1
|
Meshkat S, Wu M, Tassone VK, Janssen-Aguilar R, Pang H, Jung H, Lou W, Bhat V. Increased Odds of Cognitive Impairment in Adults with Depressive Symptoms and Antidepressant Use. PHARMACOPSYCHIATRY 2024. [PMID: 39178840 DOI: 10.1055/a-2381-2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
INTRODUCTION The relationship between antidepressant use and class with cognition in depression is unclear. This study aimed to evaluate the association of cognition with depressive symptoms and antidepressant use (class, duration, number). METHODS Data from the National Health and Nutrition Examination Survey were examined for cognitive function through various tests and memory issues through the Medical Conditions questionnaire. Depressive symptoms were assessed using the Patient Health Questionnaire-9. RESULTS A total of 2867 participants were included. Participants with depressive symptoms had significantly higher odds of cognitive impairment (CI) on the animal fluency test (aOR=1.89, 95% CI=1.30, 2.73, P=0.002) and Digit Symbol Substitution test (aOR=2.58, 95% CI=1.34, 4.9, P=0.007), as well as subjective memory issues (aOR=7.25, 95% CI=4.26, 12.32, P<0.001) than those without depression. There were no statistically significant associations between any of the CI categories and depressive symptoms treated with an antidepressant and antidepressant use duration. Participants who were using more than one antidepressant had significantly higher odds of subjective memory issues than those who were using one antidepressant. Specifically, users of atypical antidepressants, selective serotonin reuptake inhibitors, or tricyclic antidepressants (TCAs) had significantly higher odds of subjective memory issues in comparison to no antidepressants, with TCAs showing the largest odds (aOR=4.21, 95% CI=1.19, 14.86, P=0.028). DISCUSSION This study highlights the relationship between depressive symptoms, antidepressant use, and CI. Future studies should further evaluate the mechanism underlying this phenomenon.
Collapse
Affiliation(s)
- Shakila Meshkat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Michelle Wu
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Hilary Pang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Hyejung Jung
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wendy Lou
- Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Jafari-Sabet M, Amiri S, Sheibani M, Fatahi N, Aghamiri H. Cross state-dependent memory retrieval between tramadol and ethanol: involvement of dorsal hippocampal GABAA receptors. Psychopharmacology (Berl) 2024; 241:139-152. [PMID: 37758936 DOI: 10.1007/s00213-023-06469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
RATIONALE Tramadol and ethanol, as psychoactive agents, are often abused. Discovering the molecular pathways of drug-induced memory creation may contribute to preventing drug addiction and relapse. OBJECTIVE The tramadol- and ethanol-induced state-dependent memory (SDM) and cross-SDM retrieval between tramadol and ethanol were examined in this study. Moreover, because of the confirmed involvement of GABAA receptors and GABAergic neurotransmission in memory retrieval impairment, we assessed cross-SDM retrieval between tramadol and ethanol with a specific emphasis on the role of the GABAA receptors. The first hypothesis of this study was the presence of cross-SDM between tramadol and ethanol, and the second hypothesis was related to possible role of GABAA receptors in memory retrieval impairment within the dorsal hippocampus. The cannulae were inserted into the hippocampal CA1 area of NMRI mice, and a step-down inhibitory avoidance test was used to evaluate state dependence and memory recovery. RESULTS The post-training and/or pre-test administration of tramadol (2.5 and 5 mg/kg, i.p.) and/or ethanol (0.5 and 1 g/kg, i.p.) induced amnesia, which was restored after the administration of the drugs 24 h later during the pre-test period, proposing ethanol and tramadol SDM. The pre-test injection of ethanol (0.25 and 0.5 g/kg, i.p.) with tramadol at an ineffective dose (1.25 mg/kg) enhanced tramadol SDM. Moreover, tramadol injection (1.25 and 2.5 mg/kg) with ethanol at the ineffective dose (0.25 g/kg) promoted ethanol SDM. Furthermore, the pre-test intra-CA1 injection of bicuculline (0.0625, 0.125, and 0.25 μg/mouse), a GABAA receptor antagonist, 5 min before the injection of tramadol (5 mg/kg) or ethanol (1 g/kg) inhibited tramadol- and ethanol-induced SDM dose-dependently. CONCLUSION The findings strongly confirmed cross-SDM between tramadol and ethanol and the critical role of dorsal hippocampal GABAA receptors in the cross-SDM between tramadol and ethanol.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Fernandez HH, Weintraub D, Macklin E, Litvan I, Schwarzschild MA, Eberling J, Videnovic A, Kenney CJ. Safety, tolerability, and preliminary efficacy of SYN120, a dual 5-HT6/5-HT2A antagonist, for the treatment of Parkinson disease dementia: A randomized, controlled, proof-of-concept trial. Parkinsonism Relat Disord 2023; 114:105511. [PMID: 37532622 DOI: 10.1016/j.parkreldis.2023.105511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND SYN120 is a dual serotonin receptor (5-HT6/5-HT2A) antagonist hypothesized to improve cognition and psychiatric symptoms. OBJECTIVES We evaluated the safety, tolerability, and efficacy of SYN120 in patients with Parkinson disease dementia (PDD). METHODS In a multicenter, double-blind, parallel-group, 16-week phase 2a proof-of-concept trial in PDD with concomitant cholinesterase inhibitor use, eligible patients were randomized to oral SYN120 (100 mg/day) or placebo. Adverse events (AEs), Unified Parkinson's Disease Rating Scale (UPDRS) scores, and discontinuations assessed safety and tolerability. The primary and key secondary efficacy measures were the Cognitive Drug Research (CDR) computerized assessment system Continuity of Attention and Quality of Episodic Memory scores. Other efficacy measures were: Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Alzheimer's Disease Cooperative Study-Clinician's Global Impression of Change (ADCS-CGIC), Brief Penn Parkinson's Daily Activity Questionnaire-15 (PDAQ-15), Scales for Outcomes in Parkinson's Disease-Sleep Scale (SCOPA-Sleep), and Neuropsychiatric Inventory (NPI). RESULTS Eighty-two patients were randomized to SYN120 (N = 38) or placebo (N = 44), AEs occurred in 74% and 77% of patients, and treatment discontinuation in both groups was 16%. Nausea and vomiting were more frequent, and motor symptoms (UPDRS) worsened in the SYN120 group. At week 16, the SYN120 and placebo groups did not differ significantly for any cognitive assessment. Cognitive activities of daily living (PDAQ-15) and the NPI-Apathy/Indifference scores improved nominally in the SYN120 group compared with placebo (unadjusted p = 0.029 and 0.028). CONCLUSIONS SYN120 was adequately tolerated, mild worsening of motor symptoms was noted and it did not improve cognition in PDD patients. Its potential benefits for cognitive activities of daily living and apathy warrant further study. REGISTRATION Clinicaltrials.gov as NCT02258152.
