1
|
Zeng ML, Xu W. A Narrative Review of the Published Pre-Clinical Evaluations: Multiple Effects of Arachidonic Acid, its Metabolic Enzymes and Metabolites in Epilepsy. Mol Neurobiol 2024:10.1007/s12035-024-04274-6. [PMID: 38842673 DOI: 10.1007/s12035-024-04274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Arachidonic acid (AA), an important polyunsaturated fatty acid in the brain, is hydrolyzed by a direct action of phospholipase A2 (PLA2) or through the combined action of phospholipase C and diacylglycerol lipase, and released into the cytoplasm. Various derivatives of AA can be synthesized mainly through the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (P450) enzyme pathways. AA and its metabolic enzymes and metabolites play important roles in a variety of neurophysiological activities. The abnormal metabolites and their catalytic enzymes in the AA cascade are related to the pathogenesis of various central nervous system (CNS) diseases, including epilepsy. Here, we systematically reviewed literatures in PubMed about the latest randomized controlled trials, animal studies and clinical studies concerning the known features of AA, its metabolic enzymes and metabolites, and their roles in epilepsy. The exclusion criteria include non-original studies and articles not in English.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Wei Xu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Cai Y, Zhang Y, Leng S, Ma Y, Jiang Q, Wen Q, Ju S, Hu J. The relationship between inflammation, impaired glymphatic system, and neurodegenerative disorders: A vicious cycle. Neurobiol Dis 2024; 192:106426. [PMID: 38331353 DOI: 10.1016/j.nbd.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
The term "glymphatic" emerged roughly a decade ago, marking a pivotal point in neuroscience research. The glymphatic system, a glial-dependent perivascular network distributed throughout the brain, has since become a focal point of investigation. There is increasing evidence suggesting that impairment of the glymphatic system appears to be a common feature of neurodegenerative disorders, and this impairment exacerbates as disease progression. Nevertheless, the common factors contributing to glymphatic system dysfunction across most neurodegenerative disorders remain unclear. Inflammation, however, is suspected to play a pivotal role. Dysfunction of the glymphatic system can lead to a significant accumulation of protein and waste products, which can trigger inflammation. The interaction between the glymphatic system and inflammation appears to be cyclical and potentially synergistic. Yet, current research is limited, and there is a lack of comprehensive models explaining this association. In this perspective review, we propose a novel model suggesting that inflammation, impaired glymphatic function, and neurodegenerative disorders interconnected in a vicious cycle. By presenting experimental evidence from the existing literature, we aim to demonstrate that: (1) inflammation aggravates glymphatic system dysfunction, (2) the impaired glymphatic system exacerbated neurodegenerative disorders progression, (3) neurodegenerative disorders progression promotes inflammation. Finally, the implication of proposed model is discussed.
Collapse
Affiliation(s)
- Yu Cai
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yangqiqi Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing 210009, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI 48202, USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W.16th Street, Indianapolis, IN 46202-5188, USA
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Jiani Hu
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
4
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
5
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
6
|
von Rüden EL, Potschka H, Tipold A, Stein VM. The role of neuroinflammation in canine epilepsy. Vet J 2023; 298-299:106014. [PMID: 37393038 DOI: 10.1016/j.tvjl.2023.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The lack of therapeutics that prevent the development of epilepsy, improve disease prognosis or overcome drug resistance represents an unmet clinical need in veterinary as well as in human medicine. Over the past decade, experimental studies and studies in human epilepsy patients have demonstrated that neuroinflammatory processes are involved in epilepsy development and play a key role in neuronal hyperexcitability that underlies seizure generation. Targeting neuroinflammatory signaling pathways may provide a basis for clinically relevant disease-modification strategies in general, and moreover, could open up new therapeutic avenues for human and veterinary patients with drug-resistant epilepsy. A sound understanding of the neuroinflammatory mechanisms underlying seizure pathogenesis in canine patients is therefore essential for mechanism-based discovery of selective epilepsy therapies that may enable the development of new disease-modifying treatments. In particular, subgroups of canine patients in urgent needs, e.g. dogs with drug-resistant epilepsy, might benefit from more intensive research in this area. Moreover, canine epilepsy shares remarkable similarities in etiology, disease manifestation, and disease progression with human epilepsy. Thus, canine epilepsy is discussed as a translational model for the human disease and epileptic dogs could provide a complementary species for the evaluation of antiepileptic and antiseizure drugs. This review reports key preclinical and clinical findings from experimental research and human medicine supporting the role of neuroinflammation in the pathogenesis of epilepsy. Moreover, the article provides an overview of the current state of knowledge regarding neuroinflammatory processes in canine epilepsy emphasizing the urgent need for further research in this specific field. It also highlights possible functional impact, translational potential and future perspectives of targeting specific inflammatory pathways as disease-modifying and multi-target treatment options for canine epilepsy.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
8
|
Chen A, Cai P, Luo M, Guo M, Cai T. Melt Crystallization of Celecoxib-Carbamazepine Cocrystals with the Synchronized Release of Drugs. Pharm Res 2023; 40:567-577. [PMID: 36348133 DOI: 10.1007/s11095-022-03427-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE The fixed-dose combination drug products have been increasingly used to treat some complex diseases. A cocrystal containing two therapeutic components, named as a drug-drug cocrystal, is an ideal solid form to formulate as a fixed-dose combination product. The aim of the study is to prepare celecoxib-carbamazepine (CEL-CBZ) cocrystals by melt crystallization to achieve the synchronized release of drugs. METHOD The crystal structure of the CEL-CBZ cocrystal was determined from the cocrystals harvested from melt by single crystal X-ray diffraction. The binary phase diagram and crystal growth kinetics of the CEL-CBZ cocrystal from melt were studied to optimize the process parameters of hot-melt extrusion for manufacturing large-scale cocrystals. The intrinsic dissolution rate studies were conducted to compare the dissolution profiles of drugs in the cocrystal and their individual forms. RESULT The CEL-CBZ cocrystal crystallized in the triclinic space group with one CEL and one CBZ molecule in the asymmetric unit. The crystallization of CEL-CBZ cocrystals were observed both in the supercooled liquid and glassy state. The formation of drug-drug cocrystals significantly alter the intrinsic dissolution rates of the parent drugs to favor the synchronized release. CONCLUSION Melt crystallization is an alternative, efficient and eco-friendly approach for preparing drug-drug cocrystals on a large scale. The synchronized drug release by drug-drug cocrystals can be used to modulate the release profiles of parent drugs in the fixed-dose combination products.
Collapse
Affiliation(s)
- An Chen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Peishan Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol 2023; 33:e13147. [PMID: 36599709 PMCID: PMC10041171 DOI: 10.1111/bpa.13147] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The blood-brain barrier (BBB) is a physiological barrier maintaining a specialized brain micromilieu that is necessary for proper neuronal function. Endothelial tight junctions and specific transcellular/efflux transport systems provide a protective barrier against toxins, pathogens, and immune cells. The barrier function is critically supported by other cell types of the neurovascular unit, including pericytes, astrocytes, microglia, and interneurons. The dysfunctionality of the BBB is a hallmark of neurological diseases, such as ischemia, brain tumors, neurodegenerative diseases, infections, and autoimmune neuroinflammatory disorders. Moreover, BBB dysfunction is critically involved in epilepsy, a brain disorder characterized by spontaneously occurring seizures because of abnormally synchronized neuronal activity. While resistance to antiseizure drugs that aim to reduce neuronal hyperexcitability remains a clinical challenge, drugs targeting the neurovasculature in epilepsy patients have not been explored. The use of novel imaging techniques permits early detection of BBB leakage in epilepsy; however, the detailed mechanistic understanding of causes and consequences of BBB compromise remains unknown. Here, we discuss the current knowledge of BBB involvement in temporal lobe epilepsy with the emphasis on the neurovasculature as a therapeutic target.
