1
|
Gu Y, Shan J, Huang T, Yu C, Wu H, Hu X, Tong X, Jia R, Noda Y, Du J, Yuan TF, Luo W, Zhao D. Exploring the interplay between addiction and time perception: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111104. [PMID: 39047859 DOI: 10.1016/j.pnpbp.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Prior studies have investigated the immediate impacts of substances on temporal perception, the impact of temporal outlook, and the consequences of modified temporal perception on addictive behaviors. These inquiries have provided valuable perspectives on the intricate associations between addiction and time perception, enriching the groundwork for forthcoming research and therapeutic strategies. This comprehensive review aims to further explore intricate correlation among diverse addictive substances-namely alcohol, cannabis, nicotine, opioids-and non-substance addictions such as internet gaming, elucidating their influence on temporal perception. Adhering to the PICOS method and adhering to PRISMA guidelines, we systematically reviewed and critically evaluated all existing research concerning temporal perception in individuals with substance and non-substance use disorders. Specifically, our analyses involved 31 pertinent articles encompassing six unique groups-alcohol, nicotine, cannabis, stimulants, opioids, and internet-related addictions-sourced from a pool of 551 papers. The findings revealed differences in time perception between addicts and control groups, as indicated by medium to large effect sizes (Hedge's g = 0.8, p < 0.001). However, the nature of these differences-whether they predominantly involve time overestimation or underestimation-is not yet definitively clear. This variability underscores the complexity of the relationship between addiction and temporal perception, paving the way for further research to unravel these intricate dynamics.
Collapse
Affiliation(s)
- Yunhao Gu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China; Graduate School of Education, University of Pennsylvania, Philadelphia, United States
| | - Jiatong Shan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China; Department of Arts and Sciences, New York University Shanghai, Shanghai, China
| | - Taicheng Huang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengchao Yu
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Macau, China
| | - Xiaoqing Hu
- Department of Psychology, The State Key Laboratory of Brain and Cognitive Sciences, the University of Hong Kong, Hong Kong S.A.R., China; HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yoshihiro Noda
- Department of Psychiatry, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Jiang Du
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Wang SM, Chang HH, Chang YH, Tsai TY, Chen PS, Lu RB, Wang TY. Shortening of telomere length may be associated with inflammatory cytokine levels in patients with bipolar disorder. J Affect Disord 2024; 365:155-161. [PMID: 39153550 DOI: 10.1016/j.jad.2024.08.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is hypothesized to be associated with accelerated biological aging. Telomere length (TL) is a biomarker of aging, and although TL decreases with each cell division, the rate of telomere shortening may be affected by inflammation. We aimed to investigate whether TL is decreased in BD patients and to determine the association between TL and inflammatory markers in such patients. METHODS 137 BD patients and 118 healthy controls (HCs) were recruited. Leukocyte TL and plasma levels of cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-8, IL-6, IL-10, transforming growth factor (TGF)-β1], C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF) were assessed. RESULTS TL did not differ significantly between the BD patients and HCs after adjustment for potential confounding factors (P = 0.79). TL was significantly negatively associated with age (β = -0.007, P < 0.001). In addition, log TNF-α levels were significantly negatively associated with TL (P = 0.009), in both the BD patients (P = 0.02) and HCs (P = 0.05). CONCLUSION We found a significant association between TNF-α levels and TL shortening in both BD patients and HCs. However, BD patients did not display increased TL shortening relative to HCs. Studies that involve larger sample sizes and control for the heterogeneity of BD participants will be needed.
Collapse
Affiliation(s)
- Shao-Ming Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Yun-Hsuan Chang
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychology, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Douliu Branch, Yunlin, Taiwan; Graduate Institute of Genomics & Bioinformatics, National Chung Hsin University, Taichung, Taiwan
| | - Tsung-Yu Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychology, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Yanjiao Furen Hospital, Hebei, China
| | - Tzu-Yun Wang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2024:10.1038/s41386-024-01993-1. [PMID: 39300273 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
4
|
Dafny N, Elizondo GM, Perez-Vasquez C. Differential Impact of Serotonin Signaling Methylphenidate on Young versus Adult: Insights from Behavioral and Dorsal Raphe Nucleus Neuronal Recordings from Freely Behaving Rats. Int J Mol Sci 2024; 25:8082. [PMID: 39125652 PMCID: PMC11311813 DOI: 10.3390/ijms25158082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Methylphenidate (MPD) remains a cornerstone pharmacological intervention for managing ADHD, yet its increasing usage among ordinary youth and adults outside clinical contexts necessitates a thorough investigation into its developmental effects. This study seeks to simultaneously investigate the behavioral and neuronal changes within the dorsal raphe (DR) nucleus, a center of serotonergic neurons in the mammalian brain, before and after the administration of varying doses of acute and chronic MPD in freely behaving young and adult rats implanted with DR recording electrodes. Wireless neuronal and behavioral recording systems were used over 10 consecutive experimental days. Eight groups were examined: saline, 0.6, 2.5, and 10.0 mg/kg MPD for both young and adult rats. Six daily MPD injections were administered on experimental days 1 to 6, followed by a three-day washout period and MPD re-administration on experimental day 10 (ED10). The analysis of neuronal activity recorded from 504 DR neurons (DRNs) in young rats and 356 DRNs in adult rats reveals significant age-dependent differences in acute and chronic MPD responses. This study emphasizes the importance of aligning electrophysiological evaluations with behavioral outcomes following extended MPD exposure, elucidating the critical role of DRNs and serotonin signaling in modulating MPD responses and delineating age-specific variations in young versus adult rat models.
Collapse
Affiliation(s)
- Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Gloria M. Elizondo
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Cruz Perez-Vasquez
- Physiology Department Medical School, National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Lin S, Zhu N, Zhu Y, Mao H, Zhang S. Exploratory analysis on the association of dietary live microbe and non-dietary prebiotic/probiotic intake with serum cotinine levels in the general adult population. Front Nutr 2024; 11:1405539. [PMID: 38863585 PMCID: PMC11165358 DOI: 10.3389/fnut.2024.1405539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Background Previous research has indicated the potential involvement of the microbiota in smoking-related processes. The present study seeks to examine the relationship between dietary live microbes, as well as probiotic or prebiotic consumption, and serum cotinine levels. Methods This study used data from the National Health and Nutrition Examination Survey 1999-2018. Dietary intake information and probiotic/prebiotic intake data was collected through self-reported questionnaires. Participants were stratified into low, medium, and high intake groups according to their consumption of foods with varying microbial content. Multiple linear models were applied to explore the relationships of dietary live microbes, probiotic or prebiotic use with the serum cotinine level. Results A total of 42,000 eligible participants were included in the final analysis. The weighted median serum cotinine level was 0.05 (0.01, 10.90) ng/ml. Participants with low, medium, and high dietary microbe intake represented 35.4, 43.6, and 21.0% of the cohort, respectively. Furthermore, participants were stratified into three groups based on their overall consumption of foods with variable microbe contents. The association between dietary live microbe intake and serum cotinine levels remained robust across all models, with medium intake as the reference (Model 2: β = -0.14, 95% CI: -0.20, -0.07; High: β = -0.31, 95% CI: -0.39, -0.22). Moreover, both prebiotic and probiotic use exhibited an inverse relationship with serum cotinine levels (Prebiotic: β = -0.19, 95% CI: -0.37, -0.01; Probiotic: β = -0.47, 95% CI: -0.64, -0.30). Subgroup analyses revealed no discernible interactions between dietary live microbe, prebiotic, probiotic use, and serum cotinine levels. Conclusion Our findings suggest a negative correlation between dietary live microbe intake, as well as non-dietary prebiotic/probiotic consumption, and serum cotinine levels.
Collapse
Affiliation(s)
- Shanhong Lin
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ning Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yujing Zhu
- Department of Stomatology, The Affiliated Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Haiping Mao
- Department of Ultrasound, Ninghai Third Hospital, Ningbo, China
| | - Shengmin Zhang
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Li Y, Duan J, Li Y, Zhang M, Wu J, Wang G, Li S, Hu Z, Qu Y, Li Y, Hu X, Guo F, Cao L, Lu J. Transcriptomic profiling across human serotonin neuron differentiation via the FEV reporter system. Stem Cell Res Ther 2024; 15:107. [PMID: 38637896 PMCID: PMC11027224 DOI: 10.1186/s13287-024-03728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.
Collapse
Affiliation(s)
- Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Qu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunhe Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiran Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
7
|
Murray BP, Kiernan EA. Physiologic Effects of Substance Use. Emerg Med Clin North Am 2024; 42:69-91. [PMID: 37977754 DOI: 10.1016/j.emc.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Physiologic and psychological effects of substance use are common occurrences. They may be the proximate purpose of the exposure or related to an unintended complication. Acute short-term exposure effects may not be the same as long-term effects. These effects are mediated by different receptors they act on and the homeostatic changes that occur due to repeat exposure. We review in this article the physiologic and psychological effects from exposure to commonly encountered drugs, ethanol, sedative hypnotics, cocaine, amphetamines, marijuana, opioids, nicotine, hydrocarbons (halogenated and non-halogenated), and nitrous oxide.
