1
|
Jiao S, Li N, Cao T, Wang L, Chen H, Lin C, Cai H. Differential impact of intermittent versus continuous treatment with clozapine on fatty acid metabolism in the brain of an MK-801-induced mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111011. [PMID: 38642730 DOI: 10.1016/j.pnpbp.2024.111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Continuous antipsychotic treatment is often recommended to prevent relapse in schizophrenia. However, the efficacy of antipsychotic treatment appears to diminish in patients with relapsed schizophrenia and the underlying mechanisms are still unknown. Moreover, though the findings are inconclusive, several recent studies suggest that intermittent versus continuous treatment may not significantly differ in recurrence risk and therapeutic efficacy but potentially reduce the drug dose and side effects. Notably, disturbances in fatty acid (FA) metabolism are linked to the onset/relapse of schizophrenia, and patients with multi-episode schizophrenia have been reported to have reduced FA biosynthesis. We thus utilized an MK-801-induced animal model of schizophrenia to evaluate whether two treatment strategies of clozapine would affect drug response and FA metabolism differently in the brain. Schizophrenia-related behaviors were assessed through open field test (OFT) and prepulse inhibition (PPI) test, and FA profiles of prefrontal cortex (PFC) and hippocampus were analyzed by gas chromatography-mass spectrometry. Additionally, we measured gene expression levels of enzymes involved in FA synthesis. Both intermittent and continuous clozapine treatment reversed hypermotion and deficits in PPI in mice. Continuous treatment decreased total polyunsaturated fatty acids (PUFAs), saturated fatty acids (SFAs) and FAs in the PFC, whereas the intermittent administration increased n-6 PUFAs, SFAs and FAs compared to continuous administration. Meanwhile, continuous treatment reduced the expression of Fads1 and Elovl2, while intermittent treatment significantly upregulated them. This study discloses the novel findings that there was no significant difference in clozapine efficacy between continuous and intermittent administration, but intermittent treatment showed certain protective effects on phospholipid metabolism in the PFC.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Nana Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
2
|
Wu R, Chou S, Li M. Continuous oral olanzapine or clozapine treatment initiated in adolescence has differential short- and long-term impacts on antipsychotic sensitivity than those initiated in adulthood. Eur J Pharmacol 2024; 972:176567. [PMID: 38582275 PMCID: PMC11128075 DOI: 10.1016/j.ejphar.2024.176567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
One of the major discoveries in recent research on antipsychotic drugs is that antipsychotic treatment in adolescence could induce robust long-term alterations in antipsychotic sensitivity that persist into adulthood. These long-term impacts are likely influenced by various factors, including the "diseased" state of animals, sex, type of drugs, mode of drug administration, and age of treatment onset. In this study we compared the short- and long-term behavioral effects of 21-day continuous oral olanzapine (7.5 mg/kg/day) or clozapine (30.0 mg/kg/day) administration in heathy or maternal immune activated adolescent (33-53 days old) or adult (80-100 days old) rats of both sexes. We used a conditioned avoidance response model to assess the drug-induced alterations in antipsychotic sensitivity. Here, we report that while under the chronic drug treatment period, olanzapine progressively increased its suppression of avoidance responding over time, especially when treatment was initiated in adulthood. Clozapine's suppression depended on the age of drug exposure, with treatment initiated in adulthood showing a suppression while that initiated in adolescent did not. After a 17-day drug-free interval, in a drug challenge test, olanzapine treatment initiated in adolescence caused a decrease in drug sensitivity, as reflected by less avoidance suppression (a tolerance effect); whereas that initiated in adulthood appeared to cause an increase (more avoidance suppression, a sensitization effect). Clozapine treatments initiated in both adolescence and adulthood caused a similar tolerance effect. Our findings indicate that the same chronic antipsychotic treatment regimen initiated in adolescence or adulthood can have differential short- and long-term impacts on drug sensitivity.
Collapse
Affiliation(s)
- Ruiyong Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Chou S, Davis C, Li M. Maternal immune activation and repeated maternal separation alter offspring conditioned avoidance response learning and antipsychotic response in male rats. Behav Brain Res 2021; 403:113145. [PMID: 33515643 DOI: 10.1016/j.bbr.2021.113145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/01/2022]
Abstract
Previous work shows that repeated administration of several commonly used antipsychotic drugs, such as olanzapine (OLZ) over several days, induces an enhanced disruption of conditioned avoidance response (CAR) (termed antipsychotic sensitization) in normal adolescent and adult rats. However, it is unclear whether the same phenomenon can also be demonstrated in rat models of schizophrenia. The present study investigated OLZ sensitization in a combined maternal immune activation (MIA) and repeated maternal separation (RMS) model of schizophrenia. Sprague-Dawley male rats were first subjected to an early prenatal exposure to polyinosinic:polycytidylic acid (PolyI:C) on gestation days 13 (4 mg/kg, iv) and 15 (6 mg/kg, iv). They were then repeatedly separated from their mothers for 3 h daily during the first two weeks of postpartum. After they became adolescent (on postnatal day, PND 43), acute and OLZ sensitization effects in the CAR model was assessed. Adolescent MIA rats showed an impaired acquisition of conditioned avoidance response, but displayed a normal acute OLZ-induced avoidance suppression and OLZ sensitization effect. In adulthood (PND 81), MIA rats again showed an impairment in the acquisition of CAR. However, they showed a reduced response to OLZ (1.0 mg/kg; sc) treatment during the repeated drug test days, indicating a disruption of the induction of OLZ sensitization. In the OLZ sensitization challenge test, both MIA and control rats exhibited a robust and similar sensitization effect. In both adolescence and adulthood, RMS alone had no effect on any of the behavioral outcomes, and combined MIA-RMS even abolished the MIA alone-induced disruption of avoidance acquisition and the induction of OLZ sensitization. These results indicate that MIA disrupts associative learning and may reduce antipsychotic efficacy in the early stage of OLZ treatment. RMS does not appear to affect associative learning and behavioral responses to OLZ, and may possibly attenuate MIA-induced deficits. Our findings demonstrate that OLZ sensitization is a robust phenomenon but its magnitude can be altered by early MIA.
