1
|
Allbaugh LJ, George G, Klengel T, Profetto A, Marinack L, O'Malley F, Ressler KJ. Children of trauma survivors: Influences of parental posttraumatic stress and child-perceived parenting. J Affect Disord 2024; 354:224-231. [PMID: 38490588 DOI: 10.1016/j.jad.2024.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Research has established a negative association between parental posttraumatic stress symptoms (PTSS), including subthreshold symptoms, and child physical and behavioral health outcomes. Such intergenerational transmission of risk has multiple possible mechanisms, including lack of positive parenting, increased negative parenting, shared environmental and contextual risks, and potential biological components such as shared genetics or even transmission of epigenetic risk. METHOD This study examined 93 parent-child dyads (n = 171 participants total) from a mixed Urban-Suburban US metropolitan area to investigate the relations between parental PTSS and child-perceived parenting and child PTSS. We sought to examine interactions between parental PTSS and parenting on child PTSS. RESULTS We found an association between parent and child PTSS, consistent with prior literature showing increased risk for children of trauma survivors. Interestingly, we found effects of positive parenting on diminished child PTSS symptoms only in parents without PTSS, whereas the effect of positive parenting on buffering child symptoms was absent in parents with PTSS. LIMITATIONS The present findings are tempered by the use of self-report data to assess parent and child PTSS, which is not as reliable as clinician assessment of symptoms. Further, the use of survey data limits what is known about the extent of trauma exposure in parents and children, and different measures were used to assess PTSS in parents and kids, which limits comparability of these reported symptoms. DISCUSSION Limitations notwithstanding, findings suggest joint attention paid to parenting practices and to a parent's recovery, even from subthreshold symptoms of PTSS, as two different but important ways to support trauma survivor parents in their efforts to most optimally parent and protect their children from intergenerational risk.
Collapse
Affiliation(s)
- Lucy J Allbaugh
- Department of Psychology, University of Dayton, Dayton, OH, United States of America.
| | - Grace George
- McLean Hospital, Boston, MA, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Torsten Klengel
- McLean Hospital, Boston, MA, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Alex Profetto
- McLean Hospital, Boston, MA, United States of America
| | - Lucas Marinack
- Department of Psychology, University of Wyoming, Laramie, WY, United States of America
| | - Fiona O'Malley
- Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Kerry J Ressler
- McLean Hospital, Boston, MA, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
2
|
Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): A systematic review and meta-analysis. J Affect Disord 2023; 328:312-323. [PMID: 36740143 DOI: 10.1016/j.jad.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Many studies have performed assessments of genetic variants in the D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). However, the results are inconsistent. This meta-analysis aimed to systematically summarize published data to evaluate the reliable association between the DRD2 genetic variants and the risk of PTSD and MDD. METHODS A systematic literature search was conducted using the Web of Science, PubMed, Google Scholar, Excerpta Medica Database (EMBASE), Springer, ScienceDirect, Wiley Online Library, Cochrane Central Register of Controlled Trials, Chinese Biomedical Literature Database (CBM), WANFANG Data, CQVIP, and Chinese National Knowledge Infrastructure (CNKI) databases before January 1st, 2022. RESULTS A total of 27 genetic variants in the DRD2 gene were retrieved, and 7 of them met the inclusion criteria for meta-analysis. Our meta-analysis results indicated that the rs1800497 (TaqIA) polymorphism was significantly associated with the increased risk of PTSD (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.49, 95 % CI, 1.08-2.04 Z = 2.46, P = 0.014). Subgroup analysis for ethnicity suggested that a significantly increased risk of PTSD was observed in Asians (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.39, 95 % CI, 1.08-1.79, Z = 2.60, P = 0.009) and Caucasians (Dominant model (A1A1 + A1A2 vs. A2A2): OR = 1.87, 95 % CI 1.02-3.41, Z = 2.04, P = 0.042). Meanwhile, we detected significant association strengths between the rs1799978 and rs2075652 polymorphisms in the DRD2 gene and MDD (for rs1799978, Homozygote comparison (GG vs. AA): OR = 0.60, 95 % CI = 0.37-0.97, Z = 2.08, P = 0.038; for rs2075652, Homozygote comparison (AA vs. GG): OR = 1.82, 95 % CI = 1.32-2.50, Z = 3.67, P < 0.001). Our cumulative meta-analyses indicated a continuous trend toward association strength with PTSD and MDD. CONCLUSIONS This meta-analysis indicated that genetic variants in the DRD2 gene might potentially contribute to genetic susceptibility for PTSD and MDD. The utilization of DRD2 genetic variants as risk factors for PTSD and MDD requires further validation by large well-designed case-control studies.
Collapse
|
3
|
Johnson AM, Teoh D, Jewett P, Darst BF, Mattson J, Hoffmann C, Brown K, Makaram A, Keller C, Blaes AH, Everson-Rose SA, Vogel RI. Genetic variants associated with post-traumatic stress symptoms in patients with gynecologic cancer. Gynecol Oncol 2023; 170:102-107. [PMID: 36681010 PMCID: PMC10023401 DOI: 10.1016/j.ygyno.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Patients with cancer experience symptoms of post-traumatic stress disorder (PTSD) more commonly than the general population. The objective of this study was to identify single nucleotide polymorphisms (SNPs) associated with increased risk of post-traumatic stress disorder (PTSD) in patients with gynecologic cancer. METHODS A prospective cohort study recruited 181 gynecologic cancer survivors receiving care at the University of Minnesota between 2017 and 2020 who completed PTSD DSM-V surveys to self-report their symptoms of PTSD and provided saliva samples. DNA samples were genotyped for 11 SNPs in 9 genes involved in dopaminergic, serotonergic, and opioidergic systems previously associated with risk of PTSD in populations without cancer. RESULTS Most participants had either ovarian (42.5%) or endometrial (46.4%) cancer; fewer had cervical (7.7%) or vaginal/vulvar (3.3%) cancer. Two SNPS were identified as statistically significantly associated with higher PTSD scores: rs622337 in HTR2A and rs510769 in OPRM1. CONCLUSIONS Genetic variation likely plays a role in development of PTSD. HTR2A is involved in the serotonin pathway, and OPRM1 is involved in the opioid receptor pathway. This information can be used by oncologic providers to identify patients at greater risk of developing PTSD and may facilitate referral to appropriate consultants and resources early in their treatment.
Collapse
Affiliation(s)
- Andrea M Johnson
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Deanna Teoh
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Patricia Jewett
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America; University of Minnesota, Division of Hematology and Oncology, Minneapolis, MN, United States of America
| | - Burcu F Darst
- Fred Hutchinson Cancer Center, Public Health Sciences, Seattle, WA, United States of America
| | - Jordan Mattson
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Cody Hoffmann
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Katherine Brown
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America
| | - Aditi Makaram
- University of Minnesota, College of Biological Sciences, Minneapolis, MN, United States of America
| | - Ciana Keller
- University of Minnesota, Medical School, Minneapolis, MN, United States of America
| | - Anne H Blaes
- University of Minnesota, Division of Hematology and Oncology, Minneapolis, MN, United States of America
| | - Susan A Everson-Rose
- University of Minnesota, Division of Geriatrics, Palliative and Primary Care, Minneapolis, MN, United States of America
| | - Rachel I Vogel
- University of Minnesota, Department of Obstetrics, Gynecology and Women's Health, Minneapolis, MN, United States of America.
| |
Collapse
|
4
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder afflicting approximately 7% of the population. The diverse number of traumatic events and the wide array of symptom combinations leading to PTSD diagnosis contribute substantial heterogeneity to studies of the disorder. Genomic and complimentary-omic investigations have rapidly increased our understanding of the heritable risk for PTSD. In this review, we emphasize the contributions of genome-wide association, epigenome-wide association, transcriptomic, and neuroimaging studies to our understanding of PTSD etiology. We also discuss the shared risk between PTSD and other complex traits derived from studies of causal inference, co-expression, and brain morphological similarities. The investigations completed so far converge on stark contrasts in PTSD risk between sexes, partially attributed to sex-specific prevalence of traumatic experiences with high conditional risk of PTSD. To further understand PTSD biology, future studies should focus on detecting risk for PTSD while accounting for substantial cohort-level heterogeneity (e.g. civilian v. combat-exposed PTSD cases or PTSD risk among cases exposed to specific traumas), expanding ancestral diversity among study cohorts, and remaining cognizant of how these data influence social stigma associated with certain traumatic events among underrepresented minorities and/or high-risk populations.
Collapse
Affiliation(s)
- Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Veterans Administration Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
6
|
Brewerton TD, Ralston ME, Dean M, Hand S, Hand L. Disordered Eating Attitudes and Behaviors in Maltreated Children and Adolescents Receiving Forensic Assessment in a Child Advocacy Center. JOURNAL OF CHILD SEXUAL ABUSE 2020; 29:769-787. [PMID: 32866068 DOI: 10.1080/10538712.2020.1809047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have indicated that childhood sexual abuse (CSA) and other forms of child maltreatment (CM), as well as their subsequent posttraumatic symptoms, are significant risk factors for the development of disordered eating behaviors and attitudes and eating disorders (EDs). However, there are no known reports of CM based on forensic interview and assessment that have been linked to disordered eating behaviors and attitudes, or eating disorders (EDs), especially in children and adolescents. We, therefore, examined the hypothesis that ED-related symptoms would be significantly associated with trauma-related symptoms in children with reported maltreatment. Girls (n = 179, 11.9 ± 2.4 years) and boys (n = 99, 11.7 ± 2.8 years) referred for forensic assessment of alleged maltreatment completed the Kids' Eating Disorders Survey, the Eating Disorders Inventory for Children (EDI-C), the Trauma Symptom Checklist for Children, and the Adolescent Dissociative Experiences Scale, among others. Significant positive correlations between most EDI-C subscale scores and most TSC-C subscale scores (PTSD, dissociation, anxiety, depression, sexual concerns) were found (p ≤.001) in the total sample and girls alone. Participants with credible, substantiated disclosures had significantly higher scores on several ED-related measures than those with non-credible, non-substantiated disclosures. Linear regression analysis indicated that PTSD and dissociative symptoms were significant predictors of EDI-C scores in those with substantiated disclosures (p ≤.001). Findings support the hypothesis that ED-related symptoms are significantly linked to authenticated CM.