Collapse
Affiliation(s)
- Brian Patrick Murray
- Department of Emergency Medicine, Wright State Boonshoft School of Medicine, 2555 University Boulevard, Suite 110, Dayton, OH 45324, USA.
| | - Emily Anne Kiernan
- Department of Emergency Medicine, Emory University School of Medicine, 50 Hurtz Plaza Southeast, Suite 600, Atlanta, GA, USA; Georgia Poison Center, 50 Hurtz Plaza Southeast, Suite 600, Atlanta, GA, USA
| |
Collapse
|
8
|
Li C, McElroy BD, Phillips J, McCloskey NS, Shi X, Unterwald EM, Kirby LG. Role of α1-GABA A receptors in the serotonergic dorsal raphe nucleus in models of opioid reward, anxiety, and depression. J Psychopharmacol 2024; 38:188-199. [PMID: 38293836 PMCID: PMC10921389 DOI: 10.1177/02698811241227672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND The serotonin (5-hydroxytryptamine (5-HT))-mediated system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous studies showed that stress and drug exposure can modulate the dorsal raphe nucleus (DRN)-5-HT system via γ-aminobutyric acid (GABA)A receptors. Moreover, GABAA receptor-mediated inhibition of serotonergic DRN neurons is required for stress-induced reinstatement of opioid seeking. AIM/METHODS To further test the role of GABAA receptors in the 5-HT system in stress and opioid-sensitive behaviors, our current study generated mice with conditional genetic deletions of the GABAA α1 subunit to manipulate GABAA receptors in either the DRN or the entire population of 5-HT neurons. The GABAA α1 subunit is a constituent of the most abundant GABAA subtype in the brain and the most highly expressed subunit in 5-HT DRN neurons. RESULTS Our results showed that mice with DRN-specific knockout of α1-GABAA receptors exhibited a normal phenotype in tests of anxiety- and depression-like behaviors as well as swim stress-induced reinstatement of morphine-conditioned place preference. By contrast, mice with 5-HT neuron-specific knockout of α1-GABAA receptors exhibited an anxiolytic phenotype at baseline and increased sensitivity to post-morphine withdrawal-induced anxiety. CONCLUSIONS Our data suggest that GABAA receptors on 5-HT neurons contribute to anxiety-like behaviors and sensitivity of those behaviors to opioid withdrawal.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Bryan D McElroy
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jared Phillips
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiangdang Shi
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
Le K, Au J, Hua J, Le KDR. The Therapeutic Potential of Cannabidiol in Revolutionising Opioid Use Disorder Management. Cureus 2023; 15:e50634. [PMID: 38226097 PMCID: PMC10789504 DOI: 10.7759/cureus.50634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Opioid use disorder (OUD) is a significant cause of morbidity and mortality worldwide and is linked to a complex interplay of biopsychosocial factors as well as the increasing overprescription and availability of opioid medications. Current OUD management relies on the controlled provision of opioid medications, such as methadone or buprenorphine, known as opioid replacement therapy. There is variable evidence regarding the long-term efficacy of these medications in improving the management of OUD, thereby necessitating an exploration into innovative approaches to complement, or even take the place of, existing treatment paradigms. Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has garnered attention for its diverse pharmacological properties, including anti-inflammatory, analgesic, and anxiolytic effects. Preliminary studies suggest that CBD may target opioid withdrawal pathways that make CBD a potential therapeutic option for OUD. This narrative review synthesises current literature surrounding OUD and offers a nuanced review of the current and future role of CBD in managing this condition. In doing so, we highlight the potential avenues to explore with respect to CBD research for the guidance and development of further research opportunities, framework and policy development, and clinical considerations before medicinal CBD can be integrated into evidence-based clinical guidelines.
Collapse
Affiliation(s)
- Kelvin Le
- Melbourne Medical School, The University of Melbourne, Melbourne, AUS
| | - Joanne Au
- Department of Anaesthesia & Pain Management, The Royal Melbourne Hospital, Melbourne, AUS
| | - Jean Hua
- Department of Pharmacy, The Royal Melbourne Hospital, Melbourne, AUS
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, AUS
| | - Khang Duy Ricky Le
- Geelong Clinical School, Deakin University, Geelong, AUS
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Melbourne, AUS
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, AUS
- Department of Medical Education, Melbourne Medical School, The University of Melbourne, Melbourne, AUS
| |
Collapse
|
10
|
Li M, Pang X, Guo Z, Yang Y, Gu Z, Zhang L. Integrated metabolomics and network pharmacology to reveal the mechanism of areca nut addiction. Addict Biol 2023; 28:e13352. [PMID: 38017647 DOI: 10.1111/adb.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/09/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
As a chewing hobby, areca nut (Areca catechu L.) has become the most common psychoactive substance in the world, besides tobacco, alcohol and caffeinated beverages. Moreover, as a first-class carcinogen designated by International Agency for Research on Cancer, long-term chewing areca nut can result in oral mucosal diseases and even oral cancer. To clarify the potential mechanism of areca nut addiction, an integrated strategy of metabolomics and network pharmacology was adopted in this study. Network pharmacology study indicated that all the key targets related to areca nut addiction could be regulated by arecoline and pointed out the importance of G-protein coupled receptor signalling pathway. Analysis results of mice plasma metabolome and faeces metabolome intervened by arecoline suggested that the component may affect the dopamine system and 5-HT system by regulating phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, primary bile acid biosynthesis, glycerophospholipid metabolism and intestinal flora structure. Moreover, the potential importance of bile acids in formation of addictive behaviour of chewing areca nut was investigated by integrative analysis of the relationships between metabolites and intestinal flora. The study can provide scientific basis for the addiction intervention and treatment of areca nut chewers.
Collapse
Affiliation(s)
- Moying Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu, China
| | - Xin Pang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Zitao Guo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuliang Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhenghua Gu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
| | - Liang Zhang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu, China
| |
Collapse
|
11
|
Ona G, Reverte I, Rossi GN, Dos Santos RG, Hallak JE, Colomina MT, Bouso JC. Main targets of ibogaine and noribogaine associated with its putative anti-addictive effects: A mechanistic overview. J Psychopharmacol 2023; 37:1190-1200. [PMID: 37937505 DOI: 10.1177/02698811231200882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
BACKGROUND There is a growing interest in studying ibogaine (IBO) as a potential treatment for substance use disorders (SUDs). However, its clinical use has been hindered for mainly two reasons: First, the lack of randomized, controlled studies informing about its safety and efficacy. And second, IBO's mechanisms of action remain obscure. It has been challenging to elucidate a predominant mechanism of action responsible for its anti-addictive effects. OBJECTIVE To describe the main targets of IBO and its main metabolite, noribogaine (NOR), in relation to their putative anti-addictive effects, reviewing the updated literature available. METHODS A comprehensive search involving MEDLINE and Google Scholar was undertaken, selecting papers published until July 2022. The inclusion criteria were both theoretical and experimental studies about the pharmacology of IBO. Additional publications were identified in the references of the initial papers. RESULTS IBO and its main metabolite, NOR, can modulate several targets associated with SUDs. Instead of identifying key targets, the action of IBO should be understood as a complex modulation of multiple receptor systems, leading to potential synergies. The elucidation of IBO's pharmacology could be enhanced through the application of methodologies rooted in the polypharmacology paradigm. Such approaches possess the capability to describe multifaceted patterns within multi-target drugs. CONCLUSION IBO displays complex effects through multiple targets. The information detailed here should guide future research on both mechanistic and therapeutic studies.
Collapse
Affiliation(s)
- Genís Ona
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Giordano N Rossi
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael G Dos Santos
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Jaime Ec Hallak
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Translational Medicine (INCT-TM), CNPq, Ribeirão Preto (SP), Brazil
| | - Maria Teresa Colomina
- Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain
| | - José Carlos Bouso
- International Center for Ethnobotanical Education, Research, and Service (ICEERS), Barcelona, Spain
- Medical Anthropology Research Center (MARC), Universitat Rovira i Virgili, Tarragona, Spain
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Welsch L, Colantonio E, Falconnier C, Champagnol-DiLiberti C, Allain F, Ben Hamida S, Darcq E, Lutz PE, Kieffer BL. Mu Opioid Receptor-Positive Neurons in the Dorsal Raphe Nucleus Are Impaired by Morphine Abstinence. Biol Psychiatry 2023; 94:852-862. [PMID: 37393045 PMCID: PMC10851617 DOI: 10.1016/j.biopsych.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Chronic opioid exposure leads to hedonic deficits and enhanced vulnerability to addiction, which are observed and even strengthen after a period of abstinence, but the underlying circuit mechanisms are poorly understood. In this study, using both molecular and behavioral approaches, we tested the hypothesis that neurons expressing mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) are involved in addiction vulnerability associated with morphine abstinence. METHODS MOR-Cre mice were exposed to chronic morphine and then went through spontaneous withdrawal for 4 weeks, a well-established mouse model of morphine abstinence. We studied DRN-MOR neurons of abstinent mice using 1) viral translating ribosome affinity for transcriptome profiling, 2) fiber photometry to measure neuronal activity, and 3) an opto-intracranial self-stimulation paradigm applied to DRN-MOR neurons to assess responses related to addiction vulnerability including persistence to respond, motivation to obtain the stimulation, self-stimulation despite punishment, and cue-induced reinstatement. RESULTS DRN-MOR neurons of abstinent animals showed a downregulation of genes involved in ion conductance and MOR-mediated signaling, as well as altered responding to acute morphine. Opto-intracranial self-stimulation data showed that abstinent animals executed more impulsive-like and persistent responses during acquisition and scored higher on addiction-like criteria. CONCLUSIONS Our data suggest that protracted abstinence to chronic morphine leads to reduced MOR function in DRN-MOR neurons and abnormal self-stimulation of these neurons. We propose that DRN-MOR neurons have partially lost their reward-facilitating properties, which in turn may lead to increased propensity to perform addiction-related behaviors.
Collapse
Affiliation(s)
- Lola Welsch
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France
| | | | - Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | | | - Florence Allain
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France
| | - Sami Ben Hamida
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM UMR 1247, Research Group on Alcohol & Pharmacodependences, Université de Picardie Jules Verne, Amiens, France
| | - Emmanuel Darcq
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France
| | - Pierre-Eric Lutz
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, Strasbourg, France
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, McGill University, Montréal, Quebec, Canada; INSERM U1114, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
McElroy BD, Li C, McCloskey NS, Kirby LG. Sex differences in ethanol consumption and drinking despite negative consequences following adolescent social isolation stress in male and female rats. Physiol Behav 2023; 271:114322. [PMID: 37573960 PMCID: PMC10592127 DOI: 10.1016/j.physbeh.2023.114322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Alcohol use disorder (AUD) is a debilitating psychiatric disorder characterized by drinking despite negative social and biological consequences. AUDs make up 71% of substance use disorders, with relapse rates as high as 80%. Current treatments stem from data conducted largely in males and fail to target the psychological distress motivating drinking in stress-vulnerable and at-risk populations. Here we employed a rat model and hypothesized that early life stress would reveal sex differences in ethanol intake and drinking despite negative consequences in adulthood. Rats were group housed or isolated postweaning to evaluate sex and stress effects on ethanol consumption in homecage drinking, self-administration (SA), and punished SA (drinking despite negative consequences) in adulthood. Stressed rats showed elevated homecage ethanol intake, an effect more pronounced in females. During SA, males were more sensitive to stress-induced elevations of drinking over time, but females drank more overall. Stressed rats, regardless of sex, responded more for ethanol than their non-stressed counterparts. Stressed females showed greater resistance to punishment-suppressed SA than stressed males, indicating a more stress-resistant drinking phenotype. Results support our hypothesis that adolescent social isolation stress enhances adult ethanol intake in a sex- and model-dependent manner with females being especially sensitive to early life stress-induced elevations in ethanol intake and punished SA in adulthood. Our findings echo the clinical literature which indicates that stress-vulnerable populations are more likely to 'self-medicate' with substances. Elucidating a potential mechanism that underlies why vulnerable populations 'self-medicate' with alcohol can lead towards developing catered pharmacotherapeutics that could reduce punishment-resistant drinking and relapse.
