1
|
Chuang J, Lide RC, Kamath N, Oliveto A, Addicott M. A pilot study of ketamine among individuals with tobacco use disorder: tolerability and initial impact on tobacco use outcomes. J Addict Dis 2025:1-5. [PMID: 39834135 DOI: 10.1080/10550887.2025.2450129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
OBJECTIVES There is increasing evidence of ketamine's therapeutic potential in reducing substance use in individuals with substance use disorders. However, its effects on tobacco use disorder are unknown. We investigated the effect of a subanesthetic dose of ketamine on tobacco use. METHODS This randomized, single-blind, placebo-controlled, pilot study administered intravenous ketamine to individuals with tobacco use disorder recruited from the local community. Participants were randomized to receive either ketamine (0.5 mg/kg) (n = 6) or saline placebo (n = 4) over 20 min. Primary outcomes included measures of drug safety and tolerability during and within an hour after the infusion. Secondary outcomes included measures of tobacco use, craving, and withdrawal before, and 24-hours after, the drug infusion study day. A follow-up visit occurred eight days after the infusion. RESULTS Intravenous ketamine was well tolerated with transient side effects. No significant effects were noted on cigarette smoking, craving, or withdrawal symptoms on the post-infusion visit following overnight abstinence or on the follow-up visit (p's > 0.05). CONCLUSIONS Although limited by the small sample size, this pilot study extends previous research on ketamine for substance use disorders. While ketamine was well tolerated in this sample, additional research testing different ketamine doses and administration routes is necessary to determine whether ketamine has therapeutic potential for tobacco use disorder.
Collapse
Affiliation(s)
- Janice Chuang
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Nikhil Kamath
- Baptist Health Medical Center-Little Rock, Little Rock, AR, USA
| | - Alison Oliveto
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
2
|
Premi E, Cantoni V, Benussi A, Iraji A, Calhoun VD, Corbo D, Gasparotti R, Tinazzi M, Borroni B, Magoni M. Impaired spatial dynamic functional network connectivity and neurophysiological correlates in functional hemiparesis. Neuroimage Clin 2025; 45:103731. [PMID: 39764901 PMCID: PMC11762193 DOI: 10.1016/j.nicl.2025.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/01/2025] [Accepted: 01/01/2025] [Indexed: 01/29/2025]
Abstract
The present study investigated spatial dynamic functional network connectivity (dFNC) in patients with functional hemiparesis (i.e., functional stroke mimics, FSM). The aim of this work was to assess static functional connectivity (large-scale) networks and dynamic brain states, which represent distinct dFNC patterns that reoccur in time and across subjects. Resting-state fMRI data were collected from 15 patients with FSM (mean age = 42.3 ± 9.4, female = 80 %) and 52 age-matched healthy controls (HC, mean age = 42.1 ± 8.6, female = 73 %). Each patient underwent a resting-state functional MRI scan for spatial dFNC evaluation and transcranial magnetic stimulation protocols for indirect assessment of GABAergic and glutamatergic transmission. We considered three dynamic brain networks, i.e., the somatomotor network (SMN), the default mode network (DMN) and the salience network (SN), each summarized into four distinct recurring spatial configurations. Compared to HC, patients with FSM showed significant decreased dwell time, e.g. the time each individual spends in each spatial state of each network, in state 2 of the SMN (HC vs. FSM, 13.5 ± 27.1 vs. 1.9 ± 4.1, p = 0.044). Conversely, as compared to HC, FSM spent more time in state 1 of the DMN (10.8 ± 14.9 vs. 27.3 ± 38.9, p = 0.037) and in state 3 of the SN (23.1 ± 23.0 vs. 38.8 ± 38.2, p = 0.002). We found a significant correlation between the dwell time of impaired functional state of the SMN and measures of GABAergic neurotransmission (r = 0.581, p = 0.037). Specifically, longer impaired dwell time was associated with greater GABAergic inhibition. These findings demonstrate that FSM present altered functional brain network dynamics, which correlate with measures of GABAergic neurotransmission. Both dFNC and GABAergic neurotransmission may serve as potential targets for future intervention strategies.
Collapse
Affiliation(s)
- E Premi
- Stroke Unit, ASST Spedali Civili, «Spedali Civili» Hospital, Brescia, Italy.
| | - V Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - A Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - A Iraji
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - V D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - D Corbo
- Neuroradiology Unit, University of Brescia, Italy
| | - R Gasparotti
- Neuroradiology Unit, University of Brescia, Italy
| | - M Tinazzi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - B Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - M Magoni
- Stroke Unit, ASST Spedali Civili, «Spedali Civili» Hospital, Brescia, Italy
| |
Collapse
|
3
|
Tan X, Neslund EM, Fentis K, Ding ZM. Fluorocitrate inhibition of astrocytes reduces nicotine self-administration and alters extracellular levels of glutamate and dopamine within the nucleus accumbens in male wistar rats. Neuropharmacology 2024; 255:110001. [PMID: 38750804 PMCID: PMC11156530 DOI: 10.1016/j.neuropharm.2024.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Elizabeth M Neslund
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Khawla Fentis
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Zheng-Ming Ding
- Department of Anesthesiology & Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
Wang D, Li X, Li W, Duong T, Wang H, Kleschevnikova N, Patel HH, Breen E, Powell S, Wang S, Head BP. Nicotine inhalant via E-cigarette facilitates sensorimotor function recovery by upregulating neuronal BDNF-TrkB signalling in traumatic brain injury. Br J Pharmacol 2024; 181:3082-3097. [PMID: 38698493 DOI: 10.1111/bph.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) causes lifelong physical and psychological dysfunction in affected individuals. The current study investigated the effects of chronic nicotine exposure via E-cigarettes (E-cig) (vaping) on TBI-associated behavioural and biochemical changes. EXPERIMENTAL APPROACH Adult C57/BL6J male mice were subjected to controlled cortical impact (CCI) followed by daily exposure to E-cig vapour for 6 weeks. Sensorimotor functions, locomotion, and sociability were subsequently evaluated by nesting, open field, and social approach tests, respectively. Immunoblots were conducted to examine the expression of mature brain-derived neurotrophic factor (mBDNF) and associated downstream proteins (p-Erk, p-Akt). Histological analyses were performed to evaluate neuronal survival and neuroinflammation. KEY RESULTS Post-injury chronic nicotine exposure significantly improved nesting performance in CCI mice. Histological analysis revealed increased survival of cortical neurons in the perilesion cortex with chronic nicotine exposure. Immunoblots revealed that chronic nicotine exposure significantly up-regulated mBDNF, p-Erk and p-Akt expression in the perilesion cortex of CCI mice. Immunofluorescence microscopy indicated that elevated mBDNF and p-Akt expression were mainly localized within cortical neurons. Immunolabelling of Iba1 demonstrated that chronic nicotine exposure attenuated microglia-mediated neuroinflammation. CONCLUSIONS AND IMPLICATIONS Post-injury chronic nicotine exposure via vaping facilitates recovery of sensorimotor function by upregulating neuroprotective mBDNF/TrkB/Akt/Erk signalling. These findings suggest potential neuroprotective properties of nicotine despite its highly addictive nature. Thus, understanding the multifaceted effects of chronic nicotine exposure on TBI-associated symptoms is crucial for paving the way for informed and properly managed therapeutic interventions.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Xiaojing Li
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Wenxi Li
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Tiffany Duong
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Hongxia Wang
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Natalia Kleschevnikova
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Hemal H Patel
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Ellen Breen
- Department of Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California, USA
| | - Susan Powell
- Research Service and Desert Pacific Mental Illness Research, Education & Clinical Center, Veterans Affairs San Diego Health System, San Diego, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Shanshan Wang
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Brian P Head
- Department of Anesthesiology, VA San Diego Healthcare System, San Diego, California, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Serra M, Simola N, Pollack AE, Costa G. Brain dysfunctions and neurotoxicity induced by psychostimulants in experimental models and humans: an overview of recent findings. Neural Regen Res 2024; 19:1908-1918. [PMID: 38227515 DOI: 10.4103/1673-5374.390971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Boston, MA, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Steinegger CA, Zoelch N, Hock A, Henning A, Engeli EJ, Pryce CR, Seifritz E, Herdener M, Hulka LM. Neurometabolic profile of the amygdala in smokers assessed with 1H-magnetic resonance spectroscopy. Neuroimage 2024; 288:120525. [PMID: 38278429 DOI: 10.1016/j.neuroimage.2024.120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
Tobacco smoking is one of the main causes of premature death worldwide and quitting success remains low, highlighting the need to understand the neurobiological mechanisms underlying relapse. Preclinical models have shown that the amygdala and glutamate play an important role in nicotine addiction. The aims of this study were to compare glutamate and other metabolites in the amygdala between smokers and controls, and between different smoking states. Furthermore, associations between amygdalar metabolite levels and smoking characteristics were explored. A novel non-water-suppressed proton magnetic resonance spectroscopy protocol was applied to quantify neurometabolites in 28 male smokers (≥15 cigarettes/day) and 21 non-smoking controls, matched in age, education, verbal IQ, and weekly alcohol consumption. Controls were measured once (baseline) and smokers were measured in a baseline state (1-3 h abstinence), during withdrawal (24 h abstinence) and in a satiation state (directly after smoking). Baseline spectroscopy data were compared between groups by independent t-tests or Mann-Whitney-U tests. Smoking state differences were investigated by repeated-measures analyses of variance (ANOVAs). Associations between spectroscopy data and smoking characteristics were explored using Spearman correlations. Good spectral quality, high anatomical specificity (98% mean gray matter) and reliable quantification of most metabolites of interest were achieved in the amygdala. Metabolite levels did not differ between groups, but smokers showed significantly higher glutamine levels at baseline than satiation. Glx levels were negatively associated with pack-years and smoking duration. In summary, this study provides first insights into the neurometabolic profile of the amygdala in smokers with high anatomical specificity. By applying proton magnetic resonance spectroscopy, neurometabolites in smokers during different smoking states and non-smoking controls were quantified reliably. A significant shift in glutamine levels between smoking states was detected, with lower concentrations in satiation than baseline. The negative association between Glx levels and smoking quantity and duration may imply altered glutamate homeostasis with more severe nicotine addiction.
Collapse
Affiliation(s)
- Colette A Steinegger
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland.
| | - Niklaus Zoelch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Institute of Forensic Medicine, Department of Forensic Medicine and Imaging, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Andreas Hock
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; Philips, Horgen, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Etna Je Engeli
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland
| | - Christopher R Pryce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Marcus Herdener
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland
| | - Lea M Hulka
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Selnaustrasse 9, Zurich 8001, Switzerland
| |
Collapse
|
7
|
Mouro Ferraz Lima T, Castaldelli-Maia JM, Apter G, Leopoldo K. Neurobiological associations between smoking and internalizing disorders. Int Rev Psychiatry 2023; 35:486-495. [PMID: 38299645 DOI: 10.1080/09540261.2023.2252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 02/02/2024]
Abstract
People with severe mental disorders have a higher mortality rate due to preventable conditions like cardiovascular diseases and respiratory diseases. Nicotine addiction is a preventable risk factor, with tobacco use being twice as high in people with mental disorders. An integrative model that divides mental disorders into externalising, internalising, and thought disorders could be useful for identifying common causalities and risk factors. This review aims to examine the interface between smoking and internalising disorders, specifically schizophrenia, depressive disorders, and anxiety disorders. The review finds that there is a clear association between smoking behaviour and these disorders. Schizophrenia is associated with polymorphisms that result in an imbalance between glutamate and GABA release and abnormalities of dopaminergic pathways. Nicotine improves dopaminergic signalling and balances glutamatergic and GABAergic pathways, improving symptoms and increasing the risk of nicotine dependence. In depressive disorders, smoking is associated with functional changes in brain regions affected by smoking and self-medication. In anxiety disorders, there is a bidirectional relationship with smoking, involving the amygdala and changes in dopaminergic pathways and cortisol production. Smoking poses a threat to people living with psychiatric disorders and calls for further research to assess the interactions between nicotine dependence and internalising and thought disorders.