Collapse
Affiliation(s)
- Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Sebastian Bauer
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elif Fidan
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Elke Hattingen
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Institute of Neuroradiology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| | - Nico Melzer
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felix Rosenow
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Theodor Rüber
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany.,Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Laurent M Willems
- Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany.,Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Center for Personalized Translational Epilepsy Research (CePTER), University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Grigoreva TA, Sagaidak AV, Novikova DS, Tribulovich VG. Implication of ABC transporters in non-proliferative diseases. Eur J Pharmacol 2022; 935:175327. [DOI: 10.1016/j.ejphar.2022.175327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
11
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
12
|
Fischer A, Hülsmeyer VI, Munoz Schmieder VP, Tipold A, Kornberg M, König F, Gesell FK, Ahrend LK, Volk HA, Potschka H. Cyclooxygenase-2 Inhibition as an Add-On Strategy in Drug Resistant Epilepsy—A Canine Translational Study. Front Vet Sci 2022; 9:864293. [PMID: 35464372 PMCID: PMC9021788 DOI: 10.3389/fvets.2022.864293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Drug-resistant epilepsy is a common complaint in dogs and affects up to 30% of dogs with idiopathic epilepsy. Experimental data suggest that targeting cyclooxygenase-2 (COX-2) mediated signaling might limit excessive excitability and prevent ictogenesis. Moreover, the role of COX-2 signaling in the seizure-associated induction of P-glycoprotein has been described. Thus, targeting this pathway may improve seizure control based on disease-modifying effects as well as enhancement of brain access and efficacy of the co-administered antiseizure medication. The present open-label non-controlled pilot study investigated the efficacy and tolerability of a COX-2 inhibitor (firocoxib) add-on therapy in a translational natural occurring chronic epilepsy animal model (client-owned dogs with phenobarbital-resistant idiopathic epilepsy). The study cohort was characterized by frequent tonic–clonic seizures and cluster seizures despite adequate phenobarbital treatment. Enrolled dogs (n = 17) received a firocoxib add-on therapy for 6 months. Tonic–clonic seizure and cluster seizure frequencies were analyzed at baseline (6 months) months during the study (6 months). The responders were defined by a substantial reduction of tonic–clonic seizure and cluster seizure frequency (≥50%). In total, eleven dogs completed the study and were considered for the statistical analysis. Two dogs (18%, 2/11) were classified as responders based on their change in seizure frequency. Interestingly, those two dogs had the highest baseline seizure frequency. The overall tolerability was good. However, given the low percentage of responders, the present data do not support an overall considerable efficacy of COX-2 inhibitor add-on therapy to overcome naturally occurring phenobarbital-resistant epilepsy in dogs. Further translational evaluation should only be considered in the canine patients with a very high baseline seizure density.
Collapse
Affiliation(s)
- Andrea Fischer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- *Correspondence: Andrea Fischer
| | - Velia-Isabel Hülsmeyer
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Viviana P. Munoz Schmieder
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | | | - Florian König
- Small Animal Practice Dr. Florian König, Wiesbaden, Germany
| | - Felix K. Gesell
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Liza K. Ahrend
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
13
|
Campos-Bedolla P, Feria-Romero I, Orozco-Suárez S. Factors not considered in the study of drug-resistant epilepsy: Drug-resistant epilepsy: assessment of neuroinflammation. Epilepsia Open 2022; 7 Suppl 1:S68-S80. [PMID: 35247028 PMCID: PMC9340302 DOI: 10.1002/epi4.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
More than one‐third of people with epilepsy develop drug‐resistant epilepsy (DRE). Different hypotheses have been proposed to explain the origin of DRE. Accumulating evidence suggests the contribution of neuroinflammation, modifications in the integrity of the blood‐brain barrier (BBB), and altered immune responses in the pathophysiology of DRE. The inflammatory response is mainly due to the increase of cytokines and related molecules; these molecules have neuromodulatory effects that contribute to hyperexcitability in neural networks that cause seizure generation. Some patients with DRE display the presence of autoantibodies in the serum and mainly cerebrospinal fluid. These patients are refractory to the different treatments with standard antiseizure medications (ASMs), and they could be responding well to immunomodulatory therapies. This observation emphasizes that the etiopathogenesis of DRE is involved with immunology responses and associated long‐term events and chronic inflammation processes. Furthermore, multiple studies have shown that functional polymorphisms as risk factors are involved in inflammation processes. Several relevant polymorphisms could be considered risk factors involved in inflammation‐related DRE such as receptor for advanced glycation end products (RAGE) and interleukin 1β (IL‐1β). All these evidences sustained the hypothesis that the chronic inflammation process is associated with the DRE. However, the effect of the chronic inflammation process should be investigated in further clinical studies to promote the development of novel therapeutics useful in treatment of DRE.