Collapse
Affiliation(s)
- Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, United States; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Collin Davis
- College of Pharmacy, University of Minnesota, Minneapolis, MN, United States; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
4
|
Liao IM, Chen JC. Lack of dopamine D4 receptor participation in mouse hyperdopaminergic locomotor response. Behav Brain Res 2020; 396:112925. [PMID: 32971195 DOI: 10.1016/j.bbr.2020.112925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Chronic methamphetamine (METH) treatment induces behavioral sensitization in rodents. During this process, hyperactivation of the mesolimbic dopamine system plays a central role, and dopamine D2-like receptor-based antipsychotics are known to alleviate the behavioral hyperactivity. The atypical antipsychotic, clozapine (Clz), acts partially as a dopamine D4 receptor (D4R) antagonist and mitigates hyperdopaminergic drug addiction and/or comorbid psychotic symptoms; however, it remains unclear whether D4R blockade contributes to the therapeutic effects of Clz. Here, we evaluated the potential role of D4R in regulating hyperdopaminergia-induced behavioral hyperactivity in METH behavioral sensitization and dopamine transporter (DAT) knockdown (KD) mice. Clz or a D4R-selective antagonist, L-745,870, were co-administered to mice with daily METH in a METH sensitization model, and Clz or L-745,870 were administered alone in a DAT KD hyperactivity model. Locomotor activity and accumbal D4R expression were analyzed. Clz suppressed both the initiation and expression of METH behavioral sensitization, as well as DAT KD hyperactivity. However, repetitive Clz treatment induced tolerance to the suppression effect on METH sensitization initiation. In contrast, D4R inhibition by L-745,870 had no effect on METH sensitization or DAT KD hyperactivity. Accumbal D4R expression was similar between METH-sensitized mice with and without Clz co-treatment. In sum, our results suggest the mesolimbic D4R does not participate in behavioral sensitization encoded by hyperdopaminergia, a finding which likely extends to the therapeutic effects of Clz. Therefore, molecular targets other than D4R should be prioritized in the development of future therapeutics for treatment of hyperdopaminergia-dependent neuropsychiatric disorders.
Collapse
Affiliation(s)
- I-Mei Liao
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, United States
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Keelung, Taiwan; Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
5
|
Gao J, Li M. Reinforcement attenuation as a behavioral technique to suppress conditioned avoidance response in rats: A comparative study with olanzapine. J Psychopharmacol 2019; 33:86-100. [PMID: 30334674 DOI: 10.1177/0269881118805497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Antipsychotic treatment is effective in the treatment of psychosis, although it also brings with it some unwanted side effects and is associated with low compliance. Finding a non-pharmacological alternative for antipsychotic treatment is highly desirable. AIMS This preclinical study examined the 'antipsychotic' efficacy of such a behavioral technique using a conditioned avoidance response model. This technique, termed reinforcement attenuation (RA), is to administer a brief footshock (0.1-2.0 s, 0.8 mA) at the end of each trial regardless of whether a well-trained rat makes an avoidance response or not. RESULTS RA achieved the same avoidance suppressing effect as olanzapine (an atypical antipsychotic drug), including both acute suppression and sensitized suppression of avoidance response in well-trained Sprague-Dawley adult male rats. Interestingly, the RA-induced sensitization (an enhanced disruption of avoidance responding) enhanced subsequent olanzapine sensitivity, whereas the olanzapine (1.0 mg/kg)-induced sensitization had little impact on later RA treatment. When RA and olanzapine (0.5 mg/kg, subcutaneously) were used together, the RA-induced sensitization was still detectable in the RA challenge test, although its magnitude was reduced by olanzapine. Finally, we showed that the RA-induced sensitization in avoidance suppression persisted from adolescence into adulthood, long after such a treatment was terminated. CONCLUSIONS These findings demonstrate that the RA is functionally equivalent (if not superior) to antipsychotic treatment in the avoidance suppression effect (both acute and sensitization effects) in both adolescent and adult animals. Behavioral therapies that specifically target the reinforcer of psychotic thoughts might be a viable strategy for the treatment of psychosis.