Collapse
Affiliation(s)
| | - João Mauricio Castaldelli-Maia
- Department of Neuroscience, Medical School, FMABC University Center
- Cellule de Recherche Clinique, Groupe Hospitalier du Havre, Le Havre, France
- Department of Psychiatry, Medical School, University of São Paulo, Brazil
| | - Gisèle Apter
- Societé de l'Information Psychiatrique, France
- University of Rouen Normandy, France
| | - Kae Leopoldo
- Department of Psychiatry, Medical School, University of São Paulo, Brazil
| |
Collapse
|
8
|
Hammad AM, Alhusban AA, Alzaghari LF, Alasmari F, Sari Y. Effect of Cigarette Smoke Exposure and Aspirin Treatment on Neurotransmitters’ Tissue Content in Rats’ Hippocampus and Amygdala. Metabolites 2023; 13:metabo13040515. [PMID: 37110173 PMCID: PMC10145483 DOI: 10.3390/metabo13040515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cigarette smoke withdrawal can cause anxiety-like behavior and modulate neurotransmitter-related proteins in the brain. We examined the effects of cigarette smoke with and without aspirin treatment on the concentrations of neurotransmitters, including dopamine, serotonin, glutamate, glutamine, and GABA in the amygdala and hippocampus. Sprague-Dawley rats were randomly assigned to four different groups: (1) control group exposed only to standard room air, (2) cigarette smoke exposed group treated with saline vehicle, (3) cigarette smoke exposed group treated with aspirin (30 mg/kg), and (4) control group treated only with aspirin (30 mg/kg). Cigarette smoke exposure was performed for 2 h/day, 5 days/week, for 31 days. Behavioral testing was carried out weekly, 24 h after cigarette smoke exposure, during acute withdrawal. At the end of week 4, rats were given either distilled water (1 mL) or aspirin 45 min before cigarette exposure for 11 days. Dopamine, serotonin, glutamate, glutamine, and GABA were extracted from both the amygdala and hippocampus and were separated and quantified using a developed and validated HPLC-MS/MS method. Cigarette smoke withdrawal induced anxiety behaviors, and aspirin treatment reduced this effect. Cigarette smoke exposure increased tissue content of dopamine, serotonin, glutamate, glutamine, and GABA, and aspirin treatment reversed this effect. Cigarette smoke caused an increase in tissue content of several neurotransmitters as well as anxiety-like behavior, and these effects were normalized by aspirin treatment.
Collapse
Affiliation(s)
- Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ala A. Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lujain F. Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
9
|
Baldassarri SR, Asch RH, Hillmer AT, Pietrzak RH, DellaGioia N, Esterlis I, Davis MT. Nicotine Use and Metabotropic Glutamate Receptor 5 in Individuals With Major Depressive and Posttraumatic Stress Disorders. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231154842. [PMID: 36843572 PMCID: PMC9943964 DOI: 10.1177/24705470231154842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) dysregulation has been implicated in the pathophysiology of many psychiatric disorders, as well as nicotine use and dependence. We used positron emission tomography with [18F]FPEB to measure mGluR5 availability in vivo in 6 groups: (1) nicotine users (NUs) without other psychiatric comorbidities (n = 23); (2) comparison controls (CCs) without nicotine use or psychiatric comorbidities (n = 38); (3) major depressive disorder subjects with concurrent nicotine use (MDD-NU; n = 19); (4) MDD subjects without concurrent nicotine use (MDD-CC; n = 20); (5) posttraumatic stress disorder subjects with concurrent nicotine use (PTSD-NU; n = 17); and (6) PTSD subjects without concurrent nicotine use (PTSD-CC; n = 16). The goal of the study was to test the hypothesis that mGluR5 availability in key corticolimbic regions of interest (ROIs) is different in NU with versus without comorbid psychiatric disorders (ROI: dorsolateral prefrontal cortex [dlPFC], orbitofrontal cortex [OFC], ventromedial prefrontal cortex [vmPFC], anterior cingulate cortex [ACC], amygdala, hippocampus). We found that NU had 11%-13% lower mGluR5 availability in OFC, vmPFC, dlPFC, and ACC as compared with CC, while PTSD-NU had 9%-11% higher mGluR5 availability in OFC, dlPFC, and ACC compared with PTSD. Furthermore, relationships between mGluR5 availability and psychiatric symptoms varied as a function of psychiatric diagnosis among NUs. NU showed a negative correlation between mGluR5 and smoking cravings and urges (r's = -0.58 to -0.70, p's = 0.011 - 0.047), while PTSD-NU had the reverse relationship (r's = 0.60-0.71, p's = 0.013-0.035 in ACC, vmPFC, and dlPFC). These findings have substantial implications for our understanding of glutamate homeostasis in psychiatric subgroups and for identifying key neural phenotypes among NU. mGluR5 is a potential treatment target for precision medicine in individuals with nicotine use.
Collapse
Affiliation(s)
- Stephen R. Baldassarri
- Section of Pulmonary, Critical Care, & Sleep Medicine,
Department of Internal Medicine, Yale University School of
Medicine, New Haven, CT, USA
- Program in Addiction Medicine, Yale University School of
Medicine, New Haven, CT, USA
| | - Ruth H. Asch
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Ansel T. Hillmer
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Radiology, and
Biomedical Imaging, New Haven, CT, USA
| | - Robert H. Pietrzak
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- VA National Center for PTSD Clinical Neurosciences Division, New
Haven, CT, USA
| | - Nicole DellaGioia
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Irina Esterlis
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
- VA National Center for PTSD Clinical Neurosciences Division, New
Haven, CT, USA
| | - Margaret T. Davis
- Departments of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Chen Y, Dhingra I, Chaudhary S, Fucito L, Li CSR. Overnight Abstinence Is Associated With Smaller Secondary Somatosensory Cortical Volumes and Higher Somatosensory-Motor Cortical Functional Connectivity in Cigarette Smokers. Nicotine Tob Res 2022; 24:1889-1897. [PMID: 35796689 PMCID: PMC9653081 DOI: 10.1093/ntr/ntac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Abstinence symptoms present challenges to successful cessation of cigarette smoking. Chronic exposure to nicotine and long-term nicotine abstinence are associated with alterations in cortical and subcortical gray matter volumes (GMVs). AIMS AND METHODS We aimed at examining changes in regional GMVs following overnight abstinence and how these regional functions relate to abstinence symptoms. Here, in a sample of 31 regular smokers scanned both in a satiety state and after overnight abstinence, we employed voxel-wise morphometry and resting-state functional connectivity (rsFC) to investigate these issues. We processed imaging data with published routines and evaluated the results with a corrected threshold. RESULTS Smokers showed smaller GMVs of the left ventral hippocampus and right secondary somatosensory cortex (SII) after overnight abstinence as compared to satiety. The GMV alterations in right SII were positively correlated with changes in withdrawal symptom severity between states. Furthermore, right SII rsFC with the precentral gyrus was stronger in abstinence as compared to satiety. The inter-regional rsFC was positively correlated with motor impulsivity and withdrawal symptom severity during abstinence and negatively with craving to smoke during satiety. CONCLUSIONS These findings highlight for the first time the effects of overnight abstinence on cerebral volumetrics and changes in functional connectivity of a higher-order sensory cortex. These changes may dispose smokers to impulsive behaviors and aggravate the urge to smoke at the earliest stage of withdrawal from nicotine. IMPLICATIONS Overnight abstinence leads to changes in gray matter volumes and functional connectivity of the second somatosensory cortex in cigarette smokers. Higher somatosensory and motor cortical connectivity in abstinence is significantly correlated with trait motor impulsivity and withdrawal symptom severity. The findings add to the literature of neural markers of nicotine addiction.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lisa Fucito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Carcoba LM, Uribe KP, Ortegon S, Mendez IA, DeBiasi M, O’Dell LE. Amino acid systems in the interpeduncular nucleus are altered in a sex-dependent manner during nicotine withdrawal. J Neurosci Res 2022; 100:1573-1584. [PMID: 33751631 PMCID: PMC8455708 DOI: 10.1002/jnr.24826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 11/10/2022]
Abstract
Prior work in male rodents established that the medial habenula-interpeduncular nucleus (MHb-IPN) pathway modulates nicotine withdrawal. Specifically, withdrawal severity has been closely associated with inhibitory tone in the IPN via interneurons that release γ-aminobutyric acid (GABA). Inhibitory tone in the IPN is regulated by projections from the MHb that co-release glutamate and acetylcholine. Within the IPN, inhibitory tone is also regulated via corticotropin-releasing factor type 1 (CRF1) receptors that control GABA release from local interneurons. This study extends previous work by comparing sex differences in GABA, glutamate, as well serotonin levels in the IPN during precipitated nicotine withdrawal. Sex differences in withdrawal-induced neurochemical effects were also compared following systemic administration of a CRF1 receptor antagonist. The results revealed that there were no group differences in serotonin levels in the IPN. A major finding was that females displayed a larger withdrawal-induced increases in GABA levels in the IPN than males. Also, withdrawal increased IPN glutamate levels in a similar manner in females and males. Blockade of CRF1 receptors produced a larger suppression of the withdrawal-induced increases in GABA levels in the IPN of females versus males, an effect that was likely related to the robust increase in glutamate following administration of the CRF1 receptor antagonist in females. These data suggest that amino acid systems in the IPN modulate sex differences in the behavioral effects of nicotine withdrawal. Furthermore, our data imply that medications that target stress-induced activation of the IPN may reduce withdrawal severity, particularly in females.
Collapse
Affiliation(s)
- Luis M. Carcoba
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Kevin P. Uribe
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Sebastian Ortegon
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Ian A. Mendez
- School of Pharmacy, The University of Texas at El Paso, El Paso, TX, USA
| | - Mariella DeBiasi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura E. O’Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
12
|
The Comprehensive Effect of Socioeconomic Deprivation on Smoking Behavior: an Observational and Genome-Wide by Environment Interaction Analyses in UK Biobank. Int J Ment Health Addict 2022. [DOI: 10.1007/s11469-022-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Shyu C, Chavez S, Boileau I, Foll BL. Quantifying GABA in Addiction: A Review of Proton Magnetic Resonance Spectroscopy Studies. Brain Sci 2022; 12:918. [PMID: 35884725 PMCID: PMC9316447 DOI: 10.3390/brainsci12070918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) signaling plays a crucial role in drug reward and the development of addiction. Historically, GABA neurochemistry in humans has been difficult to study due to methodological limitations. In recent years, proton magnetic resonance spectroscopy (1H-MRS, MRS) has emerged as a non-invasive imaging technique that can detect and quantify human brain metabolites in vivo. Novel sequencing and spectral editing methods have since been developed to allow for quantification of GABA. This review outlines the clinical research utilization of 1H-MRS in understanding GABA neurochemistry in addiction and summarizes current literature that reports GABA measurements by MRS in addiction. Research on alcohol, nicotine, cocaine, and cannabis addiction all suggest medications that modulate GABA signaling may be effective in reducing withdrawal, craving, and other addictive behaviors. Thus, we discuss how improvements in current MRS techniques and design can optimize GABA quantification in future studies and explore how monitoring changes to brain GABA could help identify risk factors, improve treatment efficacy, further characterize the nature of addiction, and provide crucial insights for future pharmacological development.
