1
|
Cui Sun M, Otálora-Alcaraz A, Prenderville JA, Downer EJ. Toll-like receptor signalling as a cannabinoid target. Biochem Pharmacol 2024; 222:116082. [PMID: 38438052 DOI: 10.1016/j.bcp.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.
Collapse
Affiliation(s)
- Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jack A Prenderville
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Transpharmation Ireland Limited, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Zhou B, Ran B, Chen L. A GraphSAGE-based model with fingerprints only to predict drug-drug interactions. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:2922-2942. [PMID: 38454713 DOI: 10.3934/mbe.2024130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Drugs are an effective way to treat various diseases. Some diseases are so complicated that the effect of a single drug for such diseases is limited, which has led to the emergence of combination drug therapy. The use multiple drugs to treat these diseases can improve the drug efficacy, but it can also bring adverse effects. Thus, it is essential to determine drug-drug interactions (DDIs). Recently, deep learning algorithms have become popular to design DDI prediction models. However, most deep learning-based models need several types of drug properties, inducing the application problems for drugs without these properties. In this study, a new deep learning-based model was designed to predict DDIs. For wide applications, drugs were first represented by commonly used properties, referred to as fingerprint features. Then, these features were perfectly fused with the drug interaction network by a type of graph convolutional network method, GraphSAGE, yielding high-level drug features. The inner product was adopted to score the strength of drug pairs. The model was evaluated by 10-fold cross-validation, resulting in an AUROC of 0.9704 and AUPR of 0.9727. Such performance was better than the previous model which directly used drug fingerprint features and was competitive compared with some other previous models that used more drug properties. Furthermore, the ablation tests indicated the importance of the main parts of the model, and we analyzed the strengths and limitations of a model for drugs with different degrees in the network. This model identified some novel DDIs that may bring expected benefits, such as the combination of PEA and cannabinol that may produce better effects. DDIs that may cause unexpected side effects have also been discovered, such as the combined use of WIN 55,212-2 and cannabinol. These DDIs can provide novel insights for treating complex diseases or avoiding adverse drug events.
Collapse
Affiliation(s)
- Bo Zhou
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Bing Ran
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
3
|
Rahmat-Zaie R, Amini J, Haddadi M, Beyer C, Sanadgol N, Zendedel A. TNF-α/STAT1/CXCL10 mutual inflammatory axis that contributes to the pathogenesis of experimental models of multiple sclerosis: A promising signaling pathway for targeted therapies. Cytokine 2023; 168:156235. [PMID: 37267677 DOI: 10.1016/j.cyto.2023.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility. METHODS The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum. RESULTS Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1β/CXCL10 cytokines was confirmed in all models in a relatively similar pattern. CONCLUSION For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.
Collapse
Affiliation(s)
- Roya Rahmat-Zaie
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
4
|
Filippini G, Minozzi S, Borrelli F, Cinquini M, Dwan K. Cannabis and cannabinoids for symptomatic treatment for people with multiple sclerosis. Cochrane Database Syst Rev 2022; 5:CD013444. [PMID: 35510826 PMCID: PMC9069991 DOI: 10.1002/14651858.cd013444.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Spasticity and chronic neuropathic pain are common and serious symptoms in people with multiple sclerosis (MS). These symptoms increase with disease progression and lead to worsening disability, impaired activities of daily living and quality of life. Anti-spasticity medications and analgesics are of limited benefit or poorly tolerated. Cannabinoids may reduce spasticity and pain in people with MS. Demand for symptomatic treatment with cannabinoids is high. A thorough understanding of the current body of evidence regarding benefits and harms of these drugs is required. OBJECTIVES To assess benefit and harms of cannabinoids, including synthetic, or herbal and plant-derived cannabinoids, for reducing symptoms for adults with MS. SEARCH METHODS We searched the following databases from inception to December 2021: MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library), CINAHL (EBSCO host), LILACS, the Physiotherapy Evidence Database (PEDro), the World Health Organisation International Clinical Trials Registry Platform, the US National Institutes of Health clinical trial register, the European Union Clinical Trials Register, the International Association for Cannabinoid Medicines databank. We hand searched citation lists of included studies and relevant reviews. SELECTION CRITERIA We included randomised parallel or cross-over trials (RCTs) evaluating any cannabinoid (including herbal Cannabis, Cannabis flowers, plant-based cannabinoids, or synthetic cannabinoids) irrespective of dose, route, frequency, or duration of use for adults with MS. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane Risk of bias 2 tool for parallel RCTs and crossover trials. We rated the certainty of evidence using the GRADE approach for the following outcomes: reduction of 30% in the spasticity Numeric Rating Scale, pain relief of 50% or greater in the Numeric Rating Scale-Pain Intensity, much or very much improvement in the Patient Global Impression of Change (PGIC), Health-Related Quality of Life (HRQoL), withdrawals due to adverse events (AEs) (tolerability), serious adverse events (SAEs), nervous system disorders, psychiatric disorders, physical dependence. MAIN RESULTS We included 25 RCTs with 3763 participants of whom 2290 received cannabinoids. Age ranged from 18 to 60 years, and between 50% and 88% participants across the studies were female. The included studies were 3 to 48 weeks long and compared nabiximols, an oromucosal spray with a plant derived equal (1:1) combination of tetrahydrocannabinol (THC) and cannabidiol (CBD) (13 studies), synthetic cannabinoids mimicking THC (7 studies), an oral THC extract of Cannabis sativa (2 studies), inhaled herbal Cannabis (1 study) against placebo. One study compared dronabinol, THC extract of Cannabis sativa and placebo, one compared inhaled herbal Cannabis, dronabinol and placebo. We identified eight ongoing studies. Critical outcomes • Spasticity: nabiximols probably increases the number of people who report an important reduction of perceived severity of spasticity compared with placebo (odds ratio (OR) 2.51, 95% confidence interval (CI) 1.56 to 4.04; 5 RCTs, 1143 participants; I2 = 67%; moderate-certainty evidence). The absolute effect was 216 more people (95% CI 99 more to 332 more) per 1000 reporting benefit with cannabinoids than with placebo. • Chronic neuropathic pain: we found only one small trial that measured the number of participants reporting substantial pain relief with a synthetic cannabinoid compared with placebo (OR 4.23, 95% CI 1.11 to 16.17; 1 study, 48 participants; very low-certainty evidence). We are uncertain whether cannabinoids reduce chronic neuropathic pain intensity. • Treatment discontinuation due to AEs: cannabinoids may increase slightly the number of participants who discontinue treatment compared with placebo (OR 2.41, 95% CI 1.51 to 3.84; 21 studies, 3110 participants; I² = 17%; low-certainty evidence); the absolute effect is 39 more people (95% CI 15 more to 76 more) per 1000 people. Important outcomes • PGIC: cannabinoids probably increase the number of people who report 'very much' or 'much' improvement in health status compared with placebo (OR 1.80, 95% CI 1.37 to 2.36; 8 studies, 1215 participants; I² = 0%; moderate-certainty evidence). The absolute effect is 113 more people (95% CI 57 more to 175 more) per 1000 people reporting improvement. • HRQoL: cannabinoids may have little to no effect on HRQoL (SMD -0.08, 95% CI -0.17 to 0.02; 8 studies, 1942 participants; I2 = 0%; low-certainty evidence); • SAEs: cannabinoids may result in little to no difference in the number of participants who have SAEs compared with placebo (OR 1.38, 95% CI 0.96 to 1.99; 20 studies, 3124 participants; I² = 0%; low-certainty evidence); • AEs of the nervous system: cannabinoids may increase nervous system disorders compared with placebo (OR 2.61, 95% CI 1.53 to 4.44; 7 studies, 1154 participants; I² = 63%; low-certainty evidence); • Psychiatric disorders: cannabinoids may increase psychiatric disorders compared with placebo (OR 1.94, 95% CI 1.31 to 2.88; 6 studies, 1122 participants; I² = 0%; low-certainty evidence); • Drug tolerance: the evidence is very uncertain about the effect of cannabinoids on drug tolerance (OR 3.07, 95% CI 0.12 to 75.95; 2 studies, 458 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Compared with placebo, nabiximols probably reduces the severity of spasticity in the short-term in people with MS. We are uncertain about the effect on chronic neurological pain and health-related quality of life. Cannabinoids may increase slightly treatment discontinuation due to AEs, nervous system and psychiatric disorders compared with placebo. We are uncertain about the effect on drug tolerance. The overall certainty of evidence is limited by short-term duration of the included studies.