Collapse
Affiliation(s)
- Bryan D McElroy
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America.
| | - Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| |
Collapse
|
14
|
Antón-Galindo E, Cabana-Domínguez J, Torrico B, Corominas R, Cormand B, Fernàndez-Castillo N. The pleiotropic contribution of genes in dopaminergic and serotonergic pathways to addiction and related behavioral traits. Front Psychiatry 2023; 14:1293663. [PMID: 37937232 PMCID: PMC10627163 DOI: 10.3389/fpsyt.2023.1293663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Co-occurrence of substance use disorders (SUD) and other behavioral conditions, such as stress-related, aggressive or risk-taking behaviors, in the same individual has been frequently described. As dopamine (DA) and serotonin (5-HT) have been previously identified as key neurotransmitters for some of these phenotypes, we explored the genetic contribution of these pathways to SUD and these comorbid phenotypes in order to better understand the genetic relationship between them. Methods We tested the association of 275 dopaminergic genes and 176 serotonergic genes with these phenotypes by performing gene-based, gene-set and transcriptome-wide association studies in 11 genome-wide association studies (GWAS) datasets on SUD and related behaviors. Results At the gene-wide level, 68 DA and 27 5-HT genes were found to be associated with at least one GWAS on SUD or related behavior. Among them, six genes had a pleiotropic effect, being associated with at least three phenotypes: ADH1C, ARNTL, CHRNA3, HPRT1, HTR1B and DRD2. Additionally, we found nominal associations between the DA gene sets and SUD, opioid use disorder, antisocial behavior, irritability and neuroticism, and between the 5-HT-core gene set and neuroticism. Predicted gene expression correlates in brain were also found for 19 DA or 5-HT genes. Discussion Our study shows a pleiotropic contribution of dopaminergic and serotonergic genes to addiction and related behaviors such as anxiety, irritability, neuroticism and risk-taking behavior, highlighting a role for DA genes, which could explain, in part, the co-occurrence of these phenotypes.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Roser Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
15
|
Mundorf A, Ocklenburg S. Hemispheric asymmetries in mental disorders: evidence from rodent studies. J Neural Transm (Vienna) 2023; 130:1153-1165. [PMID: 36842091 PMCID: PMC10460727 DOI: 10.1007/s00702-023-02610-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
The brain is built with hemispheric asymmetries in structure and function to enable fast neuronal processing. In neuroimaging studies, several mental disorders have been associated with altered or attenuated hemispheric asymmetries. However, the exact mechanism linking asymmetries and disorders is not known. Here, studies in animal models of mental disorders render important insights into the etiology and neuronal alterations associated with both disorders and atypical asymmetry. In this review, the current literature of animal studies in rats and mice focusing on anxiety and fear, anhedonia and despair, addiction or substance misuse, neurodegenerative disorders as well as stress exposure, and atypical hemispheric asymmetries is summarized. Results indicate overall increased right-hemispheric neuronal activity and a left-sided behavioral bias associated with symptoms of anxiety, fear, anhedonia, behavioral despair as well as stress exposure. Addiction behavior is associated with right-sided bias and transgenic models of Alzheimer's disease indicate an asymmetrical accumulation of fibrillar plaques. Most studies focused on changes in the bilateral amygdala and frontal cortex. Across studies, two crucial factors influencing atypical asymmetries arose independently of the disorder modeled: sex and developmental age. In conclusion, animal models of mental disorders demonstrate atypical hemispheric asymmetries similar to findings in patients. Particularly, increased left-sided behavior and greater right-hemispheric activity were found across models applying stress-based paradigms. However, sex- and age-dependent effects on atypical hemispheric asymmetries are present that require further investigation. Animal models enable the analysis of hemispheric changes on the molecular level which may be most effective to detect early alterations.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Abdulmalek S, Hardiman G. Genetic and epigenetic studies of opioid abuse disorder - the potential for future diagnostics. Expert Rev Mol Diagn 2023; 23:361-373. [PMID: 37078260 PMCID: PMC10257799 DOI: 10.1080/14737159.2023.2190022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/08/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Opioid use disorder (OUD) is a global problem that often begins with prescribed medications. The available treatment and maintenance plans offer solutions for the consumption rate by individuals leaving the outstanding problem of relapse, which is a major factor hindering the long-term efficacy of treatments. AREAS COVERED Understanding the neurobiology of addiction and relapse would help identifying the core causes of relapse and distinguish vulnerable from resilient individuals, which would lead to more targeted and effective treatment and provide diagnostics to screen individuals who have a propensity to OUD. In this review, we cover the neurobiology of the reward system highlighting the role of multiple brain regions and opioid receptors in the development of the disorder. We also review the current knowledge of the epigenetics of addiction and the available screening tools for aberrant use of opioids. EXPERT OPINION Relapse remains an anticipated limitation in the way of recovery even after long period of abstinence. This highlights the need for diagnostic tools that identify vulnerable patients and prevent the cycle of addiction. Finally, we discuss the limitations of the available screening tools and propose possible solutions for the discovery of addiction diagnostics.
Collapse
Affiliation(s)
- Sarah Abdulmalek
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Queen’s University Belfast, NI, UK
- Department of Medicine, Medical University of South Carolina (MUSC), 135 Cannon Street, Charleston, SC 29425
| |
Collapse
|
17
|
Fan J, Zhou Y, Meng R, Tang J, Zhu J, Aldrich MC, Cox NJ, Zhu Y, Li Y, Zhou D. Cross-talks between gut microbiota and tobacco smoking: a two-sample Mendelian randomization study. BMC Med 2023; 21:163. [PMID: 37118782 PMCID: PMC10148467 DOI: 10.1186/s12916-023-02863-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/12/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Considerable evidence has been reported that tobacco use could cause alterations in gut microbiota composition. The microbiota-gut-brain axis also in turn hinted at a possible contribution of the gut microbiota to smoking. However, population-level studies with a higher evidence level for causality are lacking. METHODS This study utilized the summary-level data of respective genome-wide association study (GWAS) for 211 gut microbial taxa and five smoking phenotypes to reveal the causal association between the gut microbiota and tobacco smoking. Two-sample bidirectional Mendelian randomization (MR) design was deployed and comprehensively sensitive analyses were followed to validate the robustness of results. We further performed multivariable MR to evaluate the effect of neurotransmitter-associated metabolites on observed associations. RESULTS Our univariable MR results confirmed the effects of smoking on three taxa (Intestinimonas, Catenibacterium, and Ruminococcaceae, observed from previous studies) with boosted evidence level and identified another 13 taxa which may be causally affected by tobacco smoking. As for the other direction, we revealed that smoking behaviors could be potential consequence of specific taxa abundance. Combining with existing observational evidence, we provided novel insights regarding a positive feedback loop of smoking through Actinobacteria and indicated a potential mechanism for the link between parental smoking and early smoking initiation of their children driven by Bifidobacterium. The multivariable MR results suggested that neurotransmitter-associated metabolites (tryptophan and tyrosine, also supported by previous studies) probably played a role in the action pathway from the gut microbiota to smoking, especially for Actinobacteria and Peptococcus. CONCLUSIONS In summary, the current study suggested the role of the specific gut microbes on the risk for cigarette smoking (likely involving alterations in metabolites) and in turn smoking on specific gut microbes. Our findings highlighted the hazards of tobacco use for gut flora dysbiosis and shed light on the potential role of specific gut microbiota for smoking behaviors.
Collapse
Affiliation(s)
- Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, China
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou, 310053, China
| | - Yuan Zhou
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Meng
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou, 310053, China
| | - Melinda C Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, 481 Binwen Road, Hangzhou, 310053, China.
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou, 310058, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Bazovkina DV, Fursenko DV, Naumenko VS, Kulikov AV. The Role of C1473G Polymorphism in Mouse Triptophan Hydroxylase 2 Gene in the Acute Effects of Ethanol on the c-fos Gene Expression and Metabolism of Biogenic Amines in the Brain. BIOCHEMISTRY (MOSCOW) 2023; 88:291-302. [PMID: 37076278 DOI: 10.1134/s000629792303001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Tryptophan hydroxylase 2 is a key enzyme in the synthesis of the neurotransmitter serotonin, which plays an important role in the regulation of behavior and various physiological functions. We studied the effect of acute ethanol administration on the expression of the early response c-fos gene and metabolism of serotonin and catecholamines in the brain structures of B6-1473C and B6-1473G congenic mouse strains differing in the single-nucleotide substitution C1473G in the Tph2 gene and activity of the encoded enzyme. Acute alcoholization led to a significant upregulation of the c-fos gene expression in the frontal cortex and striatum of B6-1473G mice and in the hippocampus of B6-1473C mice and caused a decrease in the index of serotonin metabolism in the nucleus accumbens in B6-1473C mice and in the hippocampus and striatum of B6-1473G mice, as well as to the decrease in the norepinephrine level in the hypothalamus of B6-1473C mice. Therefore, the C1473G polymorphism in the Tph2 gene has a significant effect of acute ethanol administration on the c-fos expression pattern and metabolism of biogenic amines in the mouse brain.
