but not after seven-days treatment. In contrast, we did not find any significant changes in fEPSP responses supporting either a facilitation of glutamatergic neurotransmission in basal conditions or the appearance of functional calcium-permeable AMPARs at CA3/CA1 pyramidal neuron synapses. Thus, neurochemically-detected increases in the expression of AMPAR subunits cannot directly be extrapolated in increased number of functioning receptors and/or facilitated basal neurotransmission.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of NEUROFARBA, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy; Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | | | | | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Gabriella Stocca
- Department of NEUROFARBA, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | | | - Renato Corradetti
- Department of NEUROFARBA, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
8
|
Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, de Abreu MS, Petersen EV, Zabegalov KN, Kalueff AV. Evolutionarily conserved gene expression patterns for affective disorders revealed using cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep 2022; 12:20836. [PMID: 36460699 PMCID: PMC9718822 DOI: 10.1038/s41598-022-22688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Nataliya A Krotova
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | | | | | | | | | | | - Allan V Kalueff
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
9
|
Mao LM, Mathur N, Wang JQ. Downregulation of surface AMPA receptor expression in the striatum following prolonged social isolation, a role of mGlu5 receptors. IBRO Neurosci Rep 2022; 13:22-30. [PMID: 35711245 PMCID: PMC9193854 DOI: 10.1016/j.ibneur.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 11/10/2022] Open
Abstract
Major depressive disorder is a common and serious mood illness. The molecular mechanisms underlying the pathogenesis and symptomatology of depression are poorly understood at present. Multiple neurotransmitter systems are believed to be implicated in depression. Increasing evidence supports glutamatergic transmission as a critical element in depression and antidepressant activity. In this study, we investigated adaptive changes in expression of AMPA receptors in a key limbic reward structure, the striatum, in response to an anhedonic model of depression. Prolonged social isolation in adult rats caused anhedonic/depression- and anxiety-like behavior. In these depressed rats, surface levels of AMPA receptors, mainly GluA1 and GluA3 subunits, were reduced in the nucleus accumbens (NAc). Surface GluA1/A3 expression was also reduced in the caudate putamen (CPu) following chronic social isolation. No change was observed in expression of presynaptic synaptophysin, postsynaptic density-95, and dendritic microtubule-associated protein 2 in the striatum. Noticeably, chronic treatment with the metabotropic glutamate (mGlu) receptor 5 antagonist MTEP reversed the reduction of AMPA receptors in the NAc and CPu. MTEP also prevented depression- and anxiety-like behavior induced by social isolation. These data indicate that adulthood prolonged social isolation induces the adaptive downregulation of GluA1/A3-containing AMPA receptor expression in the limbic striatum. mGlu5 receptor activity is linked to this downregulation, and antagonism of mGlu5 receptors produces an antidepressant effect in this anhedonic model of depression.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;
- ANOVA, analysis of variance
- Antidepressant
- CDH2, Cadherin-2
- CPu, caudate putamen
- Caudate putamen
- GluA1
- MAP-2, microtubule-associated protein 2
- MTEP
- MTEP, 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine
- Metabotropic glutamate receptor
- NAc, nucleus accumbens
- NCAD, neural cadherin
- Nucleus accumbens
- PFC, prefrontal cortex
- PSD-95, postsynaptic density-95
- Social isolation
- mGlu, metabotropic glutamate
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nirav Mathur
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q. Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA,Correspondence to: Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA.
| |
Collapse
|
10
|
Yao H, Shen H, Yu H, Wang C, Ding R, Lan X, Tash D, Wu X, Wang X, Zhang G. Chronic ethanol exposure induced depressive-like behavior in male C57BL/6 N mice by downregulating GluA1. Physiol Behav 2021; 234:113387. [PMID: 33713693 DOI: 10.1016/j.physbeh.2021.113387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Chronic ethanol exposure can increase the risk of depression. The α-amino-3‑hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor is a key factor in depression and its treatment. The study was conducted to investigate the depressive-like behavior induced by chronic ethanol exposure in mice and to explore the mechanism in cells. To establish the chronic ethanol exposure mouse model, male C57BL/6 N mice were administered 10% (m/V) and 20% (m/V) ethanol as the only choice for drinking for 60 days, 90 days and 180 days. Depressive-like behavior in mice was confirmed by the forced swimming test (FST). Ethanol-induced changes in the mouse hippocampus were indicated by Western blotting, qPCR and Fluoro-Jade C (FJC) staining. We confirmed that 90- and 180-day ethanol exposure can lead to depressive-like mouse behavior, cell apoptosis, neuronal degeneration, a reduction in GluA1 and brain-derived neurotrophic factor (BDNF) expression, and an increase in IL-6 and IL-1β in the mouse hippocampus. GluA1 silencing and overexpression models of SH-SY5Y cells were established for further investigation. The cells were treated with 100 mM and 200 mM ethanol for 24 h. Ethanol exposure decreased cell viability and the expression of BDNF and increased the cell apoptosis rate and the expression of BAX, cleaved caspase-3, IL-1β and IL-6. GluA1 silencing aggravated ethanol-induced changes in cell viability and apoptosis and the expression of BDNF, BAX and cleaved caspase-3, and GluA1 overexpression attenuated these changes. Neither the silencing nor overexpression of GluA1 had an effect on ethanol-induced increases in IL-1β and IL-6. Our results indicated that chronic ethanol exposure induced depressive-like behavior in male C57BL/6 N mice by downregulating GluA1 expression.