Collapse
Affiliation(s)
- Timothy D Brewerton
- Medical University of South Carolina , Charleston, South Carolina, USA
- Dee Norton Child Advocacy Center , Charleston, South Carolina, USA
| | | | - Michelle Dean
- Dee Norton Child Advocacy Center , Charleston, South Carolina, USA
| | - Sarah Hand
- University of North Carolina , Chapel Hill, South Carolina, USA
| | - Lisa Hand
- Medical University of South Carolina , Charleston, South Carolina, USA
| |
Collapse
|
7
|
Sheerin CM, Lind MJ, Bountress KE, Marraccini ME, Amstadter AB, Bacanu SA, Nugent NR. Meta-Analysis of Associations Between Hypothalamic-Pituitary-Adrenal Axis Genes and Risk of Posttraumatic Stress Disorder. J Trauma Stress 2020; 33:688-698. [PMID: 32216170 PMCID: PMC7529653 DOI: 10.1002/jts.22484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 01/03/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has been of interest in attempts to identify genetic vulnerability for posttraumatic stress disorder (PTSD). Although numerous HPA-axis genes have been implicated in candidate gene studies, the findings are mixed and interpretation is limited by study design and methodological inconsistencies. To address these inconsistencies in the PTSD candidate gene literature, we conducted meta-analyses of HPA-related genes from both a traditional single nucleotide polymorphism (SNP)-level analysis and a gene-level analysis, using novel methods aggregating markers in the same gene. Database searches (PubMed and PsycINFO) identified 24 unique articles examining six HPA-axis genes in PTSD; analyses were conducted on four genes (ADCYAP1R1, CRHR1, FKBP5, NR3C1) that met study eligibility criteria (original research, human subjects, main effect association study of selected genes, PTSD as an outcome, trauma-exposed control group) and had sufficient data and number of studies for use in meta-analysis, within 20 unique articles. Findings from SNP-level analyses indicated that two variants (rs9296158 in FKBP5 and rs258747 in NR3C1) were nominally associated with PTSD, ps = .001 and .001, respectively, following multiple testing correction. At the gene level, significant relations between PTSD and both NR3C1 and FKBP5 were detected and robust to sensitivity analyses. Although study limitations exist (e.g., varied outcomes, inability to test moderators), taken together, these results provide support for FKBP5 and NR3C1 in risk for PTSD. Overall, this work highlights the utility of meta-analyses in resolving discrepancies in the literature and the value of adopting gene-level approaches to investigate the etiology of PTSD.
Collapse
Affiliation(s)
- Christina M. Sheerin
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mackenzie J. Lind
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kaitlin E. Bountress
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marisa E. Marraccini
- School of Education, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ananda B. Amstadter
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nicole R. Nugent
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA,Department of Pediatrics Alpert Medical School of Brown University, Providence, Rhode Island, USA,Bradley/Hasbro Children’s Research Center of Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Malgaroli M, Schultebraucks K. Artificial Intelligence and Posttraumatic Stress Disorder (PTSD). EUROPEAN PSYCHOLOGIST 2020. [DOI: 10.1027/1016-9040/a000423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract. Posttraumatic stress disorder (PTSD) is a debilitating disease that can occur after experiencing a traumatic event. Despite recent progress in computational research, it has not yet been possible to identify precise and reliable risk factors that enable predictive models of individual risk for posttraumatic stress after trauma. In this overview, we discuss recent advances in the use of Machine Learning (ML) and Artificial Intelligence (AI) for risk stratification and targeted treatment allocation in the context of stress pathologies and we critically review the benefits and challenges of emerging approaches. The vast heterogeneity in the manifestation and the etiology of PTSD is discussed as one major reason for the need to deploy ML-based computational models to better account for individual differences between patients. Striving for personalized medicine is one of the most important goals of current clinical research and is of great potential for the field of posttraumatic stress research. The use of ML is a promising and necessary approach for reaching more personalized treatments and to make further progress in the field of precision psychiatry.
Collapse
Affiliation(s)
- Matteo Malgaroli
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Katharina Schultebraucks
- Department of Emergency Medicine, Vagelos School of Physicians and Surgeon, Columbia University Irving Medical Center, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Zoladz PR. Animal models for the discovery of novel drugs for post-traumatic stress disorder. Expert Opin Drug Discov 2020; 16:135-146. [PMID: 32921163 DOI: 10.1080/17460441.2020.1820982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Existing pharmacological treatments for PTSD are limited and have been used primarily because of their effectiveness in other psychiatric conditions. To generate novel, PTSD specific pharmacotherapy, researchers must utilize animal models to assess the efficacy of experimental drugs. AREAS COVERED This review includes a discussion of factors that should be considered when developing an animal model of PTSD, as well as descriptions of the most commonly used models. Researchers have utilized physical stressors, psychological stressors, or a combination of the two to induce PTSD-like physiological and behavioral sequelae in animals. Such models have provided researchers with a valuable tool to examine the neurobiological mechanisms underlying the condition. EXPERT OPINION PTSD is a heterogeneous disorder that manifests as different symptom clusters in different individuals. Thus, there cannot be a one-size-fits-all approach to modeling the disorder in animals. Preclinical investigators must adopt a concentrated effort aimed at modeling specific PTSD subtypes and the distinct symptom profiles that result from specific types of human trauma. Moreover, researchers have focused so much on modeling a single PTSD syndrome in animals that studies examining only specific facets of the disorder are largely ignored. Future research employing animal models of PTSD requires greater focus on the nuances of PTSD.
Collapse
Affiliation(s)
- Phillip R Zoladz
- Psychology Program, the School of Health and Behavioral Sciences, Ohio Northern University , Ada, OH, USA
| |
Collapse
|
10
|
Kokkosis AG, Tsirka SE. Neuroimmune Mechanisms and Sex/Gender-Dependent Effects in the Pathophysiology of Mental Disorders. J Pharmacol Exp Ther 2020; 375:175-192. [PMID: 32661057 DOI: 10.1124/jpet.120.266163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Innate and adaptive immune mechanisms have emerged as critical regulators of CNS homeostasis and mental health. A plethora of immunologic factors have been reported to interact with emotion- and behavior-related neuronal circuits, modulating susceptibility and resilience to mental disorders. However, it remains unclear whether immune dysregulation is a cardinal causal factor or an outcome of the pathologies associated with mental disorders. Emerging variations in immune regulatory pathways based on sex differences provide an additional framework for discussion in these psychiatric disorders. In this review, we present the current literature pertaining to the effects that disrupted immune pathways have in mental disorder pathophysiology, including immune dysregulation in CNS and periphery, microglial activation, and disturbances of the blood-brain barrier. In addition, we present the suggested origins of such immune dysregulation and discuss the gender and sex influence of the neuroimmune substrates that contribute to mental disorders. The findings challenge the conventional view of these disorders and open the window to a diverse spectrum of innovative therapeutic targets that focus on the immune-specific pathophenotypes in neuronal circuits and behavior. SIGNIFICANCE STATEMENT: The involvement of gender-dependent inflammatory mechanisms on the development of mental pathologies is gaining momentum. This review addresses these novel factors and presents the accumulating evidence introducing microglia and proinflammatory elements as critical components and potential targets for the treatment of mental disorders.
Collapse
Affiliation(s)
- Alexandros G Kokkosis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
11
|
The potential role of the HCN1 ion channel and BDNF-mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Transl Psychiatry 2020; 10:101. [PMID: 32198387 PMCID: PMC7083842 DOI: 10.1038/s41398-020-0782-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The function of the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and the expression of brain-derived neurotrophic factor (BDNF) may be involved in the pathogenesis of post-traumatic stress disorder (PTSD). This study aims to explore the role of the HCN1 channel, BDNF, and mTOR in the actions of PTSD and to examine whether synaptic transmission or plasticity is involved in the regulation of this disease. In the present study, rats were exposed to the single prolonged stress and electric foot shock (SPS&S) procedure, which can induce PTSD-like behaviors in rats. ZD7288 was administered by intracerebroventricular (i.c.v.) injection to one experimental group to inhibit the function of the HCN1 ion channel while 8-Br-cAMP was administered to another group to activate the function of the HCN1 ion channel. A series of behavioral tests and biochemical assessments of certain proteins (HCN1, BDNF, and pmTOR) and synaptic ultrastructure in the prefrontal cortex (PFC) and hippocampus (Hip) were then conducted. The SPS&S procedure induced apparent PTSD-like symptoms in rats. The administration of ZD7288 reduced the immobility time and escape latency time in the forced swim test (FST) and water maze test (WMT) with a decreased level of HCN1, upregulated BDNF-mTOR signaling pathways in the PFC and Hip, and synaptic ultrastructure changes in the PFC. In contrast, the administration of 8-Br-cAMP, which led to a higher level of HCN1 in PFC and Hip, resulted in a decreased number of entries to the open arms without significant change in total arm entries in the elevated plus maze test (EPMT) as well as a shorter center square distance and total distance in the open field test (OFT). Extended escape latency time was also observed in the WMT although there was no alteration of BDNF-mTOR signaling pathways and synaptic ultrastructure in the PFC and Hip. Overall, the inhibition of HCN1, which can alleviate PTSD-like behavior of rats by relieving depression and improving learning ability, may be related to the upregulated BDNF-mTOR signaling pathways and synaptic transmission.
Collapse
|
12
|
Zhang L, Hu XZ, Yu T, Chen Z, Dohl J, Li X, Benedek DM, Fullerton CS, Wynn G, Barrett JE, Li M, Russell DW, Ursano RJ. Genetic association of FKBP5 with PTSD in US service members deployed to Iraq and Afghanistan. J Psychiatr Res 2020; 122:48-53. [PMID: 31927265 DOI: 10.1016/j.jpsychires.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental disorder with a prevalence of more than 7% in the US population and 12% in the military. An interaction of childhood trauma with FKBP5 (a glucocorticoid-regulated immunophilin) has been reported to be associated with PTSD in the general population. However, there are few reports on the association of FKBP5 with PTSD, particularly in important high-risk population such as the military. Here, we examined the association between four single-nucleotide polymorphisms (SNPs; rs3800373, rs9296158, rs1360780, rs9470080) covering the FKBP5 gene and probable PTSD in US service members deployed to Iraq and Afghanistan, a high-risk military population (n = 3890) (Hines et al., 2014). We found that probable PTSD subjects were significantly more likely to carry the A-allele of rs3800373, G-allele of rs9296158, C-allele of rs1360780, and C-allele of rs9470080. Furthermore, the four SNPs were in one block of strong pairwise linkage disequilibrium (r = 0.91-0.96). Within the block there were two major haplotypes of CATT and AGCC (rs3800373-rs9296158-rs1360780-rs9470080) that account for 99% of haplotype diversity. The distribution of the AGCC haplotype was significantly higher in probable PTSD subjects compared to non-PTSD (p<.05). The diplotype-based analysis indicated that the AGCC carriers tended to be probable PTSD. In this study, we demonstrated the association between FKBP5 and probable PTSD in US service members deployed to Iraq and Afghanistan, indicating that FKBP5 might be a risk factor for PTSD.