Collapse
Affiliation(s)
- Patricia Campos-Bedolla
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Iris Feria-Romero
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| |
Collapse
|
14
|
Kong FC, Lang LQ, Hu J, Zhang XL, Zhong MK, Ma CL. A novel epigenetic marker, Ten-eleven translocation family member 2 (TET2), is identified in the intractable epileptic brain and regulates ATP binding cassette subfamily B member 1 (ABCB1) in the blood-brain barrier. Bioengineered 2022; 13:6638-6649. [PMID: 35235761 PMCID: PMC8974043 DOI: 10.1080/21655979.2022.2045838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drug-resistant epilepsy (DRE) is a chronic condition derived from spontaneous changes and regulatory effects in the epileptic brain. As demethylation factors, ten-eleven translocation (TET) family members have become a focus in recent studies of neurological disorders. Here, we quantified and localized TET1, TET2 and 5-hydroxymethylcytosine (5-hmC) in the temporal lobe cortex of DRE patients (n = 27) and traumatic brain hemorrhage controls (n = 10) by immunochemical staining. TET2 and ATP binding cassette subfamily B member 1 (ABCB1) expression patterns were determined in the isolated brain capillaries of DRE patients. TET2 expression was significantly increased in the temporal cortical tissue of DRE patients with or without hippocampal sclerosis (HS) compared to control patients, while TET1 and 5-hmC showed no differences in expression. We also found that a particularly strong expression of TET2 in the vascular tissue of DRE patients. ABCB1 and TET2 have evidently higher expression in the vascular endothelium from the neocortex of DRE patients. In blood–brain barrier (BBB) model, TET2 depletion can cause attenuated expression and function of ABCB1. Data from a cohort study and experiments in a BBB model suggest that TET2 has a specific regulatory effect on ABCB1, which may serve as a potential mechanism and target in DRE.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Qin Lang
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Xia-Ling Zhang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Wang Y, Zhang R, Chen Q, Guo H, Liang X, Li T, Qi W, Xi L. Visualization of blood-brain barrier disruption with dual-wavelength high-resolution photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1537-1550. [PMID: 35415000 PMCID: PMC8973185 DOI: 10.1364/boe.449017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The blood-brain barrier (BBB) strictly regulates the substance exchange between the vascular network and the central nervous system, and plays a critical role in maintaining normal brain homeostasis. Impaired BBB is often accompanied with the emergence of cerebral diseases and probably further leads to severe neuroinflammation or even neurological degeneration. Hence, there is an urgent need to precisely monitor the impaired BBB to understand its pathogenesis and better guide the enactment of therapeutic strategies. However, there is a lack of high-resolution imaging techniques to visualize and evaluate the large-scale BBB disruption in pre-clinical and clinical aspects. In this study, we propose a dual-wavelength photoacoustic imaging (PAI) methodology that simultaneously reveals the abnormal microvasculature and impaired BBB within the cerebral cortex. In in vivo studies, BBB disruption in both mice and rats were induced by local hot-water stimulation and unilateral carotid arterial perfusion of hyperosmolar mannitol, respectively. Subsequently, the exogenous contrast agent (CA) was injected into the microcirculation via the tail vein, and photoacoustic (PA) images of the microvasculature and leaked CA within the cerebral cortex were obtained by dual-wavelength photoacoustic microscopy to evaluate the BBB disruption. Besides, analysis of distribution and concentration of leaked CA in lesion region was further conducted to quantitatively reveal the dynamic changes of BBB permeability. Furthermore, we exploited this approach to investigate the reversibility of BBB disruption within the two distinct models. Based on the experimental results, this new proposed approach presents excellent performance in visualizing microvasculature and leaked CA, and enabling it possesses great potential in evaluating the abnormal microvasculature and impaired BBB result from cerebrovascular diseases.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- These authors contributed equally to this study
| | - Ruoxi Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- These authors contributed equally to this study
| | - Qian Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Heng Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiao Liang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
16
|
Modulation of the Blood-Brain Barrier for Drug Delivery to Brain. Pharmaceutics 2021; 13:pharmaceutics13122024. [PMID: 34959306 PMCID: PMC8708282 DOI: 10.3390/pharmaceutics13122024] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) precisely controls brain microenvironment and neural activity by regulating substance transport into and out of the brain. However, it severely hinders drug entry into the brain, and the efficiency of various systemic therapies against brain diseases. Modulation of the BBB via opening tight junctions, inhibiting active efflux and/or enhancing transcytosis, possesses the potential to increase BBB permeability and improve intracranial drug concentrations and systemic therapeutic efficiency. Various strategies of BBB modulation have been reported and investigated preclinically and/or clinically. This review describes conventional and emerging BBB modulation strategies and related mechanisms, and safety issues according to BBB structures and functions, to try to give more promising directions for designing more reasonable preclinical and clinical studies.
Collapse
|
17
|
Vishwakarma S, Singh S, Singh TG. Pharmacological modulation of cytokines correlating neuroinflammatory cascades in epileptogenesis. Mol Biol Rep 2021; 49:1437-1452. [PMID: 34751915 DOI: 10.1007/s11033-021-06896-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Epileptic seizure-induced brain injuries include activation of neuroimmune response with activation of microglia, astrocytes cells releasing neurotoxic inflammatory mediators underlies the pathophysiology of epilepsy. A wide spectrum of neuroinflammatory pathways is involved in neurodegeneration along with elevated levels of inflammatory mediators indicating the neuroinflammation in the epileptic brain. Therefore, the neuroimmune response is commonly observed in the epileptic brain, indicating elevated cytokine levels, providing an understanding of the neuroinflammatory mechanism contributing to seizures recurrence. Clinical and experimental-based evidence suggested the elevated levels of cytokines responsible for neuronal excitation and blood-brain barrier (BBB) dysfunctioning causing the drug resistance in epilepsy. Therefore, the understanding of the pathogenesis of neuroinflammation in epilepsy, including migration of microglial cells releasing the inflammatory cytokines indicating the correlation of elevated levels of inflammatory mediators (interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) triggering the generation or recurrence of seizures. The current review summarized the knowledge regarding elevated inflammatory mediators as immunomodulatory response correlating multiple neuroinflammatory NF-kB, RIPK, MAPK, ERK, JNK, JAK-STAT signaling cascades in epileptogenesis. Further selective targeting of inflammatory mediators provides beneficial therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Shubham Vishwakarma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
18
|
Pharmacogenetics of Drug-Resistant Epilepsy (Review of Literature). Int J Mol Sci 2021; 22:ijms222111696. [PMID: 34769124 PMCID: PMC8584095 DOI: 10.3390/ijms222111696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Pharmacogenomic studies in epilepsy are justified by the high prevalence rate of this disease and the high cost of its treatment, frequent drug resistance, different response to the drug, the possibility of using reliable methods to assess the control of seizures and side effects of antiepileptic drugs. Candidate genes encode proteins involved in pharmacokinetic processes (drug transporters, metabolizing enzymes), pharmacodynamic processes (receptors, ion channels, enzymes, regulatory proteins, secondary messengers) and drug hypersensitivity (immune factors). This article provides an overview of the literature on the influence of genetic factors on treatment in epilepsy.
Collapse
|
19
|
Vázquez M, Fagiolino P. The role of efflux transporters and metabolizing enzymes in brain and peripheral organs to explain drug-resistant epilepsy. Epilepsia Open 2021; 7 Suppl 1:S47-S58. [PMID: 34560816 PMCID: PMC9340310 DOI: 10.1002/epi4.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Drug‐resistant epilepsy has been explained by different mechanisms. The most accepted one involves overexpression of multidrug transporters proteins at the blood brain barrier and brain metabolizing enzymes. This hypothesis is one of the main pharmacokinetic reasons that lead to the lack of response of some antiseizure drug substrates of these transporters and enzymes due to their limited entrance into the brain and limited stay at the sites of actions. Although uncontrolled seizures can be the cause of the overexpression, some antiseizure medications themselves can cause such overexpression leading to treatment failure and thus refractoriness. However, it has to be taken into account that the inductive effect of some drugs such as carbamazepine or phenytoin not only impacts on the brain but also on the rest of the body with different intensity, influencing the amount of drug available for the central nervous system. Such induction is not only local drug concentration but also time dependent. In the case of valproic acid, the deficient disposition of ammonia due to a malfunction of the urea cycle, which would have its origin in an intrinsic deficiency of L‐carnitine levels in the patient or by its depletion caused by the action of this antiseizure drug, could lead to drug‐resistant epilepsy. Many efforts have been made to change this situation. In order to name some, the administration of once‐daily dosing of phenytoin or the coadministration of carnitine with valproic acid would be preferable to avoid iatrogenic refractoriness. Another could be the use of an adjuvant drug that down‐regulates the expression of transporters. In this case, the use of cannabidiol with antiseizure properties itself and able to diminish the overexpression of these transporters in the brain could be a novel therapy in order to allow penetration of other antiseizure medications into the brain.