Collapse
Affiliation(s)
- Hui Yao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Hui Shen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China; The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110032, P. R. China; Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Runtao Ding
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xinze Lan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Dilichati Tash
- Kizilsu Kirgiz Autonomous Prefecture Public Security Bureau, Artux, Xinjiang Uygur Autonomous Region, 845350, P. R. China
| | - Xu Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
11
|
Gordillo-Salas M, Pascual-Antón R, Ren J, Greer J, Adell A. Antidepressant-Like Effects of CX717, a Positive Allosteric Modulator of AMPA Receptors. Mol Neurobiol 2020; 57:3498-3507. [DOI: 10.1007/s12035-020-01954-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
|
12
|
Duman RS, Deyama S, Fogaça MV. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur J Neurosci 2019; 53:126-139. [PMID: 31811669 DOI: 10.1111/ejn.14630] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The pathophysiology and treatment of depression have been the focus of intense research and while there is much that remains unknown, modern neurobiological approaches are making progress. This work demonstrates that stress and depression are associated with atrophy of neurons and reduced synaptic connectivity in brain regions such as the hippocampus and prefrontal cortex that contribute to depressive behaviors, and conversely that antidepressant treatment can reverse these deficits. The role of neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF), has been of particular interest as these factors play a key role in activity-dependent regulation of synaptic plasticity. Here, we review the literature demonstrating that exposure to stress and depression decreases BDNF expression in the hippocampus and PFC and conversely that antidepressant treatment can up-regulate BDNF in the adult brain and reverse the effects of stress. We then focus on rapid-acting antidepressants, particularly the NMDA receptor antagonist ketamine, which produces rapid synaptic and antidepressant behavioral actions that are dependent on activity-dependent release of BDNF. This rapid release of BDNF differs from typical monoaminergic agents that require chronic administration to produce a slow induction of BDNF expression, consistent with the time lag for the therapeutic action of these agents. We review evidence that other classes of rapid-acting agents also require BDNF release, demonstrating that this is a common, convergent downstream mechanism. Finally, we discuss evidence that the actions of ketamine are also dependent on another growth factor, vascular endothelial growth factor (VEGF) and its complex interplay with BDNF.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Manoela Viar Fogaça
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
14
|
Dinoff A, Herrmann N, Swardfager W, Gallagher D, Lanctôt KL. The effect of exercise on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF) in major depressive disorder: A meta-analysis. J Psychiatr Res 2018; 105:123-131. [PMID: 30219561 DOI: 10.1016/j.jpsychires.2018.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/09/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Exercise interventions have been shown to successfully improve depression in patients with major depressive disorder (MDD), but like other forms of antidepressant treatment, exercise is not effective in all patients and its mechanisms of action have not been fully elucidated. Brain-derived neurotrophic factor (BDNF), a key mediator of neurogenesis and neuronal survival, has been shown to be decreased in individuals with MDD. One potential mechanism by which exercise alleviates depression is through an increase in BDNF. In order to evaluate this hypothesis, we conducted a meta-analysis of studies that assessed the effects of a chronic (multi-week) exercise intervention on BDNF concentrations in MDD patients. MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after a chronic exercise intervention in MDD patients. Standardized mean differences (SMDs) were generated from random effects models. Potential sources of heterogeneity were explored in meta-regression analyses. In six studies that met inclusion criteria, resting blood concentrations of BDNF were not significantly higher after a chronic exercise intervention (SMD = 0.43, 95% CI: -0.06-0.92, p = 0.09) in MDD patients. This meta-analysis did not find evidence that a chronic aerobic exercise intervention increases resting concentrations of BDNF in the blood of MDD patients; however, there is a lack of studies in this area making it difficult to reach a definitive conclusion. Future studies on this topic with larger sample sizes and longer durations are needed to draw more robust conclusions.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| | - Walter Swardfager
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Damien Gallagher
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
15
|
Lu Y, Ho CS, McIntyre RS, Wang W, Ho RC. Agomelatine-induced modulation of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. Life Sci 2018; 210:177-184. [PMID: 30193943 DOI: 10.1016/j.lfs.2018.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/14/2018] [Accepted: 09/01/2018] [Indexed: 01/10/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that serves as a survival factor for neurons. Agomelatine is a novel antidepressant as well as a potent agonist of melatonin (MT), MT1 and MT2 receptor types and an antagonist of the serotonin (5HT), 5-HT2C receptor. The study herein established whether treatment with agomelatine alters hippocampal BDNF protein expression under chronic unpredictable mild stress (CUMS) condition. Twenty-one day treatment with agomelatine, fluoxetine or vehicle was assessed in 52 Sprague-Dawley rats undergoing CUMS. Ten naïve control rats were also evaluated after 21 days. The behavioral effects of treatments were studied using the open field test (OFT) on day 0, 7 and 21 and sucrose preference test on day 21. Hippocampal BDNF protein expression was measured using immunohistochemistry. The effect of the interventions on hippocampal neurons was histologically examined after H&E staining. Agomelatine mitigated the reduction in rearing behavior by CUMS in the OFT on day 7 as well as sucrose preference on day 21. The mean optical density value of BDNF was significantly higher in the CUMS + agomelatine group than the CUMS and CUMS + fluoxetine groups. The CUMS + agomelatine group had a significantly higher number of BDNF positive cells compared to naïve controls and CUMS group. Histology showed that hippocampal neurons in the CUMS + agomelatine and CUMS + fluoxetine groups were intact and few of them demonstrated karyopyknosis. Agomelatine-a novel antidepressant, but not fluoxetine, increased hippocampal BDNF level and of BDNF positive neurons in rats subject to CUMS.
Collapse
Affiliation(s)
- Yanxia Lu
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China.
| | - Cyrus S Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, National University Health System, Singapore
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation (BCDF) Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Toxicology and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Wei Wang
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China.
| | - Roger C Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Lu Y, Ho CS, McIntyre RS, Wang W, Ho RC. Effects of vortioxetine and fluoxetine on the level of Brain Derived Neurotrophic Factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats. Brain Res Bull 2018; 142:1-7. [PMID: 29933036 DOI: 10.1016/j.brainresbull.2018.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Vortioxetine is a novel antidepressant capable of improving depressive and cognitive symptoms associated with major depressive disorder (MDD). This study established whether treatment with vortioxetine, fluoxetine or vehicle alters the modulation of brain-derived neurotrophic factor (BDNF) under the 21-day chronic unpredictable mild stress (CUMS) condition in 54 Sprague-Dawley rats. Vortioxetine mitigated the reduction in rearing behavior by CUMS in the OFT on day 7 and 21, as well as sucrose preference on day 21. Histological examination by H&E staining showed that most hippocampal neurons in the CUMS + FLU and CUMS + VOR groups were intact, although some of them demonstrated karyopyknosis. The mean optical density value of hippocampal BDNF was significantly higher in the CUMS + VOR group than the CUMS and CUMS + FLU groups. There was a trend towards a higher number of hippocampal BDNF-positive cells in the CUMS + VOR group, although it did not reach statistical significance. In conclusion, vortioxetine, but not fluoxetine, increased hippocampal BDNF levels in rats subject to CUMS.
Collapse
Affiliation(s)
- Yanxia Lu
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou, China.
| | - Cyrus S Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Psychological Medicine, National University Health System, Singapore
| | - Roger S McIntyre
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Toxicology and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Wei Wang
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou, China.
| | - Roger C Ho
- Department of Psychological Medicine, National University Health System, Singapore; Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore
| |
Collapse
|
17
|
Gordillo-Salas M, Pilar-Cuéllar F, Auberson YP, Adell A. Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist. Transl Psychiatry 2018; 8:84. [PMID: 29666360 PMCID: PMC5904130 DOI: 10.1038/s41398-018-0131-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/06/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022] Open
Abstract
In a previous study we found that the preferring GluN2A receptor antagonist, NVP-AAM077, elicited rapid antidepressant-like effects in the forced swim test that was related to the release of glutamate and serotonin in the medial prefrontal cortex. In the present work we sought to examine the duration of this behavioral effect as well as the molecular readouts involved. Our results showed that NVP-AAM077 reduced the immobility in the forced swim test 30 min and 24 h after its administration. However, this effect waned 7 days later. The rapid antidepressant-like response seems to be associated with increases in the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mammalian target of rapamycin (mTOR) signaling, glia markers such as glial fibrillary acidic protein (GFAP) and excitatory amino acid transporter 1 (EAAT1), and a rapid mobilization of intracellular stores of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Marta Gordillo-Salas
- 0000 0004 1770 272Xgrid.7821.cInstituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- 0000 0004 1770 272Xgrid.7821.cInstituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain ,0000 0000 9314 1427grid.413448.eCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain ,0000 0004 1770 272Xgrid.7821.cDepartamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Yves P. Auberson
- 0000 0001 1515 9979grid.419481.1Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
18
|
He B, Xu D, Zhang C, Zhang L, Wang H. Prenatal food restriction induces neurobehavioral abnormalities in adult female offspring rats and alters intrauterine programming. Toxicol Res (Camb) 2018; 7:293-306. [PMID: 30090583 DOI: 10.1039/c7tx00133a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/21/2018] [Indexed: 12/25/2022] Open
Abstract
The higher risk of adult neuropsychiatric diseases in individuals with low fetal birth weight may be related to brain-derived neurotrophic factor (BDNF) signaling pathway inhibition. Here, we investigated whether prenatal food restriction (PFR) induces neurobehavioral alterations in adult female offspring and explored the underlying intrauterine programming mechanism. Pregnant Wistar rats in the PFR group were fed 50% of the daily food intake of control rats from gestational day (GD) 11 to 20; some pregnant rats were sacrificed at GD20, and the remaining female pups had normal delivery and were fed a post-weaning high-fat diet (HFD) and half of them were exposed to an unpredictable chronic stress (UCS) from postnatal week (PW) 21. All adult female offspring were sacrificed at PW24. At GD20, PFR altered fetal hippocampal structure and function, increased glucocorticoid receptor (GR) expression, and decreased mineralocorticoid receptor (MR), BDNF and synaptic plasticity-related gene expressions. At PW24, PFR induced depression-like behavioral abnormalities in adult rat offspring fed an HFD. These rats exhibited depression- and anxiety-like behavioral changes after HFD/UCS. Furthermore, the hippocampal morphology of the PFR group showed abnormal changes in adult offspring fed an HFD and more serious damage after HFD/UCS. These changes were accompanied by increased serum corticosterone levels, elevated GR expression, and reduced expression of the BDNF signaling pathway and synaptic plasticity-related genes in the hippocampus. In conclusion, PFR may induce neurobehavioral abnormalities in adult offspring, especially those exposed to UCS, through high levels of glucocorticoids, which increase hippocampal GR expression and decrease BDNF expression.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| | - Dan Xu
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| | - Chong Zhang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665
| | - Li Zhang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665
| | - Hui Wang
- Department of Pharmacology , Wuhan University School of Basic Medical Sciences , Wuhan 430071 , China . ; ; ; Tel: +86 27 68758665.,Hubei Provincial Key Laboratory of Developmentally Originated Disease , Wuhan 430071 , China
| |
Collapse
|
19
|
Rubio-Casillas A, Fernández-Guasti A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci 2018; 27:599-622. [PMID: 27096778 DOI: 10.1515/revneuro-2015-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.