Collapse
Affiliation(s)
- Claire Shyu
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada;
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.C.); (I.B.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.C.); (I.B.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.C.); (I.B.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada;
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (S.C.); (I.B.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Centre for Addiction and Mental Health, Concurrent Outpatient Medical & Psychosocial Addiction Support Services, Toronto, ON M6J 1H4, Canada
- Centre for Addiction and Mental Health, Acute Care Program, Toronto, ON M6J 1H3, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Waypoint Centre for Mental Health Care, Waypoint Research Institute, 500 Church Street, Penetanguishene, ON L9M 1G3, Canada
| |
Collapse
|
14
|
Ventral hippocampal NMDA receptors mediate the effects of nicotine on stress-induced anxiety/exploratory behaviors in rats. Neurosci Lett 2022; 780:136649. [DOI: 10.1016/j.neulet.2022.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
15
|
Steinegger CA, Zoelch N, Hock A, Henning A, Engeli EJ, Seifritz E, Hulka LM, Herdener M. Neurometabolic alterations in the nucleus accumbens of smokers assessed with 1 H magnetic resonance spectroscopy: The role of glutamate and neuroinflammation. Addict Biol 2021; 26:e13027. [PMID: 33825270 DOI: 10.1111/adb.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/13/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
Tobacco use is one of the leading causes of premature death and morbidity worldwide. For smokers trying to quit, relapse rates are high, even after prolonged periods of abstinence. Recent findings in animal models highlight the role of alterations in glutamatergic projections from the prefrontal cortex onto the nucleus accumbens (NAc) in relapse vulnerability. Moreover, inflammatory responses in the NAc have been reported during withdrawal. A novel proton magnetic resonance spectroscopy (1 H-MRS) protocol was applied in humans to measure molar concentrations for glutamate, its sum with glutamine (Glx), and myoinositol plus glycine (mI + Gly) in the NAc (19 smokers, 20 matched controls). Smokers were measured at baseline and during withdrawal and satiation. No difference between groups or smoking states was found for glutamate or Glx, but, in smokers, stronger craving and more severe nicotine dependence were associated with lower baseline glutamate and Glx levels, respectively. Interestingly, mI + Gly concentrations were higher during withdrawal than baseline and correlated negatively with nicotine dependence severity and pack years of smoking. The lack of glutamatergic changes between groups and smoking states may imply that glutamate homeostasis is not significantly altered in smokers or that changes are too small for detection by 1 H-MRS. Moreover, the observed increase in mI + Gly may imply that neuroinflammatory processes occur in the NAc during nicotine withdrawal. These findings shed light on neurobiological relapse mechanisms in smokers and may provide the opportunity to develop more effective treatment options targeting the glutamate and neuroinflammation system.
Collapse
Affiliation(s)
- Colette A. Steinegger
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich Zurich Switzerland
| | - Niklaus Zoelch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich Zurich Switzerland
- Institute of Forensic Medicine, Department of Forensic Medicine and Imaging University of Zurich Zurich Switzerland
- Institute for Biomedical Engineering University and Swiss Federal Institute of Technology Zurich Zurich Switzerland
| | - Andreas Hock
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich Zurich Switzerland
- Institute for Biomedical Engineering University and Swiss Federal Institute of Technology Zurich Zurich Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering University and Swiss Federal Institute of Technology Zurich Zurich Switzerland
- Zurich Center for Integrative Human Physiology University of Zurich Zurich Switzerland
- Max Planck Institute for Biological Cybernetics Tuebingen Germany
- University of Texas Southwestern Medical Center Dallas Texas US
| | - Etna J.E. Engeli
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich Zurich Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich Zurich Switzerland
- Zurich Center for Integrative Human Physiology University of Zurich Zurich Switzerland
- Neuroscience Center Zurich University of Zurich and Swiss Federal Institute of Technology Zurich Zurich Switzerland
| | - Lea M. Hulka
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich Zurich Switzerland
| | - Marcus Herdener
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich Zurich Switzerland
| |
Collapse
|
16
|
Yunusoğlu O. Linalool attenuates acquisition and reinstatement and accelerates the extinction of nicotine-induced conditioned place preference in male mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:422-432. [PMID: 33852814 DOI: 10.1080/00952990.2021.1898627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Nicotine is the addictive agent in tobacco products. The monoterpene linalool is the main ingredient in the essential oils of various aromatic plants. It has previously been demonstrated that linalool has beneficial effects on some mechanisms that are important in drug addiction.Objectives: The goal of the current study was to investigate the effect of linalool on nicotine-induced conditioned place preference (CPP) in male mice.Methods: CPP was induced by administering intraperitoneal (i.p.) injection of nicotine (0.5 mg/kg) during the conditioning phase. The effects of nicotinic acetylcholine receptor partial agonist varenicline and linalool on the rewarding characteristics of nicotine were tested in mice with administration of linalool (12.5, 25, and 50 mg/kg, i.p.), varenicline (2 mg/kg, i.p.) or saline 30 minutes before nicotine injection. CPP was extinguished by repeated testing, during which conditioned mice were administered varenicline and linalool every day. One day after the last extinction trial, mice that received linalool, varenicline or saline 30 minutes before a priming injection of nicotine (0.1 mg/kg, i.p.) were immediately tested for reinstatement of CPP.Results: Linalool attenuated nicotine acquisition (50 mg/kg, p < .01) and reinstatement (25 and 50 mg/kg, respectively p < .05, p < .01) and accelerated the extinction of nicotine-induced CPP (50 mg/kg, p < .05). Linalool exhibited similar effects on the reference drug varenicline in the CPP phases.Conclusion: These results suggest that linalool may be helpful as an adjuvant for the treatment of nicotine use disorder.
Collapse
Affiliation(s)
- Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
17
|
Rahmadi M, Suasana D, Lailis SR, Ratri DMN, Ardianto C. The effects of quercetin on nicotine-induced reward effects in mice. J Basic Clin Physiol Pharmacol 2021; 32:327-333. [PMID: 34214359 DOI: 10.1515/jbcpp-2020-0418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/21/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Tobacco smoking remains the primary cause of preventable mortality and morbidity in the world. The complexity of the nicotine dependency process included the withdrawal effect that triggers recurrence being the main problem. Quercetin, known as an antioxidant, binds free radicals and modulates endogenous antioxidants through Nrf2 activations is expected as a potential agent to reduce the risk of nicotine dependence. This research aims to evaluate quercetin's effects on reducing the risk of nicotine addiction. METHODS Conditioned Place Preference (CPP) with a biased design was used to evaluate nicotine's reward effects in male Balb/C mice. Preconditioning test was performed on day 1; conditioning test was done twice daily on day 2-4 by administering quercetin (i.p.) 50 mg/kg along with nicotine (s.c.) 0.5 mg/kg or Cigarette Smoke Extract (CSE) (s.c.) contained nicotine 0.5 mg/kg; and postconditioning test was performed on day 5 continue with extinction test on day 6, 8, 10, 12, and reinstatement test on day 13. The duration spent in each compartment was recorded and analyzed. RESULTS Nicotine 0.5 mg/kg and CSE 0.5 mg/kg significantly induced reward effects (p<0.05). There was no decrease of reward effect during the extinction-reinstatement stage of the postconditioning phase (p>0.05), while quercetin 50 mg/kg both induced along with nicotine or CSE was able to inhibit the reward effect of nicotine (p>0.05). CONCLUSIONS Quercetin reduced the risk of nicotine dependence and has a potential effect to use as a therapy for nicotine dependence, especially as a preventive agent.
Collapse
Affiliation(s)
- Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Dian Suasana
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Silvy Restuning Lailis
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | | | - Chrismawan Ardianto
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
18
|
Yang JH, Sohn S, Kim S, Kim J, Oh JH, Ryu IS, Go BS, Choe ES. Repeated nicotine exposure increases the intracellular interaction between ERK-mGluR5 in the nucleus accumbens more in adult than adolescent rats. Addict Biol 2021; 26:e12913. [PMID: 32339332 DOI: 10.1111/adb.12913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/20/2020] [Accepted: 04/09/2020] [Indexed: 11/27/2022]
Abstract
Intracellular interactions between protein kinases and metabotropic receptors in the striatum regulate behavioral changes in response to drug exposure. We investigated the difference in the degree of interaction between extracellular signal-regulated kinase (ERK) and metabotropic glutamate receptor subtype 5 (mGluR5) in the nucleus accumbens (NAc) after repeated exposure to nicotine in adult and adolescent rats. The results showed that repeated exposure to nicotine (0.5 mg/kg/day, s.c.) for seven consecutive days increased ERK phosphorylation more in adults than in adolescents. Furthermore, membrane expression of mGluR5 in gamma-aminobutyric acid (GABA) medium spiny neurons was higher in adults than adolescents as a result of repeated exposure to nicotine. Blockade of mGluR5 with MPEP (0.5 nmol/side) decreased the repeated nicotine-induced increase in ERK phosphorylation. Either blockade of mGluR5 or inhibition of ERK with SL327 (150 nmol/side) decreased the repeated nicotine-induced increase in the level of inositol-1,4,5-triphosphate (IP3 ), a key transducer associated with mGluR5-coupled signaling cascades. Similarly, interference of binding between activated ERK and mGluR5 by the blocking peptide, Tat-mGluR5-i (2 nmol/side), decreased the repeated nicotine-induced increases in IP3 and locomotor activity in adults. These findings suggest that the intracellular interaction between ERK and mGluR5 in the NAc is stronger in adult than in adolescent rats, which enhances the understanding of age-associated behavioral changes that occur after repeated exposure to nicotine.