Collapse
Affiliation(s)
- Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
20
|
Bohosova J, Vajcner J, Jabandziev P, Oslejskova H, Slaby O, Aulicka S. MicroRNAs in the development of resistance to antiseizure drugs and their potential as biomarkers in pharmacoresistant epilepsy. Epilepsia 2021; 62:2573-2588. [PMID: 34486106 DOI: 10.1111/epi.17063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023]
Abstract
Although many new antiseizure drugs have been developed in the past decade, approximately 30%-40% of patients remain pharmacoresistant. There are no clinical tools or guidelines for predicting therapeutic response in individual patients, leaving them no choice other than to try all antiseizure drugs available as they suffer debilitating seizures with no relief. The discovery of predictive biomarkers and early identification of pharmacoresistant patients is of the highest priority in this group. MicroRNAs (miRNAs), a class of short noncoding RNAs negatively regulating gene expression, have emerged in recent years in epilepsy, following a broader trend of their exploitation as biomarkers of various complex human diseases. We performed a systematic search of the PubMed database for original research articles focused on miRNA expression level profiling in patients with drug-resistant epilepsy or drug-resistant precilinical models and cell cultures. In this review, we summarize 17 publications concerning miRNAs as potential new biomarkers of resistance to antiseizure drugs and their potential role in the development of drug resistance or epilepsy. Although numerous knowledge gaps need to be filled and reviewed, and articles share some study design pitfalls, several miRNAs dysregulated in brain tissue and blood serum were identified independently by more than one paper. These results suggest a unique opportunity for disease monitoring and personalized therapeutic management in the future.
Collapse
Affiliation(s)
- Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Vajcner
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Jabandziev
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatrics, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Oslejskova
- Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stefania Aulicka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pediatric Neurology, Brno Epilepsy Center, University Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
21
|
Enrique AV, Di Ianni ME, Goicoechea S, Lazarowski A, Valle-Dorado MG, Costa JJL, Rocha L, Girardi E, Talevi A. New anticonvulsant candidates prevent P-glycoprotein (P-gp) overexpression in a pharmacoresistant seizure model in mice. Epilepsy Behav 2021; 121:106451. [PMID: 31420290 DOI: 10.1016/j.yebeh.2019.106451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/04/2023]
Abstract
Despite the approval of a considerable number of last generation antiepileptic drugs (AEDs) (only in the last decade, six drugs have gained Food and Drug Administration approval), the global figures of seizure control have seemingly not improved, and available AED can still be regarded as symptomatic treatments. Fresh thinking in AEDs drug discovery, including the development of drugs with novel mechanisms of action, is required to achieve truly innovative antiepileptic medications. The transporter hypothesis proposes that inadequate penetration of AEDs across the blood-brain barrier, caused by increased expression of efflux transporters such as P-glycoprotein (P-gp), contributes to drug-resistant epilepsy. Neuroinflammation due to high levels of glutamate has been identified as one of the causes of P-gp upregulation, and several studies in animal models of epilepsy suggest that antiinflammatory drugs might prevent P-gp overexpression and, thus, avoid the development of refractory epilepsy. We have applied ligand-based in silico screening to select compounds that exert dual anticonvulsant and antiinflammatory effects. Five of the hits were tested in animal models of seizure, with protective effects. Later, two of them (sebacic acid (SA) and gamma-decanolactone) were submitted to the recently described MP23 model of drug-resistant seizures. All in all, SA displayed the best profile, showing activity in the maximal electroshock seizure (MES) and pentylenetetrazol (PTZ) seizure models, and reversing resistance to phenytoin (PHT) and decreasing the P-gp upregulation in the MP23 model. Furthermore, pretreatment with SA in the pilocarpine status epilepticus (SE) model resulted in decreased histamine release in comparison with nontreated animals. This is the first report of the use of the MP23 model to screen for novel anticonvulsant compounds that may avoid the development of P-gp-related drug resistance.
Collapse
Affiliation(s)
- Andrea Verónica Enrique
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina
| | - Mauricio Emiliano Di Ianni
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina
| | - Sofía Goicoechea
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA,) Junín 956, C1113AAD CABA, Argentina
| | | | - Juan José López Costa
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires (UBA) / Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Elena Girardi
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires (UBA) / Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina.
| |
Collapse
|
22
|
Elmagid DSA, Abdelsalam M, Magdy H, Tharwat N. The association between MDR1 C3435T genetic polymorphism and the risk of multidrug-resistant epilepsy in Egyptian children. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epilepsy is a chronic disease affecting about 2% of the population and is considered a serious neurological disease. Despite its good prognosis, 20–30% of epileptic patients were not cured of their seizures even with the many trials of antiepileptic drug (AED) therapy. The resistance mechanism is still unclear, maybe due to the effect of the genetic factors on the bioavailability of the drugs. Consequently, the association between therapy resistance and the presence of a gene called “multidrug resistance 1 (MDR1)” had been proposed. Thus, the present study aimed to understand the relationship between the genetic polymorphism of MDR1C3435T and the resistance to AEDs.
Result
A non-significant association was found between MDR1 C3435T single-nucleotide polymorphism (SNP) and drug-resistant epilepsy. However, there was statistical significance in the association between the drug type and the genotype distribution, in cases that were maintained on sodium valproate and MDR1C3435T genotype.
Conclusion
Possible involvement of the MDR1 gene C 3435T polymorphism with sodium valproate resistance clarifies the importance of genetic variability in response to the drug and may help to find novel genetic therapy for epilepsy, by targeting the biological mechanisms responsible for epilepsy in each specific individual. Future studies with bigger sample sizes and in other racial populations will be necessary.
Collapse
|
23
|
Noninvasive transcranial focal stimulation affects the convulsive seizure-induced P-glycoprotein expression and function in rats. Epilepsy Behav 2021; 115:107659. [PMID: 33334719 DOI: 10.1016/j.yebeh.2020.107659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023]
Abstract
Transcranial focal stimulation (TFS) is a noninvasive neuromodulation strategy that reduces seizure activity in different experimental models. Nevertheless, there is no information about the effects of TFS in the drug-resistant phenotype associated with P-glycoprotein (Pgp) overexpression. The present study focused on determining the effects of TFS on Pgp expression after an acute seizure induced by 3-mercaptopropionic acid (MPA). P-glycoprotein expression was analyzed by western blot in the cerebral cortex and hippocampus of rats receiving 5 min of TFS (300 Hz, 50 mA, 200 μs, biphasic charge-balanced squared pulses) using a tripolar concentric ring electrode (TCRE) prior to administration of a single dose of MPA. An acute administration of MPA induced Pgp overexpression in cortex (68 ± 13.4%, p < 0.05 vs the control group) and hippocampus (48.5 ± 14%, p < 0.05, vs the control group). This effect was avoided when TFS was applied prior to MPA. We also investigated if TFS augments the effects of phenytoin in an experimental model of drug-resistant seizures induced by repetitive MPA administration. Animals with MPA-induced drug-resistant seizures received TFS alone or associated with phenytoin (75 mg/kg, i.p.). TFS alone did not modify the expression of the drug-resistant seizures. However, TFS combined with phenytoin reduced seizure intensity, an effect associated with a lower prevalence of major seizures (50%, p = 0.03 vs phenytoin alone). Our experiments demonstrated that TFS avoids the Pgp overexpression induced after an acute convulsive seizure. In addition, TFS augments the phenytoin effects in an experimental model of drug-resistant seizures. According with these results, it is indicated that TFS may represent a new neuromodulatory strategy to revert the drug-resistant phenotype.