Collapse
Affiliation(s)
- Lei Zhang
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Xian-Zhang Hu
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tianzheng Yu
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ze Chen
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Jacob Dohl
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Xiaoxia Li
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - David M Benedek
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Carol S Fullerton
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Gary Wynn
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - James E Barrett
- Department of Neurology, Drexel University College of Medicine Philadelphia, PA, 19102-1192, USA
| | - Mian Li
- Department of Neurology, Washington DC VA Medical Center, Washington, DC, 20422, USA
| | - Dale W Russell
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | | | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| |
Collapse
|
13
|
Mac Gillavry DW, Ullrich D. A novel theory on the predictive value of variation in the β-endorphin system on the risk and severity of PTSD. MILITARY PSYCHOLOGY 2020; 32:247-260. [PMID: 38536347 PMCID: PMC10013490 DOI: 10.1080/08995605.2020.1730111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023]
Abstract
Despite growing interest in genetic and psychosocial indicators of heightened susceptibility to posttraumatic stress disorder (PTSD), a predictive model, which explains why some individuals develop PTSD in response to life-threatening traumatic events, while others, when faced with the same or similar experiences, do not, has thus far remained out of reach. In this paper, we review the literature on gene-environment interactions in β-endorphin system functioning with regard to PTSD and suggest that variation, both genetic and with regard to environmental stimuli, in systems which, like the β-endorphin system, distort human perception of life-threatening traumatic experiences may account for some of the variance in resilience to the disorder. Given the role of β-endorphin in both social connections and physical exercise, this becomes especially relevant with regard to military selection, training, and leadership processes.
Collapse
Affiliation(s)
| | - David Ullrich
- Department of Military Leadership, University of Defence, Brno, Czech Republic
| |
Collapse
|
14
|
Hampstead BM, Mascaro N, Schlaefflin S, Bhaumik A, Laing J, Peltier S, Martis B. Variable symptomatic and neurophysiologic response to HD-tDCS in a case series with posttraumatic stress disorder. Int J Psychophysiol 2019; 154:93-100. [PMID: 31783040 DOI: 10.1016/j.ijpsycho.2019.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
Chronic Posttraumatic stress disorder (PTSD), characterized by symptoms of re-experiencing, hyperarousal, and avoidance, is challenging to treat as a significant proportion of patients remain symptomatic following even empirically supported interventions. The current case series investigated the effects of up to 10 sessions of high definition transcranial direct current stimulation (HD-tDCS) on symptoms of PTSD. Participants received HD-tDCS that targeted the right lateral temporal cortex (LTC; center cathode placed over T8), given this region's potential involvement in symptoms of re-experiencing and, possibly, hyperarousal. Five of the six enrolled patients completed at least 8 sessions. Of these five, four showed improvement in symptoms of re-experiencing after HD-tDCS. This improvement was accompanied by connectivity change in the right LTC as well as a larger extended fear network but not a control network that consisted of visual cortex regions; however, the nature of the change varied across participants as some showed increased connectivity whereas others showed decreased connectivity. These preliminary data suggest that HD-tDCS may be beneficial for treatment of specific PTSD symptoms, in at least some individuals, and warrants further investigation.
Collapse
Affiliation(s)
- Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA; Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Nathan Mascaro
- Trauma Recovery Program, Atlanta VAMC, Decatur, GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Stephen Schlaefflin
- Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Arijit Bhaumik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Julia Laing
- Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Scott Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Brian Martis
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Lee CM, Watson REB, Kleyn CE. The impact of perceived stress on skin ageing. J Eur Acad Dermatol Venereol 2019; 34:54-58. [PMID: 31407395 DOI: 10.1111/jdv.15865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
Skin ageing can be divided according to phenotypical features into intrinsic (by the passage of time) and extrinsic (with the addition of the effects of environmental factors). Photoageing is by far the most researched factor of extrinsic ageing but the additional impact of other factors such as cigarette smoking and exposure to air pollution ought to be taken into account. One of the least researched topics in relation to extrinsic skin ageing is the impact of psychological stress. A contemporary review of response of human skin to stress describes the molecular mechanisms of extrinsic skin ageing, but has fallen short of explaining resilience to stress exhibited by people. Mechanisms to regulate gene expression, define cellular identity and promote functionality are responsible for the adaptive response to stressful events. Conversely, maladaptive response of human tissues to chronic stress appears to have an impact on gene regulation. Epigenetics is the study of heritable changes in organisms due to modifications in gene activity and expression, as opposed to the genetic code (DNA genome). Chronic stress appears to be an important factor in determining an individual's vulnerability to ageing and age-related comorbidities via epigenetic modifications. Forerunners in epigenetic research recognized the necessity of a reliable biomarker in order to develop a better understanding of the role of epigenomics in ageing. Genomic DNA methylation patterns (DNAm) appear to be valuable in age prediction but variability in specificity exists across species of mammals, human races and tissues. Neuroscience research appears to be leading the way in epigenomics whilst the lack of a valid and reliable DNAm-associated age predictor compatible with human skin tissue hinders research endeavours for the epigenetics of skin ageing.
Collapse
Affiliation(s)
- C M Lee
- Department of Dermatology, Frimley Park Hospital, Frimley, Surrey, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - C E Kleyn
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
16
|
Brock MS, Powell TA, Creamer JL, Moore BA, Mysliwiec V. Trauma Associated Sleep Disorder: Clinical Developments 5 Years After Discovery. Curr Psychiatry Rep 2019; 21:80. [PMID: 31410580 DOI: 10.1007/s11920-019-1066-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review recent and growing evidence that provides support for a novel parasomnia, trauma associated sleep disorder (TASD). Based on these findings, we further develop the clinical and polysomnographic (PSG) characteristics of TASD. We also address factors that precipitate TASD, develop a differential diagnosis, discuss therapy, and propose future directions for research. RECENT FINDINGS Nightmares, classically a REM phenomenon, are prevalent and underreported, even in individuals with trauma exposure. When specifically queried, trauma-related nightmares (TRN) are frequently associated with disruptive nocturnal behaviors (DNB), consistent with TASD. Capture of DNB in the lab is rare but ambulatory monitoring reveals dynamic autonomic concomitants associated with disturbed dreaming. TRN may be reported in NREM as well as REM sleep, though associated respiratory events may confound this finding. Further, dream content is more distressing in REM. Therapy for this complex disorder likely requires addressing not only the specific TASD components of TRN and DNB but comorbid sleep disorders. TASD is a unique parasomnia developing after trauma. Trauma-exposed individuals should be specifically asked about their sleep and if they have nightmares with or without DNB. Patients who report TRN warrant in-lab PSG as part of their evaluation.
Collapse
Affiliation(s)
- Matthew S Brock
- Department of Sleep Medicine, San Antonio Uniformed Services Health Education Consortium, San Antonio, TX, USA.
| | - Tyler A Powell
- Department of Sleep Medicine, San Antonio Uniformed Services Health Education Consortium, San Antonio, TX, USA
| | - Jennifer L Creamer
- Sleep Medicine Center, Martin Army Community Hospital, Fort Benning, GA, USA
| | - Brian A Moore
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,University of Texas at San Antonio, San Antonio, TX, USA
| | - Vincent Mysliwiec
- Department of Sleep Medicine, San Antonio Uniformed Services Health Education Consortium, San Antonio, TX, USA
| |
Collapse
|
17
|
Schultebraucks K, Galatzer-Levy IR. Machine Learning for Prediction of Posttraumatic Stress and Resilience Following Trauma: An Overview of Basic Concepts and Recent Advances. J Trauma Stress 2019; 32:215-225. [PMID: 30892723 DOI: 10.1002/jts.22384] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/23/2018] [Accepted: 12/02/2018] [Indexed: 12/23/2022]
Abstract
Posttraumatic stress responses are characterized by a heterogeneity in clinical appearance and etiology. This heterogeneity impacts the field's ability to characterize, predict, and remediate maladaptive responses to trauma. Machine learning (ML) approaches are increasingly utilized to overcome this foundational problem in characterization, prediction, and treatment selection across branches of medicine that have struggled with similar clinical realities of heterogeneity in etiology and outcome, such as oncology. In this article, we review and evaluate ML approaches and applications utilized in the areas of posttraumatic stress, stress pathology, and resilience research, and present didactic information and examples to aid researchers interested in the relevance of ML to their own research. The examined studies exemplify the high potential of ML approaches to build accurate predictive and diagnostic models of posttraumatic stress and stress pathology risk based on diverse sources of available information. The use of ML approaches to integrate high-dimensional data demonstrates substantial gains in risk prediction even when the sources of data are the same as those used in traditional predictive models. This area of research will greatly benefit from collaboration and data sharing among researchers of posttraumatic stress disorder, stress pathology, and resilience.
Collapse
Affiliation(s)
| | - Isaac R Galatzer-Levy
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.,AiCure, New York, NY, USA
| |
Collapse
|
18
|
Abstract
The processing and regulation of fear is one of the key components of posttraumatic stress disorder (PTSD). Fear can involve both acute and potential threats that can manifest in different behaviors and result from activity within different neural nodes and networks. Fear circuits have been studied extensively in animal models for several decades and in human neuroimaging research for almost 20 years. Therefore, the centrality of fear processing to PTSD lends the disorder to be more tractable to investigation at the level of brain and behavior, and provides several observable phenotypes that can be linked to PTSD symptoms. Moreover, psychophysiological metrics of fear conditioning offer tools that can be used to shift diagnostic paradigms in psychiatry toward neurobiology-consistent with a Research Domain Criteria approach to PTSD. In general, mammalian fear processing can be divided into fear learning (or acquisition), during which an association develops between previously neutral stimuli and aversive outcomes, and fear extinction, in which the latter associations are suppressed by a new form of learning. This review describes translational research in both fear acquisition and extinction, along with their relevance to PTSD and PTSD treatment, focusing specifically on the empirical value and potential clinical utility of psychophysiological methods.