Collapse
Affiliation(s)
| | - Daniel Weintraub
- University of Pennsylvania School of Medicine, Departments of Neurology and Psychiatry, USA
| | - Eric Macklin
- Massachusetts General Hospital/Harvard Medical School, USA
| | - Irene Litvan
- University of California San Diego, Department of Neurology, USA
| | | | | | | | | |
Collapse
|
4
|
Tancheva L, Lazarova M, Velkova L, Dolashki A, Uzunova D, Minchev B, Petkova-Kirova P, Hassanova Y, Gavrilova P, Tasheva K, Taseva T, Hodzhev Y, Atanasov AG, Stefanova M, Alexandrova A, Tzvetanova E, Atanasov V, Kalfin R, Dolashka P. Beneficial Effects of Snail Helix aspersa Extract in an Experimental Model of Alzheimer’s Type Dementia. J Alzheimers Dis 2022; 88:155-175. [DOI: 10.3233/jad-215693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Alzheimer’s disease (AD) is a complex neurodegenerative disease with multifactorial etiology, unsatisfactory treatment, and a necessity for broad-spectrum active substances for cure. The mucus from Helix aspersa snail is a mixture of bioactive molecules with antimicrobial, anti-inflammatory, antioxidant, and anti-apoptotic effects. So far there are no data concerning the capacity of snail extract (SE) to affect neurodegenerative disorders. Objective: The effects of SE from Helix aspersa on learning and memory deficits in Alzheimer’s type dementia (ATD) induced by scopolamine (Sco) in male Wistar rats were examined and some mechanisms of action underlying these effects were evaluated. Methods: SE (0.5 mL/100 g) was applied orally through a food tube for 16 consecutive days: 5 days before and 11 days simultaneously with Sco (2 mg/kg, intraperitoneally). At the end of Sco treatment, using behavioral methods, we evaluated memory performance. Additionally, in cortex and hippocampus the acetylcholinesterase (AChE) activity, acetylcholine and monoamines (dopamine, noradrenaline, and serotonin) content, levels of main oxidative stress markers, and expression of brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) were determined. Results: We demonstrated that, according to all behavioral tests used, SE significantly improved the cognitive deficits induced by Sco. Furthermore, SE possessed AChE inhibitory activity, moderate antioxidant properties and the ability to modulate monoamines content in two brain structures. Moreover, multiple SE applications not only restored the depressed by Sco expression of CREB and BDNF, but significantly upregulated it. Conclusion: Summarizing results, we conclude that complex mechanisms underlie the beneficial effects of SE on impaired memory in Alzheimer’s type dementia.
Collapse
Affiliation(s)
- Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
- Weston Professor of Weizmann Institute of Science, Israel
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Dolashki
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | | | - Yozljam Hassanova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Petja Gavrilova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Teodora Taseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Yordan Hodzhev
- National Center for Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Magdalenka, Poland
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Elina Tzvetanova
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
| | - Ventseslav Atanasov
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Science, Sofia, Bulgaria
- Department of Healthcare, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Center for Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
Sanchez‐Roige S, Barnes SA, Mallari J, Wood R, Polesskaya O, Palmer AA. A mutant allele of glycoprotein M6-B (Gpm6b) facilitates behavioral flexibility but increases delay discounting. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12800. [PMID: 35243767 PMCID: PMC9211103 DOI: 10.1111/gbb.12800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
Abstract
The neuronal membrane glycoprotein M6B (Gpm6b) gene encodes a membrane glycoprotein that belongs to the proteolipid protein family, and is enriched in neurons, oligodendrocytes, and subset of astrocytes in the central nervous system. GPM6B is thought to play a role in neuronal differentiation, myelination, and inactivation of the serotonin transporter via internalization. Recent human genome-wide association studies (GWAS) have implicated membrane glycoproteins (both GPM6B and GPM6A) in the regulation of traits relevant to psychiatric disorders, including neuroticism, depressed affect, and delay discounting. Mouse studies have implicated Gpm6b in sensorimotor gating and regulation of serotonergic signaling. We used CRISPR to create a mutant Glycoprotein M6B (Gpm6b) allele on a C57BL/6J mouse background. Because Gpm6b is located on the X chromosome, we focused on male Gpm6b mutant mice and their wild-type littermates (WT) in two behavioral tests that measured aspects of impulsive or flexible decision-making. We found that Gpm6b deletion caused deficits in a delay discounting task. In contrast, reward sensitivity was enhanced thereby facilitating behavioral flexibility and improving performance in the probabilistic reversal learning task. Taken together these data further delineate the role of Gpm6b in decision making behaviors that are relevant to multiple psychiatric disorders.
Collapse
Affiliation(s)
- Sandra Sanchez‐Roige
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA,Department of Medicine, Division of Genetic MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Samuel A. Barnes
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jazlene Mallari
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Rebecca Wood
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Oksana Polesskaya
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA,Institute for Genomic MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Pak K, Kim K, Seo S, Lee MJ, Kim IJ. Serotonin transporter is negatively associated with body mass index after glucose loading in humans. Brain Imaging Behav 2022; 16:1246-1251. [PMID: 34981428 DOI: 10.1007/s11682-021-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
Serotonin transporter (SERT) is a presynaptically localized membrane protein that regulates the serotonin transmission via its reuptake of released serotonin. We hypothesized that glucose loading may change SERT availability from brainstem in humans. An intravenous bolus injection of 18F-FP-CIT was administered after the infusion of glucose or placebo (normal saline), and the emission data were acquired over 90 mins in 33 healthy nonobese subjects. For a volume-of-interest-based analysis, an atlas involving midbrain, and pons was applied. SERT availability, binding potential (BPND), were measured via the simplified reference tissue method with a reference of cerebellum. For a voxel-based analysis, statistical parametric mapping 12 was used with parametric BPND images. BPNDs from midbrain (p=0.8937), and pons (p=0.1115) were not different between glucose and placebo loading. Both of BPNDs from midbrain after glucose, and placebo loading were negatively correlated with body mass index (BMI). BMI showed a trend of negative correlation with glucose-loaded BPND from pons, whereas, placebo-loaded BPNDs from pons did not show any significant association with BMI. In conclusion, SERT availability was negatively correlated with BMI after glucose loading in humans. SERT might have a role in eating behavior through the action of insulin. Further studies are needed to elucidate the underlying mechanism of this phenomenon.