Collapse
|
24
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
25
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Expression Pattern of ALOXE3 in Mouse Brain Suggests Its Relationship with Seizure Susceptibility. Cell Mol Neurobiol 2020; 42:777-790. [PMID: 33058074 DOI: 10.1007/s10571-020-00974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid, is involved in the modulation of neuronal excitability in the brain. Arachidonate lipoxygenase 3 (ALOXE3), a critical enzyme in the AA metabolic pathway, catalyzes the derivate of AA into hepoxilins. However, the expression pattern of ALOXE3 and its role in the brain has not been described until now. Here we showed that the levels of Aloxe3 mRNA and protein kept increasing since birth and reached the highest level at postnatal day 30 in the mouse hippocampus and temporal cortex. Histomorphological analyses indicated that ALOXE3 was enriched in adult hippocampus, somatosensory cortex and striatum. The distribution was restricted to the neurites of function-specific subregions, such as mossy fibre connecting hilus and CA3 neurons, termini of Schaffer collateral projections, and the layers III and IV of somatosensory cortex. The spatiotemporal expression pattern of ALOXE3 suggests its potential role in the modulation of neural excitability and seizure susceptibility. In fact, decreased expression of ALOXE3 and elevated concentration of AA in the hippocampus was found after status epilepticus (SE) induced by pilocarpine. Local overexpression of ALOXE3 via adeno-associated virus gene transfer restored the elevated AA level induced by SE, alleviated seizure severities by increasing the latencies to myclonic switch, clonic convulsions and tonic hindlimb extensions, and decreased the mortality rate in the pilocarpine-induced SE model. These results suggest that the expression of ALOXE3 is a crucial regulator of AA metabolism in brain, and potentially acts as a regulator of neural excitability, thereby controlling brain development and seizure susceptibility.
Collapse
|
27
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
28
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs (“precision medicine”) for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
29
|
Abstract
AbstractEpilepsy is a chronic neurological disorder that has an extensive impact on a patient’s life. Accumulating evidence has suggested that inflammation participates in the progression of spontaneous and recurrent seizures. Pro-convulsant incidences can stimulate immune cells, augment the release of pro-inflammatory cytokines, elicit neuronal excitation as well as blood-brain barrier (BBB) dysfunction, and finally trigger the generation or recurrence of seizures. Understanding the pathogenic roles of inflammatory mediators, including inflammatory cytokines, cells, and BBB, in epileptogenesis will be beneficial for the treatment of epilepsy. In this systematic review, we performed a literature search on the PubMed database using the following keywords: “epilepsy” or “seizures” or “epileptogenesis”, and “immunity” or “inflammation” or “neuroinflammation” or “damage-associated molecular patterns” or “cytokines” or “chemokines” or “adhesion molecules” or “microglia” or “astrocyte” or “blood-brain barrier”. We summarized the classic inflammatory mediators and their pathogenic effects in the pathogenesis of epilepsy, based on the most recent findings from both human and animal model studies.
Collapse
|
30
|
Langeh U, Chawla P, Gupta GD, Singh S. A Novel Approach to Refractory Epilepsy by Targeting Pgp Peripherally and Centrally: Therapeutic Targets and Future Perspectives. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:741-749. [PMID: 32814543 DOI: 10.2174/1871527319999200819093109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
Refractory epilepsy is a type of epilepsy involving seizures uncontrolled by first or second- line anticonvulsant drugs at a regular therapeutic dose. Despite considerable growth in epileptic pharmacotherapy, one-third of the patients are resistant to current therapies. In this, the mechanisms responsible for resistant epilepsy are either increased expulsion of antiepileptic drugs (AEDs) by multidrug resistance (MDR) transporters from the epileptogenic tissue or reduced sensitivity of drug in epileptogenic brain tissue. The difficulty to treat refractory epilepsy is because of drug resistance due to cellular drug efflux, use of drug monotherapy, and subtherapeutic dose administration. Increased expression of Pgp is also responsible for resistance epilepsy or refractory epilepsy. Increased glutamate expression via inhibition of cyclooxygenase-II (COX-II) enzyme also upregulate P-glycoprotein (Pgp) expression and augment instance of recurrent seizures. Peripheral and central inhibition of Pgp is a powerful tool to control this drug resistant epilepsy. Drug resistance primarily involves multidrug resistance (MDR1) gene responsible for encoding P-glycoprotein (Pg- P1 or MDR1). Currently, there is no drug under clinical practice which inhibits MDR1. The present review cites some drugs like Calcium Channel Blockers (CCBs), COX-II inhibitors, and glutamate receptors antagonists that inhibit P-gp. The exploitation of these targets may emerge as a beneficial approach for patients with drug-resistant epilepsy. The present review further highlights the mechanistic role of Pgp in drug-resistant epilepsy, glutamate role in drug efflux, and management approach.
Collapse
Affiliation(s)
- Urvashi Langeh
- Research Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab-142001, India
| |
Collapse
|
31
|
Jamshidzadeh F, Mohebali A, Abdouss M. Three-ply biocompatible pH-responsive nanocarriers based on HNT sandwiched by chitosan/pectin layers for controlled release of phenytoin sodium. Int J Biol Macromol 2020; 150:336-343. [DOI: 10.1016/j.ijbiomac.2020.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/27/2022]
|
32
|
Rocha L, Frías‐Soria CL, Ortiz JG, Auzmendi J, Lazarowski A. Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy? Epilepsia Open 2020; 5:36-49. [PMID: 32140642 PMCID: PMC7049809 DOI: 10.1002/epi4.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Cannabis has been considered as a therapeutic strategy to control intractable epilepsy. Several cannabis components, especially cannabidiol (CBD), induce antiseizure effects. However, additional information is necessary to identify the types of epilepsies that can be controlled by these components and the mechanisms involved in these effects. This review presents a summary of the discussion carried out during the 2nd Latin American Workshop on Neurobiology of Epilepsy entitled "Cannabinoid and epilepsy: myths and realities." This event was carried out during the 10th Latin American Epilepsy Congress in San José de Costa Rica (September 28, 2018). The review focuses to discuss the use of CBD as a new therapeutic strategy to control drug-resistant epilepsy. It also indicates the necessity to consider the evaluation of unconventional targets such as P-glycoprotein, to explain the effects of CBD in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Luisa Rocha
- Departamento de FarmacobiologíaCentro de Investigación y de Estudios AvanzadosMéxico CityMéxico
| | | | - José G. Ortiz
- Department of Pharmacology and ToxicologySchool of MedicineUniversity of Puerto RicoSan JuanPuerto Rico
| | - Jerónimo Auzmendi
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alberto Lazarowski
- Departamento de Bioquímica ClínicaFacultad de Farmacia y BioquímicaInstituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC)Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
33
|
Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci Rep 2020; 10:2546. [PMID: 32054883 PMCID: PMC7018850 DOI: 10.1038/s41598-020-59259-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy has significant inter-patient variability in response towards it. The current study aims to understand this variability at the molecular level using microarray-based analysis of peripheral blood gene expression profiles of patients receiving valproate (VA) monotherapy. Only 10 unique genes were found to be differentially expressed in VA responders (n = 15) and 6 genes in the non-responders (n = 8) (fold-change >2, p < 0.05). PTGS2 which encodes cyclooxygenase-2, COX-2, showed downregulation in the responders compared to the non-responders. PTGS2/COX-2 mRNA profiles in the two groups corresponded to their plasma profiles of the COX-2 product, prostaglandin E2 (PGE2). Since COX-2 is believed to regulate P-glycoprotein (P-gp), a multidrug efflux transporter over-expressed at the blood-brain barrier (BBB) in drug-resistant epilepsy, the pathway connecting COX-2 and P-gp was further explored in vitro. Investigation of the effect of VA upon the brain endothelial cells (hCMEC/D3) in hyperexcitatory conditions confirmed suppression of COX-2-dependent P-gp upregulation by VA. Our findings suggest that COX-2 downregulation by VA may suppress seizure-mediated P-gp upregulation at the BBB leading to enhanced drug delivery to the brain in the responders. Our work provides insight into the association of peripheral PTGS2/COX-2 expression with VA efficacy and the role of COX-2 as a potential therapeutic target for developing efficacious antiepileptic treatment.