Collapse
Affiliation(s)
- Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| | - Silvia Minozzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - Michela Cinquini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kerry Dwan
- Review Production and Quality Unit, Editorial & Methods Department, Cochrane Central Executive, London, UK
| |
Collapse
|
5
|
Vasincu A, Rusu RN, Ababei DC, Larion M, Bild W, Stanciu GD, Solcan C, Bild V. Endocannabinoid Modulation in Neurodegenerative Diseases: In Pursuit of Certainty. BIOLOGY 2022; 11:biology11030440. [PMID: 35336814 PMCID: PMC8945712 DOI: 10.3390/biology11030440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary Neurodegenerative diseases represent an important cause of morbidity and mortality worldwide. Existing therapeutic options are limited and focus mostly on improving symptoms and reducing exacerbations. The endocannabinoid system is involved in the pathophysiology of such disorders, an idea which has been highlighted by recent scientific work. The current work focusses its attention on the importance and implications of this system and its synthetic and natural ligands in disorders such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. Abstract Neurodegenerative diseases are an increasing cause of global morbidity and mortality. They occur in the central nervous system (CNS) and lead to functional and mental impairment due to loss of neurons. Recent evidence highlights the link between neurodegenerative and inflammatory diseases of the CNS. These are typically associated with several neurological disorders. These diseases have fundamental differences regarding their underlying physiology and clinical manifestations, although there are aspects that overlap. The endocannabinoid system (ECS) is comprised of receptors (type-1 (CB1R) and type-2 (CB2R) cannabinoid-receptors, as well as transient receptor potential vanilloid 1 (TRPV1)), endogenous ligands and enzymes that synthesize and degrade endocannabinoids (ECBs). Recent studies revealed the involvement of the ECS in different pathological aspects of these neurodegenerative disorders. The present review will explore the roles of cannabinoid receptors (CBRs) and pharmacological agents that modulate CBRs or ECS activity with reference to Alzheimer’s Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD) and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
- Correspondence:
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
| | - Mădălina Larion
- Department of Anaesthesiology Intensive Therapy, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 19 Croitorilor Street, 400162 Cluj-Napoca, Romania;
- Department of Anaesthetics, Midland Regional Hospital, Longford Road, Mullingar, N91 NA43 Co. Westmeath, Ireland
| | - Walther Bild
- Department of Physiology, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Carmen Solcan
- Preclinics Department, “Ion Ionescu de la Brad” University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania;
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, “Grigore T Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.V.); (D.-C.A.); (V.B.)
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
6
|
Fitzpatrick JM, Hackett B, Costelloe L, Hind W, Downer EJ. Botanically-Derived Δ 9-Tetrahydrocannabinol and Cannabidiol, and Their 1:1 Combination, Modulate Toll-like Receptor 3 and 4 Signalling in Immune Cells from People with Multiple Sclerosis. Molecules 2022; 27:1763. [PMID: 35335126 PMCID: PMC8951523 DOI: 10.3390/molecules27061763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
The innate immune response to bacterial and viral molecules involves the coordinated production of cytokines, chemokines, and type I interferons (IFNs), which is orchestrated by toll-like receptors (TLRs). TLRs, and their intracellular signalling intermediates, are closely associated with multiple sclerosis (MS) pathogenesis. Recent data from our laboratory reported that the plant-derived cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), regulate viral and bacterial inflammatory signalling pathways controlled by TLR3 and TLR4 in macrophages. The aim of this study was to assess the impact of THC and CBD, when delivered in isolation and in combination (1:1), on TLR3- and TLR4-dependent signalling in peripheral blood mononuclear cells (PBMCs) from people with MS (pwMS; n = 21) and healthy controls (HCs; n = 26). We employed the use of poly(I:C) and lipopolysaccharide (LPS) to induce viral TLR3 and bacterial TLR4 signalling, and PBMCs were pre-exposed to plant-derived highly purified THC (10 μM), CBD (10 μM), or a combination of both phytocannabinoids (1:1 ratio, 10:10 μM), prior to LPS/poly(I:C) exposure. TLR3 stimulation promoted the protein expression of the chemokine CXCL10 and the type I IFN-β in PBMCs from both cohorts. THC and CBD (delivered in 1:1 combination at 10 μM) attenuated TLR3-induced CXCL10 and IFN-β protein expression in PBMCs from pwMS and HCs, and this effect was not seen consistently when THC and CBD were delivered alone. In terms of LPS, TLR4 activation promoted TNF-α expression in PBMCs from both cohorts, and, interestingly, CBD when delivered alone at 10 μM, and in combination with THC (in 1:1 combination at 10 μM), exacerbated TLR4-induced TNF-α protein expression in PBMCs from pwMS and HCs. THC and CBD displayed no evidence of toxicity in primary PBMCs. No significant alteration in the relative expression of TLR3 and TLR4 mRNA, or components of the endocannabinoid system, including the cannabinoid receptor CB1 (encoded by CNR1 gene) and CB2 (encoded by CNR2 gene), and endocannabinoid metabolising enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGLL), was determined in PBMCs from pwMS versus HCs. Given their role in inflammation, TLRs are clinical targets, and data herein identify CBD and THC as TLR3 and TLR4 modulating drugs in primary immune cells in vitro. This offers insight on the cellular target(s) of phytocannabinoids in targeting inflammation in the context of MS.
Collapse
Affiliation(s)
- John-Mark Fitzpatrick
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, D02 R590 Dublin, Ireland; (J.-M.F.); (B.H.)
| | - Becky Hackett
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, D02 R590 Dublin, Ireland; (J.-M.F.); (B.H.)
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, D09 V2N0 Dublin, Ireland;
| | - William Hind
- GW Research Ltd., Sovereign House, Vision Park, Histon CB24 9BZ, UK;
| | - Eric J. Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, D02 R590 Dublin, Ireland; (J.-M.F.); (B.H.)
| |
Collapse
|
7
|
Lubschinski TL, Pollo LAE, Mohr ETB, da Rosa JS, Nardino LA, Sandjo LP, Biavatti MW, Dalmarco EM. Effect of Aryl-Cyclohexanones and their Derivatives on Macrophage Polarization In Vitro. Inflammation 2022; 45:1612-1630. [PMID: 35247115 DOI: 10.1007/s10753-022-01646-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Macrophages are critical in both tissue homeostasis and inflammation, and shifts in their polarization have been indicated as pivotal for the resolution of inflammatory processes. Inflammation is a complex and necessary component of the immune response to stimuli that are harmful to host homeostasis and is regulated by cellular and molecular events that remain a source of ongoing investigation. Among the compounds studied that have potential against autoimmune and inflammatory diseases, cannabinoids are currently highlighted. In this work, nineteen aryl-cyclohexanones diesters and their derivatives were synthesized based on the aryl-cyclohexane skeleton of phytocannabinoids, such as cannabidiol (CBD), and were evaluated for their anti-inflammatory and macrophage polarization potential. The results showed that Compound 4 inhibited the production of nitric oxide in RAW 264.7 macrophages. Furthermore, it reduced the levels of pro-inflammatory cytokines IL-12p70, TNF-α, IFN-γ, MCP-1, and IL-6 while, at the same time, was able to increase the production of anti-inflammatory cytokines IL-4, IL-10, and IL-13. Compound 4 also reduced macrophage apoptosis, increased the expression of the CD206 (mannose receptor) and at the same time, decreased the expression of CD284 (TLR-4 receptor) on the surface of these cells. Finally, it increased the phagocytic capacity and inhibited the phosphorylation of the p65 of NF-kβ. In conclusion, Compound 4, identified as diethyl-4-hydroxy-2-(4-methoxyphenyl)-4-methyl-6-oxocyclohexane-1-3-dicarboxylate, showed significant anti-inflammatory effect, while demonstrating the ability to transform phenotypically macrophages from the M1 phenotype (pro-inflammatory) to the M2 phenotype (anti-inflammatory). This led us to hypothesize that the main mechanism of anti-inflammatory effect of this molecule is linked to its immune modulation capacity.
