1
|
Orban Z, Gill MJ. Differential rearing alters Fos in the accumbens core and ventral palidum following reinstatement of cocaine seeking in male Sprague-Dawley rats. Pharmacol Biochem Behav 2024; 243:173837. [PMID: 39053857 DOI: 10.1016/j.pbb.2024.173837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Rearing rats in environmental enrichment produces a protective effect when exposed to stimulants, as enriched rats display attenuated cocaine seeking during reinstatement. However, less is known about what changes in the brain are responsible for this protective effect. The current study investigated differences in Fos protein expression following reinstatement of cocaine seeking in differentially reared rats. Rats were reared in either enriched (EC) or impoverished (IC) conditions for 30 days, after which rats self-administered cocaine in 2-h sessions. Following self-administration, rats underwent extinction and cue-induced or cocaine-primed reinstatement of cocaine seeking, brains were extracted, and Fos immunohistochemistry was performed. IC rats sought cocaine significantly more than EC rats during cue-induced reinstatement, and cocaine seeking was positively correlated with Fos expression in the nucleus accumbens core and ventral pallidum. IC rats displayed greater Fos expression than EC rats in the accumbens and ventral pallidum, suggesting a role of these areas in the enrichment-induced protective effect.
Collapse
Affiliation(s)
- Z Orban
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America
| | - M J Gill
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America.
| |
Collapse
|
2
|
Gironda SC, Centanni SW, Weiner JL. Early life psychosocial stress increases binge-like ethanol consumption and CSF1R inhibition prevents stress-induced alterations in microglia and brain macrophage population density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605403. [PMID: 39211115 PMCID: PMC11361020 DOI: 10.1101/2024.07.27.605403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Early life stress (ELS) has lasting consequences on microglia and brain macrophage function. During ELS, microglia and brain macrophages alter their engagement with synapses leading to changes in neuronal excitability. Further, ELS can induce innate immune memory formation in microglia and brain macrophages resulting in altered responsivity to future environmental stimuli. These alterations can result in lasting adaptations in circuit function and may mediate the relationship between ELS and the risk to develop alcohol use disorder (AUD). Whether microglia and brain macrophages truly mediate this relationship remains elusive. Here, we report: 1) an ELS model, psychosocial stress (PSS), increases binge-like ethanol consumption in early adulthood. 2) Repeated binge-like ethanol consumption increases microglia and brain macrophage population densities across the brain. 3) PSS may elicit innate immune memory formation in microglia and brain macrophages leading to altered population densities following repeated binge-like ethanol consumption. 4) Microglia and brain macrophage inhibition trended towards preventing PSS-evoked changes in binge-like ethanol consumption and normalized microglia and brain macrophage population densities. Therefore, our study suggests that acutely inhibiting microglia and brain macrophage function during periods of early life PSS may prevent innate immune memory formation and assist in reducing the risk to develop AUD. Highlights An early life psychosocial stress (PSS) exposure increases ethanol consumptionMicroglial inhibition during PSS trends towards reducing ethanol consumptionBinge ethanol consumption increases microglial count and alters cell proximityEarly life PSS alters microglial responsivity to binge ethanol consumptionMicroglial inhibition may prevent microglial innate immune memory formation.
Collapse
|
3
|
Sethi MK, Maccioni R, Hogan JD, Kawamura T, Repunte-Canonigo V, Chen J, Zaia J, Sanna PP. Comprehensive Glycomic and Proteomic Analysis of Mouse Striatum and Lateral Hypothalamus Following Repeated Exposures to Cocaine or Methamphetamine. Mol Cell Proteomics 2024; 23:100803. [PMID: 38880242 PMCID: PMC11324981 DOI: 10.1016/j.mcpro.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - John D Hogan
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA; Bioinformatics Program, Boston University, Boston, Massachusetts, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
4
|
Benvenuti F, De Carlo S, Rullo L, Caffino L, Losapio L, Morosini C, Ubaldi M, Soverchia L, Cannella N, Domi E, Candeletti S, Mottarlini F, Fattore L, Romualdi P, Fumagalli F, Trezza V, Roberto M, Ciccocioppo R. Early social isolation differentially affects the glucocorticoid receptor system and alcohol-seeking behavior in male and female Marchigian Sardinian alcohol-preferring rats. Neurobiol Stress 2024; 28:100598. [PMID: 38115888 PMCID: PMC10727952 DOI: 10.1016/j.ynstr.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023] Open
Abstract
Adverse early life experiences during postnatal development can evoke long-lasting neurobiological changes in stress systems, thereby affecting subsequent behaviors including propensity to develop alcohol use disorder. Here, we exposed genetically selected male and female Marchigian Sardinian alcohol-preferring (msP) and Wistar rats to mild, repeated social deprivation from postnatal day 14 (PND14) to PND21 and investigated the effect of the early social isolation (ESI) on the glucocorticoid receptor (GR) system and on the propensity to drink and seek alcohol in adulthood. We found that ESI resulted in higher levels of GR gene and protein expression in the prefrontal cortex (PFC) in male but not female msP rats. In female Wistars, ESI resulted in significant downregulation of Nr3c1 mRNA levels and lower GR protein levels. In male and female msP rats, plasma corticosterone levels on PND35 were similar and unaffected by ESI. Wistar females exhibited higher levels of corticosterone compared with males, independently from ESI. In alcohol self-administration experiments we found that the pharmacological stressor yohimbine (0.0, 0.312, 0.625, and 1.25 mg/kg) increased alcohol self-administration in both rat lines, regardless of ESI. After extinction, 0.625 mg/kg yohimbine significantly reinstated alcohol seeking in female rats only. ESI enhanced reinstatement in female msP rats. Overall, the present results indicate that repeated social deprivation during the third week of postnatal life affects GR expression in a strain- and sex-dependent manner: such effect may contribute, at least partially, to the heightened sensitivity of female msP rats to the effects of yohimbine-induced alcohol seeking.