Collapse
Affiliation(s)
- Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea.
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Seongho Seo
- Department of Electronic Engineering, Pai Chai University, Daejeon, Republic of Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Busan, Republic of Korea
| | - In Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| |
Collapse
|
7
|
López-Ortiz S, Pinto-Fraga J, Valenzuela PL, Martín-Hernández J, Seisdedos MM, García-López O, Toschi N, Di Giuliano F, Garaci F, Mercuri NB, Nisticò R, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Physical Exercise and Alzheimer's Disease: Effects on Pathophysiological Molecular Pathways of the Disease. Int J Mol Sci 2021; 22:ijms22062897. [PMID: 33809300 PMCID: PMC7999827 DOI: 10.3390/ijms22062897] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), the most common form of neurodegenerative dementia in adults worldwide, is a multifactorial and heterogeneous disorder characterized by the interaction of genetic and epigenetic factors and the dysregulation of numerous intracellular signaling and cellular/molecular pathways. The introduction of the systems biology framework is revolutionizing the study of complex diseases by allowing the identification and integration of cellular/molecular pathways and networks of interaction. Here, we reviewed the relationship between physical activity and the next pathophysiological processes involved in the risk of developing AD, based on some crucial molecular pathways and biological process dysregulated in AD: (1) Immune system and inflammation; (2) Endothelial function and cerebrovascular insufficiency; (3) Apoptosis and cell death; (4) Intercellular communication; (5) Metabolism, oxidative stress and neurotoxicity; (6) DNA damage and repair; (7) Cytoskeleton and membrane proteins; (8) Synaptic plasticity. Moreover, we highlighted the increasingly relevant role played by advanced neuroimaging technologies, including structural/functional magnetic resonance imaging, diffusion tensor imaging, and arterial spin labelling, in exploring the link between AD and physical exercise. Regular physical exercise seems to have a protective effect against AD by inhibiting different pathophysiological molecular pathways implicated in AD.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Jose Pinto-Fraga
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Pedro L. Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
| | - Juan Martín-Hernández
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - María M. Seisdedos
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Oscar García-López
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.T.); (F.G.)
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.T.); (F.G.)
- Casa di Cura “San Raffaele Cassino”, 03043 Cassino, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy;
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Simone Lista
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
- Research Institute of the Hospital 12 de Octubre (“imas12”), 28041 Madrid, Spain
- Centro de Investigación Biomeédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
- Correspondence:
| | - Alejandro Santos-Lozano
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
- Research Institute of the Hospital 12 de Octubre (“imas12”), 28041 Madrid, Spain
| |
Collapse
|
8
|
Divanbeigi A, Nasehi M, Vaseghi S, Amiri S, Zarrindast MR. Tropisetron But Not Granisetron Ameliorates Spatial Memory Impairment Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 2020; 45:2631-2640. [PMID: 32797381 DOI: 10.1007/s11064-020-03110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
Tropisetron and Granisetorn are 5-HT3 antagonists with antiemetic effects. Tropisetron also has a partial agonistic effect on alpha-7 nicotinic acetylcholine receptors (α7 nAChRs). On the other hand, chronic cerebral hypoperfusion (CCH) attenuates cerebral blood flow and impairs cognitive functions. The goal of this study was to investigate the effect of Tropisetron and Granisetron on CCH-induced spatial memory impairment in rats. Forty-eight male Wistar rats were used in this study. 2-VO surgery was done to induce CCH and Radial Eight Arm Maz apparatus was used to evaluate spatial memory (working and reference memory). Tropisetron was injected intraperitoneally at the doses of 1 and 5 mg/kg, and Granisetron was injected intraperitoneally at the dose of 3 mg/kg. Dorsal hippocampal (CA1) neurons count, Interleukin 6 (IL-6) serum level, and serotonin-reuptake transporter (SERT) gene expression were also evaluated. The results showed, CCH impaired working and reference memory, increased IL-6 serum level, and decreased CA1 neurons and SERT expression. Tropisetron at the dose of 5 mg/kg restored all the effects of CCH. However, Granisetron did not restore CCH-induced memory impairment. Furthermore, Granisetron had no effect on IL-6. While, it increased SERT expression and CA1 neurons. In conclusion, Tropisetron but not Granisetron, ameliorated spatial memory impairment induced by CCH. We suggested conducting more detailed studies investigating the role of serotonergic system (5-HT3 receptors and serotonin transporters) and also α7 nAChRs in the effects of Tropisetron.
Collapse
Affiliation(s)
- Ashkan Divanbeigi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Scientific Research Committee, Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Sepideh Amiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Deryabina IB, Andrianov VV, Muranova LN, Bogodvid TK, Gainutdinov KL. Effects of Thryptophan Hydroxylase Blockade by P-Chlorophenylalanine on Contextual Memory Reconsolidation after Training of Different Intensity. Int J Mol Sci 2020; 21:E2087. [PMID: 32197439 PMCID: PMC7139692 DOI: 10.3390/ijms21062087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023] Open
Abstract
The processes of memory formation and its storage are extremely dynamic. Therefore, the determination of the nature and temporal evolution of the changes that underlie the molecular mechanisms of retrieval and cause reconsolidation of memory is the key to understanding memory formation. Retrieval induces the plasticity, which may result in reconsolidation of the original memory and needs critical molecular events to stabilize the memory or its extinction. 4-Chloro-DL-phenylalanine (P-chlorophenylalanine-PCPA) depresses the most limiting enzyme of serotonin synthesis the tryptophan hydroxylase. It is known that PCPA reduces the serotonin content in the brain up to 10 times in rats (see Methods). We hypothesized that the PCPA could behave the similar way in snails and could reduce the content of serotonin in snails. Therefore, we investigated the effect of PCPA injection on contextual memory reconsolidation using a protein synthesis blocker in snails after training according to two protocols of different intensities. The results obtained in training according to the first protocol using five electrical stimuli per day for 5 days showed that reminding the training environment against the background of injection of PCPA led to a significant decrease in contextual memory. At the same time, the results obtained in training according to the second protocol using three electrical stimuli per day for 5 days showed that reminding the training environment against the injection of PCPA did not result in a significant change in contextual memory. The obtain results allowed us to conclude that the mechanisms of processes developed during the reconsolidation of contextual memory after a reminding depend both on the intensity of learning and on the state of the serotonergic system.