Collapse
Affiliation(s)
- Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China
| | - Ming Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.,Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
6
|
Ding X, Li X, Shu Q, Wu R, Hu G, Li M. Time-dependent sensitization of antipsychotic effect in adolescent male and female rats. Behav Brain Res 2017; 328:186-194. [PMID: 28412306 DOI: 10.1016/j.bbr.2017.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/28/2022]
Abstract
Many behavioral and biological effects of a psychoactive drug often undergo time-dependent change following even one single drug exposure. The present study examined whether one or two exposures of haloperidol, olanzapine or clozapine would also induce a time-dependent change in their behavioral effects in adolescent rats, and whether such a change vary between sexes. Adolescent Sprague-Dawley rats (<40days old) were first treated with one single injection of haloperidol (0.05 and 0.1mg/kg, sc), clozapine (10.0 and 20.0mg/kg, sc), 2 injections of olanzapine (1.0 and 2.0mg/kg, sc) or vehicle, and tested in a conditioned avoidance response (CAR) model or a PCP (3.20mg/kg, sc)-induced hyperlocomotion model to assess the drug's antipsychotic-like behavioral effects. One or three weeks later, rats were challenged with the drug and their avoidance responses and the PCP-induced hyperlocomotion were re-assessed. One-trial haloperidol and 2-trial olanzapine induced a sensitization, while 1-trial clozapine induced a tolerance effect. The 1-trial haloperidol sensitization was significantly higher at the 3-week time point than at 1-week point, especially in the females. Clozapine tolerance in the conditioned avoidance response model also exhibited the time-dependent increase in both sex groups. Olanzapine sensitization in the PCP model showed a time-dependent change in a sex-dependent fashion. Overall, the time-dependent antipsychotic sensitization and tolerance can be demonstrated in adolescent animals. Many pharmacological (e.g. specific drugs, drug doses), individual (e.g. male versus female) and environmental (e.g. specific behavioral models) factors play a role in the modulation of the strength of antipsychotic sensitization and tolerance.
Collapse
Affiliation(s)
- Xiaojing Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Xiaonan Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Qing Shu
- Department of Pharmacology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Ruiyong Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
7
|
Feng M, Sparkman NL, Sui N, Li M. A drug-drug conditioning paradigm reveals multiple antipsychotic-nicotine interactions. J Psychopharmacol 2017; 31:474-486. [PMID: 28347260 DOI: 10.1177/0269881116681471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clinical studies indicate a reciprocal impact between nicotine use and antipsychotic medications in patients with schizophrenia. The present study used a conditioned avoidance response (CAR) test (a behavioral test of antipsychotic effect) and examined the specific drug-drug interactions between nicotine and haloperidol or clozapine. Following acquisition of the avoidance response, rats were first tested under either vehicle, nicotine (0.2, 0.4 mg/kg, sc), haloperidol (0.025, 0.05 mg/kg, sc), clozapine (5.0, 10.0 mg/kg, sc), or a combination of nicotine and haloperidol or nicotine and clozapine for seven consecutive days. Afterward, they were challenged with nicotine (0.2 mg/kg), haloperidol (0.025 mg/kg), or clozapine (5.0 mg/kg) in the CAR to assess if haloperidol or clozapine affected the behavioral effect of nicotine on avoidance response and if nicotine altered the avoidance suppressive effect of haloperidol and clozapine. During the seven avoidance drug test days, nicotine did not alter the avoidance suppressive effect of haloperidol or clozapine. However, in the challenge test, prior nicotine treatment (0.2 mg/kg) attenuated haloperidol's (0.05 mg/kg) sensitized effect on avoidance response. On the other hand, prior haloperidol treatment increased nicotine's (0.2 mg/kg) avoidance disruptive effect, and even engendered nicotine 0.4 mg/kg to exhibit an "acquired" avoidance suppressive effect. The combined nicotine and clozapine treatment did not produce any detectable interactive effects on avoidance response and motor activity. These findings suggest that nicotine is capable of altering the long-term antipsychotic efficacy of haloperidol, while haloperidol can alter the behavioral effects of nicotine. Clozapine and nicotine are less likely to influence each other.