Collapse
|
19
|
Cheng W, Han F, Shi Y. Neonatal isolation modulates glucocorticoid-receptor function and synaptic plasticity of hippocampal and amygdala neurons in a rat model of single prolonged stress. J Affect Disord 2019; 246:682-694. [PMID: 30611912 DOI: 10.1016/j.jad.2018.12.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Early life and stressful experiences affect hippocampal and amygdala structure and function. They also increase the incidence of mental and nervous system disorders in adults. However, prospective studies have yet to show if early-life experiences affect the risk/severity of post-traumatic stress disorder (PTSD). METHODS We applied neonatal isolation (NI) alone, single prolonged stress (SPS) alone and NI + SPS to rats. We evaluated anxiety-like behavior and spatial memory of behavior using open field, elevated plus maze, and Morris water maze tests. Then, we measured expression of glucocorticoid receptors (GRs) and synaptic-related proteins by immunofluorescence, immunohistochemistry and western blotting in the hippocampus and amygdala. RESULTS NI + SPS exacerbated the increased anxiety levels and impaired spatial memory induced by NI alone or SPS alone. NI alone or SPS alone induced varying degrees of change in expression of GRs and synaptic proteins (synapsin I and postsynaptic density protein-95) in the hippocampus and amygdala. There were opposite changes in GR expression in the hippocampal dentate gyrus and basolateral amygdala. The degree of such change was exacerbated considerably by NI + SPS. In addition, neuroligin (NLG)-1 and NLG-2 were distributed in postsynaptic sites of excitatory and inhibitory synapses, respectively. NI, SPS, and NI + SPS altered the patterns of NLG-1 and NLG-2 colocalization as well as their intensity. NI + SPS strengthened the increased ratio of NLG-1/NLG-2 in the hippocampus, but decreased this ratio in the amygdala. CONCLUSIONS NI and SPS together induced greater degrees of change in anxiety and spatial memory, as well as GR and synaptic protein levels, in the hippocampus and amygdala than the changes induced by NI alone or SPS alone.
Collapse
Affiliation(s)
- Wei Cheng
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China; Neonatal Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China.
| |
Collapse
|
20
|
Agorastos A, Pervanidou P, Chrousos GP, Baker DG. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 2019; 10:118. [PMID: 30914979 PMCID: PMC6421311 DOI: 10.3389/fpsyt.2019.00118] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Early life stressors display a high universal prevalence and constitute a major public health problem. Prolonged psychoneurobiological alterations as sequelae of early life stress (ELS) could represent a developmental risk factor and mediate risk for disease, leading to higher physical and mental morbidity rates in later life. ELS could exert a programming effect on sensitive neuronal brain networks related to the stress response during critical periods of development and thus lead to enduring hyper- or hypo-activation of the stress system and altered glucocorticoid signaling. In addition, alterations in emotional and autonomic reactivity, circadian rhythm disruption, functional and structural changes in the brain, as well as immune and metabolic dysregulation have been lately identified as important risk factors for a chronically impaired homeostatic balance after ELS. Furthermore, human genetic background and epigenetic modifications through stress-related gene expression could interact with these alterations and explain inter-individual variation in vulnerability or resilience to stress. This narrative review presents relevant evidence from mainly human research on the ten most acknowledged neurobiological allostatic pathways exerting enduring adverse effects of ELS even decades later (hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system and inflammation, oxidative stress, cardiovascular system, gut microbiome, sleep and circadian system, genetics, epigenetics, structural, and functional brain correlates). Although most findings back a causal relation between ELS and psychobiological maladjustment in later life, the precise developmental trajectories and their temporal coincidence has not been elucidated as yet. Future studies should prospectively investigate putative mediators and their temporal sequence, while considering the potentially delayed time-frame for their phenotypical expression. Better screening strategies for ELS are needed for a better individual prevention and treatment.
Collapse
Affiliation(s)
- Agorastos Agorastos
- II. Department of Psychiatry, Division of Neurosciences, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, Aghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,VA Center of Excellence for Stress and Mental Health, San Diego, La Jolla, CA, United States
| |
Collapse
|
21
|
Agorastos A, Pervanidou P, Chrousos GP, Kolaitis G. Early life stress and trauma: developmental neuroendocrine aspects of prolonged stress system dysregulation. Hormones (Athens) 2018; 17:507-520. [PMID: 30280316 DOI: 10.1007/s42000-018-0065-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Experience of early life stress (ELS) and trauma is highly prevalent in the general population and has a high public health impact, as it can trigger a health-related risk cascade and lead to impaired homeostatic balance and elevated cacostatic load even decades later. The prolonged neuropsychobiological impact of ELS can, thus, be conceptualized as a common developmental risk factor for disease associated with increased physical and mental morbidity in later life. ELS during critical periods of brain development with elevated neuroplasticity could exert a programming effect on particular neuronal networks related to the stress response and lead to enduring neuroendocrine alterations, i.e., hyper- or hypoactivation of the stress system, associated with adult hypothalamic-pituitary-adrenal axis and glucocorticoid signaling dysregulation. This paper reviews the pathophysiology of the human stress response and provides evidence from human research on the most acknowledged stress axis-related neuroendocrine pathways exerting the enduring adverse effects of ELS and mediating the cumulative long-term risk of disease vulnerability in adulthood.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Thessaloniki General Hospital "G. Papanicolaou", Psychiatric Hospital of Thessaloniki, Lagkada Str. 196, Stavroupoli, 56430, Thessaloniki, Greece.
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Kolaitis
- Department of Child Psychiatry, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Lim PH, Shi G, Wang T, Jenz ST, Mulligan MK, Redei EE, Chen H. Genetic Model to Study the Co-Morbid Phenotypes of Increased Alcohol Intake and Prior Stress-Induced Enhanced Fear Memory. Front Genet 2018; 9:566. [PMID: 30538720 PMCID: PMC6277590 DOI: 10.3389/fgene.2018.00566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Posttraumatic Stress Disorder (PTSD) is a complex illness, frequently co-morbid with depression, caused by both genetics, and the environment. Alcohol Use Disorder (AUD), which also co-occurs with depression, is often co-morbid with PTSD. To date, very few genes have been identified for PTSD and even less for PTSD comorbidity with AUD, likely because of the phenotypic heterogeneity seen in humans, combined with each gene playing a relatively small role in disease predisposition. In the current study, we investigated whether a genetic model of depression-like behavior, further developed from the depression model Wistar Kyoto (WKY) rat, is a suitable vehicle to uncover the genetics of co-morbidity between PTSD and AUD. The by-now inbred WKY More Immobile (WMI) and the WKY Less Immobile (WLI) rats were generated from the WKY via bidirectional selective breeding using the forced swim test, a measure of despair-like behavior, as the functional selector. The colonies of the WMIs that show despair-like behavior and the control strain showing less or no despair-like behavior, the WLI, are maintained with strict inbreeding over 40 generations to date. WMIs of both sexes intrinsically self-administer more alcohol than WLIs. Alcohol self-administration is increased in the WMIs without sucrose fading, water deprivation or any prior stress, mimicking the increased voluntary alcohol-consumption of subjects with AUD. Prior Stress-Enhanced Fear Learning (SEFL) is a model of PTSD. WMI males, but not females, show increased SEFL after acute restraint stress in the context-dependent fear conditioning paradigm, a sexually dimorphic pattern similar to human data. Plasma corticosterone differences between stressed and not-stressed WLI and WMI male and female animals immediately prior to fear conditioning predict SEFL results. These data demonstrate that the WMI male and its genetically close, but behaviorally divergent control the WLI male, would be suitable for investigating the underlying genetic basis of comorbidity between SEFL and alcohol self-administration.
Collapse
Affiliation(s)
- Patrick Henry Lim
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Guang Shi
- Liaoning Provincial People's Hospital, Liaoning Sheng, China
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sophia T Jenz
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Megan K Mulligan
- Department of Genetics Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Science, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
23
|
Chheang D, Connolly EJ. A Review of the Historical, Criminological, and Theoretical Understandings of the Cambodian American Population: A Call for More Comprehensive Research. INTERNATIONAL JOURNAL OF OFFENDER THERAPY AND COMPARATIVE CRIMINOLOGY 2018; 62:2624-2649. [PMID: 28929837 DOI: 10.1177/0306624x17732579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The collective view of Asian Americans as model minorities is evident with the extensive amount of statistical data showing support for the academic and socioeconomic success of Asian Americans in the United States. This perception, however, often presents an inaccurate portrayal of Asian Americans, in general, as it overlooks many of the difficulties and hardships experienced by Asian American ethnic groups such as Southeast Asians. Within this group, Cambodian Americans are at the highest risk for experiencing socioeconomic hardships, behavioral health problems, substance use disorders, and contact with the criminal justice system, with deportation also being a prevailing issue. Unfortunately, research in this area is scant and contemporary research on Cambodian Americans has several limitations. To begin to address this issue, the present article merges information from existing research on this population from a sociohistorical, criminological, and theoretical standpoint to call for more comprehensive research on Cambodian Americans.