Collapse
Affiliation(s)
- Darya V Bazovkina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Dariya V Fursenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksandr V Kulikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
19
|
Alonso L, Peeva P, Stasko S, Bader M, Alenina N, Winter Y, Rivalan M. Constitutive depletion of brain serotonin differentially affects rats' social and cognitive abilities. iScience 2023; 26:105998. [PMID: 36798444 PMCID: PMC9926123 DOI: 10.1016/j.isci.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Central serotonin appears a promising transdiagnostic marker of psychiatric disorders and a modulator of some of their key behavioral symptoms. In adult male Tph2 -/- rats, constitutively lacking central serotonin, we tested individual's cognitive, social and non-social abilities and characterized group's social organization under classical and ethological testing conditions. Using unsupervised machine learning, we identified the functions most dependent on serotonin. Although serotonin depletion did not affect cognitive performances in classical testing, in the home-cage it induced compulsive aggression and sexual behavior, hyperactive and hypervigilant stereotyped behavior, reduced self-care and exacerbated corticosterone levels. This profile recalled symptoms of impulse control and anxiety disorders. Serotonin appeared essential for behavioral adaptation to dynamic social environments. Our animal model challenges the essential role of serotonin in decision-making, flexibility, impulsivity, and risk-taking. These findings highlight the importance of studying everyday life functions within the dynamic social living environment to model complexity in animal models.
Collapse
Affiliation(s)
- Lucille Alonso
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Michael Bader
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marion Rivalan
- Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Kaasinen V, Honkanen EA, Lindholm K, Jaakkola E, Majuri J, Parkkola R, Noponen T, Vahlberg T, Voon V, Clark L, Joutsa J, Seppänen M. Serotonergic and dopaminergic control of impulsivity in gambling disorder. Addict Biol 2023; 28:e13264. [PMID: 36692875 PMCID: PMC10078603 DOI: 10.1111/adb.13264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023]
Abstract
Gambling disorder (GD) is major public health issue. The disorder is often characterized by elevated impulsivity with evidence from analogous substance use disorders underlining prominent roles of brain monoamines in addiction susceptibility and outcome. Critically, GD allows the study of addiction mechanisms without the confounder of the effects of chronic substances. Here, we assessed the roles of striatal dopamine transporter binding and extrastriatal serotonin transporter binding in GD as a function of impulsivity using [123 I]FP-CIT SPECT imaging in 20 older adults with GD (DSM-5 criteria; mean age 64 years) and 40 non-GD age- and sex-matched controls. We focused on GD in older individuals because there are prominent age-related changes in neurotransmitter function and because there are no reported neuroimaging studies of GD in older adults. Volume-of-interest-based and voxelwise analyses were performed. GD patients scored clearly higher on impulsivity and had higher tracer binding in the ventromedial prefrontal cortex than controls (p < 0.001), likely reflecting serotonin transporter activity. The binding in the medial prefrontal cortex positively correlated with impulsivity over the whole sample (r = 0.62, p < 0.001) as well as separately in GD patients (r = 0.46, p = 0.04) and controls (r = 0.52, p < 0.001). Striatal tracer binding, reflecting dopamine transporter activity was also positively correlated with impulsivity but showed no group differences. These findings highlight the role of prefrontal serotonergic function in GD and impulsivity. They identify cerebral coordinates of a potential target for neuromodulation for both GD and high impulsivity, a core phenotypic dimensional cognitive marker in addictions.
Collapse
Affiliation(s)
- Valtteri Kaasinen
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Emma A Honkanen
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Kari Lindholm
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Elina Jaakkola
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Joonas Majuri
- Department of Neurology, North Kymi Hospital, Kouvola, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tommi Noponen
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Biostatistics, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Luke Clark
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juho Joutsa
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Turku Brain and Mind Center, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Marko Seppänen
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
21
|
Sey NYA, Hu B, Iskhakova M, Lee S, Sun H, Shokrian N, Ben Hutta G, Marks JA, Quach BC, Johnson EO, Hancock DB, Akbarian S, Won H. Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits. Mol Psychiatry 2022; 27:3085-3094. [PMID: 35422469 PMCID: PMC9853312 DOI: 10.1038/s41380-022-01558-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023]
Abstract
Cigarette smoking and alcohol use are among the most prevalent substances used worldwide and account for a substantial proportion of preventable morbidity and mortality, underscoring the public health significance of understanding their etiology. Genome-wide association studies (GWAS) have successfully identified genetic variants associated with cigarette smoking and alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal conformation mappings can address this knowledge gap by charting the interaction profiles of risk-associated regulatory variants with target genes. To investigate the functional impact of common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C coupled MAGMA (H-MAGMA) built upon cortical and newly generated midbrain dopaminergic neuronal Hi-C datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, we identified pleiotropic genes between cigarette smoking and alcohol use traits under the assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D genome architecture helps refine neurobiological hypotheses for smoking, alcohol, and general addiction phenotypes by linking genetic risk factors to their target genes.
Collapse
Affiliation(s)
- Nancy Y A Sey
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Benxia Hu
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Marina Iskhakova
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sool Lee
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Huaigu Sun
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Neda Shokrian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriella Ben Hutta
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jesse A Marks
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Bryan C Quach
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
- Fellow Program, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Chapel Hill, NC, 27709, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Hyejung Won
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Georgieva E, Benkova K, Vlaeva N, Karamalakova Y, Miteva R, Abrashev H, Nikolova G. Is Illicit Substance Use Gender-Specific? The Basic Points of Mental and Health Disorders. TOXICS 2022; 10:toxics10070344. [PMID: 35878250 PMCID: PMC9323370 DOI: 10.3390/toxics10070344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022]
Abstract
Among the groups of users of illicit substances, a high percentage are persons deprived of their liberty; at the same time, each social and age group is also affected, to one degree or another. The purpose of this study is to provide general data on the relationship between different psychostimulants, clinical and socio-demographic studies, and gender, both among the general population and in one of the most at-risk groups. This review identifies the use of illicit substances as gender-specific in the general population. A detailed study of the causal relationship between the use of illicit substances and gender was carried out. Electronic databases Academic Search Complete, PubMed, HealthCare, Web of Science, and Google Scholar were searched for relevant studies up to 2022 associated with drug abuse and mental and health disorders. The analysis indicated that the human population showed significant differences between the sex of the consumer as to the type of drug consumers, development of addiction, and relapse. We focus on the pathological changes caused by drug use, the personal and physiological individual traits that influence drug choice, and the extent of use in one of the most affected groups of individuals. The study may provide some guidance in developing gender-specific treatment and prevention, including response to some pharmacological and behavioral therapies. The review is intended for a wide audience of social workers, toxicologists, and pharmacologists.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (R.M.)
- Department of Medical Psychology, Social Activities and Foreign Languages, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.B.); (N.V.)
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Krasimira Benkova
- Department of Medical Psychology, Social Activities and Foreign Languages, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.B.); (N.V.)
| | - Nadya Vlaeva
- Department of Medical Psychology, Social Activities and Foreign Languages, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.B.); (N.V.)
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Radostina Miteva
- Department of General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (E.G.); (R.M.)
| | - Hristo Abrashev
- Department of Vascular Surgery, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
- Correspondence: ; Tel.: +359-897-771-301
| |
Collapse
|
23
|
Nazari S, Pourmand SM, Makki SM, Brand S, Vousooghi N. Potential biomarkers of addiction identified by real-time PCR in human peripheral blood lymphocytes: a narrative review. Biomark Med 2022; 16:739-758. [PMID: 35658670 DOI: 10.2217/bmm-2021-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Addiction-related neurobiological factors could be considered as potential biomarkers. The concentration of peripheral biomarkers in tissues like blood lymphocytes may mirror their brain levels. This review is focused on the mRNA expression of potential addiction biomarkers in human peripheral blood lymphocytes (PBLs). PubMed, EMBASE, Web of Science, Scopus and Google Scholar were searched using the keywords 'addiction', 'biomarker', 'peripheral blood lymphocyte', 'gene expression' and 'real-time PCR'. The results showed the alterations in the regulation of genes such as dopamine receptors, opioid receptors, NMDA receptors, cannabinoid receptors, α-synuclein, DYN, MAO-A, FosB and orexin-A as PBLs biomarkers in addiction stages. Such variations could also be found during abstinence and relapse. PBLs biomarkers may help in drug development and have clinical implications.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience & Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Seyed Mahmoud Pourmand
- Addiction Department, School of Behavioral Sciences & Mental Health (Tehran Institute of Psychiatry), Iran University of Medical Sciences, Tehran, 1445613111, Iran
| | - Seyed Mohammad Makki
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Serge Brand
- Center for Affective-, Stress- and Sleep Disorders (ZASS), Psychiatric Clinics (UPK), University of Basel, Basel, 4002, Switzerland.,Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran.,Department of Sport, Exercise, and Health, Division of Sport Science and Psychosocial Health, University of Basel, Basel, 4052, Switzerland.,Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417466191, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran.,Research Center for Cognitive & Behavioral Sciences, Tehran University of Medical Sciences, Tehran, 13337159140, Iran.,Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, 1336616357, Iran
| |
Collapse
|
24
|
Leconte C, Mongeau R, Noble F. Traumatic Stress-Induced Vulnerability to Addiction: Critical Role of the Dynorphin/Kappa Opioid Receptor System. Front Pharmacol 2022; 13:856672. [PMID: 35571111 PMCID: PMC9091501 DOI: 10.3389/fphar.2022.856672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) may emerge from an individual’s attempt to limit negative affective states and symptoms linked to stress. Indeed, SUD is highly comorbid with chronic stress, traumatic stress, or post-traumatic stress disorder (PTSD), and treatments approved for each pathology individually often failed to have a therapeutic efficiency in such comorbid patients. The kappa-opioid receptor (KOR) and its endogenous ligand dynorphin (DYN), seem to play a key role in the occurrence of this comorbidity. The DYN/KOR function is increased either in traumatic stress or during drug use, dependence acquisition and DYN is released during stress. The behavioural effects of stress related to the DYN/KOR system include anxiety, dissociative and depressive symptoms, as well as increased conditioned fear response. Furthermore, the DYN/KOR system is implicated in negative reinforcement after the euphoric effects of a drug of abuse ends. During chronic drug consumption DYN/KOR functions increase and facilitate tolerance and dependence. The drug-seeking behaviour induced by KOR activation can be retrieved either during the development of an addictive behaviour, or during relapse after withdrawal. DYN is known to be one of the most powerful negative modulators of dopamine signalling, notably in brain structures implicated in both reward and fear circuitries. KOR are also acting as inhibitory heteroreceptors on serotonin neurons. Moreover, the DYN/KOR system cross-regulate with corticotropin-releasing factor in the brain. The sexual dimorphism of the DYN/KOR system could be the cause of the gender differences observed in patients with SUD or/and traumatic stress-related pathologies. This review underlies experimental and clinical results emphasizing the DYN/KOR system as common mechanisms shared by SUD or/and traumatic stress-related pathologies, and suggests KOR antagonist as a new pharmacological strategy to treat this comorbidity.
