1
|
Okunomiya T, Watanabe D, Banno H, Kondo T, Imamura K, Takahashi R, Inoue H. Striosome Circuitry Stimulation Inhibits Striatal Dopamine Release and Locomotion. J Neurosci 2025; 45:e0457242024. [PMID: 39622644 PMCID: PMC11756628 DOI: 10.1523/jneurosci.0457-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.
Collapse
Affiliation(s)
- Taro Okunomiya
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Haruhiko Banno
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Takayuki Kondo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- KURA, Kyoto University, Research Administration Building, Kyoto 606-8501, Japan
| | - Haruhisa Inoue
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto 619-0237, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Beane CR, Lewis DG, Bruns Vi N, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. Neuropharmacology 2024; 255:110019. [PMID: 38810926 DOI: 10.1016/j.neuropharm.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.
Collapse
Affiliation(s)
- Cambria R Beane
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Delainey G Lewis
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Nicolaus Bruns Vi
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Kat L Pikus
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Mary H Durfee
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Roman A Zegarelli
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Thomas W Perry
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Oscar Sandoval
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA.
| |
Collapse
|
4
|
Beane CR, Lewis DG, Bruns NK, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566881. [PMID: 38014065 PMCID: PMC10680803 DOI: 10.1101/2023.11.13.566881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Heavy alcohol use and binge drinking are important contributors to alcohol use disorder (AUD). The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol and nicotine consumption. In Experiment 1, binge-like and quinine-resistant drinking was tested using 15% ethanol (EtOH) in a two-bottle, limited-access Drinking in the Dark paradigm. Experiment 2 involved a six-week intermittent access paradigm in which mice received 20% EtOH, nicotine, and then a combination of the two drugs. Experiment 3 assessed locomotor activity, sucrose preference, and quinine sensitivity. Deleting MORs in cholinergic cells did not alter consumption of EtOH in Experiment 1 or 2. In Experiment 1, the MOR deletion resulted in greater consumption of quinine-adulterated EtOH in male Cre+ mice (vs. Cre-). In Experiment 2, Cre+ mice demonstrated a significantly lower preference for nicotine but did not differ from Cre- mice in nicotine or nicotine + EtOH consumption. Overall fluid consumption was also heightened in the Cre+ mice. In Experiment 3, Cre+ females were found to have greater locomotor activity and preference for sucrose vs. Cre- mice. These data suggest that cholinergic MORs are not required for EtOH, drinking behaviors but may contribute to aversion resistant EtOH drinking in a sex-dependent manner.
Collapse
|
5
|
McGovern DJ, Polter AM, Prévost ED, Ly A, McNulty CJ, Rubinstein B, Root DH. Ventral tegmental area glutamate neurons establish a mu-opioid receptor gated circuit to mesolimbic dopamine neurons and regulate opioid-seeking behavior. Neuropsychopharmacology 2023; 48:1889-1900. [PMID: 37407648 PMCID: PMC10584944 DOI: 10.1038/s41386-023-01637-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
A two-neuron model of ventral tegmental area (VTA) opioid function classically involves VTA GABA neuron regulation of VTA dopamine neurons via a mu-opioid receptor dependent inhibitory circuit. However, this model predates the discovery of a third major type of neuron in the VTA: glutamatergic neurons. We found that about one-quarter of VTA neurons expressing the mu-opioid receptor are glutamate neurons without molecular markers of GABA co-release. Glutamate-Mu opioid receptor neurons are largely distributed in the anterior VTA. The majority of remaining VTA mu-opioid receptor neurons are GABAergic neurons that are mostly within the posterior VTA and do not express molecular markers of glutamate co-release. Optogenetic stimulation of VTA glutamate neurons resulted in excitatory currents recorded from VTA dopamine neurons that were reduced by presynaptic activation of the mu-opioid receptor ex vivo, establishing a local mu-opioid receptor dependent excitatory circuit from VTA glutamate neurons to VTA dopamine neurons. This VTA glutamate to VTA dopamine pathway regulated dopamine release to the nucleus accumbens through mu-opioid receptor activity in vivo. Behaviorally, VTA glutamate calcium-related neuronal activity increased following oral oxycodone consumption during self-administration and response-contingent oxycodone-associated cues during abstinent reinstatement of drug-seeking behavior. Further, chemogenetic inhibition of VTA glutamate neurons reduced abstinent oral oxycodone-seeking behavior in male but not female mice. These results establish 1) a three-neuron model of VTA opioid function involving a mu-opioid receptor gated VTA glutamate neuron pathway to VTA dopamine neurons that controls dopamine release within the nucleus accumbens, and 2) that VTA glutamate neurons participate in opioid-seeking behavior.
Collapse
Affiliation(s)
- Dillon J McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Abigail M Polter
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, 20052, USA
| | - Emily D Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Connor J McNulty
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - Bodhi Rubinstein
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO, 80301, USA.
| |
Collapse
|
6
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Monroe SC, Radke AK. Opioid withdrawal: role in addiction and neural mechanisms. Psychopharmacology (Berl) 2023; 240:1417-1433. [PMID: 37162529 PMCID: PMC11166123 DOI: 10.1007/s00213-023-06370-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.