Collapse
Affiliation(s)
- F. Benvenuti
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - S. De Carlo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - L. Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - L. Caffino
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - L.M. Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - C. Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - M. Ubaldi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - L. Soverchia
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - N. Cannella
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - E. Domi
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - S. Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - F. Mottarlini
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - L. Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | - P. Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - F. Fumagalli
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, University of Milan, Milan, Italy
| | - V. Trezza
- Department of Science, University “Roma Tre”, Rome, Italy
| | - M. Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
5
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
6
|
Calpe-López C, Martínez-Caballero MÁ, García-Pardo MP, Aguilar MA. Resilience to the short- and long-term behavioral effects of intermittent repeated social defeat in adolescent male mice. Pharmacol Biochem Behav 2023:173574. [PMID: 37315696 DOI: 10.1016/j.pbb.2023.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Exposure to intermittent repeated social defeat (IRSD) increases the sensitivity of mice to the rewarding effects of cocaine in the conditioned place preference (CPP) paradigm. Some animals are resilient to this effect of IRSD, though research exploring this inconsistency in adolescent mice is scarce. Thus, our aim was to characterize the behavioral profile of mice exposed to IRSD during early adolescence and to explore a potential association with resilience to the short- and long-term effects of IRSD. METHODS Thirty-six male C57BL/6 mice were exposed to IRSD during early adolescence (PND 27, 30, 33 and 36), while another 10 male mice did not undergo stress (controls). Defeated mice and controls then carried out the following battery of behavioral tests; the Elevated Plus Maze, Hole-Board and Social Interaction Test on PND 37, and the Tail Suspension and Splash tests on PND 38. Three weeks later, all the mice were submitted to the CPP paradigm with a low dose of cocaine (1.5 mg/kg). RESULTS IRSD during early adolescence induced depressive-like behavior in the Social Interaction and Splash tests and increased the rewarding effects of cocaine. Mice with low levels of submissive behavior during episodes of defeat were resilient to the short- and long-term effects of IRSD. In addition, resilience to the short-term effects of IRSD on social interaction and grooming behavior predicted resilience to the long-term effects of IRSD on cocaine reward. CONCLUSION Our findings help to characterize the nature of resilience to the effects of social stress during adolescence.
Collapse
Affiliation(s)
- Claudia Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Ángeles Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - Maria Pilar García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - Maria Asunción Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behavior Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
7
|
Lee H, Park J, Kim S. Metabolic and Transcriptomic Signatures of the Acute Psychological Stress Response in the Mouse Brain. Metabolites 2023; 13:metabo13030453. [PMID: 36984893 PMCID: PMC10052811 DOI: 10.3390/metabo13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Acute stress response triggers various physiological responses such as energy mobilization to meet metabolic demands. However, the underlying molecular changes in the brain remain largely obscure. Here, we used a brief water avoidance stress (WAS) to elicit an acute stress response in mice. By employing RNA-sequencing and metabolomics profiling, we investigated the acute stress-induced molecular changes in the mouse whole brain. The aberrant expression of 60 genes was detected in the brain tissues of WAS-exposed mice. Functional analyses showed that the aberrantly expressed genes were enriched in various processes such as superoxide metabolism. In our global metabolomic profiling, a total of 43 brain metabolites were significantly altered by acute WAS. Metabolic pathways upregulated from WAS-exposed brain tissues relative to control samples included lipolysis, eicosanoid biosynthesis, and endocannabinoid synthesis. Acute WAS also elevated the levels of branched-chain amino acids, 5-aminovalerates, 4-hydroxy-nonenal-glutathione as well as mannose, suggesting complex metabolic changes in the brain. The observed molecular events in the present study provide a valuable resource that can help us better understand how acute psychological stress impacts neural functions.