Collapse
|
24
|
Guillén-Burgos HF, Gutiérrez-Ruiz K. Avances genéticos en el trastorno por estrés postraumático. ACTA ACUST UNITED AC 2018; 47:108-118. [DOI: 10.1016/j.rcp.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/29/2016] [Accepted: 12/02/2016] [Indexed: 01/30/2023]
|
25
|
Lucke-Wold B, Nolan R, Nwafor D, Nguyen L, Cheyuo C, Turner R, Rosen C, Marsh R. Post-Traumatic Stress Disorder Delineating the Progression and Underlying Mechanisms Following Blast Traumatic Brain Injury. JOURNAL OF NEUROSCIENCE AND NEUROPHARMACOLOGY 2018; 4:118. [PMID: 29888766 PMCID: PMC5993449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Posttraumatic Stress Disorder (PTSD) is a devastating condition that can develop after blast Traumatic Brain Injury (TBI). Ongoing work has been performed to understand how PTSD develops after injury. In this review, we highlight how PTSD affects individuals, discuss what is known about the physiologic changes to the hypothalamic pituitary axis and neurotransmitter pathways, and present an overview of genetic components that may predispose individuals to developing PTSD. We then provide an overview of current treatment strategies to treat PTSD in veterans and present new strategies that may be useful going forward. The need for further clinical and pre-clinical studies is imperative to improve diagnosis, treatment, and management for patients that develop PTSD following blast TBI.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, West Virginia University School of
Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University Health Science
Center, Morgantown, WV, USA
| | - Richard Nolan
- Department of Neurosurgery, West Virginia University School of
Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University Health Science
Center, Morgantown, WV, USA
| | - Divine Nwafor
- Department of Neurosurgery, West Virginia University School of
Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University Health Science
Center, Morgantown, WV, USA
| | - Linda Nguyen
- Department of Pediatric Neurology, University of California San
Diego, San Diego, CA, USA
| | - Cletus Cheyuo
- Department of Neurosurgery, West Virginia University School of
Medicine, Morgantown, WV, USA
| | - Ryan Turner
- Department of Neurosurgery, West Virginia University School of
Medicine, Morgantown, WV, USA
| | - Charles Rosen
- Department of Neurosurgery, West Virginia University School of
Medicine, Morgantown, WV, USA
| | - Robert Marsh
- Department of Neurosurgery, West Virginia University School of
Medicine, Morgantown, WV, USA
| |
Collapse
|
26
|
Deslauriers J, Acheson DT, Maihofer AX, Nievergelt CM, Baker DG, Geyer MA, Risbrough V. COMT val158met polymorphism links to altered fear conditioning and extinction are modulated by PTSD and childhood trauma. Depress Anxiety 2018; 35:32-42. [PMID: 28833952 PMCID: PMC5760328 DOI: 10.1002/da.22678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Risk for posttraumatic stress disorder (PTSD) is thought to be mediated by gene × environment (G × E) interactions that affect core cognitive processes such as fear learning. The catechol-O-methyltransferase (COMT) val158met polymorphism has been associated with risk for PTSD and impaired fear inhibition. We used a large, relatively homogenous population to (1) replicate previous findings of poor fear inhibition in COMT Met/Met carriers with PTSD; (2) determine if COMT association with fear inhibition is moderated by childhood trauma (CT), an environmental risk factor for PTSD; and (3) determine if COMT is associated with altered fear processes after recent exposure to combat trauma. METHODS Male Marines and Navy Corpsmen of European-American ancestry were assessed prior to (n = 714) and 4-6 months after deployment to Afghanistan (n = 452). Acquisition and extinction of fear-potentiated startle, childhood and combat trauma history, and PTSD diagnosis were assessed at both time points. RESULTS Before deployment, Met/Met genotype was associated with fear inhibition deficits in participants with current PTSD; however, this association was dependent on CT exposure. After deployment, combat trauma was associated with a modest reduction in fear extinction in Met/Met compared with Val/Val carriers. There were no associations of COMT genotype with fear extinction within healthy and non-traumatized individuals. CONCLUSIONS These findings support the hypothesis that G × E interactions underlie associations of COMT val158met with fear inhibition deficits. These studies confirm that Met/Met carriers with PTSD have poor fear inhibition, and support further research in understanding how this polymorphism might impact response to extinction-based therapies.
Collapse
Affiliation(s)
- Jessica Deslauriers
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Dean T Acheson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Mental Illness Research, Education, and Clinical Center, San Diego Veterans Affairs Healthcare System, San Diego, California
| | - Victoria Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
| | - Marine Resiliency Study Team
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs Hospital, La Jolla, CA, USA
- Mental Illness Research, Education, and Clinical Center, San Diego Veterans Affairs Healthcare System, San Diego, California
| |
Collapse
|
27
|
Exploring the Link Between Posttraumatic Stress Disorder and inflammation-Related Medical Conditions: An Epidemiological Examination. Psychiatr Q 2017; 88:909-916. [PMID: 28342139 DOI: 10.1007/s11126-017-9508-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There have been few epidemiological studies exploring the link between PTSD and inflammation using population-based samples. This study examined the relation between posttraumatic stress disorder (PTSD) and inflammation-related medical conditions using data from the 2013-2014 New York City Health and Nutrition Examination Survey. Using a representative sample of 1,527 residents in New York City, the association between PTSD and 17 inflammation-related medical conditions were examined. Bivariate and multivariable analyses were conducted, adjusting for demographic characteristics and lifetime depression. PTSD was strongly associated with increased odds for hypercholesterolemia, insulin resistance, angina, heart attack, and emphysema with the greatest odds observed for heart attack (OR= 3.94) and emphysema (OR= 4.06). But PTSD was also associated with lower odds for hypertension, type 1 diabetes, asthma, coronary heart disease, stroke, osteoporosis, and a failing kidney with the lowest odds observed for type 1 diabetes (OR= 0.43). These findings suggest a complex link between PTSD and inflammation-related medical conditions.
Collapse
|
28
|
Carvalho CM, Coimbra BM, Ota VK, Mello MF, Belangero SI. Single-nucleotide polymorphisms in genes related to the hypothalamic-pituitary-adrenal axis as risk factors for posttraumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 2017; 174:671-682. [PMID: 28686326 DOI: 10.1002/ajmg.b.32564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a common psychiatric disorder. The etiology of PTSD is multifactorial, depending on many environmental and genetic risk factors, and the exposure to life or physical integrity-threatening events. Several studies have shown significant correlations of many neurobiological findings with PTSD. Hypothalamic-pituitary-adrenal (HPA) axis dysfunction is strongly correlated with this disorder. One hypothesis is that HPA axis dysfunction may precede the traumatic event, suggesting that genes expressed in the HPA axis may be involved in the development of PTSD. This article reviews molecular genetic studies related to PTSD collected through a literature search performed in PubMed, MEDLINE, ScienceDirect, and Scientific Electronic Library Online (SciELO). The results of these studies suggest that several polymorphisms in the HPA axis genes, including FKBP5, NR3C1, CRHR1, and CRHR2, may be risk factors for PTSD development or may be associated with the severity of PTSD symptoms.
Collapse
Affiliation(s)
- Carolina M Carvalho
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,LINC-Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno M Coimbra
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vanessa K Ota
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,LINC-Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo F Mello
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia I Belangero
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,LINC-Interdisciplinary Laboratory of Clinical Neurosciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Posttraumatic stress disorder (PTSD) is characterized by hyperarousal and recurrent stressful memories after an emotionally traumatic event. Extensive research has been conducted to identify the neurobiological determinants that underlie the pathophysiology of PTSD. In this review, we examine evidence regarding the molecular and cellular pathophysiology of PTSD focusing on two primary brain regions: the vmPFC and the amygdala. RECENT FINDINGS This discussion includes a review of the molecular alterations related to PTSD, focusing mainly on changes to glucocorticoid receptor signaling. We also examine postmortem gene expression studies that have been conducted to date and the molecular changes that have been observed in peripheral blood studies of PTSD patients. Causal, mechanistic evidence is difficult to obtain in human studies, so we also review preclinical models of PTSD. Integration of peripheral blood and postmortem studies with preclinical models of PTSD has begun to reveal the molecular changes occurring in patients with PTSD. These findings indicate that the pathophysiology of PTSD includes disruption of glucocorticoid signaling and inflammatory systems and occurs at the level of altered gene expression. We will assess the impact of these findings on the future of PTSD molecular research.
Collapse
Affiliation(s)
- Matthew J Girgenti
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Brendan D Hare
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Sriparna Ghosal
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA
| | - Ronald S Duman
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Yale University School of Medicine, New Haven, CT, 06508, USA.
| |
Collapse
|
30
|
Post LM, Michopoulos V, Stevens JS, Reddy R, Maples JL, Morgan JR, Rothbaum AO, Jovanovic T, Ressler KJ, Rothbaum BO. Psychological and psychobiological responses to immediate early intervention in the emergency department: Case report of one-session exposure therapy for the prevention of PTSD. ACTA ACUST UNITED AC 2017; 2:55-65. [PMID: 28993816 DOI: 10.1037/pri0000043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research suggests that exposure therapy provided in the hours immediately following trauma exposure may prevent PTSD development. This case report presents data on an at-risk for PTSD participant involved in a motor-vehicle crash that caused her severe distress. She received one session of exposure therapy in the emergency department (ED) as part of an ongoing randomized controlled study examining the optimal dose of exposure therapy in the immediate aftermath of trauma. PTSD and depression measures were collected at pre-treatment assessment and one- and three-month follow-up. Potential PTSD biomarkers were also examined. Psychophysiological reactions were measured using skin conductance data measured on an iPad during the exposure therapy session and the follow-up assessments. A fear-potentiated startle paradigm and an functional magnetic resonance imaging (fMRI) behavioral inhibition task were used at follow-up. The participant demonstrated subjective and psychophysiological extinction from pre- to post-imaginal exposure. At follow-up, she did not meet DSM-IV criteria for PTSD or demonstrate hyperarousal to trauma reminders and showed robust fear extinction and the ability to inhibit responses in an fMRI behavioral inhibition task. In line with previous early intervention for the prevention of PTSD studies, this case report supports the need for ongoing empirical research investigating the possibility that one session of exposure therapy in the ED may attenuate risk for PTSD. Furthermore, the current findings demonstrate psychophysiological extinction serving as a prognostic indicator of treatment response for PTSD early intervention to be an exciting avenue to explore in future systematic research.
Collapse
Affiliation(s)
- Loren M Post
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia
| | - Jennifer S Stevens
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia
| | - Renuka Reddy
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia
| | - Jessica L Maples
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia.,University of Georgia, Department of Psychology, Athens, Georgia
| | - Jessica R Morgan
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia.,Georgia State University, Department of Psychology, Atlanta, Georgia
| | - Alex O Rothbaum
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia
| | - Tanja Jovanovic
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia
| | - Kerry J Ressler
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia.,Yerkes National Primate Research Center, Atlanta, Georgia.,Howard Hughes Medical Institute, Bethesda, Maryland
| | - Barbara O Rothbaum
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia
| |
Collapse
|
31
|
Banerjee SB, Morrison FG, Ressler KJ. Genetic approaches for the study of PTSD: Advances and challenges. Neurosci Lett 2017; 649:139-146. [PMID: 28242325 DOI: 10.1016/j.neulet.2017.02.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30-40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder. This review will summarize recent research on genetic approaches to understanding PTSD risk and resilience in human populations, including candidate genes and their epigenetic modifications, genome-wide association studies and neural imaging genetics approaches. Despite challenges faced within this field of study such as inconsistent results and replications, genetic approaches still offer exciting opportunities for the identification and development of novel therapeutic targets and therapies in the future.