Collapse
Affiliation(s)
- Irina B. Deryabina
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
| | - Viatcheslav V. Andrianov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia
| | - Lyudmila N. Muranova
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
| | - Tatiana K. Bogodvid
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Department of Biomedical Sciences, Volga Region State Academy of Physical Culture, Sport and Tourism, 420000 Kazan, Russia
| | - Khalil L. Gainutdinov
- Laboratory of Neuroreabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (I.B.D.); (V.V.A.); (L.N.M.); (T.K.B.)
- Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia
| |
Collapse
|
10
|
Cognitive and anxiety-like impairments accompanied by serotonergic ultrastructural and immunohistochemical alterations in early stages of parkinsonism. Brain Res Bull 2019; 146:213-223. [DOI: 10.1016/j.brainresbull.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
|
11
|
Serotonergic dysfunction in a model of parkinsonism induced by reserpine. J Chem Neuroanat 2019; 96:73-78. [DOI: 10.1016/j.jchemneu.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|
12
|
Jackson TC, Kotermanski SE, Kochanek PM. Whole-transcriptome microarray analysis reveals regulation of Rab4 by RBM5 in neurons. Neuroscience 2017; 361:93-107. [PMID: 28818525 PMCID: PMC5605467 DOI: 10.1016/j.neuroscience.2017.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/27/2022]
Abstract
RNA binding motif 5 (RBM5) is a nuclear protein that modulates gene transcription and mRNA splicing in cancer cells. The brain is among the highest RBM5-expressing organ in the body but its mRNA target(s) or functions in the CNS have not been elucidated. Here we knocked down (KO) RBM5 in primary rat cortical neurons and analyzed total RNA extracts by gene microarray vs. neurons transduced with lentivirus to deliver control (non-targeting) shRNA. The mRNA levels of Sec23A (involved in ER-Golgi transport) and the small GTPase Rab4a (involved in endocytosis/protein trafficking) were increased in RBM5 KO neurons relative to controls. At the protein level, only Rab4a was significantly increased in RBM5 KO extracts. Also, elevated Rab4a levels in KO neurons were associated with decreased membrane levels of oligomeric serotonin transporters (SERT). Finally, RBM5 KO was associated with increased uptake of membrane-derived monomeric SERT. SIGNIFICANCE Rab4a is involved in the regulation of endocytosis and protein trafficking in cells. In the CNS it regulates diverse neurobiological functions including (but not limited to) trafficking of transmembrane proteins involved in neurotransmission (e.g. SERT), maintaining dendritic spine size, promoting axonal growth, and modulating cognition. Our findings suggest that RBM5 regulates Rab4a in rat neurons.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States.
| | - Shawn E Kotermanski
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, United States
| | - Patrick M Kochanek
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States
| |
Collapse
|
13
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
14
|
Barrett FS, Workman CI, Sair HI, Savonenko AV, Kraut MA, Sodums DJ, Joo JJ, Nassery N, Marano CM, Munro CA, Brandt J, Zhou Y, Wong DF, Smith GS. Association between serotonin denervation and resting-state functional connectivity in mild cognitive impairment. Hum Brain Mapp 2017; 38:3391-3401. [PMID: 28379618 PMCID: PMC5628094 DOI: 10.1002/hbm.23595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 01/20/2023] Open
Abstract
Resting-state functional connectivity alterations have been demonstrated in Alzheimer's disease (AD) and mild cognitive impairment (MCI) before the observation of AD neuropathology, but mechanisms driving these changes are not well understood. Serotonin neurodegeneration has been observed in MCI and AD and is associated with cognitive deficits and neuropsychiatric symptoms, but the role of the serotonin system in relation to brain network dysfunction has not been a major focus of investigation. The current study investigated the relationship between serotonin transporter availability (SERT; measured using positron emission tomography) and brain network functional connectivity (measured using resting-state functional MRI) in 20 participants with MCI and 21 healthy controls. Two SERT regions of interest were selected for the analysis: the Dorsal Raphe Nuclei (DRN) and the precuneus which represent the cell bodies of origin and a cortical target of projections of the serotonin system, respectively. Both regions show decreased SERT in MCI compared to controls and are the site of early AD pathology. Average resting-state functional connectivity did not differ between MCI and controls. Decreased SERT in DRN was associated with lower hippocampal resting-state connectivity in MCI participants compared to controls. Decreased SERT in the right precuneus was also associated with lower resting-state connectivity of the retrosplenial cortex to the dorsal lateral prefrontal cortex and higher resting-state connectivity of the retrosplenial cortex to the posterior cingulate and in patients with MCI but not in controls. These results suggest that a serotonergic mechanism may underlie changes in brain functional connectivity in MCI. Hum Brain Mapp 38:3391-3401, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frederick S. Barrett
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Clifford I. Workman
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Haris I. Sair
- Department of Radiology and Radiological SciencesDivision of Neuroradiology, Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Alena V. Savonenko
- Department of Pathology (Neuropathology)Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Michael A. Kraut
- Department of Radiology and Radiological SciencesDivision of Neuroradiology, Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Devin J. Sodums
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Jin J. Joo
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Najlla Nassery
- Division of General Internal MedicineJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Christopher M. Marano
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Cynthia A. Munro
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Jason Brandt
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Yun Zhou
- Department of Radiology and Radiological SciencesSection of High Resolution Brain PET Imaging, Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Dean F. Wong
- Department of Radiology and Radiological SciencesSection of High Resolution Brain PET Imaging, Johns Hopkins University School of MedicineBaltimoreMaryland
| | - Gwenn S. Smith
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of Radiology and Radiological SciencesDivision of Neuroradiology, Johns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
15
|
Neurochemical substrates of the rewarding effects of MDMA: implications for the development of pharmacotherapies to MDMA dependence. Behav Pharmacol 2016; 27:116-32. [PMID: 26650254 DOI: 10.1097/fbp.0000000000000210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved. The most important finding of recent research is the demonstration of differential involvement of specific neurotransmitter receptor subtypes (5-HT2, 5-HT3, DA D1, DA D2, CB1, μ and δ opioid, etc.) and extracellular proteins (DA and 5-HT transporters) in the acquisition, expression, extinction, and reinstatement of MDMA self-administration and conditioned place preference. It is important to extend the research on the effects of different compounds acting on these receptors/transporters in animal models of reward, especially in priming-induced, cue-induced, and stress-induced reinstatement. Increase in knowledge of the neurochemical substrates of the rewarding effects of MDMA may contribute to the design of new pharmacological treatments for individuals who develop MDMA dependence.