Collapse
|
25
|
Fluyau D, Mitra P, Jain A, Kailasam VK, Pierre CG. Selective serotonin reuptake inhibitors in the treatment of depression, anxiety, and post-traumatic stress disorder in substance use disorders: a Bayesian meta-analysis. Eur J Clin Pharmacol 2022; 78:931-942. [PMID: 35246699 DOI: 10.1007/s00228-022-03303-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Examine SSRIs' efficacy in treating depression, anxiety, PTSD, and substance use in individuals with addiction. METHODS From their inception until August 6, 2021, we searched Google Scholar, PubMed, Scopus, OVID MEDLINE, and Academic Search Complete. We included randomized controlled trials (RCTs) and omitted open-label studies. Bayesian analysis was performed. Bayes factor (BF) established efficacy and tau (τ) statistical heterogeneity. The RoB2 method assessed potential biases. Subgroup analysis was carried out to determine SSRI performance. Treatment duration, SSRI dosage, and attrition rate were all examined in meta-regression. RESULTS We investigated 64 RCTs with 6128 participants. SSRIs reduced depressive symptoms in opioid, alcohol, cocaine, cannabis, and nicotine use disorders (d = 0.353, BF > 99); social anxiety symptoms in alcohol use disorder (d = 0.875, BF > 99); and generalized anxiety symptoms in opioid, alcohol, cocaine, marijuana, and nicotine use disorders (d = 0.346, BF = 4.236). Evidence for PTSD was inconclusive. SSRIs facilitated abstinence for opioid, alcohol, cocaine, cannabis, and nicotine use (d = 0.325, BF > 99); reduced craving for alcohol, cocaine, and nicotine use (d = 0.533, BF = 24.129); and reduced alcohol use (d = 0.452, BF > 99) and cocaine use (d = 0.255, BF = 3.87). Fluoxetine showed the highest antidepressant effect. There was no effect of attrition rate, SSRI dosage, or treatment length on SSRI's efficacy. CONCLUSIONS Results support the use of SSRIs to treat substance use, depression, and anxiety in individuals with addiction. PROTOCOL REGISTRATION PROSPERO registration number: CRD42020164944.
Collapse
Affiliation(s)
- Dimy Fluyau
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr. NE #200, Atlanta, GA, 30329, USA.
| | - Paroma Mitra
- Department of Psychiatry, NYU Langone Health, New York, NY, USA
| | - Ankit Jain
- Pennsylvania State University, State College, PA, USA
| | | | | |
Collapse
|
26
|
Rabinowitz J, Lev-Ran S, Gross R. The association between naturalistic use of psychedelics and co-occurring substance use disorders. Front Psychiatry 2022; 13:1066369. [PMID: 36704738 PMCID: PMC9871568 DOI: 10.3389/fpsyt.2022.1066369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Classic psychedelics (LSD, psilocybin, and peyote/mescaline) have been used to support addiction treatment in a variety of contexts ranging from ceremonial use to clinical trials. The aim of this study was to test the hypothesis that past naturalistic use of classic psychedelics would be associated with decreased prevalence of substance use disorder, when controlling for known confounders. METHODS This cross-sectional study used 2017 NSDUH survey data to evaluate the association between past use of the classic psychedelics LSD, psilocybin and peyote/mescaline and past year substance dependence or abuse. We calculated adjusted odds ratios by multivariate logistic regression, controlling for a range of sociodemographic variables, use of non-psychedelic illicit drugs and mental health related variables. RESULTS A total of 56,276 participants were included in this study. Past use of LSD and psilocybin were associated with increased odds of substance dependence or abuse compared to those who had never used psychedelics before, and this was more likely for those who had used LSD more recently. However, prior use of peyote or mescaline was associated with lower odds of past year substance dependence or abuse compared to people who had never used psychedelics before (aOR = 0.68, p < 0.001). Past use of classic psychedelics was not associated with nicotine dependence. CONCLUSION Past use of peyote/mescaline was associated with decreased odds of substance use disorder compared to people who had never used psychedelics before, while past use of LSD or psilocybin was not. It remains unclear whether this difference is due to pharmacological differences between these compounds or simply due to the context in which peyote/mescaline are traditionally taken. Future research should investigate why naturalistic use of different psychedelics is associated with different substance use disorder effects.
Collapse
Affiliation(s)
- Jonina Rabinowitz
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Shaul Lev-Ran
- Lev Hasharon Medical Center, Netanya, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Israel Center on Addictions, Netanya, Israel
| | - Raz Gross
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Division of Psychiatry, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
27
|
Sakala K, Kasearu K, Katus U, Veidebaum T, Harro J. Association between platelet MAO activity and lifetime drug use in a longitudinal birth cohort study. Psychopharmacology (Berl) 2022; 239:327-337. [PMID: 35001146 DOI: 10.1007/s00213-021-06035-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Platelet monoamine oxidase (MAO) activity, a marker of central serotonergic capacity, has been associated with a variety of problem behaviours. However, studies on platelet MAO activity and addictive drugs have not consistently linked MAO activity with addiction or reported to predict illicit substance use initiation or frequency. OBJECTIVES Platelet MAO activity and illicit drug use was examined in a longitudinal birth cohort study. METHODS The sample included both birth cohorts (original n = 1238) of the Estonian Children Personality Behaviour and Health Study. Longitudinal association from age 15 to 25 years between platelet MAO activity and lifetime drug use was analysed by mixed-effects regression models. Differences at ages 15, 18 and 25 were analysed by t-test. Cox proportional hazard regression analysis was used to assess the association between platelet MAO activity and the age of drug use initiation. RESULTS Male subjects who reported at least one drug use event had lower platelet MAO activity compared to nonusers, both in cross-sectional and longitudinal analyses. Males with low platelet MAO activity had started to use drugs at a younger age. Moreover, in male subjects who had experimented with illicit drugs only once in lifetime, low platelet MAO activity was also associated with higher risk at a younger age. In females, platelet MAO activity was not associated with drug use. CONCLUSION In males, low platelet MAO activity is associated with drug abuse primarily owing to risk-taking at early age.
Collapse
Affiliation(s)
- Katre Sakala
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia.,Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.,School of Natural Sciences and Health, Tallinn University, Narva Road 29, 10120, Tallinn, Estonia
| | - Kairi Kasearu
- Institute of Social Studies, Faculty of Social Sciences, University of Tartu, Lossi 36, 51003, Tartu, Estonia
| | - Urmeli Katus
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 29, 10120, Tallinn, Estonia. .,Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia.
| |
Collapse
|
28
|
Overcoming Depression with 5-HT2A Receptor Ligands. Int J Mol Sci 2021; 23:ijms23010010. [PMID: 35008436 PMCID: PMC8744644 DOI: 10.3390/ijms23010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/25/2023] Open
Abstract
Depression is a multifactorial disorder that affects millions of people worldwide, and none of the currently available therapeutics can completely cure it. Thus, there is a need for developing novel, potent, and safer agents. Recent medicinal chemistry findings on the structure and function of the serotonin 2A (5-HT2A) receptor facilitated design and discovery of novel compounds with antidepressant action. Eligible papers highlighting the importance of 5-HT2A receptors in the pathomechanism of the disorder were identified in the content-screening performed on the popular databases (PubMed, Google Scholar). Articles were critically assessed based on their titles and abstracts. The most accurate papers were chosen to be read and presented in the manuscript. The review summarizes current knowledge on the applicability of 5-HT2A receptor signaling modulators in the treatment of depression. It provides an insight into the structural and physiological features of this receptor. Moreover, it presents an overview of recently conducted virtual screening campaigns aiming to identify novel, potent 5-HT2A receptor ligands and additional data on currently synthesized ligands acting through this protein.
Collapse
|
29
|
Tschetter KE, Callahan LB, Flynn SA, Rahman S, Beresford TP, Ronan PJ. Early life stress and susceptibility to addiction in adolescence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:277-302. [PMID: 34801172 DOI: 10.1016/bs.irn.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Early life stress (ELS) is a risk factor for developing a host of psychiatric disorders. Adolescence is a particularly vulnerable period for the onset of these disorders and substance use disorders (SUDs). Here we discuss ELS and its effects in adolescence, especially SUDs, and their correlates with molecular changes to signaling systems in reward and stress neurocircuits. Using a maternal separation (MS) model of neonatal ELS, we studied a range of behaviors that comprise a "drug-seeking" phenotype. We then investigated potential mechanisms underlying the development of this phenotype. Corticotropin releasing factor (CRF) and serotonin (5-HT) are widely believed to be involved in "stress-induced" disorders, including addiction. Here, we show that ELS leads to the development of a drug-seeking phenotype indicative of increased susceptibility to addiction and concomitant sex-dependent upregulation of CRF and 5-HT system components throughout extended brain reward/stress neurocircuits.
