1
|
Juvenal G, Higa GSV, Bonfim Marques L, Tessari Zampieri T, Costa Viana FJ, Britto LR, Tang Y, Illes P, di Virgilio F, Ulrich H, de Pasquale R. Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease. Purinergic Signal 2024:10.1007/s11302-024-10034-x. [PMID: 39046648 DOI: 10.1007/s11302-024-10034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Purinergic receptors regulate the processing of neural information in the hippocampus and cerebral cortex, structures related to cognitive functions. These receptors are activated when astrocytic and neuronal populations release adenosine triphosphate (ATP) in an autocrine and paracrine manner, following sustained patterns of neuronal activity. The modulation by these receptors of GABAergic transmission has only recently been studied. Through their ramifications, astrocytes and GABAergic interneurons reach large groups of excitatory pyramidal neurons. Their inhibitory effect establishes different synchronization patterns that determine gamma frequency rhythms, which characterize neural activities related to cognitive processes. During early life, GABAergic-mediated synchronization of excitatory signals directs the experience-driven maturation of cognitive development, and dysfunctions concerning this process have been associated with neurological and neuropsychiatric diseases. Purinergic receptors timely modulate GABAergic control over ongoing neural activity and deeply affect neural processing in the hippocampal and neocortical circuitry. Stimulation of A2 receptors increases GABA release from presynaptic terminals, leading to a considerable reduction in neuronal firing of pyramidal neurons. A1 receptors inhibit GABAergic activity but only act in the early postnatal period when GABA produces excitatory signals. P2X and P2Y receptors expressed in pyramidal neurons reduce the inhibitory tone by blocking GABAA receptors. Finally, P2Y receptor activation elicits depolarization of GABAergic neurons and increases GABA release, thus favoring the emergence of gamma oscillations. The present review provides an overall picture of purinergic influence on GABAergic transmission and its consequences on neural processing, extending the discussion to receptor subtypes and their involvement in the onset of brain disorders, including epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Guilherme Juvenal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Thais Tessari Zampieri
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Felipe José Costa Viana
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luiz R Britto
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Yong Tang
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
- International Joint Research Centre On Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Roberto de Pasquale
- Department of Biophysics and Physiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Contreras A, Djebari S, Temprano-Carazo S, Múnera A, Gruart A, Delgado-Garcia JM, Jiménez-Díaz L, Navarro-López JD. Impairments in hippocampal oscillations accompany the loss of LTP induced by GIRK activity blockade. Neuropharmacology 2023:109668. [PMID: 37474000 DOI: 10.1016/j.neuropharm.2023.109668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Learning and memory occurrence requires of hippocampal long-term synaptic plasticity and precise neural activity orchestrated by brain network oscillations, both processes reciprocally influencing each other. As G-protein-gated inwardly rectifying potassium (GIRK) channels rule synaptic plasticity that supports hippocampal-dependent memory, here we assessed their unknown role in hippocampal oscillatory activity in relation to synaptic plasticity induction. In alert male mice, pharmacological GIRK modulation did not alter neural oscillations before long-term potentiation (LTP) induction. However, after an LTP generating protocol, both gain- and loss-of basal GIRK activity transformed LTP into long-term depression, but only specific suppression of constitutive GIRK activity caused a disruption of network synchronization (δ, α, γ bands), even leading to long-lasting ripples and fast ripples pathological oscillations. Together, our data showed that constitutive GIRK activity plays a key role in the tuning mechanism of hippocampal oscillatory activity during long-term synaptic plasticity processes that underlies hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Ana Contreras
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Souhail Djebari
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alejandro Múnera
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain; Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, 41013, Seville, Spain
| | | | - Lydia Jiménez-Díaz
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Juan D Navarro-López
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
3
|
Arroyo-García LE, Bachiller S, Ruiz R, Boza-Serrano A, Rodríguez-Moreno A, Deierborg T, Andrade-Talavera Y, Fisahn A. Targeting galectin-3 to counteract spike-phase uncoupling of fast-spiking interneurons to gamma oscillations in Alzheimer's disease. Transl Neurodegener 2023; 12:6. [PMID: 36740709 PMCID: PMC9901156 DOI: 10.1186/s40035-023-00338-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown. METHODS Here, we investigated the functional implications of gal3 signaling on experimentally induced gamma oscillations ex vivo (20-80 Hz) by performing electrophysiological recordings in the hippocampal CA3 area of wild-type (WT) mice and of the 5×FAD mouse model of AD. In addition, the recorded slices from WT mice under acute gal3 application were analyzed with RT-qPCR to detect expression of some neuroinflammation-related genes, and amyloid-β (Aβ) plaque load was quantified by immunostaining in the CA3 area of 6-month-old 5×FAD mice with or without Gal3 knockout (KO). RESULTS Gal3 application decreased gamma oscillation power and rhythmicity in an activity-dependent manner, which was accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSNs) and pyramidal cells. We found that the gal3-induced disruption was mediated by the gal3 carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevented Aβ42-induced degradation of gamma oscillations. Furthermore, the 5×FAD mice lacking gal3 (5×FAD-Gal3KO) exhibited WT-like gamma network dynamics and decreased Aβ plaque load. CONCLUSIONS We report for the first time that gal3 impairs neuronal network dynamics by spike-phase uncoupling of FSNs, inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic strategy to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Luis Enrique Arroyo-García
- grid.465198.7Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Sara Bachiller
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden ,grid.9224.d0000 0001 2168 1229Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Rocío Ruiz
- grid.9224.d0000 0001 2168 1229Department of Biochemistry and Molecular Biology, University of Seville, Calle Profesor García González Nº2, 41012 Seville, Spain
| | - Antonio Boza-Serrano
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden ,grid.9224.d0000 0001 2168 1229Department of Biochemistry and Molecular Biology, University of Seville, Calle Profesor García González Nº2, 41012 Seville, Spain
| | - Antonio Rodríguez-Moreno
- grid.15449.3d0000 0001 2200 2355Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cellular Biology, Universidad Pablo de Olavide, Carretera de Utrera Km-1, 41013 Seville, Spain
| | - Tomas Deierborg
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164, Solna, Sweden. .,Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cellular Biology, Universidad Pablo de Olavide, Carretera de Utrera Km-1, 41013, Seville, Spain.