Collapse
Affiliation(s)
- Sean C Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, USA.
| |
Collapse
|
8
|
Vollmer KM, Green LM, Grant RI, Winston KT, Doncheck EM, Bowen CW, Paniccia JE, Clarke RE, Tiller A, Siegler PN, Bordieanu B, Siemsen BM, Denton AR, Westphal AM, Jhou TC, Rinker JA, McGinty JF, Scofield MD, Otis JM. An opioid-gated thalamoaccumbal circuit for the suppression of reward seeking in mice. Nat Commun 2022; 13:6865. [PMID: 36369508 PMCID: PMC9652456 DOI: 10.1038/s41467-022-34517-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Suppression of dangerous or inappropriate reward-motivated behaviors is critical for survival, whereas therapeutic or recreational opioid use can unleash detrimental behavioral actions and addiction. Nevertheless, the neuronal systems that suppress maladaptive motivated behaviors remain unclear, and whether opioids disengage those systems is unknown. In a mouse model using two-photon calcium imaging in vivo, we identify paraventricular thalamostriatal neuronal ensembles that are inhibited upon sucrose self-administration and seeking, yet these neurons are tonically active when behavior is suppressed by a fear-provoking predator odor, a pharmacological stressor, or inhibitory learning. Electrophysiological, optogenetic, and chemogenetic experiments reveal that thalamostriatal neurons innervate accumbal parvalbumin interneurons through synapses enriched with calcium permeable AMPA receptors, and activity within this circuit is necessary and sufficient for the suppression of sucrose seeking regardless of the behavioral suppressor administered. Furthermore, systemic or intra-accumbal opioid injections rapidly dysregulate thalamostriatal ensemble dynamics, weaken thalamostriatal synaptic innervation of downstream neurons, and unleash reward-seeking behaviors in a manner that is reversed by genetic deletion of thalamic µ-opioid receptors. Overall, our findings reveal a thalamostriatal to parvalbumin interneuron circuit that is both required for the suppression of reward seeking and rapidly disengaged by opioids.
Collapse
Affiliation(s)
- Kelsey M Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Lisa M Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Roger I Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kion T Winston
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Christopher W Bowen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jacqueline E Paniccia
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Rachel E Clarke
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Annika Tiller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Preston N Siegler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Benjamin M Siemsen
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Adam R Denton
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Annaka M Westphal
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Michael D Scofield
- Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James M Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
9
|
El Hayek SA, Shatila MA, Adnan JA, Geagea LE, Kobeissy F, Talih FR. Is there a therapeutic potential in combining bupropion and naltrexone in schizophrenia? Expert Rev Neurother 2022; 22:737-749. [PMID: 36093756 DOI: 10.1080/14737175.2022.2124369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A sustained-release tablet composed of a combination of the dopamine and norepinephrine reuptake inhibitor bupropion (BUP) and the µ-opioid receptor antagonist naltrexone (NAT) is marketed under the brand name Contrave by Orexigen Therapeutics for appetite control. Minimal literature is available regarding the use of combination bupropion and naltrexone (BUPNAT) in individuals with schizophrenia. AREAS COVERED In this review, we propose a theoretical model where BUPNAT may have a therapeutic effect in the treatment of schizophrenia. We explore the pathways targeted by the constituent drugs BUP and NAT and summarize the literature on their efficacy and possible adverse effects. We then look at the potential use of BUPNAT in schizophrenia. EXPERT OPINION Research has hinted that BUP's dopaminergic properties affect the same striatal pathways involved in schizophrenia. NAT, via opioid receptor antagonism, indirectly increases striatal dopamine release by disinhibiting nicotinic acetylcholine receptors. As such, we hypothesize that BUPNAT can have a therapeutic effect in schizophrenia, particularly on negative symptoms. We also suggest that it may ameliorate comorbidities frequently seen in this group of patients, including obesity, smoking, and substance use. Further research and clinical data are needed to elucidate the potential clinical benefits of BUPNAT in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Samer A. El Hayek
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Malek A. Shatila
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jana A. Adnan
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Luna E. Geagea
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Farid R. Talih
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Xing H, Yokoi F, Walker AL, Torres-Medina R, Liu Y, Li Y. Electrophysiological characterization of the striatal cholinergic interneurons in Dyt1 ΔGAG knock-in mice. DYSTONIA 2022; 1:10557. [PMID: 36329866 PMCID: PMC9629210 DOI: 10.3389/dyst.2022.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DYT1 dystonia is an inherited early-onset movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, and abnormal postures. Most DYT1 patients have a heterozygous trinucleotide GAG deletion mutation (ΔGAG) in DYT1/TOR1A, coding for torsinA. Dyt1 heterozygous ΔGAG knock-in (KI) mice show motor deficits and reduced striatal dopamine receptor 2 (D2R). Striatal cholinergic interneurons (ChIs) are essential in regulating striatal motor circuits. Multiple dystonia rodent models, including KI mice, show altered ChI firing and modulation. However, due to the errors in assigning KI mice, it is essential to replicate these findings in genetically confirmed KI mice. Here, we found irregular and decreased spontaneous firing frequency in the acute brain slices from Dyt1 KI mice. Quinpirole, a D2R agonist, showed less inhibitory effect on the spontaneous ChI firing in Dyt1 KI mice, suggesting decreased D2R function on the striatal ChIs. On the other hand, a muscarinic receptor agonist, muscarine, inhibited the ChI firing in both wild-type (WT) and Dyt1 KI mice. Trihexyphenidyl, a muscarinic acetylcholine receptor M1 antagonist, had no significant effect on the firing. Moreover, the resting membrane property and functions of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, μ-opioid receptors, and large-conductance calcium-activated potassium (BK) channels were unaffected in Dyt1 KI mice. The results suggest that the irregular and low-frequency firing and decreased D2R function are the main alterations of striatal ChIs in Dyt1 KI mice. These results appear consistent with the reduced dopamine release and high striatal acetylcholine tone in the previous reports.