Collapse
Affiliation(s)
- Ju Hwan Yang
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Sumin Sohn
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Sunghyun Kim
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Jieun Kim
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Jeong Hwan Oh
- Department of Biological Sciences Pusan National University Busan South Korea
- Institute of Fisheries Sciences Pukyong National University Busan South Korea
| | - In Soo Ryu
- Department of Biological Sciences Pusan National University Busan South Korea
- Korea Institute of Toxicology Daejeon South Korea
| | - Bok Soon Go
- Department of Biological Sciences Pusan National University Busan South Korea
| | - Eun Sang Choe
- Department of Biological Sciences Pusan National University Busan South Korea
| |
Collapse
|
19
|
Ryu IS, Kim J, Yang JH, Seo SY, Sohn S, Kim S, Lee K, Seo JW, Choe ES. Exposure to Commercial Cigarette Smoke Produces Psychomotor Sensitization Via Hyperstimulation of Glutamate Response in the Dorsal Striatum. Brain Sci 2020; 11:brainsci11010014. [PMID: 33374316 PMCID: PMC7830476 DOI: 10.3390/brainsci11010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke is a highly complex mixture of nicotine and non-nicotine constituents. Exposure to cigarette smoke enhances tobacco dependence by potentiating glutamatergic neurotransmission via stimulation of nicotinic acetylcholine receptors (nAChRs). We investigated the effects of nicotine and non-nicotine alkaloids in the cigarette smoke condensates extracted from two commercial cigarette brands in South Korea (KCSC A and KCSC B) on psychomotor behaviors and glutamate levels in the dorsal striatum. Repeated and challenge administration of KCSCs (nicotine content: 0.4 mg/kg, subcutaneous) increased psychomotor behaviors (ambulatory, rearing, and rotational activities) and time spent in psychoactive behavioral states compared to exposure to nicotine (0.4 mg/kg) alone. The increase in psychomotor behaviors lasted longer when exposed to repeated and challenge administration of KCSCs compared to nicotine alone. In parallel with sustained increase in psychomotor behaviors, repeated administration of KCSCs also caused long-lasting glutamate release in the dorsal striatum compared to nicotine alone. KCSC-induced changes in psychomotor behaviors and glutamate levels in the dorsal striatum were found to be strongly correlated. These findings suggest that non-nicotine alkaloids in commercial cigarette smoke synergistically act with nicotine on nAChRs, thereby upregulating glutamatergic response in the dorsal striatum, which contributes to the hypersensitization of psychomotor behaviors.
Collapse
Affiliation(s)
- In Soo Ryu
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
- Correspondence: (I.S.R.); (E.S.C.); Tel.: +82-42-610-8293 (I.S.R.); +82-51-510-2272 (E.S.C.)
| | - Jieun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Ju Hwan Yang
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Su Yeon Seo
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Sumin Sohn
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Sunghyun Kim
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30 Baekhak 1-gil, Jeongeup 56212, Korea;
| | - Joung-Wook Seo
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea;
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, 63-2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea; (J.K.); (J.H.Y.); (S.Y.S.); (S.S.); (S.K.)
- Correspondence: (I.S.R.); (E.S.C.); Tel.: +82-42-610-8293 (I.S.R.); +82-51-510-2272 (E.S.C.)
| |
Collapse
|
20
|
Short-term nicotine deprivation alters dorsal anterior cingulate glutamate concentration and concomitant cingulate-cortical functional connectivity. Neuropsychopharmacology 2020; 45:1920-1930. [PMID: 32559759 PMCID: PMC7608204 DOI: 10.1038/s41386-020-0741-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Most cigarette smokers who wish to quit too often relapse within the first few days of abstinence, primarily due to the aversive aspects of the nicotine withdrawal syndrome (NWS), which remains poorly understood. Considerable research has suggested that the dorsal anterior cingulate cortex (dACC) plays a key role in nicotine dependence, with its functional connections between other brain regions altered as a function of trait addiction and state withdrawal. The flow of information between dACC and fronto-striatal regions is secured through different pathways, the vast majority of which are glutamatergic. As such, we investigated dACC activity using resting state functional connectivity (rsFC) with functional magnetic resonance imaging (fMRI) and glutamate (Glu) concentration with magnetic resonance spectroscopy (MRS). We also investigated the changes in adenosine levels in plasma during withdrawal as a surrogate for brain adenosine, which plays a role in fine-tuning synaptic glutamate transmission. Using a double-blind, placebo-controlled, randomized crossover design, nontreatment seeking smoking participants (N = 30) completed two imaging sessions, one while nicotine sated and another after 36 h nicotine abstinence. We observed reduced dACC Glu (P = 0.029) along with a significant reduction in plasma adenosine (P = 0.03) and adenosine monophosphate (AMP; P < 0.0001) concentrations during nicotine withdrawal in comparison with nicotine sated state. This withdrawal state manipulation also led to an increase in rsFC strength (P < 0.05) between dACC and several frontal cortical regions, including left superior frontal gyrus (LSFG), and right middle frontal gyrus (RMFG). Moreover, the state-trait changes in dACC Glu and rsFC strength between the dACC and both SFG and MFG were positively correlated (P = 0.012, and P = 0.007, respectively). Finally, the change in circuit strength between dACC and LSFG was negatively correlated with the change in withdrawal symptom manifestations as measured by the Wisconsin Smoking Withdrawal Scale (P = 0.04) and Tobacco Craving Questionnaire (P = 0.014). These multimodal imaging-behavioral findings reveal the complex cascade of changes induced by acute nicotine deprivation and call for further investigation into the potential utility of adenosine- and glutamate-signaling as novel therapeutic targets to treat the NWS.
Collapse
|
21
|
Akkus F, Terbeck S, Haggarty CJ, Treyer V, Dietrich JJ, Hornschuh S, Hasler G. The role of the metabotropic glutamate receptor 5 in nicotine addiction. CNS Spectr 2020; 26:1-6. [PMID: 32713396 DOI: 10.1017/s1092852920001704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review summarizes the evidence for the potential involvement of metabotropic glutamate receptor 5 (mGluR5) in the development of nicotine addiction. Nicotine is consumed worldwide and is highly addictive. Previous research has extensively investigated the role of dopamine in association with reward learning and addiction, which has provided strong evidence for the involvement of dopaminergic neuronal circuitry in nicotine addiction. More recently, researchers focused on glutamatergic transmission after nicotine abuse, and its involvement in the reinforcing and rewarding effects of nicotine addiction. A number of robust preclinical and clinical studies have shown mGluR5 signaling as a facilitating mechanism of nicotine addiction and nicotine withdrawal. Specifically, clinical studies have illustrated lower cortical mGluR5 density in smokers compared to nonsmokers in the human brain. In addition, mGluR5 might selectively regulate craving and withdrawal. This suggests that mGluR5 could be a key receptor in the development of nicotine addiction and therefore clinical trials to examine the therapeutic potential of mGluR5 agents could help to contribute to reduce nicotine addiction in society.
Collapse
Affiliation(s)
- Funda Akkus
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
- Psychiatrie St. Gallen Nord, Wil, Switzerland
| | - Sylvia Terbeck
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Connor J Haggarty
- School of Psychology, Liverpool John Moores University, LiverpoolUnited Kingdom
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Janan J Dietrich
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stefanie Hornschuh
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gregor Hasler
- Department of Psychiatry, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
22
|
Delery EC, Edwards S. Neuropeptide and cytokine regulation of pain in the context of substance use disorders. Neuropharmacology 2020; 174:108153. [PMID: 32470337 DOI: 10.1016/j.neuropharm.2020.108153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Substance use disorders (SUDs) are frequently accompanied by affective symptoms that promote negative reinforcement mechanisms contributing to SUD maintenance or progression. Despite their widespread use as analgesics, chronic or excessive exposure to alcohol, opioids, and nicotine produces heightened nociceptive sensitivity, termed hyperalgesia. This review focuses on the contributions of neuropeptide (CRF, melanocortin, opioid peptide) and cytokine (IL-1β, TNF-α, chemokine) systems in the development and maintenance of substance-induced hyperalgesia. Few effective therapies exist for either chronic pain or SUD, and the common interaction of these disease states likely complicates their effective treatment. Here we highlight promising new discoveries as well as identify gaps in research that could lead to more effective and even simultaneous treatment of SUDs and co-morbid hyperalgesia symptoms.
Collapse
Affiliation(s)
- Elizabeth C Delery
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
23
|
Chen X, Fan X, Hu Y, Zuo C, Whitfield-Gabrieli S, Holt D, Gong Q, Yang Y, Pizzagalli DA, Du F, Ongur D. Regional GABA Concentrations Modulate Inter-network Resting-state Functional Connectivity. Cereb Cortex 2020; 29:1607-1618. [PMID: 29608677 DOI: 10.1093/cercor/bhy059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/30/2018] [Indexed: 02/05/2023] Open
Abstract
Coordinated activity within and differential activity between large-scale neuronal networks such as the default mode network (DMN) and the control network (CN) is a critical feature of brain organization. The CN usually exhibits activations in response to cognitive tasks while the DMN shows deactivations; in addition, activity between the two networks is anti-correlated at rest. To address this issue, we used functional MRI to measure whole-brain BOLD signal during resting-state and task-evoked conditions, and MR spectroscopy (MRS) to quantify GABA and glutamate concentrations, in nodes within the DMN and CN (MPFC and DLPFC, respectively) in 19 healthy individuals at 3 Tesla. We found that GABA concentrations in the MPFC were significantly associated with DMN deactivation during a working memory task and with anti-correlation between DMN and CN at rest and during task performance, while GABA concentrations in the DLPFC weakly modulated DMN-CN anti-correlation in the opposite direction. Highlighting specificity, glutamate played a less significant role related to brain activity. These findings indicate that GABA in the MPFC is potentially involved in orchestrating between-network brain activity at rest and during task performance.