Collapse
|
16
|
Riva G. Neurobiology of Anorexia Nervosa: Serotonin Dysfunctions Link Self-Starvation with Body Image Disturbances through an Impaired Body Memory. Front Hum Neurosci 2016; 10:600. [PMID: 27932968 PMCID: PMC5121233 DOI: 10.3389/fnhum.2016.00600] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
The etiology of anorexia nervosa (AN) is still unclear, despite that it is a critical and potentially mortal illness. A recent neurobiological model considers AN as the outcome of dysfunctions in the neuronal processes related to appetite and emotionality (Kaye et al., 2009, 2013). However, this model still is not able to answer a critical question: What is behind body image disturbances (BIDs) in AN? The article starts its analysis from reviewing some of the studies exploring the effects of the serotonin systems in memory (episodic, working, and spatial) and its dysfunctions. The review suggests that serotonin disturbances may: (a) facilitate the encoding of third person (allocentric) episodic memories; (b) facilitate the consolidation of emotional episodic memories (e.g., teasing), if preceded by repeated stress; (c) reduce voluntary inhibition of mnestic contents; (d) impair allocentric spatial memory. If we discuss these results within the interpretative frame suggested by the “Allocentric Lock Hypothesis” (Riva, 2012, 2014), we can hypothesize that altered serotoninergic activity in AN patients: (i) improves their ability to store and consolidate negative autobiographical memories, including those of their body, in allocentric perspective; (ii) impairs their ability to trigger voluntary inhibition of the previously stored negative memory of the body; (iii) impairs their capacity to retrieve/update allocentric information. Taken together, these points suggest a possible link between serotonin dysfunctions, memory impairments and BIDs: the impossibility of updating a disturbed body memory using real time experiential data—I'm locked to a wrong body stored in long term memory—pushes AN patients to control body weight and shape even when underweight.
Collapse
Affiliation(s)
- Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico ItalianoMilan, Italy; Centro Studi e Ricerche di Psicologia della Comunicazione, Università Cattolica del Sacro CuoreMilano, Italy
| |
Collapse
|
17
|
Yoshihara D, Fujiwara N, Kitanaka N, Kitanaka J, Sakiyama H, Eguchi H, Takemura M, Suzuki K. The absence of the SOD1 gene causes abnormal monoaminergic neurotransmission and motivational impairment-like behavior in mice. Free Radic Res 2016; 50:1245-1256. [PMID: 27629432 DOI: 10.1080/10715762.2016.1234048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper/zinc superoxide dismutase (SOD1), a primary anti-oxidative enzyme, protects cells against oxidative stress. We report herein on a comparison of behavioral and neurobiological changes between SOD1 knockout (KO) and wild-type mice, in an attempt to assess the role of SOD1 in brain functions. SOD1 KO mice exhibited impaired motivational behavior in both shuttle-box learning and three-chamber social interaction tests. High levels of dopamine transporter protein and an acceleration of serotonin turnover were also detected in the cerebrums of the SOD1 KO mice. These findings suggest that SOD1 deficiency disturbs monoaminergic neurotransmission leading to a decrease in motivational behavior.
Collapse
Affiliation(s)
- Daisaku Yoshihara
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Noriko Fujiwara
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Nobue Kitanaka
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Junichi Kitanaka
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Haruhiko Sakiyama
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Hironobu Eguchi
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| | - Motohiko Takemura
- b Department of Pharmacology , Hyogo College of Medicine , Nishinomiya , Japan
| | - Keiichiro Suzuki
- a Department of Biochemistry , Hyogo College of Medicine , Nishinomiya , Japan
| |
Collapse
|
18
|
Cognitive Function before and during Treatment with Selective Serotonin Reuptake Inhibitors in Patients with Depression or Obsessive-Compulsive Disorder. PSYCHIATRY JOURNAL 2016; 2016:5480391. [PMID: 27597949 PMCID: PMC5002481 DOI: 10.1155/2016/5480391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Objectives. Identification of adverse effects of selective serotonin reuptake inhibitors (SSRIs) is of great importance due to their extensive use in medicine. Some studies have reported the effects of SSRIs on cognitive functions, but the results are conflicting. This study was designed to assess the effect of these drugs on cognition of patients with depression or obsessive-compulsive disorder (OCD). Methods. Patients with depression or OCD, naïve to therapy, and candidates of receiving one drug from SSRI class, voluntarily, entered this study. Mini-Mental State Examination (MMSE) test was the tool to assess their cognitive functions. MMSE scores of each patient were recorded prior to taking SSRIs and at weeks 3, 5, and 8 of drug therapy. Results. 50 patients met our inclusion criteria, with a baseline mean MMSE score of 23.94. At 3, 5, and 8 weeks of treatment, the mean scores were 22.1, 21.4, and 20.66, respectively. With a p value of <0.0001, the gradual decline was statistically significant. Conclusion. The MMSE scores of our patients showed a gradual decline over the consecutive weeks after taking SSRI drugs. It seems that the use of SSRIs in patients with depression or OCD, can cause cognitive dysfunction in the acute phase of treatment.