Collapse
Affiliation(s)
- Haein Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jina Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Weil ZM, White B, Whitehead B, Karelina K. The role of the stress system in recovery after traumatic brain injury: A tribute to Bruce S. McEwen. Neurobiol Stress 2022; 19:100467. [PMID: 35720260 PMCID: PMC9201063 DOI: 10.1016/j.ynstr.2022.100467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major public health concern. Although the majority of individuals that suffer mild-moderate TBI recover relatively quickly, a substantial subset of individuals experiences prolonged and debilitating symptoms. An exacerbated response to physiological and psychological stressors after TBI may mediate poor functional recovery. Individuals with TBI can suffer from poor stress tolerance, impairments in the ability to evaluate stressors, and poor initiation (and cessation) of neuroendocrine stress responses, all of which can exacerbate TBI-mediated dysfunction. Here, we pay tribute to the pioneering neuroendocrinologist Dr. Bruce McEwen by discussing the ways in which his work on stress physiology and allostatic loading impacts the TBI patient population both before and after their injuries. Specifically, we will discuss the modulatory role of hypothalamic-pituitary-adrenal axis responses immediately after TBI and later in recovery. We will also consider the impact of stressors and stress responses in promoting post-concussive syndrome and post-traumatic stress disorders, two common sequelae of TBI. Finally, we will explore the role of early life stressors, prior to brain injuries, as modulators of injury outcomes.
Collapse
Affiliation(s)
- Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Brishti White
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Rd, Morgantown, WV, 26506, USA
| |
Collapse
|
9
|
Gunturkun MH, Flashner E, Wang T, Mulligan MK, Williams RW, Prins P, Chen H. GeneCup: mining PubMed and GWAS catalog for gene-keyword relationships. G3 (BETHESDA, MD.) 2022; 12:jkac059. [PMID: 35285473 PMCID: PMC9073678 DOI: 10.1093/g3journal/jkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022]
Abstract
Interpreting and integrating results from omics studies typically requires a comprehensive and time consuming survey of extant literature. GeneCup is a literature mining web service that retrieves sentences containing user-provided gene symbols and keywords from PubMed abstracts. The keywords are organized into an ontology and can be extended to include results from human genome-wide association studies. We provide a drug addiction keyword ontology that contains over 300 keywords as an example. The literature search is conducted by querying the PubMed server using a programming interface, which is followed by retrieving abstracts from a local copy of the PubMed archive. The main results presented to the user are sentences where gene symbol and keywords co-occur. These sentences are presented through an interactive graphical interface or as tables. All results are linked to the original abstract in PubMed. In addition, a convolutional neural network is employed to distinguish sentences describing systemic stress from those describing cellular stress. The automated and comprehensive search strategy provided by GeneCup facilitates the integration of new discoveries from omic studies with existing literature. GeneCup is free and open source software. The source code of GeneCup and the link to a running instance is available at https://github.com/hakangunturkun/GeneCup.
Collapse
Affiliation(s)
- Mustafa H Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Efraim Flashner
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science, Memphis, TN 38103, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science, Memphis, TN 38103, USA
| |
Collapse
|
10
|
Catale C, Lo Iacono L, Martini A, Heil C, Guatteo E, Mercuri NB, Viscomi MT, Palacios D, Carola V. Early Life Social Stress Causes Sex- and Region-Dependent Dopaminergic Changes that Are Prevented by Minocycline. Mol Neurobiol 2022; 59:3913-3932. [PMID: 35435618 PMCID: PMC9148283 DOI: 10.1007/s12035-022-02830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 02/03/2023]
Abstract
Early life stress (ELS) is known to modify trajectories of brain dopaminergic development, but the mechanisms underlying have not been determined. ELS perturbs immune system and microglia reactivity, and inflammation and microglia influence dopaminergic transmission and development. Whether microglia mediate the effects of ELS on dopamine (DA) system development is still unknown. We explored the effects of repeated early social stress on development of the dopaminergic system in male and female mice through histological, electrophysiological, and transcriptomic analyses. Furthermore, we tested whether these effects could be mediated by ELS-induced altered microglia/immune activity through a pharmacological approach. We found that social stress in early life altered DA neurons morphology, reduced dopamine transporter (DAT) and tyrosine hydroxylase expression, and lowered DAT-mediated currents in the ventral tegmental area but not substantia nigra of male mice only. Notably, stress-induced DA alterations were prevented by minocycline, an inhibitor of microglia activation. Transcriptome analysis in the developing male ventral tegmental area revealed that ELS caused downregulation of dopaminergic transmission and alteration in hormonal and peptide signaling pathways. Results from this study offer new insight into the mechanisms of stress response and altered brain dopaminergic maturation after ELS, providing evidence of neuroimmune interaction, sex differences, and regional specificity.