Collapse
Affiliation(s)
- Xi Chen
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Xiaoying Fan
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yuzheng Hu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institute of Health, Baltimore, MD, USA
| | - Chun Zuo
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Susan Whitfield-Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daphne Holt
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Programs, National Institute of Health, Baltimore, MD, USA
| | - Diego A Pizzagalli
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Center For Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Fei Du
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Dost Ongur
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
24
|
Fukuyama K, Fukuzawa M, Shiroyama T, Okada M. Pathogenesis and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy with S284L-mutant α4 subunit of nicotinic ACh receptor. Br J Pharmacol 2020; 177:2143-2162. [PMID: 31901135 PMCID: PMC7161548 DOI: 10.1111/bph.14974] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE The mechanisms causing spontaneous epileptic seizures, including carbamazepine-resistant/zonisamide -sensitive seizures and comorbidity in autosomal dominant sleep-related hypermotor epilepsy (ADSHE) are unclear. This study investigated functional abnormalities in thalamocortical transmission in transgenic rats bearing rat S286L-mutant Chrna4 (S286L-TG) of α4 subunit of the nicotinic ACh receptor (nAChR) that corresponds to the human S284L-mutant CHRNA4. EXPERIMENTAL APPROACH Effects of carbamazepine and zonisamide on epileptic discharges of S286L-TG rat were measured using telemetry electrocorticogram. Transmission abnormalities of L-glutamate and GABA in thalamocortical pathway of S286L-TG rats were investigated using multiprobe microdialysis and ultra-high-performance liquid-chromatography. KEY RESULTS Epileptic discharges in S286L-TG rats were reduced by zonisamide but not by carbamazepine, similar to that of S284L-ADSHE patients. Carbamazepine unaffected functional abnormality in transmission of S286L-TG rats. However, zonisamide was able to compensate for the attenuated S286L-mutant nAChR induced GABA release in frontal-cortex, without affecting attenuated thalamocortical glutamatergic transmission. Excitatory effects of S286L-mutant nAChR on thalamocortical transmission were attenuated compared with those of wild-type nAChR. Loss-of-function of S286L-nAChR enhanced transmission in thalamocortical motor pathway by predominantly attenuating GABAergic transmission. However, it attenuated transmission in thalamocortical cognitive pathway by reducing inhibitory GABAergic and excitatory glutamatergic transmission. CONCLUSION AND IMPLICATIONS Our results suggest that functional abnormalities of S286L-nAChR are associated with intra-frontal and thalamocortical transmission, possibly contributing to the pathogenesis of ADSHE-seizure and comorbidity of S284L-ADSHE. Selective compensation of impaired GABAergic transmission by zonisamide (but not by carbamazepine) in frontal cortex may be involved, at least partially, in carbamazepine-resistant ADSHE-seizure of S284L-ADSHE patients.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of MedicineMie UniversityTsuJapan
| | - Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of MedicineMie UniversityTsuJapan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of MedicineMie UniversityTsuJapan
| |
Collapse
|
25
|
Ostroumov A, Wittenberg RE, Kimmey BA, Taormina MB, Holden WM, McHugh AT, Dani JA. Acute Nicotine Exposure Alters Ventral Tegmental Area Inhibitory Transmission and Promotes Diazepam Consumption. eNeuro 2020; 7:ENEURO.0348-19.2020. [PMID: 32102779 PMCID: PMC7082131 DOI: 10.1523/eneuro.0348-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 02/16/2020] [Indexed: 11/21/2022] Open
Abstract
Nicotine use increases the risk for subsequent abuse of other addictive drugs, but the biological basis underlying this risk remains largely unknown. Interactions between nicotine and other drugs of abuse may arise from nicotine-induced neural adaptations in the mesolimbic dopamine (DA) system, a common pathway for the reinforcing effects of many addictive substances. Previous work identified nicotine-induced neuroadaptations that alter inhibitory transmission in the ventral tegmental area (VTA). Here, we test whether nicotine-induced dysregulation of GABAergic signaling within the VTA increases the vulnerability for benzodiazepine abuse that has been reported in smokers. We demonstrate in rats that nicotine exposure dysregulates diazepam-induced inhibition of VTA GABA neurons and increases diazepam consumption. In VTA GABA neurons, nicotine impaired KCC2-mediated chloride extrusion, depolarized the GABAA reversal potential, and shifted the pharmacological effect of diazepam on GABA neurons from inhibition toward excitation. In parallel, nicotine-related alterations in GABA signaling observed ex vivo were associated with enhanced diazepam-induced inhibition of lateral VTA DA neurons in vivo Targeting KCC2 with the agonist CLP290 normalized diazepam-induced effects on VTA GABA transmission and reduced diazepam consumption following nicotine administration to the control level. Together, our results provide insights into midbrain circuit alterations resulting from nicotine exposure that contribute to the abuse of other drugs, such as benzodiazepines.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruthie E Wittenberg
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Blake A Kimmey
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Madison B Taormina
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William M Holden
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Albert T McHugh
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
26
|
Fukuyama K, Fukuzawa M, Shiroyama T, Okada M. Pathomechanism of nocturnal paroxysmal dystonia in autosomal dominant sleep-related hypermotor epilepsy with S284L-mutant α4 subunit of nicotinic ACh receptor. Biomed Pharmacother 2020; 126:110070. [PMID: 32169758 DOI: 10.1016/j.biopha.2020.110070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
To study the pathomechanism and pathophysiology of nocturnal paroxysmal dystonia of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities in thalamic hyperdirect pathway from reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN), subthalamic nucleus (STN) to substantia nigra pars reticulata (SNr) of transgenic rats (S286L-TG) bearing S286 L missense mutation of rat Chrna4 gene, which corresponds to the S284 L mutation in the human CHRNA4 gene. The activation of α4β2-nAChR in the RTN increased GABA release in MoTN resulting in reduced glutamatergic transmission in thalamic hyperdirect pathway of wild-type. Contrary to wild-type, activation of S286L-mutant α4β2-nAChR (loss-of-function) in the RTN relatively enhanced glutamatergic transmission in thalamic hyperdirect pathway of S286L-TG via impaired GABAergic inhibition in intra-thalamic (RTN-MoTN) pathway. These functional abnormalities in glutamatergic transmission in hyperdirect pathway contribute to the pathomechanism of electrophysiologically negative nocturnal paroxysmal dystonia of S286L-TG. Therapeutic-relevant concentration of zonisamide (ZNS) inhibited the glutamatergic transmission in the hyperdirect pathway via activation of group II metabotropic glutamate receptor (II-mGluR) in MoTN and STN. The present results suggest that S286L-mutant α4β2-nAChR induces GABAergic disinhibition in intra-thalamic (RTN-MoTN) pathway and hyperactivation of glutamatergic transmission in thalamic hyperdirect pathway (MoTN-STN-SNr), possibly contributing to the pathomechanism of nocturnal paroxysmal dystonia of ADSHE patients with S284L mutant CHRNA4. Inhibition of glutamatergic transmission in thalamic hyperdirect pathway induced by ZNS via activation of II-mGluR may be involved, at least partially, in ZNS-sensitive nocturnal paroxysmal dystonia of ADSHE patients with S284L mutation.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki. 036-8560, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
27
|
Chen J, Liu Q, Fan R, Han H, Yang Z, Cui W, Song G, Li MD. Demonstration of critical role of GRIN3A in nicotine dependence through both genetic association and molecular functional studies. Addict Biol 2020; 25:e12718. [PMID: 30741440 DOI: 10.1111/adb.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/19/2018] [Accepted: 01/08/2019] [Indexed: 11/27/2022]
Abstract
Nicotine dependence (ND) is a chronic disease with catastrophic effects on individual and public health. The glutamate receptor subunit gene, ionotropic N-methyl-d-aspartate 3A (GRIN3A), encodes a crucial subunit of N-methyl-d-aspartate receptors (NMDARs), which play an essential role in synaptic plasticity in the brain. Although various variants of GRIN3A have been associated with ND in European-American and African-American samples, no study has been reported for the association between GRIN3A and ND in Chinese Han population. We performed an association study of 16 single nucleotide polymorphisms (SNPs) in GRIN3A with ND in 2616 Chinese individuals. SNP-based association analysis indicated that SNP rs1323423 was significantly associated with the Fagerström Test for Nicotine Dependence (FTND) score after correction for multiple testing (P = 0.0026). Haplotype-based association analysis revealed that Block 3, formed by rs1323423-rs10989591, was significantly associated with the FTND score after correction for multiple testing (global P = 0.0183). Furthermore, luciferase reporter assay demonstrated that the DNA region containing rs1323423 was an enhancer element, the activity of which was significantly impacted by rs1323423 genotype. Considering that rs1323423 is located in a potential enhancer region, we performed GRIN3A editing in HEK293T cells with CRISPR/Cas9 and found that the DNA region around rs1323423 has a regulatory function and the expression of GRIN3A affects the expression of other NMDA subunits. Moreover, we demonstrated that nicotine at a concentration of 100 μM decreased expression of GRIN3A in SH-SY5Y and HEK293T cells at the RNA and protein level, respectively. This study provides novel evidence for the involvement of GRIN3A in ND.
Collapse
Affiliation(s)
- Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Rongli Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
| | - Guohua Song
- Animal Research CenterShanxi Medical University China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang University School of Medicine China
- Research Center for Air Pollution and HealthZhejiang University China
- Institute of NeuroImmune PharmacologySeton Hall University South Orange New Jersey USA
| |
Collapse
|
28
|
Li JN, Liu XL, Li L. Prefrontal GABA and glutamate levels correlate with impulsivity and cognitive function of prescription opioid addicts: A 1 H-magnetic resonance spectroscopy study. Psychiatry Clin Neurosci 2020; 74:77-83. [PMID: 31599080 DOI: 10.1111/pcn.12940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
AIM Prescription opioids are psychoactive substances that can elicit many neuropsychological effects. There are no studies that directly demonstrate the effects of prescription opioid addiction (POA) on the human brain. This study aimed to quantify γ-aminobutyric acid (GABA) and glutamate (Glu) levels in the prefrontal cortex (PFC) of POA patients using proton magnetic resonance spectroscopy (1 H-MRS), and to explore their association with impulsive behavior and cognitive impairment. METHODS Thirty-five patients with a definitive clinical diagnosis of codeine-containing cough syrup dependence and 35 matched healthy controls underwent neuropsychological assessments, namely the Barratt Impulsiveness Scale (BIS-11) and the Montreal Cognitive Assessment Scale (MoCA). Point-resolved spectroscopy was performed to detect GABA and glutamate within the medial PFC, and the corresponding levels were estimated using jMRUI and corrected for fraction of cerebrospinal fluid in the 1 H-MRS voxel. The difference in metabolite levels between groups and the correlation between metabolite levels and psychometric scores in patients were analyzed statistically. RESULTS The peak level predominantly consisting of GABA with a relatively small influence of other chemicals (GABA+) was lower and that of glutamate was higher in the PFC of POA patients than in healthy controls. GABA+ levels correlated negatively with BIS-11 scores but correlated positively with MoCA scores. In contrast, glutamate levels showed a positive correlation with BIS-11 scores but no significant correlation with MoCA scores. CONCLUSION The quantitative in vivo measurement of GABA and glutamate levels in the PFC by 1 H-MRS could be a reliable way to evaluate impulsivity and cognitive function of POA.
Collapse
Affiliation(s)
- Jian-Neng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xi-Long Liu
- Department of Diagnostic Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Li
- Department of Radiology, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Prochaska JJ, Benowitz NL. Current advances in research in treatment and recovery: Nicotine addiction. SCIENCE ADVANCES 2019; 5:eaay9763. [PMID: 31663029 PMCID: PMC6795520 DOI: 10.1126/sciadv.aay9763] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/26/2019] [Indexed: 05/05/2023]
Abstract
The health harms of combusted tobacco use are undeniable. With market and regulatory pressures to reduce the harms of nicotine delivery by combustion, the tobacco product landscape has diversified to include smokeless, heated, and electronic nicotine vaping products. Products of tobacco combustion are the main cause of smoking-induced disease, and nicotine addiction sustains tobacco use. An understanding of the biology and clinical features of nicotine addiction and the conditioning of behavior that occurs via stimuli paired with frequent nicotine dosing, as with a smoked cigarette, is important for informing pharmacologic and behavioral treatment targets. We review current advances in research on nicotine addiction treatment and recovery, with a focus on conventional combustible cigarette use. Our review covers evidence-based methods to treat smoking in adults and policy approaches to prevent nicotine product initiation in youth. In closing, we discuss emerging areas of evidence and consider new directions for advancing the field.