Collapse
|
19
|
Naderi M, Jamwal A, Chivers DP, Niyogi S. Modulatory effects of dopamine receptors on associative learning performance in zebrafish (Danio rerio). Behav Brain Res 2016; 303:109-19. [DOI: 10.1016/j.bbr.2016.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
|
20
|
Morici JF, Ciccia L, Malleret G, Gingrich JA, Bekinschtein P, Weisstaub NV. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice. Front Pharmacol 2015; 6:298. [PMID: 26779016 PMCID: PMC4688339 DOI: 10.3389/fphar.2015.00298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 12/21/2022] Open
Abstract
Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a−/−) with wild type (htr2a+/+) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Juan F Morici
- Systems Neuroscience Group, Laboratory of Experimental Cognition and Behavior, Institute of Physiology and Biophysics, IFIBIO "Houssay," CONICET and University of Buenos Aires Medical School Buenos Aires, Argentina
| | - Lucia Ciccia
- Systems Neuroscience Group, Laboratory of Experimental Cognition and Behavior, Institute of Physiology and Biophysics, IFIBIO "Houssay," CONICET and University of Buenos Aires Medical School Buenos Aires, Argentina
| | - Gaël Malleret
- Lyon Neuroscience Research Center, Centre National de la Recherche Scientifique UMR 5292 - Institut National de la Santé et de la Recherche Médicale U1028 - Université Claude Bernard Lyon1 Lyon, France
| | - Jay A Gingrich
- Sackler Institute for Developmental Psychobiology, Columbia University, New YorkNY, USA; New York State Psychiatric InstituteNew York, NY, USA
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cell Biology and Neuroscience, CONICET and University of Buenos Aires Medical School Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Systems Neuroscience Group, Laboratory of Experimental Cognition and Behavior, Institute of Physiology and Biophysics, IFIBIO "Houssay," CONICET and University of Buenos Aires Medical School Buenos Aires, Argentina
| |
Collapse
|
21
|
Sivamaruthi BS, Madhumita R, Balamurugan K, Rajan KE. Cronobacter sakazakii infection alters serotonin transporter and improved fear memory retention in the rat. Front Pharmacol 2015; 6:188. [PMID: 26388777 PMCID: PMC4560023 DOI: 10.3389/fphar.2015.00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/19/2015] [Indexed: 12/15/2022] Open
Abstract
It is well established that Cronobacter sakazakii infection cause septicemia, necrotizing enterocolitis and meningitis. In the present study, we tested whether the C. sakazakii infection alter the learning and memory through serotonin transporter (SERT). To investigate the possible effect on SERT, on postnatal day-15 (PND-15), wistar rat pups were administered with single dose of C. sakazakii culture (infected group; 107 CFU) or 100 μL of Luria-Bertani broth (medium control) or without any treatment (naïve control). All the individuals were subjected to passive avoidance test on PND-30 to test their fear memory. We show that single dose of C. sakazakii infection improved fear memory retention. Subsequently, we show that C. sakazakii infection induced the activation of toll-like receptor-3 and heat-shock proteins-90 (Hsp-90). On the other hand, level of serotonin (5-hydroxytryptamine) and SERT protein was down-regulated. Furthermore, we show that C. sakazakii infection up-regulate microRNA-16 (miR-16) expression. The observed results highlight that C. sakazakii infections was responsible for improved fear memory retention and may have reduced the level of SERT protein, which is possibly associated with the interaction of up-regulated Hsp-90 with SERT protein or miR-16 with SERT mRNA. Taken together, observed results suggest that C. sakazakii infection alter the fear memory possibly through SERT. Hence, this model may be effective to test the C. sakazakii infection induced changes in synaptic plasticity through SERT and effect of other pharmacological agents against pathogen induced memory disorder.
Collapse
Affiliation(s)
- Bhagavathi S Sivamaruthi
- Department of Animal Science, School of Life Sciences, Bharathidasan University , Tiruchirappalli, India
| | - Rajkumar Madhumita
- Department of Animal Science, School of Life Sciences, Bharathidasan University , Tiruchirappalli, India
| | | | - Koilmani E Rajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University , Tiruchirappalli, India
| |
Collapse
|
22
|
Abstract
Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence.
Collapse
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
23
|
Vieira-Brock PL, McFadden LM, Nielsen SM, Smith MD, Hanson GR, Fleckenstein AE. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits. Int J Neuropsychopharmacol 2015; 18:pyv073. [PMID: 26164716 PMCID: PMC4675982 DOI: 10.1093/ijnp/pyv073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/23/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. METHODS Adolescent or adult male Sprague-Dawley rats received either nicotine water (10-75 μg/mL) or tap water for several weeks. Methamphetamine (4 × 7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. RESULTS Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. CONCLUSIONS Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which novel object recognition deficits are attenuated by nicotine in methamphetamine-treated rats.
Collapse
Affiliation(s)
- Paula L Vieira-Brock
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Lisa M McFadden
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Shannon M Nielsen
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Misty D Smith
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Glen R Hanson
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Annette E Fleckenstein
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT.
| |
Collapse
|
24
|
Ameliorative effect of gastrodin on 3,3'-iminodipropionitrile-induced memory impairment in rats. Neurosci Lett 2015; 594:40-5. [PMID: 25817367 DOI: 10.1016/j.neulet.2015.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/03/2015] [Accepted: 03/24/2015] [Indexed: 11/22/2022]
Abstract
3,3'-Iminodipropionitrile (IDPN), one of the nitrile derivatives inducing neurotoxicity, causes the dyskinetic syndrome and cognitive impairment. Gastrodin is widely used to treat neurological disorders and showed to improve cognitive functions. The present study aimed to determine whether treatment with gastrodin can attenuate IDPN-induced impairment of memory consolidation in the passive avoidance (PA) task, and to explore the possible neural mechanisms. Our results showed that intragastric administration of gastrodin (200mg/kg) reversed the IDPN-induced impairment of memory consolidation as indicated by the prolonged retention latency in the PA task. Furthermore, gastrodin reverted IDPN-induced reduction of serotonin (5-HT) and elevation of serotonin turnover ratio. Gastrodin treatment prevented the increase of serotonin transporter (SERT) and the decrease of serotonin 1A (5-HT1A) receptor expression in the hippocampus of IDPN-treated rats. These results suggest that long-term gastrodin treatment could represent a novel pharmacological strategy for IDPN-induced memory impairment, as well that its protective effect is mediated through normalization of the serotoninergic system.
Collapse
|
25
|
Developmental alterations in anxiety and cognitive behavior in serotonin transporter mutant mice. Psychopharmacology (Berl) 2014; 231:4119-33. [PMID: 24728652 DOI: 10.1007/s00213-014-3554-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE A promoter variant of the serotonin transporter (SERT) gene is known to affect emotional and cognitive regulation. In particular, the "short" allelic variant is implicated in the etiology of multiple neuropsychiatric disorders. Heterozygous (SERT(+/-)) and homozygous (SERT(-/-)) SERT mutant mice are valuable tools for understanding the mechanisms of altered SERT levels. Although these genetic effects are well investigated in adulthood, the developmental trajectory of altered SERT levels for behavior has not been investigated. OBJECTIVES We assessed anxiety-like and cognitive behaviors in SERT mutant mice in early adolescence and adulthood to examine the developmental consequences of reduced SERT levels. Spine density of pyramidal neurons was also measured in corticolimbic brain regions. RESULTS Adult SERT(-/-) mice exhibited increased anxiety-like behavior, but these differences were not observed in early adolescent SERT(-/-) mice. Conversely, SERT(+/-) and SERT(-/-) mice did display higher spontaneous alternation during early adolescence and adulthood. SERT(+/-) and SERT(-/-) also exhibited greater neuronal spine densities in the orbitofrontal but not the medial prefrontal cortices. Adult SERT(-/-) mice also showed an increased spine density in the basolateral amygdala. CONCLUSIONS Developmental alterations of the serotonergic system caused by genetic inactivation of SERT can have different influences on anxiety-like and cognitive behaviors through early adolescence into adulthood, which may be associated with changes of spine density in the prefrontal cortex and amygdala. The altered maturation of serotonergic systems may lead to specific age-related vulnerabilities to psychopathologies that develop during adolescence.