Collapse
Affiliation(s)
- Min Feng
- 1 Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.,2 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,4 Graduate School of Chinese Academy of Sciences, Beijing, China.,5 Department of Psychology, University of Nebraska-Lincoln, Lincoln, USA
| | - Nathan L Sparkman
- 3 Department of Psychology, Stephen F Austin State University, Nacogdoches, USA.,5 Department of Psychology, University of Nebraska-Lincoln, Lincoln, USA
| | - Nan Sui
- 2 Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- 5 Department of Psychology, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
8
|
Chen W, Wang X, Yan M, Wang Y, Xie S, Li H, Li M. Repeated administration of 5-hydroxytryptamine 2C agonist MK212 produces a sensitization effect of antipsychotic activity. IUBMB Life 2016; 68:985-993. [PMID: 27797140 DOI: 10.1002/iub.1580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/06/2016] [Indexed: 11/11/2022]
Abstract
5-Hydroxytryptamine 2C (5-HT2C ) receptor agonists have been suggested to possess an antipsychotic activity in several acute preclinical tests of antipsychotic drugs with low extra-pyramidal side effect liability. However, little is known about the long-term effect associated with chronic use of 5-HT2C receptor agonists. The present study examined whether repeated activation of 5-HT2C receptor with a highly selective 5-HT2C receptor agonist MK212 would induce a long-term change in its antipsychotic-like activity (either a sensitization or tolerance) in the conditioned avoidance response and MK801-induced hyperlocomotion tests. Sprague-Dawley rats were first tested under the intraperitoneal (i.p.) treatment of MK212 (0.25, 0.5, 1.0 mg/kg) for 5 consecutive days. Three days later, when all rats were injected with a low dose of MK 212 (0.25 mg/kg) and tested for avoidance responding, rats that had been pretreated with 1.0 and 0.5 mg/kg MK212 made significantly fewer avoidance responses than those that had been treated with vehicle (0.9% saline). However, this past drug exposure-induced group difference was not significant in the MK801-induced hyperlocomotion test. Overall, results from this study suggest that repeated treatment of MK212 is capable of inducing a dose-dependent sensitization of antipsychotic activity in conditioned avoidance response. The discrepancy in sensitization of MK212 in CAR and MK801-induce hyperlocomotion may be related to the different mechanism underlying the effect of MK212 in these two tests. © 2016 IUBMB Life, 68(12):985-993, 2016.
Collapse
Affiliation(s)
- Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaqing Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Minmin Yan
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Shixue Xie
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Li
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| |
Collapse
|
9
|
Majercikova Z, Horvathova L, Osacka J, Pecenak J, Kiss A. Impact of repeated asenapine treatment on FosB/ΔFosB expression in the forebrain structures under normal conditions and mild stress preconditioning in the rat. Brain Res Bull 2016; 127:29-37. [PMID: 27542594 DOI: 10.1016/j.brainresbull.2016.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 12/30/2022]
Abstract
Long-term effect of asenapine (ASE), an atypical antipsychotic drug, on FosB/ΔFosB quantitative variations in the striatum, septum, nucleus accumbens, and prefrontal cortex, was light microscopically evaluated in normal rats and rats preconditioned with chronic unpredictable mild stress (CMS). CMS included restraint, social isolation, crowding, swimming, and cold. The rats were exposed to CMS for 21 days. From the 7th day of CMS, the rats were injected subcutaneously with saline (300μl/rat) or ASE (0.3mg/kg b.w.), twice a day for 14 days. On the 22nd day, i.e. 16-18h after the last treatment, the animals were perfused with fixative and the brains cut into 30μm thick coronal sections. FosB/ΔFosB protein was immunohistochemically visualized by avidin-biotin peroxidase complex (ABC). Four groups of animals were investigated: control+vehicle, control+ASE, CMS+vehicle, and CMS+ASE. Repeated ASE treatment significantly increased the amount of FosB/ΔFosB immunostained cell nuclei in the dorsolateral and dorsomedial striatum and the shell of the nucleus accumbens, followed by strVM and coACC, as assessed by numerical analysis in both total (different size for each structure) and unified (equal size for each structure) brain sectors. The effect of ASE was significantly lowered by CMS preconditioning only in the dorsolateral striatum, dorsomedial striatum, and the shell of the nucleus accumbens, indicated by both total and unified calculations. Although, highest FosB/ΔFosB expression was seen in the prefrontal cortex and lowest in the dorsolateral and ventrolateral septum, no differences between the groups occurred. CMS itself did not affect FosB/ΔFosB expression level. These findings demonstrate for the first time that repeated administration of ASE may result in eliciting of long-lasting FosB/ΔFosB-like transcription factors that could mediate some of the persistent and region-specific changes in brain function, interconnected with chronic drug exposure. However, it cannot be excluded that the impact of repeated ASE exposure might be influenced by an ambient stressogen leverage.
Collapse
Affiliation(s)
- Zuzana Majercikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Jana Osacka
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia
| | - Jan Pecenak
- Department of Psychiatry, Faculty of Medicine in Bratislava, Comenius University, Mickiewiczova 13, 81369 Bratislava, Slovakia
| | - Alexander Kiss
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia.