Collapse
Affiliation(s)
- Judith J. Prochaska
- Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Neal L. Benowitz
- Program in Clinical Pharmacology, Division of Cardiology, and the Center for Tobacco Control Research and Education, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
30
|
Romoli B, Lozada AF, Sandoval IM, Manfredsson FP, Hnasko TS, Berg DK, Dulcis D. Neonatal Nicotine Exposure Primes Midbrain Neurons to a Dopaminergic Phenotype and Increases Adult Drug Consumption. Biol Psychiatry 2019; 86:344-355. [PMID: 31202491 PMCID: PMC7359410 DOI: 10.1016/j.biopsych.2019.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Nicotine intake induces addiction through neuroplasticity of the reward circuitry, altering the activity of dopaminergic neurons of the ventral tegmental area. Prior work demonstrated that altered circuit activity can change neurotransmitter expression in the developing and adult brain. Here we investigated the effects of neonatal nicotine exposure on the dopaminergic system and nicotine consumption in adulthood. METHODS Male and female mice were used for two-bottle-choice test, progressive ratio breakpoint test, immunohistochemistry, RNAscope, quantitative polymerase chain reaction, calcium imaging, and DREADD (designer receptor exclusively activated by designer drugs)-mediated chemogenic activation/inhibition experiments. RESULTS Neonatal nicotine exposure potentiates drug preference in adult mice, induces alterations in calcium spike activity of midbrain neurons, and increases the number of dopamine-expressing neurons in the ventral tegmental area. Specifically, glutamatergic neurons are first primed to express transcription factor Nurr1, then acquire the dopaminergic phenotype following nicotine re-exposure in adulthood. Enhanced neuronal activity combined with Nurr1 expression is both necessary and sufficient for the nicotine-mediated neurotransmitter plasticity to occur. CONCLUSIONS Our findings illuminate a new mechanism of neuroplasticity by which early nicotine exposure primes the reward system to display increased susceptibility to drug consumption in adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, California.
| |
Collapse
|
31
|
Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and Neurophysiological Mechanisms Underlying Nicotine Seeking and Smoking Relapse. MOLECULAR NEUROPSYCHIATRY 2019; 4:169-189. [PMID: 30815453 PMCID: PMC6388439 DOI: 10.1159/000494799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Tobacco-related morbidity and mortality continue to be a significant public health concern. Unfortunately, current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, a better understanding of the neurobiological and neurophysiological mechanisms that promote smoking relapse is needed to develop novel smoking cessation medications. Here, we review preclinical studies focused on identifying the neurotransmitter and neuromodulator systems that mediate nicotine relapse, often modeled in laboratory animals using the reinstatement paradigm, as well as the plasticity-dependent neurophysiological mechanisms that facilitate nicotine reinstatement. Particular emphasis is placed on how these neuroadaptations relate to smoking relapse in humans. We also highlight a number of important gaps in our understanding of the neural mechanisms underlying nicotine reinstatement and critical future directions, which may lead toward the development of novel, target pharmacotherapies for smoking cessation.
Collapse
Affiliation(s)
- Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E. Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Sciences, New Haven, Connecticut, USA
| |
Collapse
|
32
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
33
|
Phillips AG, Geyer MA, Robbins TW. Effective Use of Animal Models for Therapeutic Development in Psychiatric and Substance Use Disorders. Biol Psychiatry 2018; 83:915-923. [PMID: 29478700 DOI: 10.1016/j.biopsych.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022]
Abstract
Athina Markou and others argue forcefully for the adoption of a "translational-back translational strategy" for central nervous system drug discovery involving novel application of drugs with established safety profiles in proof-of-principle studies in humans, which in turn encourage parallel studies using experimental animals to provide vital data on the neural systems and neuropharmacological mechanisms related to the actions of the candidate drugs. Encouraged by the increasing adoption of drug-development strategies involving reciprocal information exchange between preclinical animal studies and related clinical research programs, this review presents additional compelling examples related to the following: 1) the treatment of cognitive deficits that define attention-deficit/hyperactivity disorder; 2) the development of fast-acting antidepressants based on promising clinical effects with low doses of the anesthetic ketamine; and 3) new and effective medications for the treatment of substance misuse. In the context of addressing the unmet medical need for new and effective drugs for treatment of mental ill health, now may be the time to launch major new academic-industry consortia committed to open access of all preclinical and clinical data generated by this research.
Collapse
Affiliation(s)
- Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Mark A Geyer
- Department of Psychiatry, University of California-San Diego, La Jolla, California
| | - Trevor W Robbins
- Department of Psychology and Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Cross AJ, Anthenelli R, Li X. Metabotropic Glutamate Receptors 2 and 3 as Targets for Treating Nicotine Addiction. Biol Psychiatry 2018; 83:947-954. [PMID: 29301614 PMCID: PMC5953779 DOI: 10.1016/j.biopsych.2017.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/02/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022]
Abstract
Tobacco smoking, driven by the addictive properties of nicotine, continues to be a worldwide health problem. Based on the well-established role of glutamatergic neurotransmission in drug addiction, novel medication development strategies seek to halt nicotine consumption and prevent relapse to tobacco smoking by modulating glutamate transmission. The presynaptic inhibitory metabotropic glutamate receptors 2 and 3 (mGluR2/3) are key autoreceptors on glutamatergic terminals that maintain glutamate homeostasis. Accumulating evidence suggests the critical role of mGluR2/3 in different aspects of nicotine addiction, including acquisition and maintenance of nicotine taking, nicotine withdrawal, and persistent nicotine seeking even after prolonged abstinence. The involvement of mGluR2/3 in other neuropsychiatric conditions, such as anxiety, depression, schizophrenia, Alzheimer's disease, Parkinson's disease, and pain, provides convincing evidence suggesting that mGluR2/3 may provide an effective therapeutic approach for comorbidity of smoking and these conditions. This focused review article highlights that mGluR2/3 provide a promising target in the search for smoking cessation medication with novel mechanisms of actions that differ from those of currently U.S. Food and Drug Administration-approved pharmacotherapies.
Collapse
Affiliation(s)
- Alan J Cross
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, Massachusetts
| | - Robert Anthenelli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
35
|
Jacobson LH, Vlachou S, Slattery DA, Li X, Cryan JF. The Gamma-Aminobutyric Acid B Receptor in Depression and Reward. Biol Psychiatry 2018; 83:963-976. [PMID: 29759132 DOI: 10.1016/j.biopsych.2018.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/14/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
The metabotropic gamma-aminobutyric acid B (GABAB) receptor was the first described obligate G protein-coupled receptor heterodimer and continues to set the stage for discoveries in G protein-coupled receptor signaling complexity. In this review, dedicated to the life and work of Athina Markou, we explore the role of GABAB receptors in depression, reward, and the convergence of these domains in anhedonia, a shared symptom of major depressive disorder and withdrawal from drugs of abuse. GABAB receptor expression and function are enhanced by antidepressants and reduced in animal models of depression. Generally, GABAB receptor antagonists are antidepressant-like and agonists are pro-depressive. Exceptions to this rule likely reflect the differential influence of GABAB1 isoforms in depression-related behavior and neurobiology, including the anhedonic effects of social stress. A wealth of data implicate GABAB receptors in the rewarding effects of drugs of abuse. We focus on nicotine as an example. GABAB receptor activation attenuates, and deactivation enhances, nicotine reward and associated neurobiological changes. In nicotine withdrawal, however, GABAB receptor agonists, antagonists, and positive allosteric modulators enhance anhedonia, perhaps owing to differential effects of GABAB1 isoforms on the dopaminergic system. Nicotine cue-induced reinstatement is more reliably attenuated by GABAB receptor activation. Separation of desirable and undesirable side effects of agonists is achievable with positive allosteric modulators, which are poised to enter clinical studies for drug abuse. GABAB1 isoforms are key to understanding the neurobiology of anhedonia, whereas allosteric modulators may offer a mechanism for targeting specific brain regions and processes associated with reward and depression.
Collapse
Affiliation(s)
- Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia.
| | - Styliani Vlachou
- School of Nursing and Human Sciences, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin
| | - David A Slattery
- Klinik für Psychiatrie, Psychosomatik und Psychotherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Xia Li
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
36
|
Dehkordi O, Rose JE, Millis RM, Dalivand MM, Johnson SM. GABAergic Neurons as Putative Neurochemical Substrate Mediating Aversive Effects of Nicotine. ACTA ACUST UNITED AC 2018; 6. [PMID: 30009210 PMCID: PMC6042868 DOI: 10.4172/2329-6488.1000312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nicotine, the main addictive component of tobacco smoke, has both rewarding and aversive properties. Recent studies have suggested that GABAergic neurons, one of the main neurochemical components of the reward-addiction circuitry, may also play a role in the aversive responses to nicotine. In the present study of transgenic mice expressing Green Fluorescent Protein (GFP) in Glutamate Decarboxylase 67 (GAD67) neurons, we hypothesized that a subpopulation of GABAergic neurons in the Ventral Tegmental Area (VTA) are the targets of aversive doses of nicotine in the CNS. We tested this hypothesis using c-Fos immunohistochemical techniques to identify GAD67-GFP positive cells within the VTA, that are activated by a single intraperitoneal (i.p.) injection of a low (40 ug/kg) or a high (2 mg/kg) dose of nicotine. We also assessed the anatomical location of GAD67-GFP positive cells with respect to tyrosine hydroxylase (TH) Immunoreactive (IR) dopaminergic cells in VTA. Consistent with our previous studies low- and high-dose nicotine both induced c-Fos activation of various intensities at multiple sites in VTA. Double labeling of c-Fos activated cells with GAD67-GFP positive cells identified a subpopulation of GABAergic neurons in Substantia Nigra Compact part Medial tier (SNCM) that were activated by high- but not by low-dose nicotine. Of 217 GABAergic cells counted at this site, 48.9% exhibited nicotine induced c-fos immunoreactivity. GAD67-GFP positive cells in other regions of VTA were not activated by the nicotine doses tested. Double labeling of GAD67-GFP positive cells with TH IR cells showed that the GABAergic neurons that were activated by high-dose nicotine were located in close proximity to the dopaminergic neurons of substantia nigra compact part and VTA. Dose-dependent activation of GAD67-GFP positive neurons in SNCM, by a nicotine dose known to produce aversive responses, implies that GABAergic neurons at these sites may be an important component of the nicotine aversive circuitry.
Collapse
Affiliation(s)
- Ozra Dehkordi
- Department of Neurology, Howard University Hospital Washington D.C. 20060, United States.,Department of Physiology & Biophysics, Howard University College of Medicine Washington, D.C. 20059, United States
| | - Jed E Rose
- Department of Psychiatry, Duke University Medical Center, Durham, NC 27705, United States
| | - Richard M Millis
- Department of Medical Physiology, American University of Antigua College of Medicine, Antigua & Barbuda, West Indies
| | | | - Shereé M Johnson
- Department of Physiology & Biophysics, Howard University College of Medicine Washington, D.C. 20059, United States
| |
Collapse
|
37
|
Ryu IS, Kim J, Seo SY, Yang JH, Oh JH, Lee DK, Cho HW, Lee K, Yoon SS, Seo JW, Shim I, Choe ES. Repeated Administration of Cigarette Smoke Condensate Increases Glutamate Levels and Behavioral Sensitization. Front Behav Neurosci 2018; 12:47. [PMID: 29615877 PMCID: PMC5864865 DOI: 10.3389/fnbeh.2018.00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Nicotine, a nicotinic acetylcholine receptor agonist, produces the reinforcing effects of tobacco dependence by potentiating dopaminergic and glutamatergic neurotransmission. Non-nicotine alkaloids in tobacco also contribute to dependence by activating the cholinergic system. However, glutamatergic neurotransmission in the dorsal striatum associated with behavioral changes in response to cigarette smoking has not been investigated. In this study, the authors investigated alterations in glutamate levels in the rat dorsal striatum related to behavioral alterations after repeated administration of cigarette smoke condensate (CSC) using the real-time glutamate biosensing and an open-field behavioral assessment. Repeated administration of CSC including 0.4 mg nicotine (1.0 mL/kg/day, subcutaneous) for 14 days significantly increased extracellular glutamate concentrations more than repeated nicotine administration. In parallel with the hyperactivation of glutamate levels, repeated administration of CSC-evoked prolonged hypersensitization of psychomotor activity, including locomotor and rearing activities. These findings suggest that the CSC-induced psychomotor activities are closely associated with the elevation of glutamate concentrations in the rat dorsal striatum.