Collapse
|
20
|
Wang Z, Shi Y, Liu F, Jia N, Gao J, Pang X, Deng F. Diversiform Etiologies for Post-stroke Depression. Front Psychiatry 2018; 9:761. [PMID: 30728786 PMCID: PMC6351464 DOI: 10.3389/fpsyt.2018.00761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
After the onset of stroke, many patients suffer from emotional behavior changes. Approximately, one-third of stroke survivors are affected by post-stroke depression (PSD), making it a serious social and public health problem. Post-stroke depression (PSD) has an important impact on the course, recovery, and prognosis of stroke. The pathogenesis of PSD is very complex, involving many factors such as biological mechanism and social psychological mechanisms. This article provides a brief review of the hot issues related to etiologies of PSD.
Collapse
Affiliation(s)
- Zan Wang
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Yanmin Shi
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Fangfang Liu
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Nan Jia
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Junya Gao
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xiaomin Pang
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Fang Deng
- Department of Neurology and Neuroscience Center, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Kantor S, Varga J, Kulkarni S, Morton AJ. Chronic Paroxetine Treatment Prevents the Emergence of Abnormal Electroencephalogram Oscillations in Huntington's Disease Mice. Neurotherapeutics 2017; 14:1120-1133. [PMID: 28653279 PMCID: PMC5722757 DOI: 10.1007/s13311-017-0546-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Disturbance of rapid eye movement (REM) sleep appears early in both patients with Huntington's disease (HD) and mouse models of HD. Selective serotonin reuptake inhibitors are widely prescribed for patients with HD, and are also known to suppress REM sleep in healthy subjects. To test whether selective serotonin reuptake inhibitors can correct abnormal REM sleep and sleep-dependent brain oscillations in HD mice, we treated wild-type and symptomatic R6/2 mice acutely with vehicle and paroxetine (5, 10, and 20 mg/kg). In addition, we treated a group of R6/2 mice chronically with vehicle or paroxetine (20 mg/kg/day) for 8 weeks, with treatment starting before the onset of overt motor symptoms. During and after treatment, we recorded electroencephalogram/electromyogram from the mice. We found that both acute and chronic paroxetine treatment normalized REM sleep in R6/2 mice. However, only chronic paroxetine treatment prevented the emergence of abnormal low-gamma (25-45 Hz) electroencephalogram oscillations in R6/2 mice, an effect that persisted for at least 2 weeks after treatment stopped. Chronic paroxetine treatment also normalized REM sleep theta rhythm in R6/2 mice, but, interestingly, this effect was restricted to the treatment period. By contrast, acute paroxetine treatment slowed REM sleep theta rhythm in WT mice but had no effect on abnormal theta or low-gamma oscillations in R6/2 mice. Our data show that paroxetine treatment, when initiated before the onset of symptoms, corrects both REM sleep disturbances and abnormal brain oscillations, suggesting a possible mechanistic link between early disruption of REM sleep and the subsequent abnormal brain activity in HD mice.
Collapse
Affiliation(s)
- Sandor Kantor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Janos Varga
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Shreya Kulkarni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Motaghinejad M, Motevalian M, Fatima S. Mediatory role of NMDA, AMPA/kainate, GABA A and Alpha 2 receptors in topiramate neuroprotective effects against methylphenidate induced neurotoxicity in rat. Life Sci 2017; 179:37-53. [DOI: 10.1016/j.lfs.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/16/2022]
|
23
|
Seo MK, Choi CM, McIntyre RS, Cho HY, Lee CH, Mansur RB, Lee Y, Lee JH, Kim YH, Park SW, Lee JG. Effects of escitalopram and paroxetine on mTORC1 signaling in the rat hippocampus under chronic restraint stress. BMC Neurosci 2017; 18:39. [PMID: 28446154 PMCID: PMC5405541 DOI: 10.1186/s12868-017-0357-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have suggested that the activation of mammalian target of rapamycin (mTOR) signaling may be related to antidepressant action. Therefore, the present study evaluated whether antidepressant drugs would exert differential effects on mTOR signaling in the rat hippocampus under conditions of chronic restraint stress. Male Sprague–Dawley rats were subjected to restraint stress for 6 h/days for 21 days with either escitalopram (10 mg/kg) or paroxetine (10 mg/kg) administered after the chronic stress procedure. Western blot analyses were used to assess changes in the levels of phospho-Ser2448-mTOR, phospho-Thr37/46-4E-BP-1, phospho-Thr389-p70S6 K, phospho-Ser422-eIF4B, phospho-Ser240/244-S6, phospho-Ser473-Akt, and phospho-Thr202/Tyr204-ERK in the hippocampus. Results Chronic restraint stress significantly decreased the levels of phospho-mTOR complex 1 (mTORC1), phospho-4E-BP-1, phospho-p70S6 K, phospho-eIF4B, phospho-S6, phospho-Akt, and phospho-ERK (p < 0.05); the administration of escitalopram and paroxetine increased the levels of all these proteins (p < 0.05 or 0.01). Additionally, chronic restraint stress reduced phospho-mTORC1 signaling activities in general, while escitalopram and paroxetine prevented these changes in phospho-mTORC1 signaling activities. Conclusion These findings provide further data that contribute to understanding the possible relationships among mTOR activity, stress, and antidepressant drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0357-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea
| | - Cheol Min Choi
- Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Hye Yeon Cho
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea
| | - Chan Hong Lee
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Jae-Hon Lee
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Young Hoon Kim
- Department of Psychiatry, Gongju National Hospital, Gongju, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, 633-165 Gaegum-dong, Jin-gu, Busan, 614-735, Republic of Korea. .,Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea. .,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada. .,Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|
24
|
Gulyaeva NV. Interplay between brain BDNF and glutamatergic systems: A brief state of the evidence and association with the pathogenesis of depression. BIOCHEMISTRY (MOSCOW) 2017; 82:301-307. [DOI: 10.1134/s0006297917030087] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Xia B, Zhang H, Xue W, Tao W, Chen C, Wu R, Ren L, Tang J, Wu H, Cai B, Doronc R, Chen G. Instant and Lasting Down-Regulation of NR1 Expression in the Hippocampus is Associated Temporally with Antidepressant Activity After Acute Yueju. Cell Mol Neurobiol 2016; 36:1189-96. [PMID: 26825573 DOI: 10.1007/s10571-015-0316-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 11/25/2022]
Abstract
Accumulating evidence indicated that N-methyl-D-aspartate (NMDA) receptors are involved in the pathophysiology of depression and implicated in therapeutic targets. NMDA antagonists, such as ketamine, displayed fast-onset and long-lasting antidepressant activity in preclinical and clinical studies. Previous studies showed that Yueju pill exerts antidepressant effects similar to ketamine. Here, we focused on investigating the association of acute and lasting antidepressant responses of Yueju with time course changes of NMDA receptor subunits NR1, NR2A, and NR2B expressions in the hippocampus, a key region regulating depression response. As a result, Yueju reduced immobility time in the forced swimming test from 30 min to 5 days post a single administration. Yueju acutely decreased NR1 and NR2B protein expression in the hippocampus, with NR2A expression unaltered. NR1 expression remained down-regulated 5 days post Yueju administration, whereas NR2B returned to normal level in 24 h. Yueju and ketamine similarly ameliorated the depression-like symptoms at least for 72 h in learned helplessness test. They both reversed the up-regulated expression of NR1 in the learned helpless mice 1 or 3 days post administration. Different from ketamine, the antidepressant effects of Yueju were not influenced by blockade of amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor. These findings served as preclinical evidence that Yueju may confer acute and long-lasting antidepressant effects by favorably modulating NMDA function in the hippocampus.