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164, Solna, Sweden. .,Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
4
|
Shen HY, Baer SB, Gesese R, Cook JM, Weltha L, Coffman SQ, Wu J, Chen JF, Gao M, Ji T. Adenosine-A 2A Receptor Signaling Plays a Crucial Role in Sudden Unexpected Death in Epilepsy. Front Pharmacol 2022; 13:910535. [PMID: 35754505 PMCID: PMC9218562 DOI: 10.3389/fphar.2022.910535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Adenosinergic activities are suggested to participate in SUDEP pathophysiology; this study aimed to evaluate the adenosine hypothesis of SUDEP and specifically the role of adenosine A2A receptor (A2AR) in the development of a SUDEP mouse model with relevant clinical features. Using a combined paradigm of intrahippocampal and intraperitoneal administration of kainic acid (KA), we developed a boosted-KA model of SUDEP in genetically modified adenosine kinase (ADK) knockdown (Adk+/-) mice, which has reduced ADK in the brain. Seizure activity was monitored using video-EEG methods, and in vivo recording of local field potential (LFP) was used to evaluate neuronal activity within the nucleus tractus solitarius (NTS). Our boosted-KA model of SUDEP was characterized by a delayed, postictal sudden death in epileptic mice. We demonstrated a higher incidence of SUDEP in Adk+/- mice (34.8%) vs. WTs (8.0%), and the ADK inhibitor, 5-Iodotubercidin, further increased SUDEP in Adk+/- mice (46.7%). We revealed that the NTS level of ADK was significantly increased in epileptic WTs, but not in epileptic Adk+/- mutants, while the A2AR level in NTS was increased in epileptic (WT and Adk+/-) mice vs. non-epileptic controls. The A2AR antagonist, SCH58261, significantly reduced SUDEP events in Adk+/- mice. LFP data showed that SCH58261 partially restored KA injection-induced suppression of gamma oscillation in the NTS of epileptic WT mice, whereas SCH58261 increased theta and beta oscillations in Adk+/- mutants after KA injection, albeit with no change in gamma oscillations. These LFP findings suggest that SCH58261 and KA induced changes in local neuronal activities in the NTS of epileptic mice. We revealed a crucial role for NTS A2AR in SUDEP pathophysiology suggesting A2AR as a potential therapeutic target for SUDEP risk prevention.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Sadie B Baer
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Raey Gesese
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - John M Cook
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Landen Weltha
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Shayla Q Coffman
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Jie Wu
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Gao
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Teng Ji
- Department of Pediatric Neurology, Randall Children's Hospital, Legacy Emanuel Medical Center, Portland, OR, United States
| |
Collapse
|
5
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Klemz A, Wildner F, Tütüncü E, Gerevich Z. Regulation of Hippocampal Gamma Oscillations by Modulation of Intrinsic Neuronal Excitability. Front Neural Circuits 2022; 15:778022. [PMID: 35177966 PMCID: PMC8845518 DOI: 10.3389/fncir.2021.778022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Ion channels activated around the subthreshold membrane potential determine the likelihood of neuronal firing in response to synaptic inputs, a process described as intrinsic neuronal excitability. Long-term plasticity of chemical synaptic transmission is traditionally considered the main cellular mechanism of information storage in the brain; however, voltage- and calcium-activated channels modulating the inputs or outputs of neurons are also subjects of plastic changes and play a major role in learning and memory formation. Gamma oscillations are associated with numerous higher cognitive functions such as learning and memory, but our knowledge of their dependence on intrinsic plasticity is by far limited. Here we investigated the roles of potassium and calcium channels activated at near subthreshold membrane potentials in cholinergically induced persistent gamma oscillations measured in the CA3 area of rat hippocampal slices. Among potassium channels, which are responsible for the afterhyperpolarization in CA3 pyramidal cells, we found that blockers of SK (KCa2) and KV7.2/7.3 (KCNQ2/3), but not the BK (KCa1.1) and IK (KCa3.1) channels, increased the power of gamma oscillations. On the contrary, activators of these channels had an attenuating effect without affecting the frequency. Pharmacological blockade of the low voltage-activated T-type calcium channels (CaV3.1–3.3) reduced gamma power and increased the oscillation peak frequency. Enhancement of these channels also inhibited the peak power without altering the frequency of the oscillations. The presented data suggest that voltage- and calcium-activated ion channels involved in intrinsic excitability strongly regulate the power of hippocampal gamma oscillations. Targeting these channels could represent a valuable pharmacological strategy against cognitive impairment.
Collapse
|
7
|
Wang Y, Zhang Y, Wang K, Zhu Z, Wang D, Yang Q, Dong H. Esketamine Increases Neurotransmitter Releases but Simplifies Neurotransmitter Networks in Mouse Prefrontal Cortex. J Neurophysiol 2022; 127:586-595. [PMID: 35080449 DOI: 10.1152/jn.00462.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
General anesthesia induces a profound but reversible unconscious state, which is accompanied by changes in various neurotransmitters in the cortex. Unlike the "brain silencing" effect of γ-aminobutyric acid (GABA) receptor potentiator anesthesia, ketamine anesthesia leads the brain to a paradoxical active state with higher cortical activity, which is manifested as dissociative anesthesia. However, how the overall neurotransmitter network evolves across conscious states after ketamine administration remains unclear. Using in vivo microdialysis, high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, and electroencephalogram (EEG) recording technique, we continuously measured the concentrations of six neurotransmitters and the EEG signals during anesthesia with esketamine, an S-enantiomer of ketamine racemate. We found that there was an increase in the release of five cortical neurotransmitters after the administration of esketamine. The correlation of cortical neurotransmitters was dynamically simplified along with behavioral changes until full recovery after anesthesia. The esketamine-increased gamma oscillation power was positively correlated only with the concentration of 5-hydroxytryptamine (5-HT) in the medial prefrontal cortex. This study suggests that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.