Collapse
|
26
|
Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol Biochem Behav 2014; 120:88-94. [DOI: 10.1016/j.pbb.2014.02.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022]
|
27
|
Meneses A. 5-HT systems: emergent targets for memory formation and memory alterations. Rev Neurosci 2014; 24:629-64. [PMID: 24259245 DOI: 10.1515/revneuro-2013-0026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Drugs acting through 5-hydroxytryptamine (serotonin or 5-HT) systems modulate memory and its alterations, although the mechanisms involved are poorly understood. 5-HT drugs may present promnesic and/or antiamnesic (or even being amnesic) effects. Key questions regarding 5-HT markers include whether receptors directly or indirectly participate and/or contribute to the physiological and pharmacological basis of memory and its pathogenesis; hence, the major aim of this article was to examine recent advances in emergent targets of the 5-HT systems for memory formation and memory alterations. Recent reviews and findings are summarized, mainly in the context of the growing notion of memory deficits in brain disorders (e.g., posttraumatic stress disorder, mild cognitive impairment, consumption of drugs, poststroke cognitive dysfunctions, schizophrenia, Parkinson disease, and infection-induced memory impairments). Mainly, mammalian and (some) human data were the focus. At least agonists and antagonists for 5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors as well as serotonin uptake inhibitors seem to have a promnesic and/or antiamnesic effect in different conditions and 5-HT markers seem to be associated to neural changes. Available evidence offers clues about the possibilities, but the exact mechanisms remain unclear. For instance, 5-HT transporter expression seems to be a reliable neural marker related to memory mechanisms and its alterations.
Collapse
|
28
|
Dere E, Winkler D, Ritter C, Ronnenberg A, Poggi G, Patzig J, Gernert M, Müller C, Nave KA, Ehrenreich H, Werner HB. Gpm6b deficiency impairs sensorimotor gating and modulates the behavioral response to a 5-HT2A/C receptor agonist. Behav Brain Res 2014; 277:254-63. [PMID: 24768641 DOI: 10.1016/j.bbr.2014.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 11/29/2022]
Abstract
The neuronal tetraspan proteins, M6A (Gpm6a) and M6B (Gpm6b), belong to the family of proteolipids that are widely expressed in the brain. We recently reported Gpm6a deficiency as a monogenetic cause of claustrophobia in mice. Its homolog proteolipid, Gpm6b, is ubiquitously expressed in neurons and oligodendrocytes. Gpm6b is involved in neuronal differentiation and myelination. It interacts with the N-terminal domain of the serotonin transporter (SERT) and decreases cell-surface expression of SERT. In the present study, we employed Gpm6b null mutant mice (Gpm6b(-/-)) to search for behavioral functions of Gpm6b. We studied male and female Gpm6b(-/-) mice and their wild-type (WT, Gpm6b(+/+)) littermates in an extensive behavioral test battery. Additionally, we investigated whether Gpm6b(-/-) mice exhibit changes in the behavioral response to a 5-HT2A/C receptor agonist. We found that Gpm6b(-/-) mice display completely normal sensory and motor functions, cognition, as well as social and emotionality-like (anxiety, depression) behaviors. On top of this inconspicuous behavioral profile, Gpm6b(-/-) mice of both genders exhibit a selective impairment in prepulse inhibition of the acoustic startle response. Furthermore, in contrast to WT mice that show the typical locomotion suppression and increase in grooming activity after intraperitoneal administration of DOI [(±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride], Gpm6b(-/-) mice demonstrate a blunted behavioral response to this 5-HT2A/C receptor agonist. To conclude, Gpm6b deficiency impairs sensorimotor gating and modulates the behavioral response to a serotonergic challenge.
Collapse
Affiliation(s)
- Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Daniela Winkler
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Caroline Ritter
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Giulia Poggi
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Christian Müller
- Department of Psychiatry & Psychotherapy, University of Erlangen, Germany
| | - Klaus-Armin Nave
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany; Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany; DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
29
|
Romano E, Ruocco LA, Nativio P, Lacivita E, Ajmone-Cat MA, Boatto G, Nieddu M, Tino A, Sadile AG, Minghetti L, Passarelli F, Leopoldo M, Laviola G, Adriani W. Modulatory effects following subchronic stimulation of brain 5-HT7-R system in mice and rats. Rev Neurosci 2014; 25:383-400. [DOI: 10.1515/revneuro-2014-0007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/29/2014] [Indexed: 11/15/2022]
|
30
|
Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans. PLoS One 2013; 8:e77779. [PMID: 24223727 PMCID: PMC3815336 DOI: 10.1371/journal.pone.0077779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/12/2013] [Indexed: 11/26/2022] Open
Abstract
Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.
Collapse
|
31
|
Parrott AC. MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users. Neurosci Biobehav Rev 2013; 37:1466-84. [PMID: 23660456 DOI: 10.1016/j.neubiorev.2013.04.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022]
Abstract
Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component.
Collapse
Affiliation(s)
- Andrew C Parrott
- Department of Psychology, Swansea University, Swansea, SA2 8PP, South Wales, United Kingdom; Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia.
| |
Collapse
|
32
|
Zheng P, Lieberman BP, Ploessl K, Lemoine L, Miller S, Kung HF. A new single-photon emission computed tomography (SPECT) imaging agent for serotonin transporters: [(125)I]Flip-IDAM, (2-((2-((dimethylamino)methyl)-4-iodophenyl)thio)phenyl)methanol. Bioorg Med Chem Lett 2013; 23:869-72. [PMID: 23265880 DOI: 10.1016/j.bmcl.2012.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/18/2022]
Abstract
New ligands for in vivo brain imaging of serotonin transporter (SERT) with single photon emission tomography (SPECT) were prepared and evaluated. An efficient synthesis and radiolabeling of a biphenylthiol, FLIP-IDAM, 4, was accomplished. The affinity of FLIP-IDAM was evaluated by an in vitro inhibitory binding assay using [(125)I]-IDAM as radioligand in rat brain tissue homogenates (K(i) = 0.03 nM). New [(125)I]Flip-IDAM exhibited excellent binding affinity to SERT binding sites with a high hypothalamus to cerebellum ratio of 4 at 30 min post iv injection. The faster in vivo kinetics for brain uptake and a rapid washout from non-specific regions provide excellent signal to noise ratio. This new agent, when labeled with (123)I, may be a useful imaging agent for mapping SERT binding sites in the human brain.