Collapse
Affiliation(s)
- Baomei Xia
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hailou Zhang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenda Xue
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chang Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruyan Wu
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Ren
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juanjuan Tang
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Physiology Research Section, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoxin Wu
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Baochang Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ravid Doronc
- School of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel-Aviv, 61083, Israel
| | - Gang Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Key Laboratory of Integrative Medicine for Brain Diseases, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
26
|
Kandil EA, Abdelkader NF, El-Sayeh BM, Saleh S. Imipramine and amitriptyline ameliorate the rotenone model of Parkinson's disease in rats. Neuroscience 2016; 332:26-37. [PMID: 27365173 DOI: 10.1016/j.neuroscience.2016.06.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/12/2022]
Abstract
Amitriptyline (AMI), a commonly prescribed tricyclic antidepressant (TCA) to parkinsonian patients, specifically showed a significant delay in dopaminergic therapy initiation and improvement in motor disability in parkinsonian patients. Moreover, it was recently shown that AMI has neuroprotective properties; however, the mechanisms underlying this effect in Parkinson's disease (PD) are not fully understood. The current study aimed to investigate the possible neuroprotective mechanisms afforded by AMI in the rotenone model of PD and to assess whether another TCA member, imipramine (IMI), shows a corresponding effect. Rats were allocated into seven groups. Four groups were given either saline, dimethyl sulfoxide, AMI or IMI. Three rotenone groups were either untreated or treated with AMI or IMI. Rats receiving rotenone exhibited motor impairment in open field and rotarod tests. Additionally, immunohistochemical examination revealed dopaminergic neuronal damage in substantia nigra. Besides, striatal monoamines and brain derived neurotrophic factor levels were declined. Furthermore, oxidative stress, microglial activation and inflammation were evident in the striata. Pretreatment of rotenone groups with AMI or IMI prevented rotenone-induced neuronal degeneration and increased striatal dopamine level with motor recovery. These effects were accompanied by restoring striatal monoamines and brain-derived neurotrophic factor levels, as well as reducing oxidative damage, microglial activation and expression of proinflammatory cytokines and inducible nitric oxide synthase. The present results suggest that modulation of noradrenaline and serotonin levels, up-regulation of neurotrophin, inhibition of glial activation, anti-oxidant and anti-inflammatory activities could serve as important mechanisms underlying the neuroprotective effects of the used drugs in the rotenone model of PD.
Collapse
Affiliation(s)
- Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bahia M El-Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samira Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Jiménez-Sánchez L, Linge R, Campa L, Valdizán EM, Pazos Á, Díaz Á, Adell A. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex. Neuropharmacology 2016; 108:91-102. [PMID: 27108934 DOI: 10.1016/j.neuropharm.2016.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/14/2023]
Abstract
Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.
Collapse
Affiliation(s)
- Laura Jiménez-Sánchez
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Raquel Linge
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Leticia Campa
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Elsa M Valdizán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Albert Adell
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain.
| |
Collapse
|
28
|
O'Brien FE, Moloney GM, Scott KA, O'Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. Chronic P-glycoprotein inhibition increases the brain concentration of escitalopram: potential implications for treating depression. Pharmacol Res Perspect 2015; 3:e00190. [PMID: 27022464 PMCID: PMC4777256 DOI: 10.1002/prp2.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/23/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
Recent preclinical studies have revealed a functionally important role for the drug efflux pump P‐glycoprotein (P‐gp) at the blood–brain barrier in limiting brain levels and thus antidepressant‐like activity of certain antidepressant drugs. Specifically, acute administration of P‐gp inhibitors, such as verapamil and cyclosporin A (CsA), has been shown to augment brain concentrations and functional activity of the antidepressant escitalopram in rodents. However, depression is a chronic disorder and current treatments require prolonged administration to elicit their full therapeutic effect. Thus, it is important to investigate whether acute findings in relation to P‐gp inhibition translate to chronic paradigms. To this end, the present study investigates whether chronic treatment with the P‐gp inhibitor verapamil and the antidepressant escitalopram results in enhanced brain distribution and antidepressant‐like effects of escitalopram. Verapamil (10 mg·kg−1 i.p.) and escitalopram (0.1 mg·kg−1 i.p.) were administered once daily for 22 days. On the final day of treatment, brain regions and plasma were collected for analysis of cortical and plasma escitalopram concentrations, and to determine the hippocampal expression of genes previously reported to be altered by chronic antidepressant treatment. Verapamil treatment resulted in a greater than twofold increase in brain levels of escitalopram, without altering plasma levels. Neither gene expression analysis nor behavioral testing revealed an augmentation of responses to escitalopram treatment due to verapamil administration. Taken together, these data demonstrate for the first time that P‐gp inhibition can yield elevated brain concentrations of an antidepressant after chronic treatment. The functional relevance of these increased brain levels requires further elaboration.