Collapse
Affiliation(s)
- In Soo Ryu
- Department of Biological Sciences, Pusan National University, Busan, South Korea.,Research Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jieun Kim
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Su Yeon Seo
- Department of Biological Sciences, Pusan National University, Busan, South Korea.,Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Ju Hwan Yang
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Jeong Hwan Oh
- College of Fisheries Sciences, National Institute of Fisheries (NIFS), Busan, South Korea
| | - Dong Kun Lee
- Department of Physiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Hyun-Wook Cho
- Department of Biology, Sunchon National University, Sunchon, South Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeongeup, South Korea
| | - Seong Shoon Yoon
- Research Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Joung-Wook Seo
- Research Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun Sang Choe
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
38
|
Rezvani AH, Tizabi Y, Slade S, Getachew B, Levin ED. Sub-anesthetic doses of ketamine attenuate nicotine self-administration in rats. Neurosci Lett 2018; 668:98-102. [DOI: 10.1016/j.neulet.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 11/30/2022]
|
39
|
Levin ED, Wells C, Slade S, Rezvani AH. Mutually augmenting interactions of dextromethorphan and sazetidine-A for reducing nicotine self-administration in rats. Pharmacol Biochem Behav 2018; 166:42-47. [PMID: 29407477 PMCID: PMC5836513 DOI: 10.1016/j.pbb.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/27/2022]
Abstract
A variety of nicotinic drug treatments have been found to decrease nicotine self-administration. However, interactions of drugs affecting different nicotinic receptor subtypes have not been much investigated. This study investigated the interactions between dextromethorphan, which blocks nicotinic α3β2 receptors as well as a variety of other receptors with sazetidine-A which is a potent and selective α4β2 nicotinic receptor partial agonist with desensitizing properties. This interaction was compared with dextromethorphan combination treatment with mecamylamine, which is a nonspecific nicotinic channel blocker. Co-administration of dextromethorphan (either 0.5 or 5 mg/kg) and lower dose of sazetidine-A (0.3 mg/kg) caused a significant reduction in nicotine SA. With regard to food-motivated responding, 3 mg/kg of sazetidine-A given alone caused a significant decrease in food intake. However, the lower 0.3 mg/kg sazetidine-A dose did not significantly affect food-motivated responding even when given in combination with the higher 5 mg/kg dextromethorphan dose which itself caused a significant decrease in food motivated responding. Interestingly, this higher dextromethorphan dose significantly attenuated the decrease in food motivated responding caused by 3 mg/kg of sazetidine-A. Locomotor activity was increased by the lower 0.3 mg/kg sazetidine-A dose and decreased by the 5 mg/kg dextromethorphan dose. Mecamylamine at the doses (0.1 and 1 mg/kg) did not affect nicotine SA, but at 1 mg/kg significantly decreased food-motivated responding. None of the mecamylamine doses augmented the effect of dextromethorphan in reducing nicotine self-administration. These studies showed that the combination of dextromethorphan and sazetidine-A had mutually potentiating effects, which could provide a better efficacy for promoting smoking cessation, however the strength of the interactions was fairly modest.
Collapse
Affiliation(s)
- Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - Corrine Wells
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan Slade
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
40
|
Behavioral changes after nicotine challenge are associated with α7 nicotinic acetylcholine receptor-stimulated glutamate release in the rat dorsal striatum. Sci Rep 2017; 7:15009. [PMID: 29118361 PMCID: PMC5678080 DOI: 10.1038/s41598-017-15161-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023] Open
Abstract
Neurochemical alterations associated with behavioral responses induced by re-exposure to nicotine have not been sufficiently characterized in the dorsal striatum. Herein, we report on changes in glutamate concentrations in the rat dorsal striatum associated with behavioral alterations after nicotine challenge. Nicotine challenge (0.4 mg/kg/day, subcutaneous) significantly increased extracellular glutamate concentrations up to the level observed with repeated nicotine administration. This increase occurred in parallel with an increase in behavioral changes in locomotor and rearing activities. In contrast, acute nicotine administration and nicotine withdrawal on days 1 and 6 did not alter glutamate levels or behavioral changes. Blockade of α7 nicotinic acetylcholine receptors (nAChRs) significantly decreased the nicotine challenge-induced increases in extracellular glutamate concentrations and locomotor and rearing activities. These findings suggest that behavioral changes in locomotor and rearing activities after re-exposure to nicotine are closely associated with hyperactivation of the glutamate response by stimulating α7 nAChRs in the rat dorsal striatum.
Collapse
|
41
|
Schulte MHJ, Kaag AM, Wiers RW, Schmaal L, van den Brink W, Reneman L, Homberg JR, van Wingen GA, Goudriaan AE. Prefrontal Glx and GABA concentrations and impulsivity in cigarette smokers and smoking polysubstance users. Drug Alcohol Depend 2017; 179:117-123. [PMID: 28763779 DOI: 10.1016/j.drugalcdep.2017.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/22/2022]
Abstract
Glutamate and GABA play an important role in substance dependence. However, it remains unclear whether this holds true for different substance use disorders and how this is related to risk-related traits such as impulsivity. We, therefore, compared Glx (as a proxy measure for glutamate) and GABA concentrations in the dorsal anterior cingulate cortex (dACC) of 48 male cigarette smokers, 61 male smoking polysubstance users, and 90 male healthy controls, and investigated the relationship with self-reported impulsivity and substance use. Glx and GABA concentrations were measured using proton Magnetic Resonance Spectroscopy. Impulsivity, smoking, alcohol and cocaine use severity and cannabis use were measured using self-report instruments. Results indicate a trend towards group differences in Glx. Post-hoc analyses showed a difference between smokers and healthy controls (p=0.04) and a trend towards higher concentrations in smoking polysubstance users and healthy controls (p=0.09), but no differences between smokers and smoking polysubstance users. dACC GABA concentrations were not significantly different between groups. Smoking polysubstance users were more impulsive than smokers, and both groups were more impulsive than controls. No significant associations were observed between dACC neurotransmitter concentrations and impulsivity and level and severity of smoking, alcohol or cocaine use or the presence of cannabis use. The results indicate that differences in dACC Glx are unrelated to type and level of substance use. No final conclusion can be drawn on the lack of GABA differences due to assessment difficulties. The relationship between dACC neurotransmitter concentrations and cognitive impairments other than self-reported impulsivity should be further investigated.
Collapse
Affiliation(s)
- Mieke H J Schulte
- Addiction, Development, and Psychopathology (ADAPT) lab, Department of Psychology, University of Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Anne Marije Kaag
- Addiction, Development, and Psychopathology (ADAPT) lab, Department of Psychology, University of Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Reinout W Wiers
- Addiction, Development, and Psychopathology (ADAPT) lab, Department of Psychology, University of Amsterdam, The Netherlands
| | - Lianne Schmaal
- Department of Psychiatry and Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith R Homberg
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, The Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands; Spinoza center for Neuroimaging, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, The Netherlands; Arkin Mental Health, Amsterdam, The Netherlands
| |
Collapse
|
42
|
KK-92A, a novel GABA B receptor positive allosteric modulator, attenuates nicotine self-administration and cue-induced nicotine seeking in rats. Psychopharmacology (Berl) 2017; 234:1633-1644. [PMID: 28382542 DOI: 10.1007/s00213-017-4594-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/11/2017] [Indexed: 01/03/2023]
Abstract
RATIONALE GABAB receptors (GABABR) play a critical role in GABAergic neurotransmission in the brain and are thought to be one of the most promising targets for the treatment of drug addiction. GABABR positive allosteric modulators (PAMs) have shown promise as potential anti-addictive therapies, as they lack the sedative and muscle relaxant properties of full GABAB receptor agonists such as baclofen. OBJECTIVES The present study was aimed at developing novel, selective, and potent GABABR PAMs with efficacy on abuse-related effects of nicotine. RESULTS We synthetized ~100 analogs of BHF177, a GABABR PAM that has been shown to inhibit nicotine taking and seeking, and tested their activity in multiple cell-based functional assays. Among these compounds, KK-92A displayed superior PAM properties at the GABABR. Interestingly, our results revealed the existence of pathway-selective differential modulation of GABABR signaling by the structurally related GABABR allosteric modulators BHF177 and KK-92A. In vivo, similarly to BHF177, KK-92A inhibited intravenous nicotine self-administration under both fixed- and progressive-ratio schedules of reinforcement in rats. In contrast to BHF177, KK-92A had no effect on food self-administration. Furthermore, KK-92A decreased cue-induced nicotine-seeking behavior without affecting food seeking. CONCLUSIONS These results indicate that KK-92A is a selective GABABR PAM with efficacy in inhibition of the primary reinforcing and incentive motivational effects of nicotine, and attenuation of nicotine seeking, further confirming that GABABR PAMs may be useful antismoking medications.
Collapse
|
43
|
Chiamulera C, Marzo CM, Balfour DJK. Metabotropic glutamate receptor 5 as a potential target for smoking cessation. Psychopharmacology (Berl) 2017; 234:1357-1370. [PMID: 27847973 DOI: 10.1007/s00213-016-4487-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Most habitual smokers find it difficult to quit smoking because they are dependent upon the nicotine present in tobacco smoke. Tobacco dependence is commonly treated pharmacologically using nicotine replacement therapy or drugs, such as varenicline, that target the nicotinic receptor. Relapse rates, however, remain high, and there remains a need to develop novel non-nicotinic pharmacotherapies for the dependence that are more effective than existing treatments. OBJECTIVE The purpose of this paper is to review the evidence from preclinical and clinical studies that drugs that antagonise the metabotropic glutamate receptor 5 (mGluR5) in the brain are likely to be efficacious as treatments for tobacco dependence. RESULTS Imaging studies reveal that chronic exposure to tobacco smoke reduces the density of mGluR5s in human brain. Preclinical results demonstrate that negative allosteric modulators (NAMs) at mGluR5 attenuate both nicotine self-administration and the reinstatement of responding evoked by exposure to conditioned cues paired with nicotine delivery. They also attenuate the effects of nicotine on brain dopamine pathways implicated in addiction. CONCLUSIONS Although mGluR5 NAMs attenuate most of the key facets of nicotine dependence, they potentiate the symptoms of nicotine withdrawal. This may limit their value as smoking cessation aids. The NAMs that have been employed most widely in preclinical studies of nicotine dependence have too many "off-target" effects to be used clinically. However, newer mGluR5 NAMs have been developed for clinical use in other indications. Future studies will determine if these agents can also be used effectively and safely to treat tobacco dependence.