Collapse
Affiliation(s)
- Hong Xing
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Ariel Luz Walker
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Rosemarie Torres-Medina
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuning Liu
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute of Neurological Diseases and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, USA
| |
Collapse
|
11
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Arttamangkul S, Platt EJ, Carroll J, Farrens D. Functional independence of endogenous µ- and δ-opioid receptors co-expressed in cholinergic interneurons. eLife 2021; 10:69740. [PMID: 34477106 PMCID: PMC8718112 DOI: 10.7554/elife.69740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Class A G-protein-coupled receptors (GPCRs) normally function as monomers, although evidence from heterologous expression systems suggests that they may sometimes form homodimers and/or heterodimers. This study aims to evaluate possible functional interplay of endogenous µ- and δ-opioid receptors (MORs and DORs) in mouse neurons. Detecting GPCR dimers in native tissues, however, has been challenging. Previously, MORs and DORs co-expressed in transfected cells have been reported to form heterodimers, and their possible co-localization in neurons has been studied in knock-in mice expressing genetically engineered receptors fused to fluorescent proteins. Here, we find that single cholinergic neurons in the mouse striatum endogenously express both MORs and DORs. The receptors on neurons from live brain slices were fluorescently labeled with a ligand-directed labeling reagent, NAI-A594. The selective activation of MORs and DORs, with DAMGO (µ-agonist) and deltorphin (δ-agonist) inhibited spontaneous firing in all cells examined. In the continued presence of agonist, the firing rate returned to baseline as the result of receptor desensitization with the application of deltorphin but was less observed with the application of DAMGO. In addition, agonist-induced internalization of DORs but not MORs was detected. When MORs and DORs were activated simultaneously with [Met5]-enkephalin, desensitization of MORs was facilitated but internalization was not increased. Together, these results indicate that while MORs and DORs are expressed in single striatal cholinergic interneurons, the two receptors function independently.
Collapse
Affiliation(s)
| | - Emily J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| | - James Carroll
- Surgery, Oregon Health and Science University, Portland, United States
| | - David Farrens
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, United States
| |
Collapse
|
13
|
Wiedemann A, Dündar V, Heese M, Leufgens T, Wirz S, Brauckmann R, Heppner HJ. [Adverse drug reaction affecting the urinary tract - the Witten urinary tract adverse reaction score]. Aktuelle Urol 2021; 52:481-489. [PMID: 34058770 DOI: 10.1055/a-1352-9370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The urinary tract is the site of many adverse drug reactions, including the formation of residual urine, urinary retention, pollakisuria, polyuria, nycturia, detrusor stimulation, detrusor inhibition, haematuria, dysuria and other symptoms. Nevertheless, there is no general overview or evaluation of the substances that can trigger these adverse drug reactions. The available lists of "potential inadequate medication" either focus on a pharmacological group of adverse reactions ("anticholinergic burden score"), a group of drugs for a specific indication (LUTS-Forta) or on a selected group of patients (PRISKUS List, Beers List).The following interdisciplinary project has been processed by the group for urogeriatrics in the University of Witten/Herdecke and is intended to fill this gap. We have identified substances which can in principle trigger adverse reactions in the urinary tract - according to a variety of databases. We also categorise the available literature (case reports, case series, RCT, meta-analysis) and present a structured analysis of the risk by 33 experts. This results in a list of 235 substances that can lead to various different adverse reactions of the urinary tract. This list includes a "theoretical" score from the reports in the databases or the corresponding literature, a "practical" score based on an expert evaluation of clinical reality and a cumulative score, classified in accordance with the Rote Liste".It is now possible to classify the extent to which newly prescribed drugs may pose a risk of adverse reactions in different patients. Conversely, this may also help to clarify whether a functional disorder of the urinary tract is fully or partially linked to treatment with a specific drug. We plan to develop an app to assess adverse drug reactions in the urinary tract.
Collapse
Affiliation(s)
- Andreas Wiedemann
- Urologische Abteilung, Evangelisches Krankenhaus Witten
- Lehrstuhl für Geriatrie, Universität Witten/Herdecke
| | - Vedat Dündar
- Lehrstuhl für Geriatrie, Universität Witten/Herdecke
- Praxis für Allgemeinmedizin, Dortmund
| | - Melanie Heese
- Urologische Abteilung, Evangelisches Krankenhaus Witten
- Lehrstuhl für Geriatrie, Universität Witten/Herdecke
| | | | | | | | - Hans-Jürgen Heppner
- Lehrstuhl für Geriatrie, Universität Witten/Herdecke
- Geriatrische Abteilung und Tagesklinik, Helios-Klinikum
Schwelm
- Institut für Biomedizin des Alterns der FAU Erlangen-
Nürnberg
| |
Collapse
|
14
|
μ-Opioid Receptors on Distinct Neuronal Populations Mediate Different Aspects of Opioid Reward-Related Behaviors. eNeuro 2020; 7:ENEURO.0146-20.2020. [PMID: 32859725 PMCID: PMC7508564 DOI: 10.1523/eneuro.0146-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
μ-Opioid receptors (MORs) are densely expressed in different brain regions known to mediate reward. One such region is the striatum where MORs are densely expressed, yet the role of these MOR populations in modulating reward is relatively unknown. We have begun to address this question by using a series of genetically engineered mice based on the Cre recombinase/loxP system to selectively delete MORs from specific neurons enriched in the striatum: dopamine 1 (D1) receptors, D2 receptors, adenosine 2a (A2a) receptors, and choline acetyltransferase (ChAT). We first determined the effects of each deletion on opioid-induced locomotion, a striatal and dopamine-dependent behavior. We show that MOR deletion from D1 neurons reduced opioid (morphine and oxycodone)-induced hyperlocomotion, whereas deleting MORs from A2a neurons resulted in enhanced opioid-induced locomotion, and deleting MORs from D2 or ChAT neurons had no effect. We also present the effect of each deletion on opioid intravenous self-administration. We first assessed the acquisition of this behavior using remifentanil as the reinforcing opioid and found no effect of genotype. Mice were then transitioned to oxycodone as the reinforcer and maintained here for 9 d. Again, no genotype effect was found. However, when mice underwent 3 d of extinction training, during which the drug was not delivered, but all cues remained as during the maintenance phase, drug-seeking behavior was enhanced when MORs were deleted from A2a or ChAT neurons. These findings show that these selective MOR populations play specific roles in reward-associated behaviors.