Collapse
Affiliation(s)
- Fionn E O'Brien
- APC Microbiome Institute University College Cork CorkIreland; Pharmacodelivery Group School of Pharmacy University College Cork CorkIreland; Department of Anatomy & Neuroscience University College Cork CorkIreland; Present address: UCL School of Pharmacy University College London London United Kingdom
| | - Gerard M Moloney
- Department of Anatomy & Neuroscience University College Cork Cork Ireland
| | - Karen A Scott
- Department of Anatomy & Neuroscience University College Cork Cork Ireland
| | - Richard M O'Connor
- Department of Anatomy & Neuroscience University College Cork Cork Ireland; Present address: Department of Pharmacology and Systems Therapeutics Icahn School of Medicine Mount Sinai Hospital NY USA
| | - Gerard Clarke
- APC Microbiome Institute University College Cork Cork Ireland; Department of Psychiatry University College Cork Cork Ireland
| | - Timothy G Dinan
- APC Microbiome Institute University College Cork Cork Ireland; Department of Psychiatry University College Cork Cork Ireland
| | - Brendan T Griffin
- Pharmacodelivery Group School of Pharmacy University College Cork Cork Ireland
| | - John F Cryan
- APC Microbiome Institute University College Cork Cork Ireland; Department of Anatomy & Neuroscience University College Cork Cork Ireland
| |
Collapse
|
29
|
Koyama Y. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Front Cell Neurosci 2015. [PMID: 26217185 PMCID: PMC4491615 DOI: 10.3389/fncel.2015.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this paper, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University Tondabayashi, Osaka, Japan
| |
Collapse
|
30
|
Treatment of cognitive dysfunction in major depressive disorder—a review of the preclinical evidence for efficacy of selective serotonin reuptake inhibitors, serotonin–norepinephrine reuptake inhibitors and the multimodal-acting antidepressant vortioxetine. Eur J Pharmacol 2015; 753:19-31. [DOI: 10.1016/j.ejphar.2014.07.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/06/2014] [Accepted: 07/24/2014] [Indexed: 02/02/2023]
|
31
|
Nguyen L, Matsumoto RR. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Behav Brain Res 2015; 295:26-34. [PMID: 25804358 DOI: 10.1016/j.bbr.2015.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022]
Abstract
Dextromethorphan (DM) is an antitussive with rapid acting antidepressant potential based on pharmacodynamic similarities to ketamine. Building upon our previous finding that DM produces antidepressant-like effects in the mouse forced swim test (FST), the present study aimed to establish the antidepressant-like actions of DM in the tail suspension test (TST), another well-established model predictive of antidepressant efficacy. Additionally, using the TST and FST, we investigated the role of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in the antidepressant-like properties of DM because accumulating evidence suggests that AMPA receptors play an important role in the pathophysiology of depression and may contribute to the efficacy of antidepressant medications, including that of ketamine. We found that DM displays antidepressant-like effects in the TST similar to the conventional and fast acting antidepressants characterized by imipramine and ketamine, respectively. Moreover, decreasing the first-pass metabolism of DM by concomitant administration of quinidine (CYP2D6 inhibitor) potentiated antidepressant-like actions, implying DM itself has antidepressant efficacy. Finally, in both the TST and FST, pretreatment with the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide) significantly attenuated the antidepressant-like behavior elicited by DM. Together, the data show that DM exerts antidepressant-like actions through AMPA receptors, further suggesting DM may act as a safe and effective fast acting antidepressant drug.
Collapse
Affiliation(s)
- Linda Nguyen
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA; Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
| | - Rae R Matsumoto
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA; Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA.
| |
Collapse
|
32
|
Freudenberg F, Celikel T, Reif A. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev 2015; 52:193-206. [PMID: 25783220 DOI: 10.1016/j.neubiorev.2015.03.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/27/2022]
Abstract
Depression is a major psychiatric disorder affecting more than 120 million people worldwide every year. Changes in monoaminergic transmitter release are suggested to take part in the pathophysiology of depression. However, more recent experimental evidence suggests that glutamatergic mechanisms might play a more central role in the development of this disorder. The importance of the glutamatergic system in depression was particularly highlighted by the discovery that N-methyl-D-aspartate (NMDA) receptor antagonists (particularly ketamine) exert relatively long-lasting antidepressant like effects with rapid onset. Importantly, the antidepressant-like effects of NMDA receptor antagonists, but also other antidepressants (both classical and novel), require activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Additionally, expression of AMPA receptors is altered in patients with depression. Moreover, preclinical evidence supports an important involvement of AMPA receptor-dependent signaling and plasticity in the pathophysiology and treatment of depression. Here we summarize work published on the involvement of AMPA receptors in depression and discuss a possible central role for AMPA receptors in the pathophysiology, course and treatment of depression.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Tansu Celikel
- Department of Neurophysiology, Donders Center for Neuroscience, Radboud University Nijmegen, 6500 AA Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Chronic amitriptyline treatment attenuates nigrostriatal degeneration and significantly alters trophic support in a rat model of parkinsonism. Neuropsychopharmacology 2015; 40:874-83. [PMID: 25267343 PMCID: PMC4330501 DOI: 10.1038/npp.2014.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/22/2014] [Accepted: 09/16/2014] [Indexed: 11/09/2022]
Abstract
In addition to alleviating depression, long-term adaptive changes induced by antidepressants may regulate neural plasticity in the diseased brain, providing symptomatic and disease-modifying effects in Parkinson's disease. The present study investigated whether chronic treatment with a frequently prescribed tricyclic antidepressant was neuroprotective in a 6-hydroxydopamine (6-OHDA) rat model of parkinsonism. In lesioned animals, chronic amitriptyline (AMI; 5 mg/kg) treatment resulted in a significant sparing of tyrosine hydroxylase-immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) compared with saline treatment. Additionally, striatal fibers were preserved and functional motor deficits were attenuated. Although 6-OHDA lesions did not induce anhedonia in our model, the dose of AMI utilized had antidepressant activity as demonstrated by reduced immobility. Recent in vitro and in vivo data provide evidence that trophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. Therefore, we investigated whether AMI mediates changes in these specific trophic factors in the intact and degenerating nigrostriatal system. Chronic AMI treatment mediates an increase in nigral BDNF both before and during ongoing degeneration, suggesting it may contribute to neuroprotection observed in vivo. However, over time, AMI reduced BDNF levels in the striatum, indicating tricyclic therapy differentially regulates trophic factors within the nigrostriatal system. Combined, these results suggest that AMI treatment attenuates dopamine neuron loss and elicits significant trophic changes relevant to dopamine neuron survival.
Collapse
|
34
|
Paumier KL, Sortwell CE, Madhavan L, Terpstra B, Daley BF, Collier TJ. Tricyclic antidepressant treatment evokes regional changes in neurotrophic factors over time within the intact and degenerating nigrostriatal system. Exp Neurol 2015; 266:11-21. [PMID: 25681575 DOI: 10.1016/j.expneurol.2015.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/07/2015] [Accepted: 02/04/2015] [Indexed: 01/16/2023]
Abstract
In addition to alleviating depression, trophic responses produced by antidepressants may regulate neural plasticity in the diseased brain, which not only provides symptomatic benefit but also potentially slows the rate of disease progression in Parkinson's disease (PD). Recent in vitro and in vivo data provide evidence that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) may be key mediators of the therapeutic response to antidepressants. As such, we conducted a cross-sectional time-course study to determine whether antidepressant-mediated changes in neurotrophic factors occur in relevant brain regions in response to amitriptyline (AMI) treatment before and after intrastriatal 6-hydroxydopamine (6OHDA). Adult male Wistar rats were divided into seven cohorts and given daily injections (i.p.) of AMI (5mg/kg) or saline throughout the duration of the study. In parallel, various cohorts of intact or parkinsonian animals were sacrificed at specific time points to determine the impact of AMI treatment on trophic factor levels in the intact and degenerating nigrostriatal system. The left and right hemispheres of the substantia nigra, striatum, frontal cortex, piriform cortex, hippocampus, and anterior cingulate cortex were dissected, and BDNF and GDNF levels were measured with ELISA. Results show that chronic AMI treatment elicits effects in multiple brain regions and differentially regulates levels of BDNF and GDNF depending on the region. Additionally, AMI halts the progressive degeneration of dopamine (DA) neurons elicited by an intrastriatal 6-OHDA lesion. Taken together, these results suggest that AMI treatment elicits significant trophic changes important to DA neuron survival within both the intact and degenerating nigrostriatal system.