Collapse
|
34
|
Rawat C, Kushwaha S, Sharma S, Srivastava AK, Kukreti R. Altered plasma prostaglandin E 2 levels in epilepsy and in response to antiepileptic drug monotherapy. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102056. [PMID: 32007745 DOI: 10.1016/j.plefa.2020.102056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Prostaglandin E2 (PGE2), a physiologically active lipid compound, is increased in several diseases characterized by chronic inflammation. To determine its significance in epilepsy-associated inflammation and response to antiepileptic drug (AED), we evaluated the plasma PGE2 (median, pg/ml) levels in drug-free patients with epilepsy (N = 34) and patients receiving AED monotherapy (N = 55) in addition to that in healthy controls (N = 34). When compared to controls, plasma PGE2 levels were significantly elevated in all drug-free patients independent of the type of epilepsy (137.2 versus 475.7 pg/ml, p < 0.0001). Among the patients receiving AED monotherapy, only valproate responders showed a significant decrease compared to both drug-free patients (232.1 versus 475.7 pg/ml, p < 0.01) as well as valproate non-responders (232.1 versus 611.9 pg/ml, p < 0.0001). Both responders and non-responders on phenytoin or carbamazepine monotherapy had elevated PGE2 levels similar to drug-free patients. In addition, no difference was observed in plasma profiles of PGE2 precursor, arachidonic acid among the groups. Our work presents the clinical evidence of the association between plasma PGE2 levels and valproate efficacy in patients with epilepsy.
Collapse
Affiliation(s)
- Chitra Rawat
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India
| | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110095, India
| | - Sangeeta Sharma
- Institute of Human Behavior & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110095, India
| | - Achal K Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, Delhi 110029, India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| |
Collapse
|
35
|
Rojas A, Ganesh T, Wang W, Wang J, Dingledine R. A rat model of organophosphate-induced status epilepticus and the beneficial effects of EP2 receptor inhibition. Neurobiol Dis 2020; 133:104399. [PMID: 30818067 PMCID: PMC6708729 DOI: 10.1016/j.nbd.2019.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
This review describes an adult rat model of status epilepticus (SE) induced by diisopropyl fluorophosphate (DFP), and the beneficial outcomes of transient inhibition of the prostaglandin-E2 receptor EP2 with a small molecule antagonist, delayed by 2-4 h after SE onset. Administration of six doses of the selective EP2 antagonist TG6-10-1 over a 2-3 day period accelerates functional recovery, attenuates hippocampal neurodegeneration, neuroinflammation, gliosis and blood-brain barrier leakage, and prevents long-term cognitive deficits without blocking SE itself or altering acute seizure characteristics. This work has provided important information regarding organophosphate-induced seizure related pathologies in adults and revealed the effectiveness of delayed EP2 inhibition to combat these pathologies.
Collapse
Affiliation(s)
- Asheebo Rojas
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| | - Thota Ganesh
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Wenyi Wang
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Jennifer Wang
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Raymond Dingledine
- Department of Pharmacology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
36
|
Xie Y, Wang M, Shao Y, Deng X, Chen Y. Long Non-coding RNA KCNQ1OT1 Contributes to Antiepileptic Drug Resistance Through the miR-138-5p/ABCB1 Axis in vitro. Front Neurosci 2019; 13:1358. [PMID: 31920517 PMCID: PMC6928106 DOI: 10.3389/fnins.2019.01358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Compelling evidence has verified that long non-coding RNAs (lncRNAs) play a critical role on drug resistance in various diseases, especially cancer. However, the role of lncRNAs underlying multidrug resistance in epilepsy remains to be clarified. In the present study, we investigated the potential regulatory mechanism of the lncRNA KCNQ1OT1 in regulating antiepileptic drug (AED) resistance in human brain microvascular endothelial cells (HBMECs). The results revealed that expression of P-glycoprotein (P-gp) and KCNQ1OT1 was significantly elevated in phenytoin-resistant HBMECs (HBMEC/PHT). Meanwhile, the activity of nuclear factor-kappa B (NF-κB) was increased in HBMECs/PHT cells. Microarray analysis indicated that miR-138-5p was downregulated in HBMEC/PHT cells. Interestingly, bioinformatics prediction tools indicated miR-138-5p could directly target the transcripts of KCNQ1OT1 and NF-κB p65, and these results were confirmed by luciferase assays. Moreover, KCNQ1OT1 downregulation or miR-138-5p upregulation in vitro could inhibit P-gp expression and suppress NF-κB signaling pathway activation. Additionally, knockdown of KCNQ1OT1 or overexpression of miR-138-5p could increase the accumulation of rhodamine 123 (Rh123) and AEDs in HBMEC/PHT cells. Collectively, our results suggested that KCNQ1OT1 contributes to AED resistance through the miR-138-5p/NF-κB/ABCB1 axis in HBMEC/PHT cells, and these results provide a promising therapeutic target for the treatment of medically intractable epilepsy.
Collapse
Affiliation(s)
- Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Deng
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
38
|
Hartz AMS, Rempe RG, Soldner ELB, Pekcec A, Schlichtiger J, Kryscio R, Bauer B. Cytosolic phospholipase A2 is a key regulator of blood-brain barrier function in epilepsy. FASEB J 2019; 33:14281-14295. [PMID: 31661303 DOI: 10.1096/fj.201901369rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Blood-brain barrier dysfunction in epilepsy contributes to seizures and resistance to antiseizure drugs. Reports show that seizures increase brain glutamate levels, leading to barrier dysfunction. One component of barrier dysfunction is overexpression of the drug efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Based on our previous studies, we hypothesized that glutamate released during seizures activates cytosolic phospholipase A2 (cPLA2), resulting in P-gp and BCRP overexpression. We exposed isolated rat brain capillaries to glutamate ex vivo and used an in vivo-ex vivo approach of isolating brain capillaries from rats after status epilepticus (SE) and in chronic epileptic (CE) rats. Glutamate increased cPLA2, P-gp, and BCRP protein and activity levels in isolated brain capillaries. We confirmed the role of cPLA2 in the signaling pathway in brain capillaries from male and female mice lacking cPLA2. We also demonstrated, in vivo, that cPLA2 inhibition prevents overexpression of P-gp and BCRP at the blood-brain barrier in rats after status epilepticus and in CE rats. Our data support the hypothesis that glutamate signals cPLA2 activation, resulting in overexpression of blood-brain barrier P-gp and BCRP.-Hartz, A. M. S., Rempe, R. G., Soldner, E. L. B., Pekcec, A., Schlichtiger, J., Kryscio, R., Bauer, B. Cytosolic phospholipase A2 is a key regulator of blood-brain barrier function in epilepsy.