| |
Collapse
|
10
|
Li M. Antipsychotic-induced sensitization and tolerance: Behavioral characteristics, developmental impacts, and neurobiological mechanisms. J Psychopharmacol 2016; 30:749-70. [PMID: 27371498 PMCID: PMC4944179 DOI: 10.1177/0269881116654697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antipsychotic sensitization and tolerance refer to the increased and decreased drug effects due to past drug use, respectively. Both effects reflect the long-term impacts of antipsychotic treatment on the brain and result from the brain's adaptive response to the foreign property of the drug. In this review, clinical evidence of the behavioral aspect of antipsychotic sensitization and tolerance is selectively reviewed, followed by an overview of preclinical literature that examines these behavioral characteristics and the related pharmacological and nonpharmacological factors. Next, recent work on the developmental impacts of adolescent antipsychotic sensitization and tolerance is presented and recent research that delineates the neurobiological mechanisms of antipsychotic sensitization and tolerance is summarized. A theoretical framework based on "drug learning and memory" principles is proposed to account for the phenomena of antipsychotic sensitization and tolerance. It is maintained that antipsychotic sensitization and tolerance follow basic principles of learning or acquisition ("induction") and memory ("expression"). The induction and expression of both effects reflect the consequences of associative and nonassociative processing and are strongly influenced by various pharmacological, environmental, and behavioral factors. Drug-induced neuroplasticity, such as functional changes of striatal dopamine D2 and prefrontal serotonin (5-HT)2A receptors and their mediated signaling pathways, in principle, is responsible for antipsychotic sensitization and tolerance. Understanding the behavioral characteristics and neurobiological underpinnings of antipsychotic sensitization and tolerance has greatly enhanced our understanding of mechanisms of antipsychotic action, and may have important implications for future drug discovery and clinical practice.
Collapse
Affiliation(s)
- Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
11
|
Chou S, Jones S, Li M. Adolescent olanzapine sensitization is correlated with hippocampal stem cell proliferation in a maternal immune activation rat model of schizophrenia. Brain Res 2015; 1618:122-35. [PMID: 26049127 DOI: 10.1016/j.brainres.2015.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/09/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022]
Abstract
Previous work established that repeated olanzapine (OLZ) administration in normal adolescent rats induces a sensitization effect (i.e. increased behavioral responsiveness to drug re-exposure) in the conditioned avoidance response (CAR) model. However, it is unclear whether the same phenomenon can be detected in animal models of schizophrenia. The present study explored the generalizability of OLZ sensitization from healthy animals to a preclinical neuroinflammatory model of schizophrenia in the CAR. Maternal immune activation (MIA) was induced via polyinosinic:polycytidylic acid (PolyI:C) administration into pregnant dams. Behavioral assessments of offspring first identified decreased maternal separation-induced pup ultrasonic vocalizations and increased amphetamine-induced hyperlocomotion in animals prenatally exposed to PolyI:C. In addition, repeated adolescent OLZ administration confirmed the generalizability of the sensitization phenomenon. Using the CAR test, adolescent MIA animals displayed a similar increase in behavioral responsiveness after repeated OLZ exposure during both the repeated drug test days as well as a subsequent challenge test. Neurobiologically, few studies examining the relationship between hippocampal cell proliferation and survival and either antipsychotic exposure or MIA have incorporated concurrent behavioral changes. Thus, the current study also sought to reveal the correlation between OLZ behavioral sensitization in the CAR and hippocampal cell proliferation and survival. 5'-bromodeoxyuridine immunohistochemistry identified a positive correlation between the magnitude of OLZ sensitization (i.e. change in avoidance suppression induced by OLZ across days) and hippocampal cell proliferation. The implications of the relationship between behavioral and neurobiological results are discussed.
Collapse
Affiliation(s)
- Shinnyi Chou
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - Sean Jones
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
12
|
Feng M, Gao J, Sui N, Li M. Effects of central activation of serotonin 5-HT2A/2C or dopamine D 2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test. Psychopharmacology (Berl) 2015; 232:1219-30. [PMID: 25288514 PMCID: PMC4361252 DOI: 10.1007/s00213-014-3756-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
RATIONALE Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. OBJECTIVE The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. METHODS 2,5-dimethoxy-4-iodo-amphetamine (DOI, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance disruptive effect of clozapine were tested. RESULTS Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. CONCLUSIONS Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA, Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Jun Gao
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA,Corresponding address: Ming Li, PhD, 238 Burnett Hall, Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
13
|
Gao J, Qin R, Li M. Repeated administration of aripiprazole produces a sensitization effect in the suppression of avoidance responding and phencyclidine-induced hyperlocomotion and increases D2 receptor-mediated behavioral function. J Psychopharmacol 2015; 29:390-400. [PMID: 25586399 PMCID: PMC4757439 DOI: 10.1177/0269881114565937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study investigated how repeated administration of aripiprazole (a novel antipsychotic drug) alters its behavioral effects in two behavioral tests of antipsychotic activity and whether this alteration is correlated with an increase in dopamine D2 receptor function. Male adult Sprague-Dawley rats were first repeatedly tested with aripiprazole (3, 10 and 30 mg/kg, subcutaneously (sc)) or vehicle in a conditioned avoidance response (CAR) test or a phencyclidine (PCP) (3.20 mg/kg, sc)-induced hyperlocomotion test daily for five consecutive days. After 2-3 days of drug-free retraining or resting, all rats were then challenged with aripiprazole (1.5 or 3.0 mg/kg, sc). Repeated administration of aripiprazole progressively increased its inhibition of avoidance responding and PCP-induced hyperlocomotion. More importantly, rats previously treated with aripiprazole showed significantly lower avoidance response and lower PCP-induced hyperlocomotion than those previously treated with vehicle in the challenge tests. An increased sensitivity to quinpirole (a selective D2/3 agonist) in prior aripiprazole-treated rats was also found in the quinpirole-induced hyperlocomotion test, suggesting an enhanced D2/3-mediated function. These findings suggest that aripiprazole, despite its distinct receptor mechanisms of action, induces a sensitization effect similar to those induced by other antipsychotic drugs and this effect may be partially mediated by brain plasticity involving D2/3 receptor systems.