Collapse
Affiliation(s)
- Katrina L Paumier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA.
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Brian Terpstra
- The Parkinson's Disease Rehabilitation Institute, Cincinnati, OH, USA
| | - Brian F Daley
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
35
|
Solich J, Kolasa M, Kusmider M, Faron-Gorecka A, Pabian P, Zurawek D, Szafran-Pilch K, Dziedzicka-Wasylewska M. Norepinephrine transporter knock-out alters expression of the genes connected with antidepressant drugs action. Brain Res 2014; 1594:284-92. [PMID: 25451113 DOI: 10.1016/j.brainres.2014.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 02/07/2023]
Abstract
Norepinephrine transporter knock-out mice (NET-KO) exhibit depression-resistant phenotypes. They manifest significantly shorter immobility times in both the forced swim test and the tail suspension test. Moreover, biochemical studies have revealed the up-regulation of other monoamine transporters (dopamine and serotonin) in the brains of NET-KO mice, similar to the phenomenon observed after the chronic pharmacological blockade of norepinephrine transporter by desipramine in wild-type (WT) animals. NET-KO mice are also resistant to stress, as we demonstrated previously by measuring plasma corticosterone concentration. In the present study, we used a microdissection technique to separate target brain regions and the TaqMan Low Density Array approach to test the expression of a group of genes in the NET-KO mice compared with WT animals. A group of genes with altered expression were identified in four brain structures (frontal and cingulate cortices, dentate gyrus of hippocampus and basal-lateral amygdala) of NET-KO mice compared with WT mice. These genes are known to be altered by antidepressant drugs administration. The most interesting gene is Crh-bp, which modulates the activity of corticotrophin--releasing hormone (CRH) and several CRH-family members. Generally, genetic disturbances within noradrenergic neurons result in biological changes, such as in signal transduction and intercellular communication, and may be linked to changes in noradrenaline levels in the brains of NET-KO mice.
Collapse
Affiliation(s)
- Joanna Solich
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Magdalena Kolasa
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Maciej Kusmider
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agata Faron-Gorecka
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Pabian
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Dariusz Zurawek
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Kinga Szafran-Pilch
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| |
Collapse
|
36
|
Abstract
Increasing number of studies has during the last decade linked neurotrophic factors with the pathophysiology of neuropsychiatric disorders and with the mechanisms of action of drugs used for the treatment of these disorders. In particular, brain-derived neurotrophic factor BDNF and its receptor TrkB have been connected with the pathophysiology in mood disorders, and there is strong evidence that BDNF signaling is critically involved in the recovery from depression with both pharmacological and psychological means. Neurotrophins play a central role in neuronal plasticity and network connectivity in developing adult brain, and recent evidence links plasticity and network rewiring with mood disorders and their treatment. Therefore, neurotrophins should not be seen as happiness factors but as critical tools in the process where brain networks are optimally tuned to environment, and it is against this background that the effects of neurotrophins on neuropsychiatric disorders should be looked at.
Collapse
Affiliation(s)
- E Castrén
- Neuroscience Center, University of Helsinki, 56, 00014, Helsinki, Finland,
| |
Collapse
|
37
|
Seo MK, Lee CH, Cho HY, Lee JG, Lee BJ, Kim JE, Seol W, Kim YH, Park SW. Effects of antidepressant drugs on synaptic protein levels and dendritic outgrowth in hippocampal neuronal cultures. Neuropharmacology 2014; 79:222-33. [DOI: 10.1016/j.neuropharm.2013.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/07/2013] [Accepted: 11/21/2013] [Indexed: 01/28/2023]
|
38
|
Steiner JP, Nath A. Neurotrophin strategies for neuroprotection: are they sufficient? J Neuroimmune Pharmacol 2014; 9:182-94. [PMID: 24609976 DOI: 10.1007/s11481-014-9533-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
As people are living longer, the prevalance of neurodegenerative diseases continues to rise resulting in huge socio-economic consequences. Despite major advancements in studying the pathophysiology of these diseases and a large number of clinical trials currently there is no effective treatment for these illnesses. All neuroprotective strategies have either failed or have shown only a minimal effect. There has been a major shift in recent years exploring the potential of neuroregenerative approaches. While the concept of using neurotropins for therapeutic purposes has been in existence for many years, new modes of delivery and expression of this family of molecules makes this approach now feasilble. Further neurotropin mimetics and receptor agonists are also being developed. The use of small molecules to induce the expression of neurotropins including repurposing of FDA approved drugs for this approach is another strategy being pursued. In the review we examine these new developments and discuss the potential for such approaches in the context of the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Joseph P Steiner
- NINDS Translational Neuroscience Center, National Institutes of Health, Room 7C-105; Bldg 10, 10 Center Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
39
|
Naughton M, Clarke G, O'Leary OF, Cryan JF, Dinan TG. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action. J Affect Disord 2014; 156:24-35. [PMID: 24388038 DOI: 10.1016/j.jad.2013.11.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recent research has seen low-dose ketamine emerge as a novel, rapid-acting antidepressant. Ketamine, an N-methy-d-aspartate (NMDA) receptor antagonist, leads to effects on the glutamatergic system and abnormalities in this neurotransmittor system are present in depression. This article aims to (1) review the clinical literature on low-dose ketamine as a rapid-acting antidepressant in affective disorders, (2) provide a critical overview of the limitations of ketamine and research attempts to overcome these (3) discuss the proposed mechanisms of action of ketamine and (4) point towards future research directions. METHOD The electronic database Pubmed, Web of Science and sciencedirect were searched using the keywords: ketamine, N-methyl-d-aspartate receptor antagonist, rapid-acting antidepressant, depression, treatment-resistant depression, bipolar depression, suicidal ideation, electroconvulsive therapy, mechanism of action. RESULT The literature demonstrates evidence supporting a rapid-acting antidepressant effect of low-dose intravenous ketamine in major depressive disorder, in bipolar depression and in depression with suicidal ideation. There are mixed results as to whether ketamine leads to a reduction in time to remission in patients undergoing electroconvulsive therapy (ECT). Efforts to unravel ketamine's therapeutic mechanism of action have implicated the mammalian target of rapamycin (mTOR)-dependent synapse formation in the rat prefrontal cortex, eukaryotic elongation factor 2 phosphorylation (p-eEF2) and glycogen synthase kinase (GSK-3). Ketamine's limiting factors are the transient nature of its antidepressant effect and concerns regarding abuse, and research efforts to overcome these are reviewed. CONCLUSION Current and future research studies are using ketamine as a promising tool to evaluate the glutamatergic neurotransmittor system to learn more about the pathophysiology of depression and develop more specific rapid-acting antidepressant treatments.