Collapse
Affiliation(s)
- Ye Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunyun Zhang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kai Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenghua Zhu
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qianzi Yang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
9
|
Sahin L, Figueiro MG. Flickering Red-Light Stimulus for Promoting Coherent 40 Hz Neural Oscillation: A Feasibility Study. J Alzheimers Dis 2020; 75:911-921. [PMID: 32390635 PMCID: PMC8083946 DOI: 10.3233/jad-200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Coherent 40 Hz (gamma) neural oscillation indicates healthy brain activity and is known to be disrupted in Alzheimer's disease (AD) patients. 40 Hz entrainment by flickering light is known to significantly attenuate AD pathology in mice. OBJECTIVE To demonstrate the feasibility of using a lighting intervention to promote coherent 40 Hz neural oscillation, improved working memory performance, and reduced subjective sleepiness among a population of healthy young adults. If successful, the intervention could be extended to address cognitive impairment associated with mild cognitive impairment and AD. METHODS Nine healthy participants (median age 22 years, five females) were exposed to one of two lighting conditions per session in a within-subjects counterbalanced manner. The study's two sessions were separated by 1 week. Custom-built light masks provided either a 40 Hz flickering red light (FRL) intervention or a dark control condition (i.e., total darkness, light mask not energized) at participants' eyes. Data were collected four times per session: pre-exposure, after 25-min exposure, after 50-min exposure, and post-exposure. Each data collection period included a Karolinska Sleepiness Scale report, an electroencephalogram, and working memory (n-back) auditory performance testing. RESULTS The FRL intervention induced a significant increase in 40 Hz power and a modest increase in low gamma power. The intervention had no significant impact on working memory performance and subjective sleepiness compared to the control. However, increases in 40 Hz power were significantly correlated with reduced subjective sleepiness. CONCLUSION The results clearly demonstrate the feasibility of using a flickering light to increase 40 Hz power.
Collapse
Affiliation(s)
- Levent Sahin
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariana G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
10
|
Zhang Y, Li Z, Zhang J, Zhao Z, Zhang H, Vreugdenhil M, Lu C. Near-Death High-Frequency Hyper-Synchronization in the Rat Hippocampus. Front Neurosci 2019; 13:800. [PMID: 31417353 PMCID: PMC6684736 DOI: 10.3389/fnins.2019.00800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Near-death experiences (NDE) are episodes of enhanced perception with impending death, which have been associated with increased high-frequency (13-100 Hz) synchronization of neuronal activity, which is implicated in cognitive processes like perception, attention and memory. To test whether the NDE-associated high-frequency oscillations surge is related to cardiac arrest, recordings were made from the hippocampus of anesthetized rats dying from an overdose of the sedative chloral hydrate (CH). At a lethal dose, CH caused a surge in beta band power in CA3 and CA1 and a surge in gamma band power in CA1. CH increased the inter-regional coherence of high-frequency oscillations within and between hippocampi. Whereas the surge in beta power developed at non-lethal chloral hydrate doses, the surge in gamma power was specific for impending death. In contrast, CH strongly suppressed theta band power in both CA1 and CA3 and reduced inter-regional coherence in the theta band. The simultaneously recorded electrocardiogram showed a small decrease in heart rate but no change in waveform during the high-frequency oscillation surge, with cardiac arrest only developing after the cessation of breathing and collapse of all oscillatory activity. These results demonstrate that the high-frequency oscillation surge just before death is not limited to cardiac arrest and that especially the increase in gamma synchronization in CA1 may contribute to NDE observed both with and without cardiac arrest.
Collapse
Affiliation(s)
- Yujiao Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, China.,International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Zhenyi Li
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Jing Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Zongya Zhao
- School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- School of Psychology, Xinxiang Medical University, Xinxiang, China.,Department of Life Sciences, School of Health Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Chengbiao Lu
- School of Psychology, Xinxiang Medical University, Xinxiang, China.,International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Lopes JP, Pliássova A, Cunha RA. The physiological effects of caffeine on synaptic transmission and plasticity in the mouse hippocampus selectively depend on adenosine A 1 and A 2A receptors. Biochem Pharmacol 2019; 166:313-321. [PMID: 31199895 DOI: 10.1016/j.bcp.2019.06.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022]
Abstract
Caffeine is the most consumed psychoactive drug worldwide and its intake in moderate amounts prevents neurodegenerative disorders. However, the molecular targets of caffeine to modulate activity in brain circuits are ill-defined. By electrophysiologically recording synaptic transmission and plasticity in Schaffer fibers-CA1 pyramid synapses of mouse hippocampal slices, we characterized the impact of caffeine using a concentration reached in the brain parenchyma upon moderate caffeine consumption. Caffeine (50 µM) facilitated synaptic transmission by 40%, while decreasing paired-pulse facilitation, and also decreased by 35% the amplitude of long-term potentiation (LTP). Clearance of extracellular adenosine with adenosine deaminase (2 U/mL) blunted all the effects of caffeine on synaptic transmission and plasticity. The A1R antagonist DPCPX (100 nM) only eliminated caffeine-induced facilitation of synaptic transmission while not affecting caffeine-induced depression of LTP; conversely, the genetic (using A2AR knockout mice) or the pharmacological blockade (with SCH58261, 50 nM) of A2AR eliminated the effect of caffeine on LTP while not affecting caffeine-induced facilitation of synaptic transmission. Finally, blockade of GABAA or of ryanodine receptors with bicuculline (10 μM) or dantrolene (10 μM), respectively, did not affect the ability of caffeine to alter synaptic transmission or plasticity. These results show that the effects of caffeine on synaptic transmission and plasticity in the hippocampus are selectively mediated by antagonizing adenosine receptors, where A1R are responsible for the impact of caffeine on synaptic transmission and A2AR regulate the impact of caffeine on LTP.
Collapse
Affiliation(s)
- João P Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| | - Anna Pliássova
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
12
|
Burke KJ, Bender KJ. Modulation of Ion Channels in the Axon: Mechanisms and Function. Front Cell Neurosci 2019; 13:221. [PMID: 31156397 PMCID: PMC6533529 DOI: 10.3389/fncel.2019.00221] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
The axon is responsible for integrating synaptic signals, generating action potentials (APs), propagating those APs to downstream synapses and converting them into patterns of neurotransmitter vesicle release. This process is mediated by a rich assortment of voltage-gated ion channels whose function can be affected on short and long time scales by activity. Moreover, neuromodulators control the activity of these proteins through G-protein coupled receptor signaling cascades. Here, we review cellular mechanisms and signaling pathways involved in axonal ion channel modulation and examine how changes to ion channel function affect AP initiation, AP propagation, and the release of neurotransmitter. We then examine how these mechanisms could modulate synaptic function by focusing on three key features of synaptic information transmission: synaptic strength, synaptic variability, and short-term plasticity. Viewing these cellular mechanisms of neuromodulation from a functional perspective may assist in extending these findings to theories of neural circuit function and its neuromodulation.