Collapse
|
15
|
Synapse-specific expression of mu opioid receptor long-term depression in the dorsomedial striatum. Sci Rep 2020; 10:7234. [PMID: 32350330 PMCID: PMC7190836 DOI: 10.1038/s41598-020-64203-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/13/2020] [Indexed: 11/08/2022] Open
Abstract
The dorsal striatum is a brain region involved in action control, with dorsomedial striatum (DMS) mediating goal-directed actions and dorsolateral striatum (DLS) mediating habitual actions. Presynaptic long-term synaptic depression (LTD) plasticity at glutamatergic inputs to dorsal striatum mediates many dorsal striatum-dependent behaviors and disruption of LTD influences action control. Our previous work identified mu opioid receptors (MORs) as mediators of synapse-specific forms of synaptic depression at a number of different DLS synapses. We demonstrated that anterior insular cortex inputs are the sole inputs that express alcohol-sensitive MOR-mediated LTD (mOP-LTD) in DLS. Here, we explore mOP-LTD in DMS using mouse brain slice electrophysiology. We found that contrary to DLS, DMS mOP-LTD is induced by activation of MORs at inputs from both anterior cingulate and medial prefrontal cortices as well as at basolateral amygdala inputs and striatal cholinergic interneuron synapses on to DMS medium spiny neurons, suggesting that MOR synaptic plasticity in DMS is less synapse-specific than in DLS. Furthermore, only mOP-LTD at cortical inputs was sensitive to alcohol's deleterious effects. These results suggest that alcohol-induced neuroadaptations are differentially expressed in a synapse-specific manner and could be playing a role in alterations of goal-directed and habitual behaviors.
Collapse
|
16
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
17
|
Nuclear Receptor Nr4a1 Regulates Striatal Striosome Development and Dopamine D 1 Receptor Signaling. eNeuro 2019; 6:ENEURO.0305-19.2019. [PMID: 31541002 PMCID: PMC6787343 DOI: 10.1523/eneuro.0305-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
The GABAergic medium-size spiny neuron (MSN), the striatal output neuron, may be classified into striosome, also known as patch, and matrix, based on neurochemical differences between the two compartments. At this time, little is known regarding the regulation of the development of the two compartments. Nr4a1, primarily described as a nuclear receptor/immediate early gene involved in the homeostasis of the dopaminergic system, is a striosomal marker. Using Nr4a1-overexpressing and Nr4a1-null mice, we sought to determine whether Nr4a1 is necessary and/or sufficient for striosome development. We report that in vivo and in vitro, Nr4a1 and Oprm1 mRNA levels are correlated. In the absence of Nr4a, there is a decrease in the percentage of striatal surface area occupied by striosomes. Alterations in Nr4a1 expression leads to dysregulation of multiple mRNAs of members of the dopamine receptor D1 signal transduction system. Constitutive overexpression of Nr4a1 decreases both the induction of phosphorylation of ERK after a single cocaine exposure and locomotor sensitization following chronic cocaine exposure. Nr4a1 overexpression increases MSN excitability but reduces MSN long-term potentiation. In the resting state, type 5 adenylyl cyclase (AC5) activity is normal, but the ability of AC5 to be activated by Drd1 G-protein-coupled receptor inputs is decreased. Our results support a role for Nr4a1 in determination of striatal patch/matrix structure and in regulation of dopaminoceptive neuronal function.