Collapse
Affiliation(s)
- K E Tschetter
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - L B Callahan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S A Flynn
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - T P Beresford
- Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - P J Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States.
| |
Collapse
|
30
|
Haleem DJ, Salman T, Nawaz S, Ikram H. Co-treatment with low doses of buspirone prevents rewarding effects of methylphenidate and upregulates expression of 5-HT1A receptor mRNA in the nucleus accumbens. Behav Brain Res 2021; 418:113660. [PMID: 34752844 DOI: 10.1016/j.bbr.2021.113660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
Accumulating studies consistently show that methylphenidate (MPD), the first line drug for treating Attention-Deficit Hyperactivity Disorder (ADHD), is abused by patients to whom the drug is prescribed. Like other psychostimulants, only low doses of MPD improve cognitive performance while higher doses impair it. Preventing the use of high doses of MPD is important for retaining its therapeutic efficacy. Previously, it has been shown that performance in Morris water maze test is improved in rats treated, orally, with MPD in doses of 2.5 mg/kg; but higher doses (5 mg/kg) impair it. The present study is designed to monitor rewarding effects of 2.5 mg/kg MPD in conditioned place preference (CPP) paradigm and its potential inhibition in buspirone co-treated animals. Our results show that rewarding effects of MPD in CPP paradigm are prevented in rats co-treated with buspirone in doses of 0.1 and 0.3 mg/kg. Animals treated with MPD exhibit a downregulation of 5-HT1A receptor mRNA in the nucleus accumbens which is also prevented in rats co-treated with 0.1 and 0.3 mg/kg but not 1.0 and 2.0 mg/kg buspirone. Administration of buspirone in these doses is not rewarding in CPP test and upregulates 5-HT1A receptor mRNA in the nucleus accumbens. The findings suggest that co-use of low doses of buspirone can prevent rewarding effects of MPD to help retain its therapeutic efficacy.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, University of Karachi, Pakistan.
| | - Tabinda Salman
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Shazia Nawaz
- Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine & Drug Research (PCMD), International Center for Chemical and Biological Science (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Huma Ikram
- Department of Biochemistry, University of Karachi, Pakistan
| |
Collapse
|
31
|
Castillo Díaz F, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev 2021; 131:953-963. [PMID: 34655655 DOI: 10.1016/j.neubiorev.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons projecting from the Substantia Nigra to the Striatum play a critical role in motor functions while dopaminergic neurons originating in the Ventral Tegmental Area (VTA) and projecting to the Nucleus Accumbens, Hippocampus and other cortical structures regulate rewarding learning. While VTA mainly consists of dopaminergic neurons, excitatory (glutamate) and inhibitory (GABA) VTA-neurons have also been described: these neurons may also modulate and contribute to shape the final dopaminergic response, which is critical for memory formation. However, given the large amount of information that is handled daily by our brain, it is essential that irrelevant information be deleted. Recently, apart from the well-established role of dopamine (DA) in learning, it has been shown that DA plays a critical role in the intrinsic active forgetting mechanisms that control storage information, contributing to the deletion of a consolidated memory. These new insights may be instrumental to identify therapies for those disorders that involve memory alterations.
Collapse
Affiliation(s)
- Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
32
|
Clueless about cues: the impact of reward-paired cues on decision making under uncertainty. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Li Y, Simmler LD, Van Zessen R, Flakowski J, Wan JX, Deng F, Li YL, Nautiyal KM, Pascoli V, Lüscher C. Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science 2021; 373:1252-1256. [PMID: 34516792 PMCID: PMC8817894 DOI: 10.1126/science.abi9086] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Compulsive drug use despite adverse consequences defines addiction. While mesolimbic dopamine signaling is sufficient to drive compulsion, psychostimulants such as cocaine also boost extracellular serotonin (5-HT) by inhibiting reuptake. We used SERT Met172 knockin (SertKI) mice carrying a transporter that no longer binds cocaine to abolish 5-HT transients during drug self-administration. SertKI mice showed an enhanced transition to compulsion. Conversely, pharmacologically elevating 5-HT reversed the inherently high rate of compulsion transition with optogenetic dopamine self-stimulation. The bidirectional effect on behavior is explained by presynaptic depression of orbitofrontal cortex–to–dorsal striatum synapses induced by 5-HT via 5-HT1B receptors. Consequently, in projection-specific 5-HT1B receptor knockout mice, the fraction of individuals compulsively self-administering cocaine was elevated.
Collapse
Affiliation(s)
- Yue Li
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Linda D. Simmler
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Ruud Van Zessen
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jérôme Flakowski
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jin-Xia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yu-Long Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Vincent Pascoli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| |
Collapse
|
34
|
5-HT 2A receptor- and M 1 muscarinic acetylcholine receptor-mediated activation of Gα q/11 in postmortem dorsolateral prefrontal cortex of opiate addicts. Pharmacol Rep 2021; 73:1155-1163. [PMID: 33835465 DOI: 10.1007/s43440-021-00248-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Chronic exposure to opiates causes the development of tolerance and physical dependence as well as persistent brain neuroplasticity. Despite a wealth of postmortem human studies for opiate addicts, little direct information regarding the functional status of serotonergic and cholinergic receptor-mediated signaling pathways in the human brain of opiate addicts is yet available. METHODS Functional activation of Gαq/11 proteins coupled to 5-HT2A and M1 type muscarinic acetylcholine receptor (mAChR) was assessed by using the method named [35S]GTPγS binding/immunoprecipitation in frontal cortical membrane preparations from postmortem human brains obtained from opiate addicts and matched controls. RESULTS Concentration-response curves for 5-HT and carbachol in individual subjects were analyzed according to a nonlinear regression model, which generated the values of maximum percent increase (%Emax), negative logarithm of the half-maximal effect (pEC50) and slope factor. As for 5-HT2A receptor-mediated Gαq/11 activation, the %Emax values were reduced significantly and the pEC50 values were decreased significantly in opiate addicts as compared to the control group. Regarding carbachol-induced Gαq/11 activation, no significant difference in %Emax or pEC50 values was detected between the both groups, whereas the slope factor was increased significantly in opiate addicts as compared to the control group. CONCLUSION Our data demonstrate that the signaling pathways mediated by Gαq/11 proteins coupled with 5-HT2A receptors and M1 mAChRs in prefrontal cortex are functionally altered in opiate addicts in comparison with control subjects. These alterations may underpin some aspects of addictive behavior to opiate as well as neuropsychological consequences or comorbid mental disorders associated with opioid use.
Collapse
|
35
|
Popescu A, Marian M, Drăgoi AM, Costea RV. Understanding the genetics and neurobiological pathways behind addiction (Review). Exp Ther Med 2021; 21:544. [PMID: 33815617 PMCID: PMC8014976 DOI: 10.3892/etm.2021.9976] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
The hypothesis issued by modern medicine states that many diseases known to humans are genetically determined, influenced or not by environmental factors, which is applicable to most psychiatric disorders as well. This article focuses on two pending questions regarding addiction: Why do some individuals become addicted while others do not? along with Is it a learned behavior or is it genetically predefined? Recent data suggest that addiction is more than repeated exposure, it is the synchronicity between intrinsic factors (genotype, sex, age, preexisting addictive disorder, or other mental illness), extrinsic factors (childhood, level of education, socioeconomic status, social support, entourage, drug availability) and the nature of the addictive agent (pharmacokinetics, path of administration, psychoactive properties). The dopamine-mesolimbic motivation-reward-reinforcement cycle remains the most coherent physiological theory in addiction. While the common property of addictive substances is that they are dopamine-agonists, each class has individual mechanisms, pharmacokinetics and psychoactive potentials.
Collapse
Affiliation(s)
- Alexandra Popescu
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Maria Marian
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Ana Miruna Drăgoi
- Department of Psychiatry, 'Prof. Dr. Alex. Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Radu-Virgil Costea
- Department of General Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
36
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2021; 42:1671-1692. [PMID: 33651238 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Yuferov V, Butelman ER, Randesi M, van den Brink W, Blanken P, van Ree JM, Kreek MJ. Association of Serotonin Transporter (SERT) Polymorphisms with Opioid Dependence and Dimensional Aspects of Cocaine Use in a Caucasian Cohort of Opioid Users. Neuropsychiatr Dis Treat 2021; 17:659-670. [PMID: 33658787 PMCID: PMC7920580 DOI: 10.2147/ndt.s286536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION A functional tandem repeat polymorphism in the promoter of the serotonin transporter (SERT) gene (SLC6A4) has been studied for association to neuropsychiatric conditions, including substance use disorders. Short (S) forms of this repeat result in reduced transcription, and presumably greater synaptic levels of serotonin, which are involved in opioid and cocaine-induced reward. Dual exposure to heroin and cocaine is a common pattern of poly-drug use and is associated with considerable morbidity. We hypothesize that SLC6A4 variants are associated with cocaine exposure in subjects with an opioid dependence diagnosis (OD), and also in non-dependent opioid users (NOD). Other single nucleotide polymorphisms (SNPs) of SLC6A4 may also be likewise associated. MATERIALS AND METHODS This study determined whether variants of the SLC6A4 promoter repeats and two intronic SNPs, rs16965628 and rs2066713, are associated with categorical diagnoses of opioid dependence (DSM-IV criteria) and with dimensional aspects of cocaine use, in a Caucasian cohort (n=591). Three groups of subjects were examined: (1) 276 subjects with opioid dependence diagnosis (OD); (2) 163 subjects who had used opioids for non-medical reasons but never had an opioid dependence diagnosis (NOD); (3) 152 healthy controls (HC). RESULTS Aside from high exposure to heroin in the OD group, relatively high exposure to cocaine was detected in both OD and NOD groups. The SERT repeat genotype (classified as "long-long" [LL] versus "short-long" plus "short-short" [SL+SS]) was not associated with categorical opioid dependence diagnoses. A nominally significant association was identified with the [SL+SS] genotype of SLC6A4 and cocaine KMSK scores ≥"cutpoint" for a cocaine dependence diagnosis (p=0.026). The [SL+SS] genotype was associated with more rapid cocaine escalation than the LL genotype. No significant associations of rs16965628 and rs2066713 SNPs were found overall. CONCLUSION The functional SERT promoter tandem repeat genotype may be associated to heavy cocaine exposure and more rapid escalation of cocaine use, in persons with and without opioid dependence diagnosis.