Collapse
Affiliation(s)
- Clarissa Catale
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luisa Lo Iacono
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy
| | - Alessandro Martini
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Constantin Heil
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ezia Guatteo
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Motor Science and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola Biagio Mercuri
- Division of Experimental Neuroscience, Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Università Degli Studi Di Roma Tor Vergata, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, Università Cattolica Del S. Cuore, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Daniela Palacios
- Division of Experimental Neuroscience, Epigenetics and Signal Transduction Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Department of Life Science and Public Health, Section of Biology, Università Cattolica Del S. Cuore, Rome, Italy
| | - Valeria Carola
- Division of Experimental Neuroscience, Neurobiology of Behavior Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Via degli Apuli 1, Rome, Italy.
| |
Collapse
|
11
|
Rienzo M, Di Zazzo E, Casamassimi A, Gazzerro P, Perini G, Bifulco M, Abbondanza C. PRDM12 in Health and Diseases. Int J Mol Sci 2021; 22:ijms222112030. [PMID: 34769459 PMCID: PMC8585061 DOI: 10.3390/ijms222112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a “Yin and Yang” manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
- Correspondence:
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy;
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
| |
Collapse
|
12
|
Hanson JL, Williams AV, Bangasser DA, Peña CJ. Impact of Early Life Stress on Reward Circuit Function and Regulation. Front Psychiatry 2021; 12:744690. [PMID: 34744836 PMCID: PMC8563782 DOI: 10.3389/fpsyt.2021.744690] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Early life stress - including experience of child maltreatment, neglect, separation from or loss of a parent, and other forms of adversity - increases lifetime risk of mood, anxiety, and substance use disorders. A major component of this risk may be early life stress-induced alterations in motivation and reward processing, mediated by changes in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Here, we review evidence of the impact of early life stress on reward circuit structure and function from human and animal models, with a focus on the NAc. We then connect these results to emerging theoretical models about the indirect and direct impacts of early life stress on reward circuit development. Through this review and synthesis, we aim to highlight open research questions and suggest avenues of future study in service of basic science, as well as applied insights. Understanding how early life stress alters reward circuit development, function, and motivated behaviors is a critical first step toward developing the ability to predict, prevent, and treat stress-related psychopathology spanning mood, anxiety, and substance use disorders.
Collapse
Affiliation(s)
- Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia V. Williams
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A. Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
13
|
Lo Iacono L, Mancini C, Babicola L, Pietrosanto M, Di Segni M, D'Addario SL, Municchi D, Ielpo D, Pascucci T, Cabib S, Ferlazzo F, D'Amato FR, Andolina D, Helmer-Citterich M, Cifani C, Ventura R. Early life adversity affecting the attachment bond alters ventral tegmental area transcriptomic patterning and behavior almost exclusively in female mice. Neurobiol Stress 2021; 15:100406. [PMID: 34660854 PMCID: PMC8503667 DOI: 10.1016/j.ynstr.2021.100406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Early life experiences that affect the attachment bond formation can alter developmental trajectories and result in pathological outcomes in a sex-related manner. However, the molecular basis of sex differences is quite unknown. The dopaminergic system originating from the ventral tegmental area has been proposed to be a key mediator of this process. Here we exploited a murine model of early adversity (Repeated Cross Fostering, RCF) to test how interfering with the attachment bond formation affects the VTA-related functions in a sex-specific manner. Through a comprehensive behavioral screening, within the NiH RDoC framework, and by next-generation RNA-Seq experiments, we analyzed the long-lasting effect of RCF on behavioral and transcriptional profiles related to the VTA, across two different inbred strains of mouse in both sexes. We found that RCF impacted to an extremely greater extent VTA-related behaviors in females than in males and this result mirrored the transcriptional alterations in the VTA that were almost exclusively observed in females. The sexual dimorphism was conserved across two different inbred strains in spite of their divergent long lasting consequences of RCF exposure. Our data suggest that to be female primes a sub-set of genes to respond to early environmental perturbations. This is, to the best of our knowledge, the first evidence of an almost exclusive effect of early life experiences on females, thus mirroring the extremely stronger impact of precocious aversive events reported in clinical studies in women.