Collapse
Affiliation(s)
- Tainá L Lubschinski
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Luiz A E Pollo
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Eduarda T B Mohr
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Julia S da Rosa
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Luigi A Nardino
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Louis P Sandjo
- Department of Chemistry, CFM, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Eduardo M Dalmarco
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil.
| |
Collapse
|
8
|
Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 2021; 5:NS20200080. [PMID: 34497718 PMCID: PMC8385185 DOI: 10.1042/ns20200080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
Collapse
|
9
|
An D, Peigneur S, Tytgat J. WIN55,212-2, a Dual Modulator of Cannabinoid Receptors and G Protein-Coupled Inward Rectifier Potassium Channels. Biomedicines 2021; 9:484. [PMID: 33924979 PMCID: PMC8146939 DOI: 10.3390/biomedicines9050484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The coupling of cannabinoid receptors, CB1 and CB2, to G protein-coupled inward rectifier potassium channels, GIRK1 and GIRK2, modulates neuronal excitability in the human brain. The present study established and validated the functional expression in a Xenopus laevis oocyte expression system of CB1 and CB2 receptors, interacting with heteromeric GIRK1/2 channels and a regulator of G protein signaling, RGS4. This ex vivo system enables the discovery of a wide range of ligands interacting orthosterically or allosterically with CB1 and/or CB2 receptors. WIN55,212-2, a non-selective agonist of CB1 and CB2, was used to explore the CB1- or CB2-GIRK1/2-RGS4 signaling cascade. We show that WIN55,212-2 activates CB1 and CB2 at low concentrations whereas at higher concentrations it exerts a direct block of GIRK1/2. This illustrates a dual modulatory function, a feature not described before, which helps to explain the adverse effects induced by WIN55,212-2 in vivo. When comparing the effects with other typical cannabinoids such as Δ9-THC, CBD, CP55,940, and rimonabant, only WIN55,212-2 can significantly block GIRK1/2. Interestingly, the inward rectifier potassium channel, IRK1, a non-G protein-coupled potassium channel important for setting the resting membrane voltage and highly similar to GIRK1 and GIRK2, is not sensitive to WIN55,212-2, Δ9-THC, CBD, CP55,940, or rimonabant. From this, it is concluded that WIN55,212-2 selectively blocks GIRK1/2.
Collapse
Affiliation(s)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| |
Collapse
|
10
|
Li XL, Zhang B, Liu W, Sun MJ, Zhang YL, Liu H, Wang MX. Rapamycin Alleviates the Symptoms of Multiple Sclerosis in Experimental Autoimmune Encephalomyelitis (EAE) Through Mediating the TAM-TLRs-SOCS Pathway. Front Neurol 2020; 11:590884. [PMID: 33329339 PMCID: PMC7728797 DOI: 10.3389/fneur.2020.590884] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Our research aimed to find an immunomodulatory therapy for MS. An experimental autoimmune encephalomyelitis (EAE) mouse model of MS was established induced with the syntheticmyelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Fifty C57BL/6 mice were randomly divided into the Normal group, EAE group, and Rapamycin group (EAE mice treated with three different doses of rapamycin). Hematoxylin and eosin staining and Weil myelin staining were performed on the brain tissues of mice after 21 days post-immunization. The protein expression of Gas6, Tyro3, Axl, Mer in paraventricular tissues were analyzed by immunohistochemistry. The mRNA and protein expression of Gas6, Tyro3, Axl, Mer, SOCS1, SOCS3, Toll-like receptor (TLR) 3, and TLR4 were detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. An enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory factors IFN-γ and IL-17. Rapamycin treatment could ameliorate the behavior impairment in EAE mice induced by MOG35-55. The expression of Gas6, Tyro3, Axl, Mer, SOCS1, and SOCS3 were decreased in EAE mice at 21 days post-immunization, while the expression of Gas6, Tyro3, Axl, and Mer in rapamycin group was higher than that in EAE group. It was accompanied by an increase in anti-inflammatory proteins SOCS1 and SOCS3, a decrease in the inflammatory proteins TLR-3, TLR-4 and in the amount of IFN-γ, and IL-17. Rapamycin injection relieved the nerve function of and the loss of myelin sheath in the EAE mice, mainly through mediating the TAM-TLRs-SOCS signaling pathway to regulate natural immunity.