Collapse
Affiliation(s)
- Jun Gao
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rongyin Qin
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA,Department of Neurology, The Clinical Medical College of Yangzhou University, Yangzhou, PR China,Department of Neurology, Changzhou No. 2 People’s Hospital, Nanjing Medical University, Changzhou, PR China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
14
|
Repeated effects of the neurotensin receptor agonist PD149163 in three animal tests of antipsychotic activity: assessing for tolerance and cross-tolerance to clozapine. Pharmacol Biochem Behav 2014; 128:78-88. [PMID: 25433325 DOI: 10.1016/j.pbb.2014.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
Neurotensin is an endogenous neuropeptide closely associated with the mesolimbic dopaminergic system and shown to possess antipsychotic-like effects. In particular, acute neurotensin receptor activation can inhibit conditioned avoidance response (CAR), attenuate phencyclidine (PCP)-induced prepulse inhibition (PPI) disruptions, and reverse PCP-induced hyperlocomotion. However, few studies have examined the long term effects of repeated neurotensin receptor activation and results are inconsistent. Since clinical administration of antipsychotic therapy often requires a prolonged treatment schedule, here we assessed the effects of repeated activation of neurotensin receptors using an NTS1 receptor selective agonist, PD149163, in 3 behavioral tests of antipsychotic activity. We also investigated whether reactivity to the atypical antipsychotic clozapine was altered following prior PD149163 treatment. Using both normal and prenatally immune activated rats generated through maternal immune activation with polyinosinic:polycytidylic acid, we tested PD149163 in CAR, PCP (1.5mg/kg)-induced PPI disruption, and PCP (3.2mg/kg)-induced hyperlocomotion. For each paradigm, rats were first repeatedly tested with vehicle or PD149163 (1.0, 4.0, 8.0mg/kg, sc) along with vehicle or PCP for PPI and hyperlocomotion tests, then challenged with PD149163 after 2 drug-free days. All rats were then challenged with clozapine (5.0mg/kg, sc). During the repeated test period, PD149163 exhibited antipsychotic-like effects in all three models. On the PD149163 challenge day, prior drug treatment only caused a tolerance effect in CAR. This tolerance in CAR was transferrable to clozapine, as it enhanced clozapine tolerance in the same group of animals. Although no tolerance effect was seen in the PD149163 challenge for the PCP-induced hyperlocomotion test, the clozapine challenge showed increased sensitivity in groups previously exposed to repeated PD149163 treatment. Our findings suggest that repeated exposure to NTS1 receptor agonists can induce a dose-dependent tolerance and cross-tolerance to clozapine to some of its behavioral effects but not others.
Collapse
|
15
|
Gao J, Li M. Differential effects of intermittent versus continuous haloperidol treatment throughout adolescence on haloperidol sensitization and social behavior in adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:67-75. [PMID: 24942467 PMCID: PMC4134967 DOI: 10.1016/j.pnpbp.2014.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 01/23/2023]
Abstract
Animal work on the behavioral effects of antipsychotic treatment suggests that different dosing regimens could affect drug sensitivity differently, with an intermittent treatment regimen tending to cause a sensitization effect, while a continuous treatment causing a tolerance. In this study, we explored how haloperidol (HAL) sensitization induced throughout adolescence and tested in adulthood was differentially impacted by these two dosing regimens in the conditioned avoidance response (CAR) test. We also examined how these two dosing regiments affected social interaction and social memory in adulthood. Male adolescent Sprague-Dawley rats were treated with HAL via either osmotic minipump (HAL-0.25 CONT; 0.25 mgkg(-1)day(-1), n = 14) or daily injection (HAL-0.05 INT; 0.05 mgkg(-1)day(-1) injection, sc, n = 14), or sterile water (n = 14) from postnatal days (PND) 44 to 71. HAL sensitization was assessed in a challenge test in which all rats were injected with HAL (0.025 and 0.05 mg/kg, sc) on PND 80 and PND 82. Two days later, half of the rats from each group (n = 7/group) were assayed in two 4-trial social interaction tests in which a subject rat was given four 5-min social encounters with a familiar or novel juvenile rat (PND 35-40) at 10 min intervals. Another half were tested in a quinpirole-induced hyperlocomotion assay to assess the potential HAL-induced change in D2-mediated function. Results show that only the intermittent dosing group under the HAL 0.05 mg/kg challenge showed a robust sensitization effect as rats in this group made significantly fewer avoidance responses than those in the vehicle and HAL-0.25 CONT groups. Adolescent HAL treatment did not affect social behavior and social memory, as rats from all 3 groups exhibited a similar level of social interaction and showed a similar level of sensitivity to the change of social stimuli. Similarly, adolescent HAL treatment also did not produce a long-lasting change in D2 function, as all 3 groups exhibited a similar level of increase in motor activity under quinpirole challenge. These findings suggest that HAL sensitization is a dosing-specific phenomenon. It is more likely to be seen under an intermittent dosing regimen than under a continuous dosing one. The findings that the intermittent HAL treatment did not impair social functioning and did not alter D2 function suggest a dissociation between drug-induced alterations in drug sensitivity and those in social function and neuroreceptors.