Collapse
Affiliation(s)
- Luisa Lo Iacono
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | - Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Marco Pietrosanto
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Diana Municchi
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Tiziana Pascucci
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Simona Cabib
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Fabio Ferlazzo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Francesca R D'Amato
- Biochemistry and Cell Biology Institute, National Research Council, Via E Ramarini 32, 00015, Monterotondo Scalo, Roma, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Manuela Helmer-Citterich
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Cifani
- University of Camerino School of Pharmacy, Camerino, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|
14
|
Catale C, Bisicchia E, Carola V, Viscomi MT. Early life stress exposure worsens adult remote microglia activation, neuronal death, and functional recovery after focal brain injury. Brain Behav Immun 2021; 94:89-103. [PMID: 33677027 DOI: 10.1016/j.bbi.2021.02.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/08/2023] Open
Abstract
Trauma to the central nervous system (CNS) is a devastating condition resulting in severe functional impairments that strongly vary among patients. Patients' features, such as age, social and cultural environment, and pre-existing psychiatric conditions may be particularly relevant for determining prognosis after CNS trauma. Although several studies demonstrated the impact of adult psycho-social stress exposure on functional recovery after CNS damage, no data exist regarding the long-term effects of the exposure to such experience at an early age. Here, we assessed whether early life stress (ELS) hampers the neuroinflammatory milieuand the functional recovery after focal brain injury in adulthood by using a murine model of ELS exposure combined with hemicerebellectomy (HCb), a model of remote damage. We found that ELS permanently altered microglia responses such that, once experienced HCb, they produced an exaggerated remote inflammatory response - consistent with a primed phenotype - associated with increased cell death and worse functional recovery. Notably, prevention of microglia/macrophages activation by GW2580 treatment during ELS exposure significantly reduced microglia responses, cell death and improved functional recovery. Conversely, GW2580 treatment administered in adulthood after HCb was ineffective in reducing inflammation and cell death or improving functional recovery. Our findings highlight that ELS impacts the immune system maturation producing permanent changes, and that it is a relevant factor modulating the response to a CNS damage. Further studies are needed to clarify the mechanisms underlying the interaction between ELS and brain injury with the aim of developing targeted treatments to improve functional recovery after CNS damage.
Collapse
Affiliation(s)
- Clarissa Catale
- Department of Psychology, Ph.D. Program in "Behavioral Neuroscience", Sapienza University of Rome, Rome, Italy
| | | | - Valeria Carola
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy.
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, University "Cattolica Del S. Cuore", Rome, Italy.
| |
Collapse
|
15
|
Delclos PJ, Forero SA, Rosenthal GG. Divergent neurogenomic responses shape social learning of both personality and mate preference. J Exp Biol 2020; 223:jeb220707. [PMID: 32054683 DOI: 10.1242/jeb.220707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
Behavior plays a fundamental role in shaping the origin and fate of species. Mating decisions can act to promote or restrict gene flow, as can personality traits that influence dispersal and niche use. Mate choice and personality are often both learned and therefore influenced by an individual's social environment throughout development. Likewise, the molecular pathways that shape these behaviors may also be co-expressed. In this study on swordtail fish (Xiphophorus birchmanni), we show that female mating preferences for species-typical pheromone cues are entirely dependent on social experience with adult males. Experience with adults also shapes development along the shy-bold personality axis, with shy behaviors arising from exposure to risk-averse heterospecifics as a potential stress-coping strategy. In maturing females, conspecific exposure results in a strong upregulation of olfaction and vision genes compared with heterospecific exposure, as well as immune response genes previously linked to anxiety, learning and memory. Conversely, heterospecific exposure involves an increased expression of genes important for neurogenesis, synaptic plasticity and social decision-making. We identify subsets of genes within the social decision-making network and with known stress-coping roles that may be directly coupled to the olfactory processes females rely on for social communication. Based on these results, we conclude that the social environment affects the neurogenomic trajectory through which socially sensitive behaviors are learned, resulting in adult phenotypes adapted for specific social groupings.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A. C., Calnali, Hidalgo 43233, Mexico
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Santiago A Forero
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Gil G Rosenthal
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', A. C., Calnali, Hidalgo 43233, Mexico
| |
Collapse
|
16
|
Neuroprotective Role of Dietary Supplementation with Omega-3 Fatty Acids in the Presence of Basal Forebrain Cholinergic Neurons Degeneration in Aged Mice. Int J Mol Sci 2020; 21:ijms21051741. [PMID: 32143275 PMCID: PMC7084583 DOI: 10.3390/ijms21051741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 01/05/2023] Open
Abstract
As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PUFA pre-treatment preserved explorative skills and associative retention memory, enhanced neurogenesis in the dentate gyrus, and reduced volume and VAChT levels loss as well as astrogliosis in hippocampus. The present findings demonstrating that n-3 PUFA supplementation before cholinergic depletion can counteract behavioral deficits and hippocampal neurodegeneration in aged mice advance a low-cost, non-invasive preventive tool to enhance life quality during aging.