Collapse
Affiliation(s)
| | - Kevin J. Bender
- Neuroscience Graduate Program and Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
14
|
Yamashiro K, Fujii Y, Maekawa S, Morita M. Multiple pathways for elevating extracellular adenosine in the rat hippocampal CA1 region characterized by adenosine sensor cells. J Neurochem 2016; 140:24-36. [PMID: 27896810 DOI: 10.1111/jnc.13888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine in the brain, which modulates various physiological and pathological processes, fluctuates in a complicated manner that reflects the circadian cycle, neuronal activity, metabolism, and disease states. The dynamics of extracellular adenosine in the brain are not fully understood, largely because of the lack of simple and reliable methods of measuring time-dependent changes in tissue adenosine distribution. This study describes the development of a biosensor, designated an adenosine sensor cell, expressing adenosine A1 receptor, and a genetically modified G protein. This biosensor was used to characterize extracellular adenosine elevation in brain tissue by measuring intracellular calcium elevation in response to adenosine. Placement of adenosine sensor cells below hippocampal slices successfully detected adenosine releases from these slices in response to neuronal activity and astrocyte swelling by conventional calcium imaging. Pharmacological analyses indicated that high-frequency electrical stimulation-induced post-synaptic adenosine release in a manner dependent on L-type calcium channels and calcium-induced calcium release. Adenosine release following treatments that cause astrocyte swelling is independent of calcium channels, but dependent on aquaporin 4, an astrocyte-specific water channel subtype. The ability of ectonucleotidase inhibitors to inhibit adenosine release following astrocyte swelling, but not electrical stimulation, suggests that the former reflects astrocytic ATP release and subsequent enzymatic breakdown, whereas the latter reflects direct adenosine release from neurons. These results suggest that distinct mechanisms are responsible for extracellular adenosine elevations by neurons and astrocytes, allowing exquisite regulation of extracellular adenosine in the brain.
Collapse
Affiliation(s)
- Kunihiko Yamashiro
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Yuki Fujii
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Shohei Maekawa
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
15
|
Kann O, Hollnagel JO, Elzoheiry S, Schneider J. Energy and Potassium Ion Homeostasis during Gamma Oscillations. Front Mol Neurosci 2016; 9:47. [PMID: 27378847 PMCID: PMC4909733 DOI: 10.3389/fnmol.2016.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Fast neuronal network oscillations in the gamma frequency band (30-100 Hz) occur in various cortex regions, require timed synaptic excitation and inhibition with glutamate and GABA, respectively, and are associated with higher brain functions such as sensory perception, attentional selection and memory formation. However, little is known about energy and ion homeostasis during the gamma oscillation. Recent studies addressed this topic in slices of the rodent hippocampus using cholinergic and glutamatergic receptor models of gamma oscillations (GAM). Methods with high spatial and temporal resolution were applied in vitro, such as electrophysiological recordings of local field potential (LFP) and extracellular potassium concentration ([K(+)]o), live-cell fluorescence imaging of nicotinamide adenine dinucleotide (phosphate) and flavin adenine dinucleotide [NAD(P)H and FAD, respectively] (cellular redox state), and monitoring of the interstitial partial oxygen pressure (pO2) in depth profiles with microsensor electrodes, including mathematical modeling. The main findings are: (i) GAM are associated with high oxygen consumption rate and significant changes in the cellular redox state, indicating rapid adaptations in glycolysis and oxidative phosphorylation; (ii) GAM are accompanied by fluctuating elevations in [K(+)]o of less than 0.5 mmol/L from baseline, likely reflecting effective K(+)-uptake mechanisms of neuron and astrocyte compartments; and (iii) GAM are exquisitely sensitive to metabolic stress induced by lowering oxygen availability or by pharmacological inhibition of the mitochondrial respiratory chain. These findings reflect precise cellular adaptations to maintain adenosine-5'-triphosphate (ATP), ion and neurotransmitter homeostasis and thus neural excitability and synaptic signaling during GAM. Conversely, the exquisite sensitivity of GAM to metabolic stress might significantly contribute the exceptional vulnerability of higher brain functions in brain disease.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Shehabeldin Elzoheiry
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| | - Justus Schneider
- Institute of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of HeidelbergHeidelberg, Germany
| |
Collapse
|
16
|
Samerphob N, Cheaha D, Chatpun S, Kumarnsit E. Gamma wave oscillation and synchronized neural signaling between the lateral hypothalamus and the hippocampus in response to hunger. J Physiol Sci 2015; 65:S17-S22. [PMID: 31941173 PMCID: PMC10722651 DOI: 10.1007/bf03405851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The lateral hypothalamus plays an important role in homeostasis. It is sensitive to negative energy balance and believed to interact with other brain regions to mediate food seeking behavior. However, no neural signaling of hunger in the lateral hypothalamus has been studied. Male Swiss albino mice implanted with intracranial electrodes into the lateral hypothalamus and the hippocampus were randomly treated with drinking water for control condition, 18-20 h deprivation of food for hunger condition, and fluid food for satiety condition. Therefore, local field potential (LFP) and locomotor activity of animals were simultaneously recorded. One way ANOVA with Tukey's post hoc test was used for statistical analysis. Frequency analysis of LFP revealed that food deprivation significantly increased the power of gamma oscillation (65-95 Hz) in the lateral hypothalamus and the hippocampus. However, satiety did not change the oscillation in these regions. Moreover, no significant difference among groups was observed for locomotor count and speed. The analysis of coherence values between neural signaling of these two brain areas also confirmed significant increase within a frequency range of 61-92 Hz for hunger. No change in coherence value was induced by satiety. In summary, this study demonstrated neural signaling of the lateral hypothalamus in response to hunger with differential power spectrum of LFP and the interplay with the hippocampus. The data may suggest critical roles of the lateral hypothalamus in detection of negative energy balance and coordination of other higher functions for food related learning or behaviors through the connectivity with the hippocampus.