Collapse
|
18
|
Lyu S, DeAndrade MP, Mueller S, Oksche A, Walters AS, Li Y. Hyperactivity, dopaminergic abnormalities, iron deficiency and anemia in an in vivo opioid receptors knockout mouse: Implications for the restless legs syndrome. Behav Brain Res 2019; 374:112123. [PMID: 31376441 DOI: 10.1016/j.bbr.2019.112123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Previous studies have uncovered a potential role of the opioid system in iron hemostasis and dopamine metabolism. Abnormalities in both of these systems have been noted in human RLS. Autopsy studies of human RLS have shown an endogenous opioid deficiency in the thalamus. Opioids, particularly prolonged-release oxycodone/naloxone, have been approved in Europe to be a second-line therapy for severe restless legs syndrome (RLS). To study the role of opioid receptors in the pathogenesis of RLS, we used a triple knockout (KO) mouse strain that lack mu, delta, and kappa opioid receptors and explored the behavioral and biochemical parameters relevant to RLS. The triple KO mice showed hyperactivity and a trend of increased probability of waking during the rest period (day) akin to that in human RLS (night). Surprisingly, triple KO mice also exhibit decreased serum iron concentration, evidence of anemia, a significant dysfunction in dopamine metabolism akin to that noted in human RLS, as well as an increased latency in response to thermal stimuli. To our knowledge, this is the first study to demonstrate that the endogenous opioid system may play a role in iron metabolism and subsequently in the pathogenesis of anemia. It is also the first study showing that opioid receptors are involved in the production of motor restlessness with a circadian predominance. Our findings support the role of endogenous opioids in the pathogenesis of RLS, and the triple KO mice can be used to understand the relationship between iron deficiency, anemia, dopaminergic dysfunction, and RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Mueller
- Mundipharma Research GmbH & Co. KG, Höhenstraße 10, Limburg, Germany
| | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK; Rudolf-Buchheim-Institut für Pharmakologie, University of Giessen, Giessen, Germany
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Abudukeyoumu N, Hernandez-Flores T, Garcia-Munoz M, Arbuthnott GW. Cholinergic modulation of striatal microcircuits. Eur J Neurosci 2018; 49:604-622. [PMID: 29797362 PMCID: PMC6587740 DOI: 10.1111/ejn.13949] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to bridge the gap between earlier literature on striatal cholinergic interneurons and mechanisms of microcircuit interaction demonstrated with the use of newly available tools. It is well known that the main source of the high level of acetylcholine in the striatum, compared to other brain regions, is the cholinergic interneurons. These interneurons provide an extensive local innervation that suggests they may be a key modulator of striatal microcircuits. Supporting this idea requires the consideration of functional properties of these interneurons, their influence on medium spiny neurons, other interneurons, and interactions with other synaptic regulators. Here, we underline the effects of intrastriatal and extrastriatal afferents onto cholinergic interneurons and discuss the activation of pre‐ and postsynaptic muscarinic and nicotinic receptors that participate in the modulation of intrastriatal neuronal interactions. We further address recent findings about corelease of other transmitters in cholinergic interneurons and actions of these interneurons in striosome and matrix compartments. In addition, we summarize recent evidence on acetylcholine‐mediated striatal synaptic plasticity and propose roles for cholinergic interneurons in normal striatal physiology. A short examination of their role in neurological disorders such as Parkinson's, Huntington's, and Tourette's pathologies and dystonia is also included.
Collapse
Affiliation(s)
| | | | | | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
20
|
Shumilov K, Real MÁ, Valderrama-Carvajal A, Rivera A. Selective ablation of striatal striosomes produces the deregulation of dopamine nigrostriatal pathway. PLoS One 2018; 13:e0203135. [PMID: 30157254 PMCID: PMC6114927 DOI: 10.1371/journal.pone.0203135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/15/2018] [Indexed: 11/26/2022] Open
Abstract
The striatum is a complex structure in which the organization in two compartments (striosomes and matrix) have been defined by their neurochemical profile and their input-output connections. The striosomes receive afferences from the limbic brain areas and send projections to the dopamine neurons of the substantia nigra pars compacta. Thereby, it has been suggested that the striosomes exert a limbic control over the motor function mediated by the surrounding matrix. However, the functionality of the striosomes are not completely understood. To elucidate the role of the striosomes on the regulation of the nigral dopamine neurons, we have induced specific ablation of this compartment by striatal injections of the neurotoxin dermorphin-saporin (DS) and dopamine neurotransmission markers have been analyzed by immunohistochemistry. The degeneration of the striosomes resulted in a nigrostriatal projections imbalance between the two striatal compartments, with an increase of the dopamine neurotransmission in the striosomes and a decrease in the matrix. The present results highlight the key function of the striosomes for the maintenance of the striatal dopamine tone and would contribute to the understanding of their involvement in some neurological disorders such as Huntington’s disease.
Collapse
Affiliation(s)
- Kirill Shumilov
- Department of Cell Biology, Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - M Ángeles Real
- Department of Cell Biology, Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | | | - Alicia Rivera
- Department of Cell Biology, Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| |
Collapse
|
21
|
Sgroi S, Tonini R. Opioidergic Modulation of Striatal Circuits, Implications in Parkinson's Disease and Levodopa Induced Dyskinesia. Front Neurol 2018; 9:524. [PMID: 30026724 PMCID: PMC6041411 DOI: 10.3389/fneur.2018.00524] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
The functional organization of the dorsal striatum is complex, due to the diversity of neural inputs that converge in this structure and its subdivision into direct and indirect output pathways, striosomes and matrix compartments. Among the neurotransmitters that regulate the activity of striatal projection neurons (SPNs), opioid neuropeptides (enkephalin and dynorphin) play a neuromodulatory role in synaptic transmission and plasticity and affect striatal-based behaviors in both normal brain function and pathological states, including Parkinson's disease (PD). We review recent findings on the cell-type-specific effects of opioidergic neurotransmission in the dorsal striatum, focusing on the maladaptive synaptic neuroadaptations that occur in PD and levodopa-induced dyskinesia. Understanding the plethora of molecular and synaptic mechanisms underpinning the opioid-mediated modulation of striatal circuits is critical for the development of pharmacological treatments that can alleviate motor dysfunctions and hyperkinetic responses to dopaminergic stimulant drugs.