Collapse
Affiliation(s)
- Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Emma L B Soldner
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, USA
| | - Anton Pekcec
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, USA
| | - Juli Schlichtiger
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, USA
| | - Richard Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Epilepsy Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
39
|
Soldner ELB, Hartz AMS, Akanuma SI, Pekcec A, Doods H, Kryscio RJ, Hosoya KI, Bauer B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier. FASEB J 2019; 33:13966-13981. [PMID: 31638830 DOI: 10.1096/fj.201901460rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cause of antiseizure drug (ASD) resistance in epilepsy is poorly understood. Here, we focus on the transporter P-glycoprotein (P-gp) that is partly responsible for limited ASD brain uptake, which is thought to contribute to ASD resistance. We previously demonstrated that cyclooxygenase-2 (COX-2) and the prostaglandin E receptor, prostanoid E receptor subtype 1, are involved in seizure-mediated P-gp up-regulation. Thus, we hypothesized that inhibiting microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), the enzyme generating PGE2, prevents blood-brain barrier P-gp up-regulation after status epilepticus (SE). To test our hypothesis, we exposed isolated brain capillaries to glutamate ex vivo and used a combined in vivo-ex vivo approach by isolating brain capillaries from humanized mPGES-1 mice to study P-gp levels. We demonstrate that glutamate signaling through the NMDA receptor, cytosolic phospholipase A2, COX-2, and mPGES-1 increases P-gp protein expression and transport activity levels. We show that mPGES-1 is expressed in human, rat, and mouse brain capillaries. We show that BI1029539, an mPGES-1 inhibitor, prevented up-regulation of P-gp expression and transport activity in capillaries exposed to glutamate and in capillaries from humanized mPGES-1 mice after SE. Our data provide key signaling steps underlying seizure-induced P-gp up-regulation and suggest that mPGES-1 inhibitors could potentially prevent P-gp up-regulation in epilepsy.-Soldner, E. L. B., Hartz, A. M. S., Akanuma, S.-I., Pekcec, A., Doods, H., Kryscio, R. J., Hosoya, K.-I., Bauer, B. Inhibition of human microsomal PGE2 synthase-1 reduces seizure-induced increases of P-glycoprotein expression and activity at the blood-brain barrier.
Collapse
Affiliation(s)
- Emma L B Soldner
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shin-Ichi Akanuma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Anton Pekcec
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Henri Doods
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.,Epilepsy Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
40
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
41
|
Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology 2019; 167:107742. [PMID: 31421074 DOI: 10.1016/j.neuropharm.2019.107742] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/10/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1β-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| |
Collapse
|
42
|
Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15:459-472. [DOI: 10.1038/s41582-019-0217-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 02/06/2023]
|
43
|
Deng X, Shao Y, Xie Y, Feng Y, Wu M, Wang M, Chen Y. MicroRNA-146a-5p Downregulates the Expression of P-Glycoprotein in Rats with Lithium–Pilocarpine-Induced Status Epilepticus. Biol Pharm Bull 2019; 42:744-750. [DOI: 10.1248/bpb.b18-00937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaolin Deng
- Department of Neurology, Jinshan Hospital, Fudan University
- Department of Neurology, Huashan Hospital North, Fudan University
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University
| | - Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University
- Department of Neurology, Huashan Hospital North, Fudan University
| |
Collapse
|
44
|
ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res 2019; 144:357-376. [PMID: 31051235 DOI: 10.1016/j.phrs.2019.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-resistant epilepsy (DRE) affects approximately one third of epileptic patients. Among various theories that try to explain multidrug resistance, the transporter hypothesis is the most extensively studied. Accordingly, the overexpression of efflux transporters in the blood-brain barrier (BBB), mainly from the ATP binding cassette (ABC) superfamily, may be responsible for hampering the access of antiepileptic drugs into the brain. P-glycoprotein and other efflux transporters are known to be upregulated in endothelial cells, astrocytes and neurons of the neurovascular unit, a functional barrier critically involved in the brain penetration of drugs. Inflammation and oxidative stress involved in the pathophysiology of epilepsy together with uncontrolled recurrent seizures, drug-associated induction and genetic polymorphisms are among the possible causes of ABC transporters overexpression in DRE. The aforementioned pathological mechanisms will be herein discussed together with the multiple strategies to overcome the activity of efflux transporters in the BBB - from direct transporters inhibition to down-regulation of gene expression resorting to RNA interference (RNAi), or by targeting key modulators of inflammation and seizure-mediated signalling.