Collapse
Affiliation(s)
| | - Ming Li
- Department of Psychology, University of NE-Lincoln, USA.
| |
Collapse
|
16
|
Shu Q, Qin R, Chen Y, Hu G, Li M. Asenapine sensitization from adolescence to adulthood and its potential molecular basis. Behav Brain Res 2014; 273:166-76. [PMID: 25093543 DOI: 10.1016/j.bbr.2014.07.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Asenapine is a new antipsychotic drug that induces a long-lasting behavioral sensitization in adult rats. The present study investigated the developmental impacts of adolescent asenapine treatment on drug sensitivity and on 3 proteins implicated in the action of antipsychotic drugs (i.e. brain-derived neurotrophic factor (BDNF), dopamine D2 receptor, and ΔFosB) in adulthood. Male adolescent Sprague-Dawley rats (postnatal days, P 43-48) were first treated with asenapine (0.05, 0.10 or 0.20mg/kg, sc) and tested in the conditioned avoidance or PCP (2.0mg/kg, sc)-induced hyperlocomotion tasks for 5 days. After they became adults (∼P 76), asenapine sensitization was assessed in a single avoidance or PCP-induced hyperlocomotion challenge test with all rats being injected with asenapine (0.10mg/kg, sc). Rats were then sacrificed 1 day later and BDNF, D2 and ΔFosB in the prefrontal cortex, striatum and hippocampus were examined using Western blotting. In adolescence, repeated asenapine treatment produced a persistent and dose-dependent inhibition of avoidance response, spontaneous motor activity and PCP-induced hyperlocomotion. In the asenapine challenge test, adult rats treated with asenapine (0.10 and 0.20mg/kg) in adolescence made significantly fewer avoidance responses and showed a stronger inhibition of spontaneous motor activity than those previously treated with saline. However, no group difference in the levels of BDNF, D2 and ΔFosB expression was found. These findings suggest that although adolescent asenapine treatment for a short period of time induces a robust behavioral sensitization that persists into adulthood, such a long-term effect is not likely to be mediated by BDNF, D2 and ΔFosB.
Collapse
Affiliation(s)
- Qing Shu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, PR China; Department of Psychology, University of Nebraska-Lincoln, USA
| | - Rongyin Qin
- Department of Neurology, The Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, PR China; Department of Psychology, University of Nebraska-Lincoln, USA; Department of Neurology, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, PR China
| | - Yingzhu Chen
- Department of Neurology, The Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, USA.
| |
Collapse
|
17
|
Qiao J, Gao J, Shu Q, Zhang Q, Hu G, Li M. Long-lasting sensitization induced by repeated risperidone treatment in adolescent Sprague-Dawley rats: a possible D2 receptor mediated phenomenon? Psychopharmacology (Berl) 2014; 231:1649-1659. [PMID: 24363078 PMCID: PMC3969391 DOI: 10.1007/s00213-013-3386-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 11/30/2013] [Indexed: 01/23/2023]
Abstract
RATIONALE Risperidone use in children and adolescents for the treatment of various neuropsychiatric disorders (e.g., schizophrenia, autism, disruptive behavior, etc.) has increased substantially in recent decades. However, its long-term effect on the brain and behavioral functions is not well understood. OBJECTIVE The present study investigated how a short-term risperidone treatment in adolescence impacts antipsychotic response in adulthood in the conditioned avoidance response and phencyclidine (PCP)-induced hyperlocomotion tests. METHODS Male adolescent Sprague-Dawley rats (postnatal days [P] 40-44 or 43-48) were first treated with risperidone (0.3, 0.5, or 1.0 mg/kg, subcutaneously (sc)) and tested in the conditioned avoidance or PCP (3.2 mg/kg, sc)-induced hyperlocomotion model daily for five consecutive days. After they became adults (~P 76-80), they were challenged with risperidone (0.3 mg/kg, sc) to assess their sensitivity to risperidone reexposure. A quinpirole (a D2/3 receptor agonist, 1.0 mg/kg, sc)-induced hyperlocomotion test was later conducted to assess the risperidone-induced functional changes in D2 receptor. RESULTS In the risperidone challenge test in adulthood, adult rats previously treated with risperidone in adolescence made significantly fewer avoidance responses and exhibited significantly lower PCP-induced hyperlocomotion than those previously treated with vehicle. They also appeared to be more hyperactive than the vehicle-pretreated ones in the quinpirole-induced hyperlocomotion test. Prepulse inhibition of acoustic startle or fear-induced 22 kHz ultrasonic vocalizations in adulthood was not altered by adolescence risperidone treatment. CONCLUSIONS Adolescent risperidone exposure induces a long-term increase in behavioral sensitivity to risperidone that persists into adulthood. This long-lasting change might be due to functional upregulation of D2-mediated neurotransmission.