Collapse
Affiliation(s)
- Nifareeda Samerphob
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Dania Cheaha
- Faculty of Medicine, Princess of Naradhiwas University (PNU), Meang, Narathiwat, 96000, Thailand
| | - Surapong Chatpun
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Ekkasit Kumarnsit
- Department of Physiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
17
|
Jarosch MS, Gebhardt C, Fano S, Huchzermeyer C, ul Haq R, Behrens CJ, Heinemann U. Early adenosine release contributes to hypoxia-induced disruption of stimulus-induced sharp wave-ripple complexes in rat hippocampal area CA3. Eur J Neurosci 2015; 42:1808-17. [DOI: 10.1111/ejn.12941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 04/14/2015] [Accepted: 05/06/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Marlene S. Jarosch
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Christine Gebhardt
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Silvia Fano
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Christine Huchzermeyer
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Rizwan ul Haq
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Christoph J. Behrens
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Uwe Heinemann
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
- Excellence Cluster NeuroCure; Berlin Germany
| |
Collapse
|
18
|
Zhang X, Ge XY, Wang JG, Wang YL, Wang Y, Yu Y, Li PP, Lu CB. Induction of long-term oscillations in the γ frequency band by nAChR activation in rat hippocampal CA3 area. Neuroscience 2015; 301:49-60. [PMID: 26049144 DOI: 10.1016/j.neuroscience.2015.05.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/08/2023]
Abstract
The hippocampal neuronal network oscillation at γ frequency band (γ oscillation) is generated by the precise interaction between interneurons and principle cells. γ oscillation is associated with attention, learning and memory and is impaired in the diseased conditions such as Alzheimer's disease (AD) and schizophrenia. Nicotinic acetylcholine receptor (nAChR) plays an important role in the regulation of hippocampal neurotransmission and network activity. It is not known whether nicotine modulates plasticity of network activity at γ oscillations in the hippocampus. In this study we investigated the effects of nicotine on the long-term changes of KA-induced γ oscillations. We found that hippocampal γ oscillations can be enhanced by a low concentration of nicotine (1μM), such an enhancement lasts for hours after washing out of nicotine, suggesting a form of synaptic plasticity, named as long-term oscillation at γ frequency band (LTOγ). Nicotine-induced LTOγ was mimicked by the selective α4β2 but not by α7 nAChR agonist and was involved in N-methyl-d-aspartate (NMDA) receptor activation as well as depended on excitatory and inhibitory neurotransmission. Our results indicate that nAChR activation induced plasticity in γ oscillation, which may be beneficial for the improvement of cognitive deficiency in AD and schizophrenia.
Collapse
Affiliation(s)
- X Zhang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - X Y Ge
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - J G Wang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y L Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Wang
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Y Yu
- Department of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - P P Li
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - C B Lu
- Key Laboratory of Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
19
|
Pannexin-1-mediated ATP release from area CA3 drives mGlu5-dependent neuronal oscillations. Neuropharmacology 2015; 93:219-28. [PMID: 25645390 DOI: 10.1016/j.neuropharm.2015.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 02/08/2023]
Abstract
The activation of Group I metabotropic glutamate receptors (GI mGluRs) in the hippocampus results in the appearance of persistent bursts of synchronised neuronal activity. In response to other stimuli, such activity is known to cause the release of the purines ATP and its neuroactive metabolite, adenosine. We have thus investigated the potential release and role of the purines during GI mGluR-induced oscillations in rat hippocampal areas CA3 and CA1 using pharmacological techniques and microelectrode biosensors for ATP and adenosine. The GI mGluR agonist DHPG induced both persistent oscillations in neuronal activity and the release of adenosine in areas CA1 and CA3. In contrast, the DHPG-induced release of ATP was only observed in area CA3. Whilst adenosine acting at adenosine A1 receptors suppressed DHPG-induced burst activity, the activation of mGlu5 and P2Y1 ATP receptors were necessary for the induction of DHPG-induced oscillations. Selective inhibition of pannexin-1 hemichannels with a low concentration of carbenoxolone (10 μM) or probenecid (1 mM) did not affect adenosine release in area CA3, but prevented both ATP release in area CA3 and DHPG-induced bursting. These data reveal key aspects of GI mGluR-dependent neuronal activity that are subject to bidirectional regulation by ATP and adenosine in the initiation and pacing of burst firing, respectively, and which have implications for the role of GI mGluRs in seizure activity and neurodevelopmental disorders.
Collapse
|
20
|
de Velasco EMF, McCall N, Wickman K. GIRK Channel Plasticity and Implications for Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:201-38. [DOI: 10.1016/bs.irn.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Rombo DM, Dias RB, Duarte ST, Ribeiro JA, Lamsa KP, Sebastião AM. Adenosine A1Receptor Suppresses Tonic GABAAReceptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons. Cereb Cortex 2014; 26:1081-95. [DOI: 10.1093/cercor/bhu288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
22
|
Sadegh M, Fathollahi Y. Repetitive systemic morphine alters activity-dependent plasticity of schaffer-collateral-CA1 pyramidal cell synapses: Involvement of adenosine A1 receptors and adenosine deaminase. J Neurosci Res 2014; 92:1395-408. [DOI: 10.1002/jnr.23414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Mehdi Sadegh
- Department of Physiology; School of Medical Sciences, Tarbiat Modares University; Tehran Iran
- Department of Physiology; Faculty of Medicine; Arak University of Medical Sciences; Arak Iran
| | - Yaghoub Fathollahi
- Department of Physiology; School of Medical Sciences, Tarbiat Modares University; Tehran Iran
| |
Collapse
|
23
|
Jiang Z, Cowell RM, Nakazawa K. Convergence of genetic and environmental factors on parvalbumin-positive interneurons in schizophrenia. Front Behav Neurosci 2013; 7:116. [PMID: 24027504 PMCID: PMC3759852 DOI: 10.3389/fnbeh.2013.00116] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/13/2013] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia etiology is thought to involve an interaction between genetic and environmental factors during postnatal brain development. However, there is a fundamental gap in our understanding of the molecular mechanisms by which environmental factors interact with genetic susceptibility to trigger symptom onset and disease progression. In this review, we summarize the most recent findings implicating oxidative stress as one mechanism by which environmental insults, especially early life social stress, impact the development of schizophrenia. Based on a review of the literature and the results of our own animal model, we suggest that environmental stressors such as social isolation render parvalbumin-positive interneurons (PVIs) vulnerable to oxidative stress. We previously reported that social isolation stress exacerbates many of the schizophrenia-like phenotypes seen in a conditional genetic mouse model in which NMDA receptors (NMDARs) are selectively ablated in half of cortical and hippocampal interneurons during early postnatal development (Belforte et al., 2010). We have since revealed that this social isolation-induced effect is caused by impairments in the antioxidant defense capacity in the PVIs in which NMDARs are ablated. We propose that this effect is mediated by the down-regulation of PGC-1α, a master regulator of mitochondrial energy metabolism and anti-oxidant defense, following the deletion of NMDARs (Jiang et al., 2013). Other potential molecular mechanisms underlying redox dysfunction upon gene and environmental interaction will be discussed, with a focus on the unique properties of PVIs.