Collapse
|
17
|
Xlr4 as a new candidate gene underlying vulnerability to cocaine effects. Neuropharmacology 2020; 168:108019. [PMID: 32113966 DOI: 10.1016/j.neuropharm.2020.108019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Although several studies have been performed in rodents, non-human primates and humans, the biological basis of vulnerability to develop cocaine addiction remains largely unknown. Exposure to critical early events (as Repeated Cross Fostering (RCF)) has been reported to increase sensitivity to cocaine effects in adult C57BL/6J female mice. Using a microarray approach, here we report data showing a strong engagement of X-linked lymphocyte-regulated 4a and 4b (Xlr4) genes in cocaine effects. The expression of Xlr4, a gene involved in chromatin remodeling and dendritic spine morphology, was reduced into the Nucleus Accumbens (NAc) of adult RCF C57BL/6J female. We used virally mediated accumbal Xlr4 down-modulation (AAVXlr4-KD) to investigate the role of this gene in vulnerability to cocaine effects. AAVXlr4-KD animals show a potentiated behavioral and neurochemical response to cocaine, reinstatement following cocaine withdrawal and cocaine-induced spine density alterations in the Medium-Sized Spiny Neurons of NAc. We propose Xlr4 as a new candidate gene mediating the cocaine effects.
Collapse
|
18
|
Di Segni M, Andolina D, D'Addario SL, Babicola L, Ielpo D, Luchetti A, Pascucci T, Lo Iacono L, D'Amato FR, Ventura R. Sex-dependent effects of early unstable post-natal environment on response to positive and negative stimuli in adult mice. Neuroscience 2019; 413:1-10. [PMID: 31228589 DOI: 10.1016/j.neuroscience.2019.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Alterations in early environmental conditions that interfere with the creation of a stable mother-pup bond have been suggested to be a risk factor for the development of stress-related psychopathologies later in life. The long-lasting effects of early experiences are mediated by changes in various cerebral circuits, such as the corticolimbic system, which processes aversive and rewarding stimuli. However, it is evident that the early environment is not sufficient per se to induce psychiatric disorders; interindividual (eg, sex-based) differences in the response to environmental challenges exist. To examine the sex-related effects that are induced by an early experience on later events in adulthood, we determine the enduring effects of repeated cross-fostering (RCF) in female and male C57BL/6J mice. To this end, we assessed the behavioral phenotype of RCF and control (male and female) mice in the saccharine preference test and cocaine-induced conditioned place preference to evaluate the response to natural and pharmacological stimuli and in the elevated plus maze test and forced swimming test to measure their anxiety- and depression-like behavior. We also evaluated FST-induced c-Fos immunoreactivity in various brain regions that are engaged in the response to acute stress exposure (FST). Notably, RCF has opposing effects on the adult response to these tests between sexes, directing male mice toward an "anhedonia-like" phenotype and increasing the sensitivity for rewarding stimuli in female mice.
Collapse
Affiliation(s)
- Matteo Di Segni
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, 00184, Rome, Italy
| | - Lucy Babicola
- Dept. of Applied and Biotechnological Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, 00184, Rome, Italy
| | - Alessandra Luchetti
- Cell Biology and Neurobiology Institute, National Research Council, 00143 Rome, Italy
| | - Tiziana Pascucci
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Luisa Lo Iacono
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Francesca R D'Amato
- Cell Biology and Neurobiology Institute, National Research Council, 00143 Rome, Italy; Institut Universitaire en Santé Mentale de Québec, Laval University, Quebec, Canada
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy.
| |
Collapse
|
19
|
Yaw AM, Prosser RA, Jones PC, Garcia BJ, Jacobson DA, Glass JD. Epigenetic effects of paternal cocaine on reward stimulus behavior and accumbens gene expression in mice. Behav Brain Res 2019; 367:68-81. [PMID: 30910707 DOI: 10.1016/j.bbr.2019.02.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Paternal cocaine use causes phenotypic alterations in offspring behavior and associated neural processing. In rodents, changes in first generation (F1) offspring include drug reward behavior, circadian timing, and anxiety responses. This study, utilizing a murine (C57BL/6J) oral cocaine model, examines the effects of paternal cocaine exposure on fundamental characteristics of offspring reward responses, including: 1) the extent of cocaine-induced effects after different durations of sire drug withdrawal; 2) sex- and drug-dependent differences in F1 reward preference; 3) effects on second generation (F2) cocaine preference; and 4) corresponding changes in reward area (nucleus accumbens) mRNA expression. We demonstrate that paternal cocaine intake over a single ˜40-day spermatogenic cycle significantly decreased cocaine (but not ethanol or sucrose) preference in a sex-specific manner in F1 mice from sires mated 24 h after drug withdrawal. However, F1 offspring of sires bred 4 months after withdrawal did not exhibit altered cocaine preference. Altered cocaine preference also was not observed in F2's. RNASeq analyses of F1 accumbens tissue revealed changes in gene expression in male offspring of cocaine-exposed sires, including many genes not previously linked to cocaine addiction. Enrichment analyses highlight genes linked to CNS development, synaptic signaling, extracellular matrix, and immune function. Expression correlation analyses identified a novel target, Fam19a4, that may negatively regulate many genes in the accumbens, including genes already identified in addiction. Collectively, these results reveal that paternal cocaine effects in F1 offspring may involve temporally limited epigenetic germline effects and identify new genetic targets for addiction research.