Collapse
Affiliation(s)
- Xiao-ling Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Meng-jiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-lan Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Man-xia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
A Critical Review of the Role of the Cannabinoid Compounds Δ 9-Tetrahydrocannabinol (Δ 9-THC) and Cannabidiol (CBD) and their Combination in Multiple Sclerosis Treatment. Molecules 2020; 25:molecules25214930. [PMID: 33113776 PMCID: PMC7663366 DOI: 10.3390/molecules25214930] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Many people with MS (pwMS) use unregulated cannabis or cannabis products to treat the symptoms associated with the disease. In line with this, Sativex, a synthetic combination of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) has been approved to treat symptoms of spasticity. In animals, CBD is effective in reducing the amounts of T-cell infiltrates in the spinal cord, suggesting CBD has anti-inflammatory properties. By doing this, CBD has shown to delay symptom onset in animal models of multiple sclerosis and slow disease progression. Importantly, combinations of CBD and Δ9-THC appear more effective in treating animal models of multiple sclerosis. While CBD reduces the amounts of cell infiltrates in the spinal cord, Δ9-THC reduces scores of spasticity. In human studies, the results are less encouraging and conflict with the findings in animals. Drugs which deliver a combination of Δ9-THC and CBD in a 1:1 ratio appear to be only moderately effective in reducing spasticity scores, but appear to be almost as effective as current front-line treatments and cause less severe side effects than other treatments, such as baclofen (a GABA-B receptor agonist) and tizanidine (an α2 adrenergic receptor agonist). The findings of the studies reviewed suggest that cannabinoids may help treat neuropathic pain in pwMS as an add-on therapy to already established pain treatments. It is important to note that treatment with cannabinoid compounds may cause significant cognitive dysfunction. Long term double-blind placebo studies are greatly needed to further our understanding of the role of cannabinoids in multiple sclerosis treatment.
Collapse
|
12
|
Lourenço DM, Ribeiro-Rodrigues L, Sebastião AM, Diógenes MJ, Xapelli S. Neural Stem Cells and Cannabinoids in the Spotlight as Potential Therapy for Epilepsy. Int J Mol Sci 2020; 21:E7309. [PMID: 33022963 PMCID: PMC7582633 DOI: 10.3390/ijms21197309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is one of the most common brain diseases worldwide, having a huge burden in society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy, continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis (AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an interesting candidate for the generation of new antiepileptic drugs. However, further studies and clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
Collapse
Affiliation(s)
- Diogo M. Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria J. Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (D.M.L.); (L.R.-R.); (A.M.S.); (M.J.D.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
13
|
Fitzpatrick JM, Minogue E, Curham L, Tyrrell H, Gavigan P, Hind W, Downer EJ. MyD88-dependent and -independent signalling via TLR3 and TLR4 are differentially modulated by Δ 9-tetrahydrocannabinol and cannabidiol in human macrophages. J Neuroimmunol 2020; 343:577217. [PMID: 32244040 DOI: 10.1016/j.jneuroim.2020.577217] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are sensors of pathogen-associated molecules that trigger inflammatory signalling in innate immune cells including macrophages. All TLRs, with the exception of TLR3, promote intracellular signalling via recruitment of the myeloid differentiation factor 88 (MyD88) adaptor, while TLR3 signals via Toll-Interleukin-1 Receptor (TIR)-domain-containing adaptor-inducing interferon (IFN)-β (TRIF) adaptor to induce MyD88-independent signalling. Furthermore, TLR4 can activate both MyD88-dependent and -independent signalling (via TRIF). The study aim was to decipher the impact of the highly purified plant-derived (phyto) cannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), when delivered in isolation and in combination (1:1), on MyD88-dependent and -independent signalling in macrophages. We employed the use of the viral dsRNA mimetic poly(I:C) and endotoxin lipopolysaccharide (LPS), to induce viral TLR3 and bacterial TLR4 signalling in human Tamm-Horsfall protein-1 (THP-1)-derived macrophages, respectively. TLR3/TLR4 stimulation promoted the activation of interferon (IFN) regulatory factor 3 (IRF3) and TLR4 promoted the activation of nuclear factor (NF)-κB signalling, with downstream production of the type I IFN-β, the chemokines CXCL10 and CXCL8, and cytokine TNF-α. THC and CBD (both at 10 μM) attenuated TLR3/4-induced IRF3 activation and induction of CXCL10/IFN-β, while both phytocannabinoids failed to impact TLR4-induced IκB-α degradation and TNF-α/CXCL8 expression. The role of CB1, CB2 and PPARγ receptors in mediating the effect of THC and CBD on MyD88-independent signalling was investigated. TLRs are attractive therapeutic targets given their role in inflammation and initiation of adaptive immunity, and data herein indicate that both CBD and THC preferentially modulate TLR3 and TLR4 signalling via MyD88-independent mechanisms in macrophages. This offers mechanistic insight into the role of phytocannabinoids in modulating cellular inflammation.