Collapse
Affiliation(s)
- Zhihong Jiang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, NIH Bethesda, MD, USA
| | | | | |
Collapse
|
24
|
Kang SJ, Rangaswamy M, Manz N, Wang JC, Wetherill L, Hinrichs T, Almasy L, Brooks A, Chorlian DB, Dick D, Hesselbrock V, Kramer J, Kuperman S, Nurnberger J, Rice J, Schuckit M, Tischfield J, Bierut LJ, Edenberg HJ, Goate A, Foroud T, Porjesz B. Family-based genome-wide association study of frontal θ oscillations identifies potassium channel gene KCNJ6. GENES, BRAIN, AND BEHAVIOR 2012; 11:712-9. [PMID: 22554406 PMCID: PMC3666338 DOI: 10.1111/j.1601-183x.2012.00803.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Event-related oscillations (EROs) represent highly heritable neuroelectric correlates of cognitive processes that manifest deficits in alcoholics and in offspring at high risk to develop alcoholism. Theta ERO to targets in the visual oddball task has been shown to be an endophenotype for alcoholism. A family-based genome-wide association study was performed for the frontal theta ERO phenotype using 634 583 autosomal single nucleotide polymorphisms (SNPs) genotyped in 1560 family members from 117 families densely affected by alcohol use disorders, recruited in the Collaborative Study on the Genetics of Alcoholism. Genome-wide significant association was found with several SNPs on chromosome 21 in KCNJ6 (a potassium inward rectifier channel; KIR3.2/GIRK2), with the most significant SNP at P = 4.7 × 10(-10)). The same SNPs were also associated with EROs from central and parietal electrodes, but with less significance, suggesting that the association is frontally focused. One imputed synonymous SNP in exon four, highly correlated with our top three SNPs, was significantly associated with the frontal theta ERO phenotype. These results suggest KCNJ6 or its product GIRK2 account for some of the variations in frontal theta band oscillations. GIRK2 receptor activation contributes to slow inhibitory postsynaptic potentials that modulate neuronal excitability, and therefore influence neuronal networks.
Collapse
Affiliation(s)
- Sun J. Kang
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY
| | - Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY
| | - Niklas Manz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY
| | - Jen-Chyong Wang
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO
| | - Leah Wetherill
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Tony Hinrichs
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Andy Brooks
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY
| | - Danielle Dick
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Victor Hesselbrock
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT
| | - John Kramer
- Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA
| | - Sam Kuperman
- Department of Psychiatry, University of Iowa College of Medicine, Iowa City, IA
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - John Rice
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO
| | - Marc Schuckit
- Department of Psychiatry, University of California-San Diego, La Jolla, CA
| | - Jay Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO
| | - Howard J. Edenberg
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO
| | - Tatiana Foroud
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
25
|
Aru J, Korjus K, Murd C, Bachmann T. Spectral Signatures of the Effects of Caffeine and Occipitally Applied Transcranial Magnetic Stimulation in a Task-Free Experimental Setup. JOURNAL OF CAFFEINE RESEARCH 2012. [DOI: 10.1089/jcr.2011.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jaan Aru
- Max-Planck Institute of Brain research, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Kristjan Korjus
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Carolina Murd
- Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Talis Bachmann
- Institute of Public Law, University of Tartu, Tartu, Estonia
| |
Collapse
|
26
|
Kann O. The energy demand of fast neuronal network oscillations: insights from brain slice preparations. Front Pharmacol 2012; 2:90. [PMID: 22291647 PMCID: PMC3254178 DOI: 10.3389/fphar.2011.00090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/20/2011] [Indexed: 01/09/2023] Open
Abstract
Fast neuronal network oscillations in the gamma range (30-100 Hz) in the cerebral cortex have been implicated in higher cognitive functions such as sensual perception, working memory, and, perhaps, consciousness. However, little is known about the energy demand of gamma oscillations. This is mainly caused by technical limitations that are associated with simultaneous recordings of neuronal activity and energy metabolism in small neuronal networks and at the level of mitochondria in vivo. Thus recent studies have focused on brain slice preparations to address the energy demand of gamma oscillations in vitro. Here, reports will be summarized and discussed that combined electrophysiological recordings, oxygen sensor microelectrodes, and live-cell fluorescence imaging in acutely prepared slices and organotypic slice cultures of the hippocampus from both, mouse and rat. These reports consistently show that gamma oscillations can be reliably induced in hippocampal slice preparations by different pharmacological tools. They suggest that gamma oscillations are associated with high energy demand, requiring both rapid adaptation of oxidative energy metabolism and sufficient supply with oxygen and nutrients. These findings might help to explain the exceptional vulnerability of higher cognitive functions during pathological processes of the brain, such as circulatory disturbances, genetic mitochondrial diseases, and neurodegeneration.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg Heidelberg, Germany. oliver.kann@physiologie
| |
Collapse
|
27
|
Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience 2012; 202:384-95. [DOI: 10.1016/j.neuroscience.2011.11.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/22/2022]
|
28
|
Purinergic P2X, P2Y and adenosine receptors differentially modulate hippocampal gamma oscillations. Neuropharmacology 2011; 62:914-24. [PMID: 22001427 DOI: 10.1016/j.neuropharm.2011.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 01/02/2023]
Abstract