Collapse
Affiliation(s)
- Cristiano Chiamulera
- Neuropsychopharmacology Lab., Section Pharmacology, Department Diagnostic and Public Health, University of Verona, P.le Scuro 10, 37134, Verona, Italy.
| | - Claudio Marcello Marzo
- Neuropsychopharmacology Lab., Section Pharmacology, Department Diagnostic and Public Health, University of Verona, P.le Scuro 10, 37134, Verona, Italy
| | - David J K Balfour
- Division of Neuroscience, University of Dundee Medical School, Mailbox 6, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
44
|
Converging findings from linkage and association analyses on susceptibility genes for smoking and other addictions. Mol Psychiatry 2016; 21:992-1008. [PMID: 27166759 PMCID: PMC4956568 DOI: 10.1038/mp.2016.67] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Abstract
Experimental approaches to genetic studies of complex traits evolve with technological advances. How do discoveries using different approaches advance our knowledge of the genetic architecture underlying complex diseases/traits? Do most of the findings of newer techniques, such as genome-wide association study (GWAS), provide more information than older ones, for example, genome-wide linkage study? In this review, we address these issues by developing a nicotine dependence (ND) genetic susceptibility map based on the results obtained by the approaches commonly used in recent years, namely, genome-wide linkage, candidate gene association, GWAS and targeted sequencing. Converging and diverging results from these empirical approaches have elucidated a preliminary genetic architecture of this intractable psychiatric disorder and yielded new hypotheses on ND etiology. The insights we obtained by putting together results from diverse approaches can be applied to other complex diseases/traits. In sum, developing a genetic susceptibility map and keeping it updated are effective ways to keep track of what we know about a disease/trait and what the next steps may be with new approaches.
Collapse
|
45
|
Li X, D'Souza MS, Niño AM, Doherty J, Cross A, Markou A. Attenuation of nicotine-taking and nicotine-seeking behavior by the mGlu2 receptor positive allosteric modulators AZD8418 and AZD8529 in rats. Psychopharmacology (Berl) 2016; 233:1801-14. [PMID: 26873083 DOI: 10.1007/s00213-016-4220-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/18/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Numerous medication development strategies seek to decrease nicotine consumption and prevent relapse to tobacco smoking by blocking glutamate transmission. Decreasing glutamate release by activating presynaptic inhibitory metabotropic glutamate (mGlu)2/3 receptors inhibits the reinforcing effects of nicotine and blocks cue-induced reinstatement of nicotine-seeking behavior in rats. However, the relative contribution of mGlu2 receptors in nicotine dependence is still unknown. OBJECTIVES The present study evaluated the role of mGlu2 receptors in nicotine-taking and nicotine-seeking behavior using the novel, relatively selective mGlu2 positive allosteric modulators (PAMs) AZD8418 and AZD8529. RESULTS Acute treatment with AZD8418 (0.37, 1.12, 3.73, 7.46, and 14.92 mg/kg) and AZD8529 (1.75, 5.83, 17.5, and 58.3 mg/kg) deceased nicotine self-administration and had no effect on food-maintained responding. Chronic treatment with AZD8418 attenuated nicotine self-administration, but tolerance to this effect developed quickly. The inhibition of nicotine self-administration by chronic AZD8529 administration persisted throughout the 14 days of treatment. Chronic treatment with either PAMs inhibited food self-administration. AZD8418 (acute) and AZD8529 (acute and subchronic) blocked cue-induced reinstatement of nicotine- and food-seeking behavior. CONCLUSIONS These findings indicate an important role for mGlu2 receptors in the reinforcing properties of self-administered nicotine and the motivational impact of cues that were previously associated with nicotine administration (i.e., cue-induced reinstatement of nicotine-seeking behavior). Thus, mGlu2 PAMs may be useful medications to assist people to quit tobacco smoking and prevent relapse.
Collapse
Affiliation(s)
- Xia Li
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Manoranjan S D'Souza
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Ana M Niño
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - James Doherty
- Present address: Sage Therapeutics, Cambridge, MA, 02142, USA
| | - Alan Cross
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, 02139, USA
| | - Athina Markou
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA.
| |
Collapse
|
46
|
He L, Pitkäniemi J, Heikkilä K, Chou YL, Madden PAF, Korhonen T, Sarin AP, Ripatti S, Kaprio J, Loukola A. Genome-wide time-to-event analysis on smoking progression stages in a family-based study. Brain Behav 2016; 6:e00462. [PMID: 27134767 PMCID: PMC4842934 DOI: 10.1002/brb3.462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/19/2016] [Accepted: 02/28/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Various pivotal stages in smoking behavior can be identified, including initiation, conversion from experimenting to established use, development of tolerance, and cessation. Previous studies have shown high heritability for age of smoking initiation and cessation; however, time-to-event genome-wide association studies aiming to identify underpinning genes that accelerate or delay these transitions are missing to date. METHODS We investigated which single nucleotide polymorphisms (SNPs) across the whole genome contribute to the hazard ratio of transition between different stages of smoking behavior by performing time-to-event analyses within a large Finnish twin family cohort (N = 1962), and further conducted mediation analyses of plausible intermediate traits for significant SNPs. RESULTS Genome-wide significant signals were detected for three of the four transitions: (1) for smoking cessation on 10p14 (P = 4.47e-08 for rs72779075 flanked by RP11-575N15 and GATA3), (2) for tolerance on 11p13 (P = 1.29e-08 for rs11031684 in RP1-65P5.1), mediated by smoking quantity, and on 9q34.12 (P = 3.81e-08 for rs2304808 in FUBP3), independent of smoking quantity, and (3) for smoking initiation on 19q13.33 (P = 3.37e-08 for rs73050610 flanked by TRPM4 and SLC6A16) in analysis adjusted for first time sensations. Although our top SNPs did not replicate, another SNP in the TRPM4-SLC6A16 gene region showed statistically significant association after region-based multiple testing correction in an independent Australian twin family sample. CONCLUSION Our results suggest that the functional effect of the TRPM4-SLC6A16 gene region deserves further investigation, and that complex neurotransmitter networks including dopamine and glutamate may play a critical role in smoking initiation. Moreover, comparison of these results implies that genetic contributions to the complex smoking behavioral phenotypes vary among the transitions.
Collapse
Affiliation(s)
- Liang He
- Department of Public Health University of Helsinki Helsinki Finland
| | - Janne Pitkäniemi
- Department of Public Health University of Helsinki Helsinki Finland; Finnish Cancer Registry Institute for Statistical and Epidemiological Cancer Research Helsinki Finland
| | - Kauko Heikkilä
- Department of Public Health University of Helsinki Helsinki Finland; Institute for Molecular Medicine Finland (FIMM) University of Helsinki Helsinki Finland
| | - Yi-Ling Chou
- Washington University School of Medicine Department of Psychiatry St. Louis Missouri
| | - Pamela A F Madden
- Washington University School of Medicine Department of Psychiatry St. Louis Missouri
| | - Tellervo Korhonen
- Department of Public Health University of Helsinki Helsinki Finland; National Institute for Health and Welfare Helsinki Finland; Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Helsinki Finland; National Institute for Health and Welfare Helsinki Finland
| | - Samuli Ripatti
- Department of Public Health University of Helsinki Helsinki Finland; Institute for Molecular Medicine Finland (FIMM) University of Helsinki Helsinki Finland; Wellcome Trust Sanger Institute Hinxton Cambridge UK
| | - Jaakko Kaprio
- Department of Public Health University of Helsinki Helsinki Finland; Institute for Molecular Medicine Finland (FIMM) University of Helsinki Helsinki Finland; National Institute for Health and Welfare Helsinki Finland
| | - Anu Loukola
- Department of Public Health University of Helsinki Helsinki Finland; Institute for Molecular Medicine Finland (FIMM) University of Helsinki Helsinki Finland
| |
Collapse
|
47
|
Li X, Markou A. Metabotropic Glutamate Receptor 7 (mGluR7) as a Target for the Treatment of Psychostimulant Dependence. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2016; 14:738-44. [PMID: 26022263 DOI: 10.2174/1871527314666150529145332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022]
Abstract
Although few medications have been approved by the U.S. Food and Drug Administration (FDA) to assist people to quit tobacco smoking, there are no FDA-approved medications to treat dependence on other psychostimulant drugs, such as cocaine. The motivation to maintain psychostimulant drug seeking and self-administration involves alterations in glutamatergic neurotransmission. Thus, medications that modulate glutamate transmission may be effective treatments for psychostimulant dependence. One presynaptic inhibitory glutamate receptor that critically regulates glutamate transmission is the metabotropic glutamate 7 receptor (mGluR7). This review summarizes nonhuman experimental animal data that indicate a critical role for mGluR7 in drug-taking and drug-seeking behaviors for the psychostimulants cocaine and nicotine. AMN082, the only commercially available allosteric receptor agonist, has been used to investigate the role of mGluR7 in psychostimulant dependence. Systemic administration or microinjection of AMN082 into brain sites within the mesocorticolimbic system decreased self-administration and reinstatement of both cocaine and nicotine seeking. In vivo microdialysis results indicated that a nucleus accumbens-ventral pallidum γ-aminobutyric acid-ergic mechanism may underlie AMN082-induced antagonism of the reinforcing effects of cocaine, whereas a glutamate mGlu2/3 receptor mechanism underlies the AMN082-induced blockade of cocaine seeking. These findings indicate an important role for mGluR7 in mesolimbic areas in modulating the reinforcing effects of psychostimulant drugs, such as nicotine and cocaine, and the conditioned behaviors associated with drugs of abuse. Thus, selective mGluR7 agonists or positive allosteric modulators may have the potential to treat psychostimulant dependence.
Collapse
Affiliation(s)
| | - Athina Markou
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0603, USA.
| |
Collapse
|
48
|
Pistillo F, Fasoli F, Moretti M, McClure-Begley T, Zoli M, Marks MJ, Gotti C. Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacol Res 2016; 103:167-76. [DOI: 10.1016/j.phrs.2015.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
49
|
Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system. Psychopharmacology (Berl) 2015; 232:4303-16. [PMID: 26337613 DOI: 10.1007/s00213-015-4058-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
RATIONALE Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. OBJECTIVE The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. METHODS Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). RESULTS Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. CONCLUSIONS These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.
Collapse
|
50
|
Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications. PROGRESS IN BRAIN RESEARCH 2015; 223:191-214. [PMID: 26806777 DOI: 10.1016/bs.pbr.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Morbidity and mortality associated with tobacco smoking constitutes a significant burden on healthcare budgets all over the world. Therefore, promoting smoking cessation is an important goal of health professionals and policy makers throughout the world. Nicotine is a major psychoactive component in tobacco that is largely responsible for the widespread addiction to tobacco. A majority of the currently available FDA-approved smoking cessation medications act via neuronal nicotinic receptors. These medications are effective in approximately half of all the smokers, who want to quit and relapse among abstinent smokers continues to be high. In addition to relapse among abstinent smokers, unpleasant effects associated with nicotine withdrawal are a major motivational factor in continued tobacco smoking. Over the last two decades, animal studies have helped in identifying several neural substrates that are involved in nicotine-dependent behaviors including those associated with nicotine withdrawal and relapse to tobacco smoking. In this review, first the role of specific brain regions/circuits that are involved in nicotine dependence will be discussed. Next, the review will describe the role of specific nicotinic receptor subunits in nicotine dependence. Finally, the review will discuss the role of classical neurotransmitters (dopamine, serotonin, noradrenaline, glutamate, and γ-aminobutyric acid) as well as endogenous opioid and endocannabinoid signaling in nicotine dependence. The nicotinic and nonnicotinic neural substrates involved in nicotine-dependent behaviors can serve as possible targets for future smoking cessation medications.
Collapse
|