Collapse
Affiliation(s)
- Pinguan Zheng
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
33
|
Fehér A, Juhász A, László A, Pákáski M, Kálmán J, Janka Z. Serotonin transporter and serotonin receptor 2A gene polymorphisms in Alzheimer's disease. Neurosci Lett 2012; 534:233-6. [PMID: 23274704 DOI: 10.1016/j.neulet.2012.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/13/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022]
Abstract
Genetic variants of the serotonergic neurotransmitter system are potential contributing factors in the pathological processes underlying Alzheimer's disease (AD). We examined polymorphisms of the serotonin transporter (SLC6A4) and serotonin receptor 2A (HTR2A) genes for possible association with AD, and therefore genotyped 5-HTTLPR, STin2-VNTR and HTR2A T102C polymorphisms in 252 Hungarian AD patients and 234 ethnically matched control individuals. We did not detect statistically significant differences in genotype distribution comparing the AD and the control group when the polymorphisms were investigated separately. Logistic regression analyses, however, revealed an interaction effect between 5-HTTLPR and HTR2A T102C (p=0.019), but not between 5-HTTLPR and STin2-VNTR (p=0.494) or STin2-VNTR and HTR2A T102C (p=0.310) polymorphisms. Our study suggests no individual influence of the investigated polymorphisms but a potential combined effect of the 5-HTTLPR L/L and HTR2A T102C C/C genotypes on AD risk. However, the results need to be treated with considerable caution, and further analyses in larger samples are required.
Collapse
Affiliation(s)
- Agnes Fehér
- University of Szeged, Department of Psychiatry, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
34
|
Tellez R, Gómez-Viquez L, Liy-Salmeron G, Meneses A. GABA, glutamate, dopamine and serotonin transporters expression on forgetting. Neurobiol Learn Mem 2012; 98:66-77. [DOI: 10.1016/j.nlm.2012.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 04/26/2012] [Accepted: 05/14/2012] [Indexed: 01/25/2023]
|
35
|
Tellez R, Gómez-Víquez L, Meneses A. GABA, glutamate, dopamine and serotonin transporters expression on memory formation and amnesia. Neurobiol Learn Mem 2011; 97:189-201. [PMID: 22183017 DOI: 10.1016/j.nlm.2011.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/11/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
Notwithstanding several neurotransmission systems are frequently related to memory formation, amnesia and/or therapeutic targets for memory alterations, the role of transporters γ-aminobutyric acid (GABA, GAT1), glutamate (neuronal glutamate transporter excitatory amino acid carrier; EACC1), dopamine (DAT) and serotonin (SERT) is poorly understood. Hence, in this paper Western-blot analysis was used to evaluate expression changes on them during memory formation in trained and untrained rats treated with the selective serotonin transporter inhibitor fluoxetine, the amnesic drug d-methamphetamine (METH) and fluoxetine plus METH. Transporters expression was evaluated in the hippocampus, prefrontal cortex and striatum. Data indicated that in addition of memory performance other behavioral parameters (e.g., explorative behavior, food-intake, etc.) that memory formation was recorded. Thus, memory formation in a Pavlovian/instrumental autoshaping was associated to up-regulation of prefrontal cortex GAT1 and EAAC1, striatal SERT, DAT and EACC1; while, hippocampal EACC1, GAT1 and SERT were down-regulated. METH impaired short (STM) and long-term memory (LTM), at 24 or 48h. The METH-induced amnesia down-regulated SERT, DAT, EACC1 and GAT1 in hippocampus and the GAT1 in striatum; no-changes were observed in prefrontal cortex. Post-training administration of fluoxetine improved LTM (48h), which was associated to DAT, GAT1 (prefrontal cortex) up-regulation, but GAT1 (striatum) and SERT (hippocampus) down-regulation. Fluoxetine plus METH administration was able to prevent amnesia, which was associated to DAT, EACC1 and GAT1 (prefrontal cortex), SERT and DAT (hippocampus) and EACC1 or DAT (striatal) up-regulation. Together these data show that memory formation, amnesia and anti-amnesic effects are associated to specific patters of transporters expression.
Collapse
Affiliation(s)
- Ruth Tellez
- Depto. de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico
| | | | | |
Collapse
|
36
|
Ponce-Lopez T, Liy-Salmeron G, Hong E, Meneses A. Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model. Brain Res 2011; 1426:73-85. [DOI: 10.1016/j.brainres.2011.09.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/09/2011] [Accepted: 09/25/2011] [Indexed: 01/01/2023]
|
37
|
Reichel CM, Ramsey LA, Schwendt M, McGinty JF, See RE. Methamphetamine-induced changes in the object recognition memory circuit. Neuropharmacology 2011; 62:1119-26. [PMID: 22115899 DOI: 10.1016/j.neuropharm.2011.11.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 11/19/2022]
Abstract
Chronic methamphetamine (meth) can lead to persisting cognitive deficits in human addicts and animal models of meth addiction. Here, we examined the impact of either contingent or non-contingent meth on memory performance using an object-in-place (OIP) task, which measures the ability to detect an object relative to its location and surrounding objects. Further, we quantified monoamine transporter levels and markers of neurotoxicity within the OIP circuitry and striatum. Male Long-Evans rats received an acute meth binge (4 × 4 mg/kg i.p., 2 h intervals) or self-administered meth (0.02 mg/infusion, i.v.; 7 days for 1 h/day, followed by 14 days for 6 h/day). Rats were tested for OIP recognition memory following one week of withdrawal. Subsequently, transporters for serotonin (SERT) and norepinephrine (NET) were quantified using Western blot in tissue obtained from the hippocampus, perirhinal cortex, and prefrontal cortex. In addition, striatal dopamine transporters, tyrosine hydroxylase, and glial fibrillary acidic protein were measured to assess potential neurotoxicity. Control (saline-treated) rats spent more time interacting with the objects in the changed locations. In contrast, contingent or non-contingent meth resulted in disrupted OIP performance as seen by similar amounts of time spent with all objects, regardless of location. While only acute meth binge produced signs of neurotoxicity, both meth regimens decreased SERT in the perirhinal cortex and hippocampus. Only meth self-administration resulted in a selective decrease in NET. Meth-induced changes in SERT function in the OIP circuitry may underlie memory deficits independently of overt neurotoxic effects. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
38
|
Meneses A, Pérez-García G, Ponce-Lopez T, Castillo C. 5-HT6 Receptor Memory and Amnesia: Behavioral Pharmacology – Learning and Memory Processes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 96:27-47. [DOI: 10.1016/b978-0-12-385902-0.00002-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|