Collapse
|
45
|
Zestos AG, Luna-Munguia H, Stacey WC, Kennedy RT. Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chem Neurosci 2019; 10:1875-1883. [PMID: 30001105 DOI: 10.1021/acschemneuro.8b00271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common neurological disease characterized by recurrent unpredictable seizures. For the last 30 years, microdialysis sampling has been used to measure changes in excitatory and inhibitory neurotransmitter concentrations before, during, and after seizures. These advances have fostered breakthroughs in epilepsy research by identifying neurochemical changes associated with seizures and correlating them to electrophysiological data. Recent advances in methodology may be useful in further delineating the chemical underpinnings of seizures. A new model of ictogenesis has been developed that allows greater control over the timing of seizures that are similar to spontaneous seizures. This model will facilitate making chemical measurements before and during a seizure. Recent advancements in microdialysis sampling, including the use of segmented flow, "fast" liquid chromatography (LC), and capillary electrophoresis with laser-induced fluorescence (CE-LIF) have significantly improved temporal resolution to better than 1 min, which could be used to measure transient, spontaneous neurochemical changes associated with seizures. Microfabricated sampling probes that are markedly smaller than conventional probes and allow for a much greater spatial resolution have been developed. They may allow the targeting of specific brain regions important to epilepsy studies. Coupling microdialysis sampling to optogenetics and light-stimulated release of neurotransmitters may also prove useful for studying epileptic seizures.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - William C. Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Mohamed LA, Markandaiah SS, Bonanno S, Pasinelli P, Trotti D. Excess glutamate secreted from astrocytes drives upregulation of P-glycoprotein in endothelial cells in amyotrophic lateral sclerosis. Exp Neurol 2019; 316:27-38. [PMID: 30974102 DOI: 10.1016/j.expneurol.2019.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/09/2019] [Accepted: 04/06/2019] [Indexed: 12/13/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), upregulation in expression and activity of the ABC transporter P-glycoprotein (P-gp) driven by disease advancement progressively reduces CNS penetration and efficacy of the ALS drug, riluzole. Post-mortem spinal cord tissues from ALS patients revealed elevated P-gp expression levels in endothelial cells of the blood-spinal cord barrier compared to levels measured in control, non-diseased individuals. We recently found that astrocytes expressing familial ALS-linked SOD1 mutations regulate expression levels of P-gp in endothelial cells, which also exhibit a concomitant, significant increase in reactive oxygen species production and NFκB nuclear translocation when exposed to mutant SOD1 astrocyte conditioned media. In this study, we found that glutamate, which is abnormally secreted by mutant SOD1 and sporadic ALS astrocytes, drives upregulation of P-gp expression and activity levels in endothelial cells via activation of N-Methyl-D-Aspartic acid (NMDA) receptors. Surprisingly, astrocyte-secreted glutamate regulation of endothelial P-gp levels is not a mechanism shared by all forms of ALS. C9orf72-ALS astrocytes had no effect on endothelial cell P-gp expression and did not display increased glutamate secretion. Utilizing an optimized in vitro human BBB model consisting of patient-derived induced pluripotent stem cells, we showed that co-culture of endothelial cells with patient-derived astrocytes increased P-gp expression levels and transport activity, which was significantly reduced when endothelial cells were incubated with the NMDAR antagonist, MK801. Overall, our findings unraveled a complex molecular interplay between astrocytes of different ALS genotypes and endothelial cells potentially occurring in disease that could differentially impact ALS prognosis and efficacy of pharmacotherapies.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Shashirekha S Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
47
|
Abstract
INTRODUCTION Neuroinflammation has a critical role in brain disorders. Cyclooxygenase (COX) is one of the principal drug targets for the reduction of neuroinflammation; however, studies have yielded mixed results for COX-inhibitors in the treatment of diverse acute and chronic models of epilepsy. AREAS COVERED The article covers the effects of COX-inhibitors in epilepsy disorders. A considerable emphasis has been placed on the antiepileptic and 'disease-modifying' properties of COX-1 and COX-2 inhibitors in various preclinical epilepsy models. EXPERT OPINION The effect of COX-inhibitors on epilepsy is inconclusive. Studies have indicated beneficial effects in preclinical models; however, proconvulsant or no effects have also been observed. These molecules may have a bidirectional role with early neuroprotective and delayed neurotoxic effects. Further systematic preclinical studies to establish the use of COX-inhibitors in epilepsy are necessary.
Collapse
Affiliation(s)
- Ashish Dhir
- a Department of Neurology, School of Medicine , University of California, Davis , Sacramento , CA , USA
| |
Collapse
|
48
|
Rojas A, Chen D, Ganesh T, Varvel NH, Dingledine R. The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opin Ther Targets 2018; 23:1-13. [PMID: 30484341 DOI: 10.1080/14728222.2019.1554056] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction:A robust neuroinflammatory response is a prevalent feature of multiple neurological disorders, including epilepsy and acute status epilepticus. One component of this neuroinflammatory reaction is the induction of cyclooxygenase-2 (COX-2), synthesis of several prostaglandins and endocannabinoid metabolites, and subsequent activation of prostaglandin and related receptors. Neuroinflammation mediated by COX-2 and its downstream effectors has received considerable attention as a potential target class to ameliorate the deleterious consequences of neurological injury. Areas covered: Here we describe the roles of COX-2 as a major inflammatory mediator. In addition, we discuss the receptors for prostanoids PGE2, prostaglandin D2, and PGF2α as potential therapeutic targets for inflammation-driven diseases. The consequences of prostanoid receptor activation after seizure activity are discussed with an emphasis on the utilization of small molecules to modulate prostanoid receptor activity. Expert opinion: Limited clinical trial experience is supportive but not definitive for a role of the COX signaling cascade in epileptogenesis. The cardiotoxicity associated with chronic coxib use, and the expectation that COX-2 inhibition will influence the levels of endocannabinoids, leukotrienes, and lipoxins as well as the prostaglandins and their endocannabinoid metabolite analogs, is shifting attention toward downstream synthases and receptors that mediate inflammation in the brain.
Collapse
Affiliation(s)
- Asheebo Rojas
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Di Chen
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Thota Ganesh
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Nicholas H Varvel
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Raymond Dingledine
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
49
|
Torres-Vergara P, Escudero C, Penny J. Drug Transport at the Brain and Endothelial Dysfunction in Preeclampsia: Implications and Perspectives. Front Physiol 2018; 9:1502. [PMID: 30459636 PMCID: PMC6232255 DOI: 10.3389/fphys.2018.01502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
Transport of drugs across biological barriers has been a subject of study for decades. The discovery and characterization of proteins that confer the barrier properties of endothelia and epithelia, including tight junction proteins and membrane transporters belonging to the ATP-binding cassette (ABC) and Solute Carrier (SLC) families, represented a significant step forward into understanding the mechanisms that govern drug disposition. Subsequently, numerous studies, including both pre-clinical approaches and clinical investigations, have been carried out to determine the influence of physiological and pathological states on drug disposition. Importantly, there has been increasing interest in gaining a better understanding of drug disposition during pregnancy, since epidemiological and clinical studies have demonstrated that the use of medications by pregnant women is significant and this condition embodies a series of significant anatomical and physiological modifications, particularly at excretory organs and barrier sites (e.g., placenta, breast) expressing transporter proteins which influence pharmacokinetics. Currently, most of the research in this field has focused on the expression profiling of transporter proteins in trophoblasts and endothelial cells of the placenta, regulation of drug-resistance mechanisms in disease states and pharmacokinetic studies. However, little attention has been placed on the influence that the cerebrovascular dysfunction present in pregnancy-related disorders, such as preeclampsia, might exert on drug disposition in the mother’s brain. This issue is particularly important since recent findings have demonstrated that preeclamptic women suffer from long-term alterations in the integrity of the blood-brain barrier (BBB). In this review we aim to analyze the available evidence regarding the influence of pregnancy on the expression of transporters and TJ proteins in brain endothelial cells, as well the mechanisms that govern the pathophysiological alterations in the BBB of women who experience preeclampsia. Future research efforts should be focused not only on achieving a better understanding of the influence of preeclampsia-associated endothelial dysfunction on drug disposition, but also in optimizing the pharmacological treatments of women suffering pregnancy-related disorders, its comorbidities and to develop new therapies aiming to restore the integrity of the BBB.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
50
|
Lalitha S, Minz RW, Medhi B. Understanding the controversial drug targets in epilepsy and pharmacoresistant epilepsy. Rev Neurosci 2018; 29:333-345. [PMID: 29211683 DOI: 10.1515/revneuro-2017-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Accumulating experimental data suggests a number of successful drug targets against epilepsy which eventually failed in the clinical setup. Mammalian target of rapamycin inhibitors, multi-drug resistance transporter inhibitors, cyclo-oxygenase-2 inhibitors, statins, etc. are the most promising and well studied among them. Drugs aiming at these targets produced beneficial response in most of the in vitro and in vivo seizure models. However, in certain situations, they have produced differential rather controversial results. Their effects varied with the seizure model, species, time and route of administration, different drugs from the same class, etc. This review emphasises on such drugs which presented with variability in their beneficial effects against seizures and epilepsy. This review critically summarises the preclinical evidence of these targets in the context of seizures and the probable reasons for their variability and clinical failures.
Collapse
Affiliation(s)
- Sree Lalitha
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ranjana W Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|