Collapse
Affiliation(s)
- Sunayana B Banerjee
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA
| | - Filomene G Morrison
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, GA 30329, USA; McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
32
|
Zoladz PR, Dailey AM, Nagle HE, Fiely MK, Mosley BE, Brown CM, Duffy TJ, Scharf AR, Earley MB, Rorabaugh BR. ADRA2B deletion variant influences time-dependent effects of pre-learning stress on long-term memory. Neurobiol Learn Mem 2017; 140:71-81. [PMID: 28254464 DOI: 10.1016/j.nlm.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Extensive work over the past few decades has shown that certain genetic variations interact with life events to confer increased susceptibility for the development of psychological disorders. The deletion variant of the ADRA2B gene, which has been associated with enhanced emotional memory and heightened amygdala responses to emotional stimuli, might confer increased susceptibility for the development of post-traumatic stress disorder (PTSD) or related phenotypes by increasing the likelihood of traumatic memory formation. Thus, we examined whether this genetic variant would predict stress effects on learning and memory in a non-clinical sample. Two hundred and thirty-five individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30min prior to learning a list of words that varied in emotional valence and arousal level. Participants' memory for the words was tested immediately (recall) and 24h after learning (recall and recognition), and saliva samples were collected to genotype participants for the ADRA2B deletion variant. Results showed that stress administered immediately before learning selectively enhanced long-term recall in deletion carriers. Stress administered 30min before learning impaired recognition memory in male deletion carriers, while enhancing recognition memory in female deletion carriers. These findings provide additional evidence to support the idea that ADRA2B deletion variant carriers retain a sensitized stress response system, which results in amplified effects of stress on learning and memory. The accumulating evidence regarding this genetic variant implicates it as a susceptibility factor for traumatic memory formation and PTSD-related phenotypes.
Collapse
Affiliation(s)
- Phillip R Zoladz
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA.
| | - Alison M Dailey
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Hannah E Nagle
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Miranda K Fiely
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Brianne E Mosley
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Callie M Brown
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Tessa J Duffy
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Amanda R Scharf
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - McKenna B Earley
- Department of Psychology, Sociology, & Criminal Justice, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical & Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, 525 S. Main St., Ada, OH 45810, USA
| |
Collapse
|
33
|
Birur B, Moore NC, Davis LL. An Evidence-Based Review of Early Intervention and Prevention of Posttraumatic Stress Disorder. Community Ment Health J 2017; 53:183-201. [PMID: 27470261 DOI: 10.1007/s10597-016-0047-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2016] [Indexed: 12/13/2022]
Abstract
We present an evidence-based review of post-trauma interventions used to prevent posttraumatic stress disorder (PTSD). Literature search of PubMed from 1988 to March 2016 using keywords "Early Intervention AND Prevention of PTSD" yielded 142 articles, of which 52 intervention studies and 6 meta-analyses were included in our review. Trauma-focused cognitive behavioral therapy and modified prolonged exposure delivered within weeks of a potentially traumatic event for people showing signs of distress have the most evidence in the treatment of acute stress and early PTSD symptoms, and the prevention of PTSD. Even though several pharmacological agents have been tried, only hydrocortisone prior to high-risk surgery, severe traumatic injury, or during acute sepsis has adequate evidence for effectiveness in the reduction of acute stress symptoms and prevention of PTSD. There is an urgent need to determine the best targets for interventions after trauma to accelerate recovery and prevent PTSD.
Collapse
Affiliation(s)
- Badari Birur
- Department of Psychiatry, University of Alabama at Birmingham, 1713 6th Avenue South, Birmingham, AL, 35210, USA.
| | - Norman C Moore
- Department of Psychiatry, Quillen College of Medicine, East Tennessee State University, 70567, Johnson City, TN, 37614-1707, USA
| | - Lori L Davis
- Department of Psychiatry, University of Alabama at Birmingham, 1713 6th Avenue South, Birmingham, AL, 35210, USA.,VA Medical Center, 3701, Loop Road East, Tuscaloosa, AL, 35404, USA
| |
Collapse
|
34
|
Prediction of Possible Biomarkers and Novel Pathways Conferring Risk to Post-Traumatic Stress Disorder. PLoS One 2016; 11:e0168404. [PMID: 27997584 PMCID: PMC5172609 DOI: 10.1371/journal.pone.0168404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/29/2016] [Indexed: 02/02/2023] Open
Abstract
Post-traumatic stress disorder is one of the common mental ailments that is triggered by exposure to traumatic events. Till date, the molecular factors conferring risk to the development of PTSD is not well understood. In this study, we have conducted a meta-analysis followed by hierarchical clustering and functional enrichment, to uncover the potential molecular networks and critical genes which play an important role in PTSD. Two datasets of expression profiles from Peripheral Blood Mononuclear Cells from 62 control samples and 63 PTSD samples were included in our study. In PTSD samples of GSE860 dataset, we identified 26 genes informative when compared with Post-deploy PTSD condition and 58 genes informative when compared with Pre-deploy and Post-deploy PTSD of GSE63878 dataset. We conducted the meta-analysis using Fisher, roP, Stouffer, AW, SR, PR and RP methods in MetaDE package. Results from the rOP method of MetaDE package showed that among these genes, the following showed significant changes including, OR2B6, SOX21, MOBP, IL15, PTPRK, PPBPP2 and SEC14L5. Gene ontology analysis revealed enrichment of these significant PTSD-related genes for cell proliferation, DNA damage and repair (p-value ≤ 0.05). Furthermore, interaction network analysis was performed on these 7 significant genes. This analysis revealed highly connected functional interaction networks with two candidate genes, IL15 and SEC14L5 highly enriched in networks. Overall, from these results, we concluded that these genes can be recommended as some of the potential targets for PTSD.
Collapse
|
35
|
Martínez L, Prada E, Satler C, Tavares MCH, Tomaz C. Executive Dysfunctions: The Role in Attention Deficit Hyperactivity and Post-traumatic Stress Neuropsychiatric Disorders. Front Psychol 2016; 7:1230. [PMID: 27602003 PMCID: PMC4993788 DOI: 10.3389/fpsyg.2016.01230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Executive functions (EFs) is an umbrella term for various cognitive processes controlled by a complex neural activity, which allow the production of different types of behaviors seeking to achieve specific objectives, one of them being inhibitory control. There is a wide consensus that clinical and behavioral alterations associated with EF, such as inhibitory control, are present in various neuropsychiatric disorders. This paper reviews the research literature on the relationship between executive dysfunction, frontal-subcortical neural circuit changes, and the psychopathological processes associated with attention deficit hyperactivity disorder (ADHD) and post-traumatic stress disorder (PTSD). A revision on the role of frontal-subcortical neural circuits and their presumable abnormal functioning and the high frequency of neuropsychiatric symptoms could explain the difficulties with putting effector mechanisms into action, giving individuals the necessary tools to act efficiently in their environment. Although, neuronal substrate data about ADHD and PTSD has been reported in the literature, it is isolated. Therefore, this review highlights the overlapping of neural substrates in the symptomatology of ADHD and PTSD disorders concerning EFs, especially in the inhibitory component. Thus, the changes related to impaired EF that accompany disorders like ADHD and PTSD could be explained by disturbances that have a direct or indirect impact on the functioning of these loops. Initially, the theoretical model of EF according to current neuropsychology will be presented, focusing on the inhibitory component. In a second stage, this component will be analyzed for each of the disorders of interest, considering the clinical aspects, the etiology and the neurobiological basis. Additionally, commonalities between the two neuropsychiatric conditions will be taken into consideration from the perspectives of cognitive and emotional inhibition. Finally, the implications and future prospects for research and interventions in the area will be outlined, with the intention of contributing scientific reference information that encompasses the knowledge and understanding of executive dysfunction and its relationship with these treated disorders.
Collapse
Affiliation(s)
- Lía Martínez
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of Brasilia Brasilia, Brazil
| | - Edward Prada
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of BrasiliaBrasilia, Brazil; Faculty of Psychology, Social Sciences Department, Universidad Pontificia Bolivariana Seccional BucaramangaBucaramanga, Colombia
| | - Corina Satler
- Faculty of Ceilandia, University of Brasilia Brasilia, Brazil
| | - Maria C H Tavares
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of Brasilia Brasilia, Brazil
| | - Carlos Tomaz
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of BrasiliaBrasilia, Brazil; Neuroscience Research Program, University CEUMASão Luis, Brazil
| |
Collapse
|
36
|
Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3975101. [PMID: 27563374 PMCID: PMC4983669 DOI: 10.1155/2016/3975101] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.
Collapse
|
37
|
Matchynski-Franks JJ, Susick LL, Schneider BL, Perrine SA, Conti AC. Impaired Ethanol-Induced Sensitization and Decreased Cannabinoid Receptor-1 in a Model of Posttraumatic Stress Disorder. PLoS One 2016; 11:e0155759. [PMID: 27186643 PMCID: PMC4871361 DOI: 10.1371/journal.pone.0155759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/13/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Impaired striatal neuroplasticity may underlie increased alcoholism documented in those with posttraumatic stress disorder (PTSD). Cannabinoid receptor-1 (CB1) is sensitive to the effects of ethanol (EtOH) and traumatic stress, and is a critical regulator of striatal plasticity. To investigate CB1 involvement in the PTSD-alcohol interaction, this study measured the effects of traumatic stress using a model of PTSD, mouse single-prolonged stress (mSPS), on EtOH-induced locomotor sensitization and striatal CB1 levels. METHODS Mice were exposed to mSPS, which includes: 2-h restraint, 10-min group forced swim, 15-min exposure to rat bedding odor, and diethyl ether exposure until unconsciousness or control conditions. Seven days following mSPS exposure, the locomotor sensitizing effects of EtOH were assessed. CB1, post-synaptic density-95 (PSD95), and dopamine-2 receptor (D2) protein levels were then quantified in the dorsal striatum using standard immunoblotting techniques. RESULTS Mice exposed to mSPS-EtOH demonstrated impaired EtOH-induced locomotor sensitization compared to Control-EtOH mice, which was accompanied by reduced striatal CB1 levels. EtOH increased striatal PSD95 in control and mSPS-exposed mice. Additionally, mSPS-Saline exposure increased striatal PSD95 and decreased D2 protein expression, with mSPS-EtOH exposure alleviating these changes. CONCLUSIONS These data indicate that the mSPS model of PTSD blunts the behavioral sensitizing effects of EtOH, a response that suggests impaired striatal neuroplasticity. Additionally, this study demonstrates that mice exposed to mSPS and repeated EtOH exposure decreases CB1 in the striatum, providing a mechanism of interest for understanding the effects of EtOH following severe, multimodal stress exposure.