Collapse
Affiliation(s)
- Stefania Sgroi
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
22
|
Muñoz B, Fritz BM, Yin F, Atwood BK. Alcohol exposure disrupts mu opioid receptor-mediated long-term depression at insular cortex inputs to dorsolateral striatum. Nat Commun 2018; 9:1318. [PMID: 29615610 PMCID: PMC5882774 DOI: 10.1038/s41467-018-03683-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/02/2018] [Indexed: 01/07/2023] Open
Abstract
Drugs of abuse, including alcohol, ablate the expression of specific forms of long-term synaptic depression (LTD) at glutamatergic synapses in dorsal striatum (DS), a brain region involved in goal-directed and habitual behaviors. This loss of LTD is associated with altered DS-dependent behavior. Given the role of the µ-opioid receptor (MOR) in behavioral responding for alcohol, we explored the impact of alcohol on various forms of MOR-mediated synaptic depression that we find are differentially expressed at specific DS synapses. Corticostriatal MOR-mediated LTD (mOP-LTD) in the dorsolateral striatum occurs exclusively at inputs from anterior insular cortex and is selectively disrupted by in vivo alcohol exposure. Alcohol has no effect on corticostriatal mOP-LTD in dorsomedial striatum, thalamostriatal MOR-mediated short-term depression, or mOP-LTD of cholinergic interneuron-driven glutamate release. Disrupted mOP-LTD at anterior insular cortex-dorsolateral striatum synapses may therefore be a key mechanism of alcohol-induced neuroadaptations involved in the development of alcohol use disorders.
Collapse
Affiliation(s)
- Braulio Muñoz
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brandon M Fritz
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fuqin Yin
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Elghaba R, Bracci E. Dichotomous Effects of Mu Opioid Receptor Activation on Striatal Low-Threshold Spike Interneurons. Front Cell Neurosci 2017; 11:385. [PMID: 29259544 PMCID: PMC5723306 DOI: 10.3389/fncel.2017.00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Striatal low-threshold spike interneurons (LTSIs) are tonically active neurons that express GABA and nitric oxide synthase and are involved in information processing as well as neurovascular coupling. While mu opioid receptors (MORs) and their ligand encephalin are prominent in the striatum, their action on LTSIs has not been investigated. We addressed this issue carrying out whole-cell recordings in transgenic mice in which the NPY-expressing neurons are marked with green fluorescent protein (GFP). The MOR agonist (D-Ala(2), N-MePhe(4), Gly-ol)-enkephalin (DAMGO) produced dual effects on subpopulations of LTSIs. DAMGO caused inhibitory effects, accompanied by decreases of spontaneous firing, in 62% of LTSIs, while depolarizing effects (accompanied by an increase in spontaneous firing) were observed in 23% of LTSIs tested. The dual effects of DAMGO persisted in the presence of tetrodotoxin (TTX), a sodium channel blocker or in the presence of the nicotinic acetylcholine receptor antagonist mecamylamine. However, in the presence of either the GABAA receptor antagonist picrotoxin or the muscarinic cholinergic receptor antagonist atropine, DAMGO only elicited inhibitory effects on LTSIs. Furthermore, we found that DAMGO decreased the amplitude and frequency of spontaneous GABAergic events. Unexpectedly, these effects of DAMGO on spontaneous GABAergic events disappeared after blocking of the muscarinic and nicotinic cholinergic blockers, showing that GABA inputs to LTSIs are not directly modulated by presynaptic MORs. These finding suggest that activation of MORs affect LTSIs both directly and indirectly, through modulation of GABAergic and cholinergic tones. The complex balance between direct and indirect effects determines the net effect of DAMGO on LTSIs.
Collapse
Affiliation(s)
- Rasha Elghaba
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Bracci
- Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Ponterio G, Tassone A, Sciamanna G, Vanni V, Meringolo M, Santoro M, Mercuri NB, Bonsi P, Pisani A. Enhanced mu opioid receptor-dependent opioidergic modulation of striatal cholinergic transmission in DYT1 dystonia. Mov Disord 2017; 33:310-320. [PMID: 29150865 DOI: 10.1002/mds.27212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mu opioid receptor activation modulates acetylcholine release in the dorsal striatum, an area deeply involved in motor function, habit formation, and reinforcement learning as well as in the pathophysiology of different movement disorders, such as dystonia. Although the role of opioids in drug reward and addiction is well established, their involvement in motor dysfunction remains largely unexplored. METHODS We used a multidisciplinary approach to investigate the responses to mu activation in 2 mouse models of DYT1 dystonia (Tor1a+/Δgag mice, Tor1a+/- torsinA null mice, and their respective wild-types). We performed electrophysiological recordings to characterize the pharmacological effects of receptor activation in cholinergic interneurons as well as the underlying ionic currents. In addition, an analysis of the receptor expression was performed both at the protein and mRNA level. RESULTS In mutant mice, selective mu receptor activation caused a stronger G-protein-dependent, dose-dependent inhibition of firing activity in cholinergic interneurons when compared with controls. In Tor1a+/- mice, our electrophysiological analysis showed an abnormal involvement of calcium-activated potassium channels. Moreover, in both models we found increased levels of mu receptor protein. In addition, both total mRNA and the mu opioid receptor splice variant 1S (MOR-1S) splice variant of the mu receptor gene transcript, specifically enriched in striatum, were selectively upregulated. CONCLUSION Mice with the DYT1 dystonia mutation exhibit an enhanced response to mu receptor activation, dependent on selective receptor gene upregulation. Our data suggest a novel role for striatal opioid signaling in motor control, and more important, identify mu opioid receptors as potential targets for pharmacological intervention in dystonia. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Maria Meringolo
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Paola Bonsi
- Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| | - Antonio Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Neurophysiology and Plasticity Lab, Rome, Italy
| |
Collapse
|
25
|
Sil’kis IG, Markevich VA. The influence of acetylcholine, dopamine, and GABA on the functioning of the corticostriatal neuronal network in Alzheimer’s and Parkinson’s diseases: A hypothetical mechanism. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712416040103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission. Sci Rep 2016; 6:37834. [PMID: 27886263 PMCID: PMC5122907 DOI: 10.1038/srep37834] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons.