Collapse
Affiliation(s)
- Jing Qiao
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Institute of Psychology, Southwest University, Chongqing, P. R. China
- Department of Psychology, University of Nebraska-Lincoln, USA
| | - Jun Gao
- Department of Psychology, University of Nebraska-Lincoln, USA
| | - Qing Shu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Department of Psychology, University of Nebraska-Lincoln, USA
| | - Qinglin Zhang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Institute of Psychology, Southwest University, Chongqing, P. R. China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, USA
- Corresponding address: Ming Li, PhD, Associate Professor, Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE 68588-0308, USA, Telephone: 402-472-3144,
| |
Collapse
|
18
|
Long-term impacts of adolescent risperidone treatment on behavioral responsiveness to olanzapine and clozapine in adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:177-85. [PMID: 24140929 PMCID: PMC3859461 DOI: 10.1016/j.pnpbp.2013.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/09/2023]
Abstract
This preclinical study investigated how a short-term risperidone treatment in adolescence impacts antipsychotic response to olanzapine and clozapine in adulthood. Antipsychotic effect was indexed by a drug's suppressive effect on avoidance responding in a rat conditioned avoidance response (CAR) model. Male adolescent Sprague-Dawley rats were first treated with risperidone (1.0mg/kg, sc) or sterile water and tested in the CAR model for 5 consecutive days from postnatal days P 40 to 44. After they became adults (~P 80-84), they were switched to olanzapine (0.5mg/kg, sc), clozapine (5.0mg/kg, sc) or vehicle treatment and tested for avoidance for 5days. During the adolescent period, repeated risperidone treatment produced a persistent inhibition of avoidance response. Throughout the 5days of adulthood drug testing, rats previously treated with risperidone in adolescence made significantly fewer avoidance responses than the vehicle ones when they all were switched to olanzapine, indicating a risperidone-induced enhancement of behavioral sensitivity to olanzapine. In contrast, when switched to clozapine, rats previously treated with risperidone made significantly more avoidance responses than the vehicle rats, indicating a risperidone-induced decrease of behavioral sensitivity to clozapine. Performance in the prepulse inhibition of acoustic startle response in adulthood was not altered by adolescent risperidone treatment. Collectively, adolescent risperidone exposure induced a long-term change in behavioral sensitivity to other atypical antipsychotic drugs, with the specific direction of change (i.e., increase or decrease) dependent on the drug to be switched to. These long-lasting changes are likely mediated by drug-induced neuroplastic changes and may also have significant clinical implications for antipsychotic treatment of chronic patients with an early onset of psychotic symptoms.
Collapse
|
19
|
Gao J, Li M. Time-dependence of risperidone and asenapine sensitization and associated D2 receptor mechanism. Behav Brain Res 2013; 257:286-94. [PMID: 24103641 DOI: 10.1016/j.bbr.2013.09.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 02/06/2023]
Abstract
When an antipsychotic drug is given repeatedly and intermittently, there is often a long-term increase in its behavioral efficacy, termed antipsychotic sensitization. With the passage of time, the magnitude of antipsychotic sensitization may increase or decrease based on the principle of time-dependent sensitization (TDS) or memory decay, respectively. In the present study, we examined the time-dependent feature and possible dopamine D2 receptor mechanism of sensitization induced by risperidone and asenapine in the conditioned avoidance response test. Well-trained male adult Sprague-Dawley rats were first repeatedly treated with risperidone (1.0mg/kg) or asenapine (0.2mg/kg) and tested for avoidance response daily for 5 consecutive days. Eight, 18 or 38 days after the 5th drug treatment, all rats were retested drug-free to assess the long-term impact of prior risperidone or asenapine treatment. Drug-pretreated rats had significantly lower avoidance than vehicle-pretreated ones on this test, and the group differences increased with the passage of time. In the subsequent drug challenge test at 10, 20 or 40 days after the 5th drug treatment, all rats were injected with a low dose of risperidone (0.3mg/kg) or asenapine (0.1mg/kg). Drug-pretreated rats again made significantly fewer avoidances than controls, confirming the antipsychotic sensitization effect. Finally, in the quinpirole (a D2/3 receptor agonist, 1.0mg/kg, sc)-induced hyperlocomotion test, risperidone-pretreated rats exhibited a significantly higher level of motor activity than the vehicle-pretreated ones. These findings suggest that risperidone and asenapine sensitization is long-lasting, follows the TDS principle, and is likely mediated by D2 receptor supersensitivity.
Collapse
Affiliation(s)
- Jun Gao
- Department of Psychology, University of Nebraska-Lincoln, USA
| | | |
Collapse
|