Collapse
Affiliation(s)
- Jessica J. Matchynski-Franks
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Laura L. Susick
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brandy L. Schneider
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Alana C. Conti
- Research Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
38
|
Overexpression of Forebrain CRH During Early Life Increases Trauma Susceptibility in Adulthood. Neuropsychopharmacology 2016; 41:1681-90. [PMID: 26538448 PMCID: PMC4832031 DOI: 10.1038/npp.2015.338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/30/2015] [Accepted: 10/29/2015] [Indexed: 01/02/2023]
Abstract
Although early-life stress is a significant risk factor for developing anxiety disorders, including posttraumatic stress disorder (PTSD), the underlying mechanisms are unclear. Corticotropin releasing hormone (CRH) is disrupted in individuals with PTSD and early-life stress and hence may mediate the effects of early-life stress on PTSD risk. We hypothesized that CRH hyper-signaling in the forebrain during early development is sufficient to increase response to trauma in adulthood. To test this hypothesis, we induced transient, forebrain-specific, CRH overexpression during early-life (pre-puberty, CRHOEdev) in double-mutant mice (Camk2a-rtta2 × tetO-Crh) and tested their behavioral and gene expression responses to the predator stress model of PTSD in adulthood. In one cohort of CRHOEdev exposed and unexposed mice, avoidance and arousal behaviors were examined 7-15 days after exposure to predator stress. In another cohort, gene expression changes in Crhr1, Crhr2, and Fkbp51 in forebrain of CRHOEdev exposed and unexposed mice were examined 7 days after predator stress. CRHOEdev induced robust increases in startle reactivity and reductions in startle inhibition independently of predator stress in both male and female mice. Avoidance behaviors after predator stress were highly dependent on sex and CRHOEdev exposure. Whereas stressed females exhibited robust avoidance responses that were not altered by CRHOEdev, males developed significant avoidance only when exposed to both CRHOEdev and stress. Quantitative real-time-PCR analysis indicated that CRHOEdev unexposed males exhibit significant changes in Crhr2 expression in the amygdala and bed nucleus stria terminalis in response to stress, whereas males exposed to CRHOEdev did not. Similar to CRHOEdev males, females exhibited no significant Crhr2 gene expression changes in response to stress. Cortical Fkbp51 expression was also significantly reduced by stress and CRHOEdev exposure in males, but not in females. These findings indicate that forebrain CRH hyper-signaling in early-life is sufficient to increase enduring effects of adult trauma and attenuate Crhr2 expression changes in response to stress in males. These data support growing evidence for significant sex differences in response to trauma, and support further study of CRHR2 as a candidate mechanism for PTSD risk.
Collapse
|
39
|
Lebois LAM, Wolff JD, Ressler KJ. Neuroimaging genetic approaches to Posttraumatic Stress Disorder. Exp Neurol 2016; 284:141-152. [PMID: 27109180 DOI: 10.1016/j.expneurol.2016.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 12/16/2022]
Abstract
Neuroimaging genetic studies that associate genetic and epigenetic variation with neural activity or structure provide an opportunity to link genes to psychiatric disorders, often before psychopathology is discernable in behavior. Here we review neuroimaging genetics studies with participants who have Posttraumatic Stress Disorder (PTSD). Results show that genes related to the physiological stress response (e.g., glucocorticoid receptor and activity, neuroendocrine release), learning and memory (e.g., plasticity), mood, and pain perception are tied to neural intermediate phenotypes associated with PTSD. These genes are associated with and sometimes predict neural structure and function in areas involved in attention, executive function, memory, decision-making, emotion regulation, salience of potential threats, and pain perception. Evidence suggests these risk polymorphisms and neural intermediate phenotypes are vulnerabilities toward developing PTSD in the aftermath of trauma, or vulnerabilities toward particular symptoms once PTSD has developed. Work distinguishing between the re-experiencing and dissociative sub-types of PTSD, and examining other PTSD symptom clusters in addition to the re-experiencing and hyperarousal symptoms, will further clarify neurobiological mechanisms and inconsistent findings. Furthermore, an exciting possibility is that genetic associations with PTSD may eventually be understood through differential intermediate phenotypes of neural circuit structure and function, possibly underlying the different symptom clusters seen within PTSD.
Collapse
Affiliation(s)
- Lauren A M Lebois
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Jonathan D Wolff
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kerry J Ressler
- Department of Depression and Anxiety, McLean Hospital, Belmont, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
40
|
Hampstead BM, Briceño EM, Mascaro N, Mourdoukoutas A, Bikson M. Current Status of Transcranial Direct Current Stimulation in Posttraumatic Stress and Other Anxiety Disorders. Curr Behav Neurosci Rep 2016; 3:95-101. [PMID: 29479515 DOI: 10.1007/s40473-016-0070-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Several empirically supported treatments have been identified for post-traumatic stress disorder (PTSD), yet a sizable number of patients are either unable to tolerate these approaches or remain symptomatic following treatment. Transcranial direct current stimulation (tDCS) is a well-tolerated method of modulating neuronal excitability that may hold promise as a novel intervention in PTSD and related disorders. The current review summarizes literature on the disrupted neural circuitry in PTSD and discusses the rationale for the commonly targeted prefrontal cortex (PFC) as it relates to PTSD. We then review the few prior (case) studies that have evaluated tDCS in patients with PTSD (1 study) and other anxiety disorders (4 studies). There was considerable variability in both the methods/justification for selecting the targeted brain region(s) and the tDCS montage used, which obscured any clear trends in the data. Finally, we describe the rationale for our ongoing study that specifically targets the lateral temporal cortex as a method of treating the symptoms of hyperarousal and re-experiencing in PTSD. Overall, it is clear that additional work is needed to establish dosing (e.g., intensity and duration of sessions, number of sessions) and optimal treatment targets as well as to identify synergistic effects with existing treatments.
Collapse
Affiliation(s)
- Benjamin M Hampstead
- Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Emily M Briceño
- Neuropsychology Section, Department of Psychiatry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Nathan Mascaro
- Trauma Recovery Program, Atlanta VAMC, Decatur, GA 30033, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA
| | - Andoni Mourdoukoutas
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY 10031, USA
| |
Collapse
|
41
|
|
42
|
Wimalawansa SJ. Endocrinological Mechanisms of Depressive Disorders and Ill Health. Expert Rev Endocrinol Metab 2016; 11:3-6. [PMID: 30063446 DOI: 10.1586/17446651.2016.1127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sunil J Wimalawansa
- a Medicine, Endocrinology & Nutrition , Cardio Metabolic Institute , Somerset , NJ , USA
| |
Collapse
|
43
|
Todd RM, MacDonald MJ, Sedge P, Robertson A, Jetly R, Taylor MJ, Pang EW. Soldiers With Posttraumatic Stress Disorder See a World Full of Threat: Magnetoencephalography Reveals Enhanced Tuning to Combat-Related Cues. Biol Psychiatry 2015; 78:821-9. [PMID: 26094019 DOI: 10.1016/j.biopsych.2015.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is linked to elevated arousal and alterations in cognitive processes. Yet, whether a traumatic experience is linked to neural and behavioral differences in selective attentional tuning to traumatic stimuli is not known. The present study examined selective awareness of threat stimuli and underlying temporal-spatial patterns of brain activation associated with PTSD. METHODS Participants were 44 soldiers from the Canadian Armed Forces, 22 with PTSD and 22 without. All completed neuropsychological tests and clinical assessments. Magnetoencephalography data were collected while participants identified two targets in a rapidly presented stream of words. The first target was a number and the second target was either a combat-related or neutral word. The difference in accuracy for combat-related versus neutral words was used as a measure of attentional bias. RESULTS All soldiers showed a bias for combat-related words. This bias was enhanced in the PTSD group, and behavioral differences were associated with distinct patterns of brain activity. At early latencies, non-PTSD soldiers showed activation of midline frontal regions associated with fear regulation (90-340 ms after the second target presentation), whereas those with PTSD showed greater visual cortex activation linked to enhanced visual processing of trauma stimuli (200-300 ms). CONCLUSIONS These findings suggest that attentional biases in PTSD are linked to deficits in very rapid regulatory activation observed in healthy control subjects. Thus, sufferers with PTSD may literally see a world more populated by traumatic cues, contributing to a positive feedback loop that perpetuates the effects of trauma.
Collapse
Affiliation(s)
- Rebecca M Todd
- Department of Psychology, University of British Columbia, Vancouver, British Columbia.
| | - Matt J MacDonald
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto
| | - Paul Sedge
- Operational Stress Injury Clinic, The Royal Ottawa Mental Health Center, Ottawa; The Saint Lawrence Valley Correctional Treatment Center, Brockville
| | - Amanda Robertson
- Neurosciences and Mental Health Research Institute, Hospital for Sick Children, Toronto
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto; Neurosciences and Mental Health Research Institute, Hospital for Sick Children, Toronto; Department of Medical Imaging, University of Toronto, Toronto; Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth W Pang
- Neurosciences and Mental Health Research Institute, Hospital for Sick Children, Toronto; Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Wendt J, Neubert J, Lindner K, Ernst FD, Homuth G, Weike AI, Hamm AO. Genetic influences on the acquisition and inhibition of fear. Int J Psychophysiol 2015; 98:499-505. [DOI: 10.1016/j.ijpsycho.2014.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/16/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
|
45
|
Castro-Gomes V, Bergstrom HC, McGuire JL, Parker CC, Coyner J, Landeira-Fernandez J, Ursano RJ, Palmer AA, Johnson LR. A dendritic organization of lateral amygdala neurons in fear susceptible and resistant mice. Neurobiol Learn Mem 2015; 127:64-71. [PMID: 26642919 DOI: 10.1016/j.nlm.2015.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 01/05/2023]
Abstract
Subtle differences in neuronal microanatomy may be coded in individuals with genetic susceptibility for neuropsychiatric disorders. Genetic susceptibility is a significant risk factor in the development of anxiety disorders, including post-traumatic stress disorder (PTSD). Pavlovian fear conditioning has been proposed to model key aspects of PTSD. According to this theory, PTSD begins with the formation of a traumatic memory which connects relevant environmental stimuli to significant threats to life. The lateral amygdala (LA) is considered to be a key network hub for the establishment of Pavlovian fear conditioning. Substantial research has also linked the LA to PTSD. Here we used a genetic mouse model of fear susceptibility (F-S) and resistance (F-R) to investigate the dendritic and spine structure of principal neurons located in the LA. F-S and F-R lines were bi-directionally selected based on divergent levels of contextual and cued conditioned freezing in response to fear-evoking footshocks. We examined LA principal neuron dendritic and spine morphology in the offspring of experimentally naive F-S and F-R mice. We found differences in the spatial distribution of dendritic branch points across the length of the dendrite tree, with a significant increase in branch points at more distal locations in the F-S compared with F-R line. These results suggest a genetic predisposition toward differences in fear memory strength associated with a dendritic branch point organization of principal neurons in the LA. These micro-anatomical differences in neuron structure in a genetic mouse model of fear susceptibility and resistance provide important insights into the cellular mechanisms of pathophysiology underlying genetic predispositions to anxiety and PTSD.