Collapse
Affiliation(s)
- Alexandra M Yaw
- School of Biomedical Sciences, Kent State Univ., Kent, OH, 44242, United States
| | - Rebecca A Prosser
- Dept. of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States; NeuroNET Research Center, University of Tennessee, Knoxville, TN, 37996, United States
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, United States
| | - Benjamin J Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Daniel A Jacobson
- NeuroNET Research Center, University of Tennessee, Knoxville, TN, 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, United States; Department of Psychology, University of Tennessee, Knoxville, TN, 37996, United States
| | - J David Glass
- School of Biomedical Sciences, Kent State Univ., Kent, OH, 44242, United States.
| |
Collapse
|
20
|
Wang DM, Zhang JJ, Huang YB, Zhao YZ, Sui N. Peripubertal stress of male, but not female rats increases morphine-induced conditioned place preference and locomotion in adulthood. Dev Psychobiol 2019; 61:920-929. [PMID: 30860298 DOI: 10.1002/dev.21839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Animal studies demonstrate that peripubertal social stress markedly increases the risk for subsequent substance use in adulthood. However, whether non-social stress has a similar long-term impact is not clear, and whether male and female animals show different sensitivity to peripubertal non-social stress has not been examined. In the present study, we addressed these issues by introducing two non-social stressors (elevated platform and predator odor 2,5-Dihydro-2,4,5-trimethylthiazoline) to male and female Wistar rats during adolescence (postnatal days 28-30, 34, 36, 40, and 42), then tested reward-related behaviors during adulthood, including morphine-induced conditioned place preference (CPP, 1 mg/kg morphine or 5 mg/kg morphine) and hyperlocomotor activity (5 mg/kg morphine). We found that adult male rats, but not females who were exposed to peripubertal non-social stressors showed enhanced morphine-induced CPP. Moreover, morphine-induced increase in locomotor activity was also significantly increased in adult male rats, but not in females. These results indicate that peripubertal exposure to repeated non-social stress may enhance sensitivity to the rewarding effects of opioids in adulthood in a sex-dependent manner, with males being even more sensitive than females in this regard.
Collapse
Affiliation(s)
- Dong-Mei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Bei Huang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yin-Zhu Zhao
- School of Life Sciences, University of Science and Technology of China, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Lo Iacono L, Catale C, Martini A, Valzania A, Viscomi MT, Chiurchiù V, Guatteo E, Bussone S, Perrone F, Di Sabato P, Aricò E, D'Argenio A, Troisi A, Mercuri NB, Maccarrone M, Puglisi-Allegra S, Casella P, Carola V. From Traumatic Childhood to Cocaine Abuse: The Critical Function of the Immune System. Biol Psychiatry 2018; 84:905-916. [PMID: 30029767 DOI: 10.1016/j.biopsych.2018.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Experiencing traumatic childhood is a risk factor for developing substance use disorder, but the mechanisms that underlie this relationship have not been determined. Adverse childhood experiences affect the immune system, and the immune system mediates the effects of psychostimulants. However, whether this system is involved in the etiology of substance use disorder in individuals who have experienced early life stress is unknown. METHODS In this study, we performed a series of ex vivo and in vivo experiments in mice and humans to define the function of the immune system in the early life stress-induced susceptibility to the neurobehavioral effects of cocaine. RESULTS We provide evidence that exposure to social stress at an early age permanently sensitizes the peripheral (splenocytes) and brain (microglia) immune responses to cocaine in mice. In the brain, microglial activation in the ventral tegmental area of social-stress mice was associated with functional alterations in dopaminergic neurotransmission, as measured by whole-cell voltage clamp recordings in dopamine neurons. Notably, preventing immune activation during the social-stress exposure reverted the effects of dopamine in the ventral tegmental area and the cocaine-induced behavioral phenotype to control levels. In humans, cocaine modulated toll-like receptor 4-mediated innate immunity, an effect that was enhanced in those addicted to cocaine who had experienced a difficult childhood. CONCLUSIONS Collectively, our findings demonstrate that sensitization to cocaine in early life-stressed individuals involves brain and peripheral immune responses and that this mechanism is shared between mice and humans.