Collapse
Affiliation(s)
- Vadim Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Eduardo R Butelman
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Matthew Randesi
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| | - Wim van den Brink
- Amsterdam University Medical Centers, Location Academic Medical Center, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Blanken
- Parnassia Addiction Research Centre, The Hague, The Netherlands
| | - Jan M van Ree
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
38
|
Qiu M, Zhang C, Dai Y, Zhang L, Wang Y, Peng W, Chen Y, Wen C, Li H, Zhu T. mRNA Levels of MAOA and 5-HT 2 A Receptor in Patients With Pathological Internet Use: Correlations With Comorbid Symptoms. Front Psychiatry 2021; 12:667699. [PMID: 34335325 PMCID: PMC8322446 DOI: 10.3389/fpsyt.2021.667699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Uncontrolled internet use may lead to the emergence of pathological internet use (PIU). PIU has become a global public health concern that can cause a range of psychotic symptoms, including anxiety, depression, and impulse control disorder. To date, we know very little about the principal biological factors related to PIU. Monoamine oxidase type A (MAOA) and serotonin (5-HT) 5-HT2A receptor (5-HT2AR) play critical roles in the development of behavioural and drug addictions. Thus, the aim of this study was to measure the relative expression of mRNA of MAOA and 5-HT2AR in peripheral blood mononuclear cells (PBMCs) of patients with PIU and to determine the correlations between these biological indicators and the comorbid symptoms of patients with PIU. Methods: In this study, the mRNA of MAOA and 5-HT2AR was detected using real-time PCR in PBMCs of the patients with PIU (n = 24) and healthy controls (HCs, n = 25). The relationship between the mRNA levels of MAOA and 5-HT2AR and clinical symptoms in patients with PIU was further investigated. Results: MAOA mRNA in PBMCs was significantly upregulated in patients with PIU compared with that in HCs. mRNA levels of 5-HT2AR were not found to differ significantly between HCs and patients with PIU. Correlation analyses further revealed a significant positive correlation between the relative expression of MAOA mRNA in PBMCs of patients with PIU and the Young's Internet Addiction Test and Self-Rating Depression Scale scores. Conclusion: The present study revealed upregulated expression of MAOA mRNA in patients with PIU and an association between the expression of MAOA mRNA and clinical symptoms of PIU, suggesting that the neurobiological changes may be similar between PIU and substance addiction. Additionally, this study demonstrated a potential association between comorbid symptoms and mRNA levels of MAOA.
Collapse
Affiliation(s)
- Mimi Qiu
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenchen Zhang
- Department of Rehabilitation, Traditional Chinese Medicine Hospital of Longquanyi District, Chengdu, China
| | - Yu Dai
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingrui Zhang
- Department of Medicine, Leshan Vocational and Technical College, Leshan, China
| | - Yang Wang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yalin Chen
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Wen
- Department of Rehabilitation, Zigong Fifth People's Hospital, Zigong, China
| | - Hui Li
- College of Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- College of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
CRF-5-HT interactions in the dorsal raphe nucleus and motivation for stress-induced opioid reinstatement. Psychopharmacology (Berl) 2021; 238:29-40. [PMID: 33231727 PMCID: PMC7796902 DOI: 10.1007/s00213-020-05652-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023]
Abstract
RATIONALE The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Our previous data show that stressors can inhibit 5-HT neuronal activity and release by stimulating the release of the stress neurohormone corticotropin-releasing factor (CRF) within the serotonergic dorsal raphe nucleus (DRN). The inhibitory effects of CRF on 5-HT DRN neurons are indirect, mediated by CRF-R1 receptors located on GABAergic afferents. OBJECTIVES We tested the hypothesis that DRN CRF-R1 receptors contribute to stress-induced reinstatement of morphine-conditioned place preference (CPP). We also examined the role of this circuitry in stress-induced negative affective state with 22-kHz distress ultrasonic vocalizations (USVs), which are naturally emitted by rats in response to environmental challenges such as pain, stress, and drug withdrawal. METHODS First, we tested if activation of CRF-R1 receptors in the DRN with the CRF-R1-preferring agonist ovine CRF (oCRF) would reinstate morphine CPP and then if blockade of CRF-R1 receptors in the DRN with the CRF-R1 antagonist NBI 35965 would attenuate swim stress-induced reinstatement of morphine CPP. Second, we tested if intra-DRN pretreatment with NBI 35965 would attenuate foot shock stress-induced 22-kHz USVs. RESULTS Intra-DRN injection of oCRF reinstated morphine CPP, while intra-DRN injection of NBI 35965 attenuated swim stress-induced reinstatement. Moreover, intra-DRN pretreatment with NBI 35965 significantly reduced 22-kHz distress calls induced by foot shock. CONCLUSIONS These data provide evidence that stress-induced negative affective state is mediated by DRN CRF-R1 receptors and may contribute to reinstatement of morphine CPP.
Collapse
|
40
|
Siemann JK, Grueter BA, McMahon DG. Rhythms, Reward, and Blues: Consequences of Circadian Photoperiod on Affective and Reward Circuit Function. Neuroscience 2020; 457:220-234. [PMID: 33385488 DOI: 10.1016/j.neuroscience.2020.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/01/2023]
Abstract
Circadian disruptions, along with altered affective and reward states, are commonly associated with psychiatric disorders. In addition to genetics, the enduring influence of environmental factors in programming neural networks is of increased interest in assessing the underpinnings of mental health. The duration of daylight or photoperiod is known to impact both the serotonin and dopamine systems, which are implicated in mood and reward-based disorders. This review first examines the effects of circadian disruption and photoperiod in the serotonin system in both human and preclinical studies. We next highlight how brain regions crucial for the serotoninergic system (i.e., dorsal raphe nucleus; DRN), and dopaminergic (i.e., nucleus accumbens; NAc and ventral tegmental area; VTA) system are intertwined in overlapping circuitry, and play influential roles in the pathology of mood and reward-based disorders. We then focus on human and animal studies that demonstrate the impact of circadian factors on the dopaminergic system. Lastly, we discuss how environmental factors such as circadian photoperiod can impact the neural circuits that are responsible for regulating affective and reward states, offering novel insights into the biological mechanisms underlying the pathophysiology, systems, and therapeutic treatments necessary for mood and reward-based disorders.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Brad A Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Douglas G McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
41
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
42
|
The Role of Dorsal Raphe Serotonin Neurons in the Balance between Reward and Aversion. Int J Mol Sci 2020; 21:ijms21062160. [PMID: 32245184 PMCID: PMC7139834 DOI: 10.3390/ijms21062160] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. METHODS For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. RESULTS We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. CONCLUSION Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion.
Collapse
|
43
|
Müller TE, Ziani PR, Fontana BD, Duarte T, Stefanello FV, Canzian J, Santos ARS, Rosemberg DB. Role of the serotonergic system in ethanol-induced aggression and anxiety: A pharmacological approach using the zebrafish model. Eur Neuropsychopharmacol 2020; 32:66-76. [PMID: 31948829 DOI: 10.1016/j.euroneuro.2019.12.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/26/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
Abstract
Acute ethanol (EtOH) consumption exerts a biphasic effect on behavior and increases serotonin levels in the brain. However, the molecular mechanisms underlying alcohol-mediated behavioral responses still remain to be fully elucidated. Here, we investigate pharmacologically the involvement of the serotonergic pathway on acute EtOH-induced behavioral changes in zebrafish. We exposed zebrafish to 0.25, 0.5, 1.0% (v/v) EtOH for 1 h and analyzed the effects on aggression, anxiety-like behaviors, and locomotion. EtOH concentrations that changed behavioral responses were selected to the subsequent experiments. As a pharmacological approach, we used pCPA (inhibitor of tryptophan hydroxylase), WAY100135 (5-HT1A antagonist), buspirone (5-HT1A agonist), CGS12066A and CGS12066B (5-HT1B antagonist and agonist, respectively), ketanserin (5-HT2A antagonist) and (±)-DOI hydrochloride (5-HT2A agonist). All serotonergic receptors tested modulated aggression, with a key role of 5-HT2A in aggressive behavior following 0.25% EtOH exposure. Because CGS12066B mimicked 0.5% EtOH anxiolysis, which was antagonized by CGS12066A, we hypothesized that anxiolytic-like responses are possibly mediated by 5-HT1B receptors. Conversely, the depressant effects of EtOH are probably not related with direct changes on serotonergic pathway. Overall, our novel findings demonstrate a role of the serotonergic system in modulating the behavioral effects of EtOH in zebrafish. These data also reinforce the growing utility of zebrafish models in alcohol research and help elucidate the neurobiological mechanisms underlying alcohol abuse and associated complex behavioral phenotypes.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Paola R Ziani
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Tâmie Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
44
|
Dalley JW, Ersche KD. Neural circuitry and mechanisms of waiting impulsivity: relevance to addiction. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180145. [PMID: 30966923 DOI: 10.1098/rstb.2018.0145] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Impatience-the failure to wait or tolerate delayed rewards (e.g. food, drug and monetary incentives)-is a common behavioural tendency in humans. However, when rigidly and rapidly expressed with limited regard for future, often negative consequences, impatient or impulsive actions underlie and confer susceptibility for such diverse brain disorders as drug addiction, attention-deficit hyperactivity disorder (ADHD) and major depressive disorder. Consequently, 'waiting' impulsivity has emerged as a candidate endophenotype to inform translational research on underlying neurobiological mechanisms and biomarker discovery for many of the so-called impulse-control disorders. Indeed, as reviewed in this article, this research enterprise has revealed a number of unexpected targets and mechanisms for intervention. However, in the context of drug addiction, impulsive decisions that maximize short-term gains (e.g. acute drug consumption) over longer-term punishment (e.g. unemployment, homelessness, personal harm) defines one aspect of impulsivity, which may or may not be related to rapid, unrestrained actions over shorter timescales. We discuss the relevance of this distinction in impulsivity subtypes for drug addiction with reference to translational research in humans and other animals. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Collapse
Affiliation(s)
- Jeffrey W Dalley
- 1 Department of Psychology, University of Cambridge , Cambridge CB2 3EB , UK.,2 Department of Psychiatry, University of Cambridge , Cambridge CB2 0SZ , UK
| | - Karen D Ersche
- 1 Department of Psychology, University of Cambridge , Cambridge CB2 3EB , UK
| |
Collapse
|
45
|
Hernández-Vázquez F, Garduño J, Hernández-López S. GABAergic modulation of serotonergic neurons in the dorsal raphe nucleus. Rev Neurosci 2019; 30:289-303. [PMID: 30173207 DOI: 10.1515/revneuro-2018-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 11/15/2022]
Abstract
The dorsal raphe nucleus (DRN), located in the brainstem, is involved in several functions such as sleep, temperature regulation, stress responses, and anxiety behaviors. This nucleus contains the largest population of serotonin expressing neurons in the brain. Serotonergic DRN neurons receive tonic γ-aminobutyric acid (GABA)inhibitory inputs from several brain areas, as well as from interneurons within the same nucleus. Serotonergic and GABAergic neurons in the DRN can be distinguished by their size, location, pharmacological responses, and electrophysiological properties. GABAergic neurons regulate the excitability of DRN serotonergic neurons and the serotonin release in different brain areas. Also, it has been shown that GABAergic neurons can synchronize the activity of serotonergic neurons across functions such as sleep or alertness. Moreover, dysregulation of GABA signaling in the DRN has been linked to psychiatric disorders such as anxiety and depression. This review focuses on GABAergic transmission in the DRN. The interaction between GABAergic and serotonergic neurons is discussed considering some physiological implications. Also, the main electrophysiological and morphological characteristics of serotonergic and GABAergic neurons are described.