Collapse
Affiliation(s)
- Marie Naughton
- Department of Psychiatry, University College Cork, Western Road, Cork City, Cork, Ireland.
| | - Gerard Clarke
- Department of Psychiatry, University College Cork, Western Road, Cork City, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Olivia F O'Leary
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Western Road, Cork City, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
40
|
Hayley S, Litteljohn D. Neuroplasticity and the next wave of antidepressant strategies. Front Cell Neurosci 2013; 7:218. [PMID: 24312008 PMCID: PMC3834236 DOI: 10.3389/fncel.2013.00218] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/29/2013] [Indexed: 12/13/2022] Open
Abstract
Depression is a common chronic psychiatric disorder that is also often co-morbid with numerous neurological and immune diseases. Accumulating evidence indicates that disturbances of neuroplasticity occur with depression, including reductions of hippocampal neurogenesis and cortical synaptogenesis. Improper trophic support stemming from stressor-induced reductions of growth factors, most notably brain derived neurotrophic factor (BDNF), likely drives such aberrant neuroplasticity. We posit that psychological and immune stressors can interact upon a vulnerable genetic background to promote depression by disturbing BDNF and neuroplastic processes. Furthermore, the chronic and commonly relapsing nature of depression is suggested to stem from "faulty wiring" of emotional circuits driven by neuroplastic aberrations. The present review considers depression in such terms and attempts to integrate the available evidence indicating that the efficacy of current and "next wave" antidepressant treatments, whether used alone or in combination, is at least partially tied to their ability to modulate neuroplasticity. We particularly focus on the N-methyl-D-aspartate (NMDA) antagonist, ketamine, which already has well documented rapid antidepressant effects, and the trophic cytokine, erythropoietin (EPO), which we propose as a potential adjunctive antidepressant agent.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | | |
Collapse
|
41
|
Dwyer JM, Duman RS. Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry 2013; 73:1189-98. [PMID: 23295207 PMCID: PMC3622786 DOI: 10.1016/j.biopsych.2012.11.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/05/2012] [Accepted: 11/18/2012] [Indexed: 01/01/2023]
Abstract
Antidepressants that produce rapid and robust effects, particularly for severely ill patients, represent one of the largest unmet medical needs for the treatment of depression. Currently available drugs that modulate monoamine neurotransmission provide relief for only a subset of patients, and this minimal efficacy requires several weeks of chronic treatment. The recent discovery that the glutamatergic agent ketamine produces rapid antidepressant responses within hours has opened a new area of research to explore the molecular mechanisms through which ketamine produces these surprising responses. Clinical and preclinical findings have exposed some of the unique actions of ketamine and identified a cell-signaling pathway known as the mammalian target of rapamycin. Activation of mammalian target of rapamycin and increased synaptogenesis in the prefrontal cortex are crucial in mediating the antidepressant effects of ketamine. Importantly, the synaptic actions of ketamine allow rapid recovery from the insults produced by exposure to repeated stress that cause neuronal atrophy and loss of synaptic connections. In the following review, we explore some of the clinical and preclinical findings that have thrust ketamine to the forefront of rapid antidepressant research and unveiled some of its unique molecular and cellular actions.
Collapse
Affiliation(s)
- Jason M Dwyer
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Musazzi L, Treccani G, Mallei A, Popoli M. The action of antidepressants on the glutamate system: regulation of glutamate release and glutamate receptors. Biol Psychiatry 2013; 73:1180-8. [PMID: 23273725 DOI: 10.1016/j.biopsych.2012.11.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/09/2023]
Abstract
Recent compelling evidence has suggested that the glutamate system is a primary mediator of psychiatric pathology and also a target for rapid-acting antidepressants. Clinical research in mood and anxiety disorders has shown alterations in levels, clearance, and metabolism of glutamate and consistent volumetric changes in brain areas where glutamate neurons predominate. In parallel, preclinical studies with rodent stress and depression models have found dendritic remodeling and synaptic spines reduction in corresponding areas, suggesting these as major factors in psychopathology. Enhancement of glutamate release/transmission, in turn induced by stress/glucocorticoids, seems crucial for structural/functional changes. Understanding mechanisms of maladaptive plasticity may allow identification of new targets for drugs and therapies. Interestingly, traditional monoaminergic-based antidepressants have been repeatedly shown to interfere with glutamate system function, starting with modulation of N-methyl-D-aspartate (NMDA) receptors. Subsequently, it has been shown that antidepressants reduce glutamate release and synaptic transmission; in particular, it was found antidepressants prevent the acute stress-induced enhancement of glutamate release. Additional studies have shown that antidepressants may partly reverse the maladaptive changes in synapses/circuitry in stress and depression models. Finally, a number of studies over the years have shown that these drugs regulate glutamate receptors, reducing the function of NMDA receptors, potentiating the function of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors, and, more recently, exerting variable effects on different subtypes of metabotropic glutamate receptors. The development of NMDA receptor antagonists has opened new avenues for glutamatergic, rapid acting, antidepressants, while additional targets in the glutamate synapse await development of new compounds for better, faster antidepressant action.
Collapse
Affiliation(s)
- Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics-Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases-CEND, Università degli Studi di Milano, Milano, Italy
| | | | | | | |
Collapse
|
43
|
Marsden WN. Synaptic plasticity in depression: molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 2013; 43:168-84. [PMID: 23268191 DOI: 10.1016/j.pnpbp.2012.12.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022]
Abstract
Synaptic plasticity confers environmental adaptability through modification of the connectivity between neurons and neuronal circuits. This is achieved through changes to synapse-associated signaling systems and supported by complementary changes to cellular morphology and metabolism within the tripartite synapse. Mounting evidence suggests region-specific changes to synaptic form and function occur as a result of chronic stress and in depression. Within subregions of the prefrontal cortex (PFC) and hippocampus structural and synapse-related findings seem consistent with a deficit in long-term potentiation (LTP) and facilitation of long-term depression (LTD), particularly at excitatory pyramidal synapses. Other brain regions are less well-studied; however the amygdala may feature a somewhat opposite synaptic pathology including reduced inhibitory tone. Changes to synaptic plasticity in stress and depression may correlate those to several signal transduction pathways (e.g. NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt, GSK-3, mTOR and CREB) and upstream receptors (e.g. NMDAR, TrkB and p75NTR). Deficits in synaptic plasticity may further correlate disrupted brain redox and bioenergetics. Finally, at a functional level region-specific changes to synaptic plasticity in depression may relate to maladapted neurocircuitry and parallel reduced cognitive control over negative emotion.
Collapse
Affiliation(s)
- W N Marsden
- Highclere Court, Woking, Surrey, GU21 2QP, UK.
| |
Collapse
|
44
|
O’Leary O, Zandy S, Dinan T, Cryan J. Lithium augmentation of the effects of desipramine in a mouse model of treatment-resistant depression: A role for hippocampal cell proliferation. Neuroscience 2013; 228:36-46. [DOI: 10.1016/j.neuroscience.2012.09.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/23/2012] [Accepted: 09/29/2012] [Indexed: 12/01/2022]
|
45
|
GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test. Neurobiol Dis 2012; 52:160-7. [PMID: 23262314 DOI: 10.1016/j.nbd.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 12/05/2012] [Accepted: 12/08/2012] [Indexed: 01/10/2023] Open
Abstract
Glutamate receptor dependent synaptic plasticity plays an important role in the pathophysiology of depression. Hippocampal samples from clinically depressed patients display reduced mRNA levels for GluA1, a major subunit of AMPA receptors. Moreover, activation and synaptic incorporation of GluA1-containing AMPA receptors are required for the antidepressant-like effects of NMDA receptor antagonists. These findings argue that GluA1-dependent synaptic plasticity might be critically involved in the expression of depression. Using an animal model of depression, we demonstrate that global or hippocampus-selective deletion of GluA1 impairs expression of experience-dependent behavioral despair. This impairment is mediated by the interaction of GluA1 with PDZ-binding domain proteins, as deletion of the C-terminal leucine alone is sufficient to replicate the behavioral phenotype. Our results provide evidence for a significant role of hippocampal GluA1-containing AMPA receptors and their PDZ-interaction in experience-dependent expression of behavioral despair and link mechanisms of hippocampal synaptic plasticity with behavioral expression of depression.