Collapse
|
27
|
Zhao Z, Zhang K, Liu X, Yan H, Ma X, Zhang S, Zheng J, Wang L, Wei X. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons. Front Cell Neurosci 2016; 10:71. [PMID: 27047336 PMCID: PMC4801847 DOI: 10.3389/fncel.2016.00071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), decreased the firing frequency of ChIs by blocking the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Scopolamine (SCO), a nonselective antagonist of M receptors, abolished the inhibition. OXO-M exerted its function by activating the Gi/o cAMP signaling cascade. The single-cell reverse transcription polymerase chain reaction (scRT-PCR) revealed that all the five subtypes of M receptors and four subtypes of HCN channels were expressed on ChIs. Among them, M2 receptors and HCN2 channels were the most dominant ones and expressed in every single studied cholinergic interneuron (ChI).Our results suggest that ACh regulates not only the output of striatal projection neurons, but also the firing activity of ChIs themselves by activating presynaptic M receptors in the dorsal striatum. The activation of M2 receptors and blockage of HCN2 channels may play an important role in ACh inhibition on the excitability of ChIs. This finding adds a new G-protein coupled receptor mediated regulation on ChIs and provides a cellular mechanism for control of cholinergic activity and ACh release in the dorsal striatum.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Kang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoyun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Jianquan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| |
Collapse
|
28
|
Banghart MR, Neufeld SQ, Wong NC, Sabatini BL. Enkephalin Disinhibits Mu Opioid Receptor-Rich Striatal Patches via Delta Opioid Receptors. Neuron 2015; 88:1227-1239. [PMID: 26671460 DOI: 10.1016/j.neuron.2015.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Opioid neuropeptides and their receptors are evolutionarily conserved neuromodulatory systems that profoundly influence behavior. In dorsal striatum, which expresses the endogenous opioid enkephalin, patches (or striosomes) are limbic-associated subcompartments enriched in mu opioid receptors. The functional implications of opioid signaling in dorsal striatum and the circuit elements in patches regulated by enkephalin are unclear. Here, we examined how patch output is modulated by enkephalin and identified the underlying circuit mechanisms. We found that patches are relatively devoid of parvalbumin-expressing interneurons and exist as self-contained inhibitory microcircuits. Enkephalin suppresses inhibition onto striatal projection neurons selectively in patches, thereby disinhibiting their firing in response to cortical input. The majority of this neuromodulation is mediated by delta, not mu-opioid, receptors, acting specifically on intra-striatal collateral axons of striatopallidal neurons. These results suggest that enkephalin gates limbic information flow in dorsal striatum, acting via a patch-specific function for delta opioid receptors.
Collapse
Affiliation(s)
- Matthew Ryan Banghart
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Shay Quentin Neufeld
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Nicole Christine Wong
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA
| | - Bernardo Luis Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 220 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Kodirov SA, Wehrmeister M, Colom L. Nicotine-Mediated ADP to Spike Transition: Double Spiking in Septal Neurons. J Membr Biol 2015; 249:107-18. [PMID: 26463358 DOI: 10.1007/s00232-015-9853-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022]
Abstract
The majority of neurons in lateral septum (LS) are electrically silent at resting membrane potential. Nicotine transiently excites a subset of neurons and occasionally leads to long lasting bursting activity upon longer applications. We have observed simultaneous changes in frequencies and amplitudes of spontaneous action potentials (AP) in the presence of nicotine. During the prolonged exposure, nicotine increased numbers of spikes within a burst. One of the hallmarks of nicotine effects was the occurrences of double spikes (known also as bursting). Alignment of 51 spontaneous spikes, triggered upon continuous application of nicotine, revealed that the slope of after-depolarizing potential gradually increased (1.4 vs. 3 mV/ms) and neuron fired the second AP, termed as double spiking. A transition from a single AP to double spikes increased the amplitude of after-hyperpolarizing potential. The amplitude of the second (premature) AP was smaller compared to the first one, and this correlation persisted in regard to their duration (half-width). A similar bursting activity in the presence of nicotine, to our knowledge, has not been reported previously in the septal structure in general and in LS in particular.
Collapse
Affiliation(s)
- Sodikdjon A Kodirov
- Department of Biological Sciences, Center for Biomedical Studies, University of Texas at Brownsville, Brownsville, TX, 78520, USA.
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Michael Wehrmeister
- Johannes Gutenberg University, 55099, Mainz, Germany
- Heidelberg University, Heidelberg, Germany
| | - Luis Colom
- Department of Biological Sciences, Center for Biomedical Studies, University of Texas at Brownsville, Brownsville, TX, 78520, USA
| |
Collapse
|
30
|
Chronic Morphine Reduces Surface Expression of δ-Opioid Receptors in Subregions of Rostral Striatum. Neurochem Res 2015; 41:500-9. [DOI: 10.1007/s11064-015-1638-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
|
31
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
32
|
Qu CL, Huo FQ, Huang FS, Tang JS. Activation of mu-opioid receptors in the ventrolateral orbital cortex inhibits the GABAergic miniature inhibitory postsynaptic currents in rats. Neurosci Lett 2015; 592:64-9. [DOI: 10.1016/j.neulet.2015.02.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 01/09/2023]
|
33
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
34
|
Silkis IG. The reasons for the preferable use of A2A receptor antagonists for improvement of locomotor activity and learning. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6:22. [PMID: 25374536 PMCID: PMC4204445 DOI: 10.3389/fnsyn.2014.00022] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.