The present study was designed to investigate the role of extracellular ATP and its receptors on neuronal network activity. Gamma oscillations (30-50 Hz) were induced in the CA3 region of acute rat hippocampal slices by either acetylcholine (ACh) or kainic acid (KA). ATP reduced the power of KA-induced gamma oscillations exclusively by activation of adenosine receptors after its degradation to adenosine. In contrast, ATP suppressed ACh-induced oscillations through both adenosine and ATP receptors. Activation of adenosine receptors accounts for about 55%, activation of P2 receptors for ∼45% of suppression. Monitoring the ATP degradation by ATP biosensors revealed that bath-applied ATP reaches ∼300 times lower concentrations within the slice. P2 receptors were also activated by endogenous ATP since inhibition of ATP-hydrolyzing enzymes had an inhibitory effect on ACh-induced gamma oscillations. More specific antagonists revealed that ionotropic P2X2 and/or P2X4 receptors reduced the power of ACh-induced gamma oscillations whereas metabotropic P2Y(1) receptor increased it. Intracellular recordings from CA3 pyramidal cells suggest that adenosine receptors reduce the spiking rate and the synchrony of action potentials during gamma oscillations whereas P2 receptors only modulate the firing rate of the cells. In conclusion, our results suggest that endogenously released ATP differentially modulates the power of ACh- or KA-induced gamma oscillations in the CA3 region of the hippocampus by interacting with P2X, P2Y and adenosine receptors. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
|
29
|
Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo. J Neurosci 2011; 31:851-60. [PMID: 21248108 DOI: 10.1523/jneurosci.5080-10.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hippocampal formation is one of the brain regions most sensitive to ischemic damage. However, there are no studies about changes in hippocampal neuronal activity during and after a selective unilateral hippocampal ischemia. We developed a novel unilateral cerebrovascular ischemia model in mice that selectively shuts down blood supply to the ipsilateral hippocampal formation. Using a modified version of the photothrombotic method, we stereotaxically targeted the initial ascending part of the longitudinal hippocampal artery in urethane anesthetized and rose bengal-injected mice. To block blood flow in the targeted artery, we photoactivated the rose bengal by illuminating the longitudinal hippocampal artery through an optical fiber inserted into the brain. In vivo field potential recordings in the CA1 region of the hippocampus before, during and after the induction of ischemia demonstrated a high-frequency discharge (HFD) reaching frequencies of >300 Hz and lasting 7-24 s during the illumination consistent with a massive synchronous neuronal activity. The HFD was invariably followed by a DC voltage shift and a decreased activity at both low (30-57 Hz)- and high (63-119 Hz)-gamma frequencies. This decrease in gamma activity lasted for the entire duration of the recordings (∼160 min) following ischemia. The contralateral hippocampus displayed HFDs but with different frequency spectra and without DC voltage shifts or long-lasting decreases in gamma oscillations. Our findings reveal for the first time the acute effects of unilateral hippocampal ischemia on ensemble hippocampal neuronal activities.
Collapse
|
30
|
Frank MJ, Fossella JA. Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology 2011; 36:133-52. [PMID: 20631684 PMCID: PMC3055524 DOI: 10.1038/npp.2010.96] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 02/07/2023]
Abstract
Many of the individual differences in cognition, motivation, and learning-and the disruption of these processes in neurological conditions-are influenced by genetic factors. We provide an integrative synthesis across human and animal studies, focusing on a recent spate of evidence implicating a role for genes controlling dopaminergic function in frontostriatal circuitry, including COMT, DARPP-32, DAT1, DRD2, and DRD4. These genetic effects are interpreted within theoretical frameworks developed in the context of the broader cognitive and computational neuroscience literature, constrained by data from pharmacological, neuroimaging, electrophysiological, and patient studies. In this framework, genes modulate the efficacy of particular neural computations, and effects of genetic variation are revealed by assays designed to be maximally sensitive to these computations. We discuss the merits and caveats of this approach and outline a number of novel candidate genes of interest for future study.
Collapse
Affiliation(s)
- Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, RI 02912-1978, USA.
| | | |
Collapse
|
31
|
Myslobodsky M, Eldan A. Winning a won game: caffeine panacea for obesity syndemic. Curr Neuropharmacol 2010; 8:149-60. [PMID: 21119886 PMCID: PMC2923369 DOI: 10.2174/157015910791233213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, chronic sleep reduction and a concurrent development of obesity have been recognized as a common problem in the industrialized world. Among its numerous untoward effects, there is a possibility that insomnia is also a major contributor to obesity. This attribution poses a problem for caffeine, an inexpensive, “natural” agent that is purported to improve a number of conditions and is often indicated in a long-term pharmacotherapy in the context of weight management. The present study used the “common target” approach by exploring the tentative shared molecular networks of insomnia and adiposity. It discusses caffeine targets beyond those associated with adenosine signaling machinery, phosphodiesterases, and calcium release channels. Here, we provide a view suggesting that caffeine could exert some of its effects by acting on several signaling complexes composed of HIF-1α/VEGF/IL-8 along with NO, TNF-α, IL1, and GHRH, among others. Although the relevance of these targets to the reported therapeutic effects of caffeine has remained difficult to assess, the utilization of caffeine efficacies and potencies recommend its repurposing for development of novel therapeutic approaches. Among indications mentioned, are neuroprotective, nootropic, antioxidant, proliferative, anti-fibrotic, and anti-angiogenic that appear under a variety of dissimilar diagnostic labels comorbid with obesity. In the absence of safe and efficacious antiobesity agents, caffeine remains an attractive adjuvant.