Collapse
Affiliation(s)
- Fabiola Hernández-Vázquez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Julieta Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, PO Box 70250, Ciudad de México 04510, México
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, PO Box 70250, Ciudad de México 04510, México, e-mail:
| |
Collapse
|
46
|
Elmorsy E, Mahmoud EHM, Rakha SA, Shoaib M. An association between latent toxoplasmosis and substance abuse: an Egyptian Center Study. J Addict Dis 2019; 37:165-172. [PMID: 31328700 DOI: 10.1080/10550887.2019.1641378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Infection of toxoplasma gondii (TG), an intracellular neurotropic parasitic protozoon, has been associated with various neuropsychiatric disorders. TG is usually diagnosed from serological sample in which a positive test for Anti-TG immunoglobulin G (IgG) indicates TG infection (toxoplasmosis). The research was conducted to test the hypothesis that TG infection may be associated with substance abuse. Anti-TG (IgG) was screened in 444 participants (350 abusers and 94 controls) who attended the Psychiatry Department of Mansoura University Hospitals. All participants were screened for different class of abused substances (tramadol, cannabis, opiates, barbiturates and benzodiazepines) using enzyme multiplied immunoassay technique and positive cases were confirmed using gas chromatography-mass spectroscopy (GC-MS). Substance users were also diagnosed according to DSM IV criteria. GC-MS assays revealed that 116 cases (33.1% of users) had documented use of more than one substance. Tramadol was the most common abused substance [86 cases (24.6%)]. About 56% of the participants were sero-positive for anti-TG IgG. Toxoplasmosis sero-positivity was significantly higher among substance abusers (P < 0.0001) irrespective of the class of substance used. There was a significant relationship between toxoplasma sero-positivity and occurrence of convulsions among tramadol users (P = 0.0007) and those relapsing (P < 0.0001) following short periods of abstinence. The data collected suggest that TG infection is significantly associated with the high incidence of substance use, irrespective of the drug class. These preliminary findings warrant further larger multicenter clinical studies to test the robustness of this association.
Collapse
Affiliation(s)
- Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Egypt
| | | | - Shirien A Rakha
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Mohammed Shoaib
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle, UK
| |
Collapse
|
47
|
Wang HL, Zhang S, Qi J, Wang H, Cachope R, Mejias-Aponte CA, Gomez JA, Mateo-Semidey GE, Beaudoin GMJ, Paladini CA, Cheer JF, Morales M. Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons. Cell Rep 2019; 26:1128-1142.e7. [PMID: 30699344 PMCID: PMC6489450 DOI: 10.1016/j.celrep.2019.01.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/26/2022] Open
Abstract
Dorsal raphe (DR) serotonin neurons provide a major input to the ventral tegmental area (VTA). Here, we show that DR serotonin transporter (SERT) neurons establish both asymmetric and symmetric synapses on VTA dopamine neurons, but most of these synapses are asymmetric. Moreover, the DR-SERT terminals making asymmetric synapses on VTA dopamine neurons coexpress vesicular glutamate transporter 3 (VGluT3; transporter for accumulation of glutamate for its synaptic release), suggesting the excitatory nature of these synapses. VTA photoactivation of DR-SERT fibers promotes conditioned place preference, elicits excitatory currents on mesoaccumbens dopamine neurons, increases their firing, and evokes dopamine release in nucleus accumbens. These effects are blocked by VTA inactivation of glutamate and serotonin receptors, supporting the idea of glutamate release in VTA from dual DR SERT-VGluT3 inputs. Our findings suggest a path-specific input from DR serotonergic neurons to VTA that promotes reward by the release of glutamate and activation of mesoaccumbens dopamine neurons.
Collapse
Affiliation(s)
- Hui-Ling Wang
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Shiliang Zhang
- National Institute on Drug Abuse, Electron Microscopy Core, NIH, Baltimore, MD, USA
| | - Jia Qi
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Huikun Wang
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Roger Cachope
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jorge A Gomez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Gerard M J Beaudoin
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carlos A Paladini
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marisela Morales
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA.
| |
Collapse
|
48
|
Li Y, Li CY, Xi W, Jin S, Wu ZH, Jiang P, Dong P, He XB, Xu FQ, Duan S, Zhou YD, Li XM. Rostral and Caudal Ventral Tegmental Area GABAergic Inputs to Different Dorsal Raphe Neurons Participate in Opioid Dependence. Neuron 2019; 101:748-761.e5. [PMID: 30638902 DOI: 10.1016/j.neuron.2018.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Abstract
Both the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) are involved in affective control and reward-related behaviors. Moreover, the neuronal activities of the VTA and DRN are modulated by opioids. However, the precise circuits from the VTA to DRN and how opioids modulate these circuits remain unknown. Here, we found that neurons projecting from the VTA to DRN are primarily GABAergic. Rostral VTA (rVTA) GABAergic neurons preferentially innervate DRN GABAergic neurons, thus disinhibiting DRN serotonergic neurons. Optogenetic activation of this circuit induces aversion. In contrast, caudal VTA (cVTA) GABAergic neurons mainly target DRN serotonergic neurons, and activation of this circuit promotes reward. Importantly, μ-opioid receptors (MOPs) are selectively expressed at rVTA→DRN GABAergic synapses, and morphine depresses the synaptic transmission. Chronically elevating the activity of the rVTA→DRN pathway specifically interrupts morphine-induced conditioned place preference. This opioid-modulated inhibitory circuit may yield insights into morphine reward and dependence pathogenesis.
Collapse
Affiliation(s)
- Yue Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chun-Yue Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wang Xi
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sen Jin
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Zuo-Hang Wu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ping Jiang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ping Dong
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Bin He
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Fu-Qiang Xu
- CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Shumin Duan
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yu-Dong Zhou
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
49
|
Fanelli G, Serretti A. The influence of the serotonin transporter gene 5-HTTLPR polymorphism on suicidal behaviors: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:375-387. [PMID: 30125622 DOI: 10.1016/j.pnpbp.2018.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Suicidal Behavior (SB) is the second leading cause of death among youths worldwide and the tenth among all age groups. Inherited genetic differences have a role in suicidality with heritability ranging from 30 to 55%. The SLC6A4 5-HTTLPR gene variant has been largely investigated for association with SB, with controversial results. In this work, we sought to determine whether the results of previous meta-analyses were confirmed or modified subsequent to the inclusion of more recent literature data. An electronic literature search was performed to identify relevant studies published until July 2018. Data were analysed through RevMan v5.3. Subgroup and sensitivity meta-analyses were performed considering different SB sub-phenotypes, ethnicity, gender and psychiatric diagnostic categories. Our literature search yielded 1186 articles; among these, we identified 45 pertinent case-control studies (15,341 subjects). No association was found between low-expressing alleles or genotypes (S + LG alleles or S' carrier genotypes) and SB in the primary analyses. However, low-expressing alleles (S + LG) were associated with an increased risk of Violent Suicide Attempt (OR = 1.44, C.I. 1.17-1.78, p = .0007). An effect of the same alleles on SB was found in a subpopulation of substance abusers, but this result was not confirmed after the exclusion of healthy subjects from the control group. The other sensitivity meta-analyses did not show any significant effect. Our findings contribute to clarify the conflicting previous evidence by suggesting an association between the 5-HTTLPR and Violent SB. Nonetheless, many other modulators, including environmental factors and epigenetic mechanisms may act to further increase the level of complexity.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
50
|
Farhan M, Riaz F, Wali S, Rafiq H. Desensitization of 5-HT-1A Somatodentritic Receptors in Tryptophan Treated and Co-treated Rats Induced by Methylphenidate. ACTA ACUST UNITED AC 2018; 14:125-131. [PMID: 30417792 DOI: 10.2174/1574884713666181112123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Psychostimulants can induce behavioral sensitization by their chronic use. The main target for the action of these drugs is dopamine, neither epinephrine nor serotonin transporters. Serotonin is synthesized by the precursor L-tryptophan. Tryptophan and methylphenidate being 5-HT agonists, both increase the level of serotonin thereby causing desensitization of 5-HT1a receptors. The present study investigated whether behavioral sensitization induced by Methylphenidate is decreased in tryptophan administrated animals. METHODS The Experiment was divided into 2 phases (1). Behavioral effects of repeated administration of TRP 100 mg/kg and MPD for 14 days in three groups; (i) water (ii) MPD 1.0 mg/kg (iii) TRP. To explore the locomotor effects of treatment, the activity was monitored in a familiar and novel environment. (2) Behavioral consequences of repeatedly administrated MPD (1.0 mg/kg) on pretreated TRP (100 mg/kg) and MPD (1.0 mg/kg) animals following Co-MPD and TRP for 14 days, rats were divided in three groups (i) water, (ii) MPD and (iii) TRP as mentioned in Experiment no 1. After two weeks six subgroups were assigned i.e. (i) water-saline, (ii) water- MPD, (iii) TRP-saline (iv) TRP-MPD (v) MPD-saline and (vi) MPD-MPD+TRP and treated for further 14 days. Locomotor behavior was monitored in familiar environment on the next day and in novel environment on alternate days of each administration. RESULTS The Results from phase 1 showed increased activity in both (TRP and MPD) treatments. However, the results of phase 2 showed significant decrease in methylphenidate-induced behavioral sensitization by both pretreatment and co-administration with TRP. CONCLUSION The present study suggests the potential of tryptophan to decrease the risk of behavioral sensitization induced by methylphenidate.
Collapse
Affiliation(s)
- Muhammad Farhan
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| | - Fatima Riaz
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| | - Sana Wali
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Karachi 74600, Pakistan
| |
Collapse
|