Collapse
Affiliation(s)
| | - Un Jung Kang
- Department of Neurology, Columbia University New York, NY, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago Chicago, IL, USA ; Department of Anesthesia and Critical Care, University of Chicago Chicago, IL, USA
| |
Collapse
|
36
|
Klenowski P, Morgan M, Bartlett SE. The role of δ-opioid receptors in learning and memory underlying the development of addiction. Br J Pharmacol 2014; 172:297-310. [PMID: 24641428 DOI: 10.1111/bph.12618] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Paul Klenowski
- Translational Research Institute, Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | |
Collapse
|
37
|
Sciamanna G, Ponterio G, Tassone A, Maltese M, Madeo G, Martella G, Poli S, Schirinzi T, Bonsi P, Pisani A. Negative allosteric modulation of mGlu5 receptor rescues striatal D2 dopamine receptor dysfunction in rodent models of DYT1 dystonia. Neuropharmacology 2014; 85:440-50. [PMID: 24951854 DOI: 10.1016/j.neuropharm.2014.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia.
Collapse
Affiliation(s)
- G Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Tassone
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Maltese
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Madeo
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Martella
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - S Poli
- ADDEX Therapeutics, Geneva, Switzerland
| | - T Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - P Bonsi
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
38
|
Martella G, Maltese M, Nisticò R, Schirinzi T, Madeo G, Sciamanna G, Ponterio G, Tassone A, Mandolesi G, Vanni V, Pignatelli M, Bonsi P, Pisani A. Regional specificity of synaptic plasticity deficits in a knock-in mouse model of DYT1 dystonia. Neurobiol Dis 2014; 65:124-32. [PMID: 24503369 DOI: 10.1016/j.nbd.2014.01.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 01/07/2023] Open
Abstract
DYT1 dystonia is a movement disorder caused by a deletion in the C-terminal of the protein torsinA. It is unclear how torsinA mutation might disrupt cellular processes encoding motor activity, and whether this impairment occurs in specific brain regions. Here, we report a selective impairment of corticostriatal synaptic plasticity in knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) as compared to controls (Tor1a(+/+) mice). In striatal spiny neurons from Tor1a(+/Δgag) mice, high-frequency stimulation failed to induce long-term depression (LTD), whereas long-term potentiation (LTP) exhibited increased amplitude. Of interest, blockade of D2 dopamine receptors (D2Rs) increased LTP in Tor1a(+/+) mice to a level comparable to that measured in Tor1a(+/Δgag) mice and normalized the levels of potentiation across mouse groups. A low-frequency stimulation (LFS) protocol was unable to depotentiate corticostriatal synapses in Tor1a(+/Δgag) mice. Muscarinic M1 acetylcholine receptor (mAChR) blockade rescued plasticity deficits. Additionally, we found an abnormal responsiveness of cholinergic interneurons to D2R activation, consisting in an excitatory response rather than the expected inhibition, further confirming an imbalance between dopaminergic and cholinergic signaling in the striatum. Conversely, synaptic activity and plasticity in the CA1 hippocampal region were unaltered in Tor1a(+/Δgag) mice. Importantly, the M1 mAChR-dependent enhancement of hippocampal LTP was unaffected in both genotypes. Similarly, both basic properties of dopaminergic nigral neurons and their responses to D2R activation were normal. These results provide evidence for a regional specificity of the electrophysiological abnormalities observed and demonstrate the reproducibility of such alterations in distinct models of DYT1 dystonia.
Collapse
Affiliation(s)
- G Martella
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Maltese
- Department of System Medicine, University of Rome "Tor Vergata", Italy
| | - R Nisticò
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - T Schirinzi
- Department of System Medicine, University of Rome "Tor Vergata", Italy
| | - G Madeo
- Department of System Medicine, University of Rome "Tor Vergata", Italy
| | - G Sciamanna
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Ponterio
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Tassone
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Mandolesi
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - V Vanni
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Pignatelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - P Bonsi
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Pisani
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
39
|
Neuropsychological Functions of μ- and δ-Opioid Systems. ISRN ADDICTION 2013; 2013:674534. [PMID: 25938117 PMCID: PMC4392981 DOI: 10.1155/2013/674534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/08/2013] [Indexed: 12/19/2022]
Abstract
Brain opioid innervation is involved in many pathophysiological processes related to drug addiction. The main idea of the present review is that μ-/δ-opioid innervation is an intrinsic component of the motor/approach behavior network, which is activated synergetically with dopaminergic mesocorticolimbic network. Contribution of opioid innervation to the motor/approach behavior processing includes generation of positive emotions and inhibition of pain and stress reactions in order that the individual would be able to reach the vital goal. We cite the neuroanatomical data which showed that motor subcortical nuclei contain the most abundant opioid innervation and its activation is an obligatory component of positive emotions. In the majority of life situations, motor/approach behavior network concomitantly activates pain/stress control opioid network. Intensive cognitive activity induces activation of opioid innervation as well, and both enhancing and impairing effects of opioid agonists on cognitive functioning were demonstrated. Overall, the functioning of endogenous opioid networks may be summarized as following: NO physical/cognitive activity = NO positive emotions plus NO pain/stress control. We suppose that contemporary findings concerning neuropsychological functions of endogenous opioid system explain many controversial issues in neuropsychiatric conditions predisposing to drug addiction and neurological mechanisms of opioid addiction.
Collapse
|