Collapse
|
32
|
Lu CB, Jefferys JGR, Toescu EC, Vreugdenhil M. In vitro hippocampal gamma oscillation power as an index of in vivo CA3 gamma oscillation strength and spatial reference memory. Neurobiol Learn Mem 2010; 95:221-30. [PMID: 21093596 DOI: 10.1016/j.nlm.2010.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/01/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Neuronal synchronisation at gamma frequencies (30-100 Hz) has been implicated in cognition and memory. Gamma oscillations can be studied in various in vitro models, but their in vivo validity and their relationship with reference memory remains to be proven. By using the natural variation of wild type C57bl/6J mice, we assessed the relationships between reference memory and gamma oscillations recorded in hippocampal area CA3 in vivo and in vitro. Local field potentials (LFPs) were recorded from area CA3 in behaviourally-characterised freely moving mice, after which hippocampal slices were prepared for recordings in vitro of spontaneous gamma oscillations and kainate-induced gamma oscillations in CA3. The gamma-band power of spontaneous oscillations in vitro correlated with that of CA3 LFP oscillations during inactive behavioural states. The gamma-band power of kainate-induced oscillations correlated with the activity-dependent increase in CA3 LFP gamma-band power in vivo. Kainate-induced gamma-band power correlated with Barnes circular platform performance and object location recognition, but not with object novelty recognition. Kainate-induced gamma-band power was larger in mice that recognised the aversive context, but did not correlate with passive avoidance delay. The correlations between behavioural and electrophysiological measures obtained from the same animals show that the gamma-generating capacity of the CA3 network in vitro is a useful index of in vivo gamma strength and supports an important role of CA3 gamma oscillations in spatial reference memory.
Collapse
Affiliation(s)
- Cheng B Lu
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
33
|
Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat Rev Neurosci 2010; 11:301-15. [PMID: 20389305 DOI: 10.1038/nrn2834] [Citation(s) in RCA: 464] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to activation of many different G protein-coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on the channel subunit composition. Pharmacological investigations of GIRK channels and studies in animal models suggest that GIRK activity has an important role in physiological responses, including pain perception and memory modulation. Moreover, abnormal GIRK function has been implicated in altering neuronal excitability and cell death, which may be important in the pathophysiology of diseases such as epilepsy, Down's syndrome, Parkinson's disease and drug addiction. GIRK channels may therefore prove to be a valuable new therapeutic target.
Collapse
|
34
|
Properties of gamma frequency oscillatory activity induced in hippocampal slices from the adult GAD67-GFP (Δneo) mouse. Brain Res 2010; 1323:65-73. [DOI: 10.1016/j.brainres.2010.01.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 11/21/2022]
|
35
|
Oke OO, Magony A, Anver H, Ward PD, Jiruska P, Jefferys JGR, Vreugdenhil M. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro. Eur J Neurosci 2010; 31:1435-45. [PMID: 20384769 DOI: 10.1111/j.1460-9568.2010.07171.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.
Collapse
Affiliation(s)
- Olaleke O Oke
- Neuronal Networks, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Boehlen A, Kunert A, Heinemann U. Effects of XE991, retigabine, losigamone and ZD7288 on kainate-induced theta-like and gamma network oscillations in the rat hippocampus in vitro. Brain Res 2009; 1295:44-58. [PMID: 19699191 DOI: 10.1016/j.brainres.2009.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 08/02/2009] [Accepted: 08/09/2009] [Indexed: 11/19/2022]
Abstract
Ion currents such as M-currents (I(M)), persistent sodium currents (I(NaP)) and H-currents (I(h)) have been observed in a variety of brain regions, including the hippocampal formation, where storage and retrieval of information are facilitated by oscillatory network activities. They have been suggested to play an important role in neuronal excitability, synaptic transmission, membrane oscillatory activity, and in shaping resonance. Resonance and membrane potential oscillations have been implied in the generation of theta but not gamma oscillations. Here, we performed extracellular field potential recordings in hippocampal slices from adult rats and applied either the I(M) blocker XE991, the I(M) activator retigabine, the I(NaP) blocker losigamone or the I(h) inhibitor ZD7288 to test if these currents contribute to the generation of network oscillations. Kainate application induced network theta-like frequency oscillations in coronal slices as well as network gamma frequency oscillations in horizontal slices, and these remained stable for up to 3h. Power spectrum analysis revealed that all agents dose-dependently reduced the network oscillations in both frequency bands in areas CA3 and CA1. In contrast, the peak oscillation frequency was affected differentially. These results confirm that theta-like frequency oscillations are induced in longitudinal slices while gamma frequency oscillations dominate in horizontal slices. They also suggest that modifying neuronal excitability and transmitter release alters hippocampal network oscillations which are thought to be crucial for memory processing.
Collapse
Affiliation(s)
- Anne Boehlen
- Institute of Neurophysiology, Johannes Müller-Center of Physiology, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany
| | | | | |
Collapse
|
37
|
Pietersen ANJ, Patel N, Jefferys JGR, Vreugdenhil M. Comparison between spontaneous and kainate-induced gamma oscillations in the mouse hippocampus in vitro. Eur J Neurosci 2009; 29:2145-56. [PMID: 19490088 DOI: 10.1111/j.1460-9568.2009.06771.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronal synchronization at gamma frequency, implicated in cognition, can be evoked in hippocampal slices by pharmacological activation. We characterized spontaneous small-amplitude gamma oscillations (SgammaO) recorded in area CA3 of mouse hippocampal slices and compared it with kainate-induced gamma oscillations (KgammaO). SgammaO had a lower peak frequency, a more sinusoidal waveform and was spatially less coherent than KgammaO, irrespective of oscillation amplitude. CA3a had the smallest oscillation power, phase-led CA3c by approximately 4 ms and had the highest SgammaO frequency in isolated subslices. During SgammaO CA3c neurons fired at the rebound of inhibitory postsynaptic potentials (IPSPs) that were associated with a current source in stratum lucidum, whereas CA3a neurons often fired from spikelets, 3-4 ms earlier in the cycle, and had smaller IPSPs. Kainate induced faster/larger IPSPs that were associated with an earlier current source in stratum pyramidale. SgammaO and KgammaO power were dependent on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, gap junctions and gamma-aminobutyric acid (GABA)(A) receptors. SgammaO was suppressed by elevating extracellular KCl, blocking N-methyl-d-aspartate (NMDA) receptors or muscarinic receptors, or activating GluR5-containing kainate receptors. SgammaO was not affected by blocking metabotropic glutamate receptors or hyperpolarization-activated currents. The adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dimethoxyxanthine (8-CPT) and the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) increased SgammaO power, indicating that endogenous adenosine and/or endocannabinoids suppress or prevent SgammaO in vitro. SgammaO emerges from a similar basic network as KgammaO, but differs in involvement of somatically projecting interneurons and pharmacological modulation profile. These observations advocate the use of SgammaO as a natural model for hippocampal gamma oscillations, particularly during less activated behavioural states.
Collapse
Affiliation(s)
- Alexander N J Pietersen
- Neuroscience, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|