Collapse
Affiliation(s)
- Vitor Castro-Gomes
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Department of Biosystems Engineering, Federal University of São João del Rei (UFSJ), São João del Rei, MG 36307-352, Brazil
| | - Hadley C Bergstrom
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Department of Psychology and Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY 12603, USA
| | - Jennifer L McGuire
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA
| | - Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Jennifer Coyner
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ 22451-900, Brazil
| | - Robert J Ursano
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress (CSTS), Bethesda, MD 20814, USA
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, IL 60637, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Luke R Johnson
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress (CSTS), Bethesda, MD 20814, USA; School of Psychology and Counseling, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| |
Collapse
|
46
|
Lowe SR, Pothen J, Quinn JW, Rundle A, Bradley B, Galea S, Ressler KJ, Koenen KC. Gene-by-social-environment interaction (GxSE) between ADCYAP1R1 genotype and neighborhood crime predicts major depression symptoms in trauma-exposed women. J Affect Disord 2015; 187:147-50. [PMID: 26334183 PMCID: PMC4587299 DOI: 10.1016/j.jad.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/13/2015] [Accepted: 08/02/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Few studies have explored interactions between genes and social environmental exposures (GxSEs) for trauma-related psychopathology, including symptoms of posttraumatic stress (PTS) and major depression (MD). The extant literature suggests the possibility of a GxSE between the rs2267735 variant of the ADCYAP1R1 gene and neighborhood crime. The current study aimed to explore this possibility among a predominantly African American sample of trauma-exposed women. METHODS Female participants (N=1361) were recruited from a public hospital, and completed measures of PTS and MD symptoms and provided DNA samples. Participants' home addresses were mapped onto 300 neighborhoods (2010 census tracts), and data on crime within neighborhoods was collected. RESULTS Multilevel models detected a significant GxSE between rs2267735 and neighborhood crime for MD symptoms (p=.01). Having two copies of the risk (C) allele was associated with higher MD symptoms for participants living in high-crime neighborhoods. LIMITATIONS At least six limitations are noteworthy: (1) low statistical power; (2) use of self-report symptom inventories; (3) lack of information on symptom onset; (4) homogeneous sample from a single metropolitan area; (5) non-specific index of crime; and (6) use of census tracts to define neighborhoods. CONCLUSIONS The results provide further evidence of GxSEs for psychiatric outcomes among trauma-exposed populations. Further investigations of genetic factors for trauma-related psychopathology should include careful assessments of the social environment.
Collapse
Affiliation(s)
- Sarah R. Lowe
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY
| | - John Pothen
- M.D./Ph.D. Program, Emory University School of Medicine, Atlanta, GA, USA
| | - James W. Quinn
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY
| | - Andrew Rundle
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY
| | - Bekh Bradley
- Mental Health Service Line, Atlanta Veterans Affairs Medical Center, Decatur, GA,Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Sandro Galea
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Kerry J. Ressler
- Department of Psychiatry, Emory University School of Medicine, Atlanta, GA, USA
| | - Karestan C. Koenen
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY
| |
Collapse
|
47
|
Zannas AS, Provençal N, Binder EB. Epigenetics of Posttraumatic Stress Disorder: Current Evidence, Challenges, and Future Directions. Biol Psychiatry 2015; 78:327-35. [PMID: 25979620 DOI: 10.1016/j.biopsych.2015.04.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a stress-related psychiatric disorder that is thought to emerge from complex interactions among traumatic events and multiple genetic factors. Epigenetic regulation lies at the heart of these interactions and mediates the lasting effects of the environment on gene regulation. An increasing body of evidence in human subjects with PTSD supports a role for epigenetic regulation of distinct genes and pathways in the pathogenesis of PTSD. The role of epigenetic regulation is further supported by studies examining fear conditioning in rodent models. Although this line of research offers an exciting outlook for future epigenetic research in PTSD, important limitations include the tissue specificity of epigenetic modifications, the phenomenologic definition of the disorder, and the challenge of translating molecular evidence across species. These limitations call for studies that combine data from postmortem human brain tissue and animal models, assess longitudinal epigenetic changes in living subjects, and examine dimensional phenotypes in addition to diagnoses. Moreover, examining the environmental, genetic, and epigenetic factors that promote resilience to trauma may lead to important advances in the field.
Collapse
Affiliation(s)
- Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Nadine Provençal
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University Medical School, Atlanta, Georgia.
| |
Collapse
|
48
|
Michopoulos V, Norrholm SD, Jovanovic T. Diagnostic Biomarkers for Posttraumatic Stress Disorder: Promising Horizons from Translational Neuroscience Research. Biol Psychiatry 2015; 78:344-53. [PMID: 25727177 PMCID: PMC4520791 DOI: 10.1016/j.biopsych.2015.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic features have been recently reclassified with the emergence of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition, the disorder remains characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning the past few decades has revealed several potential avenues for the identification of diagnostic biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, the hypothalamic-pituitary-adrenal axis, metabolic hormonal pathways, inflammatory mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an update to the literature with regard to the most promising putative PTSD biomarkers, with specific emphasis on the interaction between neurobiological influences on disease risk and symptom progression. Such biomarkers will most likely be identified by multi-dimensional models derived from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical phenotypes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta; Yerkes National Primate Research Center, Atlanta
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta; Atlanta Veterans Affairs Medical Center, Mental Health Service Line, Decatur, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta.
| |
Collapse
|
49
|
Rodgers AB, Bale TL. Germ Cell Origins of Posttraumatic Stress Disorder Risk: The Transgenerational Impact of Parental Stress Experience. Biol Psychiatry 2015; 78:307-14. [PMID: 25895429 PMCID: PMC4526334 DOI: 10.1016/j.biopsych.2015.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/26/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Abstract
Altered stress reactivity is a predominant feature of posttraumatic stress disorder (PTSD) and may reflect disease vulnerability, increasing the probability that an individual will develop PTSD following trauma exposure. Environmental factors, particularly prior stress history, contribute to the developmental programming of the hypothalamic-pituitary-adrenal stress axis. Critically, the consequences of stress experiences are transgenerational, with parental stress exposure impacting stress reactivity and PTSD risk in subsequent generations. Potential molecular mechanisms underlying this transmission have been explored in rodent models that specifically examine the paternal lineage, identifying epigenetic signatures in male germ cells as possible substrates of transgenerational programming. Here, we review the role of these germ cell epigenetic marks, including posttranslational histone modifications, DNA methylation, and populations of small noncoding RNAs, in the development of offspring stress axis sensitivity and disease risk.
Collapse
Affiliation(s)
- Ali B Rodgers
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tracy L Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
50
|
Highland KB, Costanzo M, Jovanovic T, Norrholm SD, Ndiongue R, Reinhardt B, Rothbaum B, Roy MJ. Biomarkers of post-deployment resilience among military service members. Neurobiol Stress 2015; 2:62-6. [PMID: 26844241 PMCID: PMC4721320 DOI: 10.1016/j.ynstr.2015.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/22/2015] [Accepted: 07/16/2015] [Indexed: 12/26/2022] Open
Abstract
The development of PTSD after military deployment is influenced by a combination of biopsychosocial risk and resilience factors. In particular, physiological factors may mark risk for symptom progression or resiliency. Research in civilian populations suggests elevated catecholamines after trauma are associated with PTSD months following the trauma. However, less is known regarding physiological markers of PTSD resilience among post-deployment service members (SM). We therefore assessed whether catecholamines obtained shortly after deployment were associated with combat-related PTSD symptoms three months later. Eighty-seven SMs completed the Clinician-Administered PTSD Scale for DSM-IV and blood draws within two months after return from deployment to Iraq or Afghanistan ("Time 1" or "T1") and three months later ("Time 2" or "T2"). Linear regression analyses demonstrated that lower norepinephrine at T1 was associated with lower PTSD symptoms at T2. In particular, T1 norepinephrine was positively associated with T2 symptom intensity and avoidance symptoms. The present findings represent a biologically-informed method of assessing PTSD resilience after deployment, which may aid clinicians in providing tailored treatments for those in the greatest need. Further research is needed to validate these findings and incorporate physiological measures within an assessment battery.
Collapse
Affiliation(s)
- Krista B Highland
- Department of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, United States; Henry M. Jackson Foundation, United States
| | - Michelle Costanzo
- Department of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, United States; Henry M. Jackson Foundation, United States
| | - Tanja Jovanovic
- Emory University School of Medicine, Department of Psychiatry & Behavioral Sciences, United States
| | - Seth D Norrholm
- Atlanta Veterans' Affairs Medical Center, United States; Emory University School of Medicine, Department of Psychiatry & Behavioral Sciences, United States
| | - Rochelle Ndiongue
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, United States
| | - Brian Reinhardt
- Department of Research Programs, Walter Reed National Military Medical Center, United States
| | - Barbara Rothbaum
- Emory University School of Medicine, Department of Psychiatry & Behavioral Sciences, United States
| | - Michael J Roy
- Department of Medicine and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, United States
| |
Collapse
|