Collapse
Affiliation(s)
- Luisa Lo Iacono
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | - Clarissa Catale
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy; Ph.D. Program in Behavioral Neuroscience, University of Rome "La Sapienza", Rome, Italy
| | - Alessandro Martini
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Valerio Chiurchiù
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ezia Guatteo
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Silvia Bussone
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | - Fabiana Perrone
- Department of Biology and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Paola Di Sabato
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy
| | - Eleonora Aricò
- Cell Factory FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Alfonso Troisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola B Mercuri
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Maccarrone
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Stefano Puglisi-Allegra
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | | | - Valeria Carola
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
22
|
De Sa Nogueira D, Merienne K, Befort K. Neuroepigenetics and addictive behaviors: Where do we stand? Neurosci Biobehav Rev 2018; 106:58-72. [PMID: 30205119 DOI: 10.1016/j.neubiorev.2018.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Substance use disorders involve long-term changes in the brain that lead to compulsive drug seeking, craving, and a high probability of relapse. Recent findings have highlighted the role of epigenetic regulations in controlling chromatin access and regulation of gene expression following exposure to drugs of abuse. In the present review, we focus on data investigating genome-wide epigenetic modifications in the brain of addicted patients or in rodent models exposed to drugs of abuse, with a particular focus on DNA methylation and histone modifications associated with transcriptional studies. We highlight critical factors for epigenomic studies in addiction. We discuss new findings related to psychostimulants, alcohol, opiate, nicotine and cannabinoids. We examine the possible transmission of these changes across generations. We highlight developing tools, specifically those that allow investigation of structural reorganization of the chromatin. These have the potential to increase our understanding of alteration of chromatin architecture at gene regulatory regions. Neuroepigenetic mechanisms involved in addictive behaviors could explain persistent phenotypic effects of drugs and, in particular, vulnerability to relapse.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 1 « Dynamics of Memory and Epigenetics », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France.
| |
Collapse
|
23
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
24
|
Lo Iacono L, Carola V. The impact of adolescent stress experiences on neurobiological development. Semin Cell Dev Biol 2018; 77:93-103. [DOI: 10.1016/j.semcdb.2017.09.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 01/23/2023]
|
25
|
Watt MJ, Weber MA, Davies SR, Forster GL. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79. [PMID: 28642080 PMCID: PMC5610933 DOI: 10.1016/j.pnpbp.2017.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repeated exposure to stress during childhood is associated with increased risk for neuropsychiatric illness, substance use disorders and other behavioral problems in adulthood. However, it is not clear how chronic childhood stress can lead to emergence of such a wide range of symptoms and disorders in later life. One possible explanation lies in stress-induced disruption to the development of specific brain regions associated with executive function and reward processing, deficits in which are common to the disorders promoted by childhood stress. Evidence of aberrations in prefrontal cortex and nucleus accumbens function following repeated exposure of juvenile (pre- and adolescent) organisms to a variety of different stressors would account not only for the similarity in symptoms across the wide range of childhood stress-associated mental illnesses, but also their persistence into adulthood in the absence of further stress. Therefore, the goal of this review is to evaluate the current knowledge regarding disruption to executive function and reward processing in adult animals or humans exposed to chronic stress over the juvenile period, and the underlying neurobiology, with particular emphasis on the prefrontal cortex and nucleus accumbens. First, the role of these brain regions in mediating executive function and reward processing is highlighted. Second, the neurobehavioral development of these systems is discussed to illustrate how juvenile stress may exert long-lasting effects on prefrontal cortex-accumbal activity and related behavioral functions. Finally, a critical review of current animal and human findings is presented, which strongly supports the supposition that exposure to chronic stress (particularly social aggression and isolation in animal studies) in the juvenile period produces impairments in executive function in adulthood, especially in working memory and inhibitory control. Chronic juvenile stress also results in aberrations to reward processing and seeking, with increased sensitivity to drugs of abuse particularly noted in animal models, which is in line with greater incidence of substance use disorders seen in clinical studies. These consequences are potentially mediated by monoamine and glutamatergic dysfunction in the prefrontal cortex and nucleus accumbens, providing translatable therapeutic targets. However, the predominant use of male subjects and social-based stressors in preclinical studies points to a clear need for determining how both sex differences and stressor heterogeneity may differentially contribute to stress-induced changes to substrates mediating executive function and reward processing, before the impact of chronic juvenile stress in promoting adult psychopathology can be fully understood.
Collapse
|
26
|
Histone deacetylase 5 modulates the effects of social adversity in early life on cocaine-induced behavior. Physiol Behav 2017; 171:7-12. [DOI: 10.1016/j.physbeh.2016.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
|
27
|
Zachar G, Tóth AS, Balogh M, Csillag A. Effect of nucleus accumbens lesions on socially motivated behaviour of young domestic chicks. Eur J Neurosci 2016; 45:1606-1612. [DOI: 10.1111/ejn.13402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/26/2016] [Accepted: 09/13/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Gergely Zachar
- Department of Anatomy; Histology and Embryology; Semmelweis University; 58 Tűzoltó u Budapest 1094 Hungary
| | - András Sebestyén Tóth
- Department of Anatomy; Histology and Embryology; Semmelweis University; 58 Tűzoltó u Budapest 1094 Hungary
| | - Márton Balogh
- Department of Anatomy; Histology and Embryology; Semmelweis University; 58 Tűzoltó u Budapest 1094 Hungary
| | - András Csillag
- Department of Anatomy; Histology and Embryology; Semmelweis University; 58 Tűzoltó u Budapest 1094 Hungary
| |
Collapse
|