Collapse
|
46
|
Lauterbach EC. Psychotropic drug effects on gene transcriptomics relevant to Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:107-15. [PMID: 22507762 DOI: 10.1016/j.pnpbp.2012.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Psychotropic drugs are widely prescribed in Parkinson's disease (PD) without regard to their pathobiological effects, and these drugs affect the transcription of a large number of genes. Effects of these drugs on PD risk gene transcription were therefore surveyed. METHODS Results summarize a comprehensive survey of psychotropic effects on messenger ribonucleic acid (mRNA) expression evident in published data for 70 genes linked to PD risk. RESULTS Psychotropic drugs can meaningfully affect PD risk gene mRNA transcription, including antipsychotics (upregulate dopamine receptors D2 and D3 (DRD2, DRD3); downregulate low-density lipoprotein receptor-related protein 8 (LRP8), ubiquitin carboxyl-terminal esterase L1 (UCHL1, also known as PARK5)), haloperidol (upregulates DRD3, parkin (PRKN, also known as PARK2), DRD2; downregulates brain-derived neurotrophic factor (BDNF)), risperidone (upregulates monoamine oxidase B (MAOB), DRD2), olanzapine (upregulates transmembrane protein 163 (TMEM163), BDNF, glutathione S-transferase mu 1 (GSTM1), MAOB, DRD2, solute carrier organic anion transporter family, member 3A1 (SLCO3A1)), aripiprazole (upregulates DRD2), quetiapine, paliperidone, lurasidone, carbamazepine, and many antidepressants (upregulate BDNF), lithium and bupropion (downregulate BDNF), amitriptyline (upregulates DRD3, DRD2), imipramine (upregulates BDNF, DRD3, DRD2), desipramine (upregulates BDNF, DRD3), and fluoxetine (upregulates acid beta-glucosidase (GBA), coiled-coil domain containing 62 (CCDC62), BDNF, DRD3, UCHL1, unc-13 homolog B (UNC13B), and perhaps huntingtin interacting protein 1 related (HIP1R); downregulates microtubule-associated protein tau (MAPT), methylcrotonoyl-coenzyme A carboxylase I (MCCC1), GSTM1, 28kDa calbindin 1 (CALB1)). Fluoxetine effects on BDNF and UCHL1 in GEO Profiles were statistically robust. CONCLUSIONS This report provides an initial summary and framework to understand the potential impact of psychotropic drugs on PD-relevant genes. Antipsychotics and serotoninergic antidepressants may potentially attenuate PD risk, and lithium and bupropion may augment risk, through MAPT, GBA, CCDC62, HIP1R, BDNF, and DRD2 transcription, with MAPT, GBA, and CCDC62 being strongly associated with PD risk in recent meta-analyses. Limitations of these findings and a research agenda to better relate them to the nigrostriatum and PD are discussed.
Collapse
Affiliation(s)
- Edward C Lauterbach
- Department of Psychiatry and Behavioral Sciences, Mercer University School of Medicine, Macon, GA 31201, USA.
| |
Collapse
|
47
|
Influence of GRIA1, GRIA2 and GRIA4 polymorphisms on diagnosis and response to treatment in patients with major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2012; 262:305-11. [PMID: 22057216 DOI: 10.1007/s00406-011-0270-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/17/2011] [Indexed: 01/02/2023]
Abstract
The present study is aimed to exploring whether some single nucleotide polymorphisms (SNPs) within GRIA1, GRIA2 and GRIA4 could be associated with major depressive disorder (MDD) and whether they could predict clinical outcomes in Korean in-patients, respectively, treated with antidepressants. One hundred forty-five (145) patients with MDD and 170 healthy controls were genotyped for 17 SNPs within GRIA1, GRIA2 and GRIA4. Baseline and final clinical measures, including the Montgomery-Asberg Depression Rating Scale (MADRS) for patients with MDD, were recorded. No association was observed between alleles, genotypes and haplotypes under investigation and clinical and demographical variables. As a secondary finding, a marginal association was observed between rs4302506 and rs4403097 alleles within GRIA2 and age of onset in patients with MDD. Our findings provide evidence for a possible association between rs4302506 and rs4403097 SNPs and age of onset in patients with MDD. However, taking into account that the several limitations of our study including the moderately small sample size of our study, our findings should be considered with caution and further research is needed to draw more definitive conclusions.
Collapse
|
48
|
The neuroprotective disease-modifying potential of psychotropics in Parkinson's disease. PARKINSONS DISEASE 2011; 2012:753548. [PMID: 22254151 PMCID: PMC3255316 DOI: 10.1155/2012/753548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/12/2011] [Indexed: 12/12/2022]
Abstract
Neuroprotective treatments in Parkinson's disease (PD) have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms) include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R), although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, inflammation, and trophic factors including GDNF and BDNF.
Collapse
|
49
|
Texel SJ, Camandola S, Ladenheim B, Rothman SM, Mughal MR, Unger EL, Cadet JL, Mattson MP. Ceruloplasmin deficiency results in an anxiety phenotype involving deficits in hippocampal iron, serotonin, and BDNF. J Neurochem 2011; 120:125-34. [PMID: 22035068 DOI: 10.1111/j.1471-4159.2011.07554.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ceruloplasmin (Cp) is a ferroxidase involved in iron metabolism by converting Fe(2+) to Fe(3+), and by regulating cellular iron efflux. In the ceruloplasmin knockout (CpKO) mouse, the deregulation of iron metabolism results in moderate liver and spleen hemosiderosis, but the impact of Cp deficiency on brain neurochemistry and behavior in this animal model is unknown. We found that in contrast to peripheral tissues, iron levels in the hippocampus are significantly reduced in CpKO mice. Although it does not cause any discernable deficits in motor function or learning and memory, Cp deficiency results in heightened anxiety-like behavior in the open field and elevated plus maze tests. This anxiety phenotype is associated with elevated levels of plasma corticosterone. Previous studies provided evidence that anxiety disorders and long-standing stress are associated with reductions in levels of serotonin (5HT) and brain-derived neurotrophic factor (BDNF) in the hippocampus. We found that levels of 5HT and norepinephrine (NE), and the expression of BDNF and its receptor trkB, are significantly reduced in the hippocampus of CpKO mice. Thus, Cp deficiency causes an anxiety phenotype by a mechanism that involves decreased levels of iron, 5HT, NE, and BDNF in the hippocampus.
Collapse
Affiliation(s)
- Sarah J Texel
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
NMDA and AMPA receptors are involved in the antidepressant-like activity of tianeptine in the forced swim test in mice. Pharmacol Rep 2011; 63:1526-32. [DOI: 10.1016/s1734-1140(11)70716-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/24/2011] [Indexed: 12/22/2022]
|