Collapse
Affiliation(s)
- John-Mark Fitzpatrick
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Eleanor Minogue
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Lucy Curham
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Harry Tyrrell
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Philip Gavigan
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - William Hind
- GW Research Ltd, Sovereign House, Vision Park, Histon, CB24 9BZ, United Kingdom
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Zheng C, Chen J, Chu F, Zhu J, Jin T. Inflammatory Role of TLR-MyD88 Signaling in Multiple Sclerosis. Front Mol Neurosci 2020; 12:314. [PMID: 31998072 PMCID: PMC6965019 DOI: 10.3389/fnmol.2019.00314] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a neuro-autoimmune and neurodegenerative disorder leading to chronic inflammation, demyelination, axonal, and neuronal loss in the central nervous system (CNS). Despite intense research efforts, the pathogenesis of MS still remains unclear. Toll-like receptors (TLRs) are a family of type I transmembrane receptors that play a crucial role in the innate immune response. Myeloid differentiation factor 88 (MyD88) is the adaptor of major TLRs. It has been widely considered that the TLR-MyD88 signaling pathway plays an important role in the occurrence and development of autoimmune disease. Data have revealed that the TLR-MyD88 signaling may be involved in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), an animal model for MS, by regulating the antigen presentation of dendritic cells, the integrity of blood-brain barrier (BBB), and the activation of T cells and B cells. Here, we summarize the role of TLRs and MyD88 in MS and discuss the possible therapies that are based on these molecules.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Majdi F, Taheri F, Salehi P, Motaghinejad M, Safari S. Cannabinoids Δ 9-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-κB signaling. Med Hypotheses 2019; 133:109371. [PMID: 31465975 DOI: 10.1016/j.mehy.2019.109371] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022]
Abstract
The neurodegeneration, neuro-inflammation and mitochondrial dysfunction which occur by methamphetamine (METH) abuse or administration are serious and motivation therapeutic approaches for inhibition of these types of neurodegeneration. As we know, METH through Toll-like receptors (TLRs), specially type 4, and NF-κB signaling pathway causes neuro-inflammation and mitochondrial dysfunction. Neuroprotective approach for management of METH-induced neurodegeneration, inflammation and mitochondrial dysfunction, through a novel neuroprotective agent is continuously being superior to any kind of other therapeutic strategy. Therefore, the clarification, introduction and development of efficacious novel neuroprotective agent are demanded. During recent years, using new neuroprotective agent with therapeutic probability for treatment of METH-induced neuro-inflammation and mitochondrial dysfunction has been astoundingly increased. Previous studies have stated the neuroprotective and anti-inflammatory roles ofcannabinoid derivate such as cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) in multiple neurodegenerative events and diseases. According to literature cannabinoid derivate, by inhibition of TLR4 and activation of NF-κB signaling pathway, exerts their anti-inflammatory and neuroprotective effects and cause mitochondrial biogenesis. Thus we hypothesized that by using cannabinoids in METH dependent subject it would provide neuroprotection against METH-induced neurodegeneration, neuro-inflammation and mitochondrial dysfunction and probably can manage sequels of METH-induced neurochemical abuses via modulation of TLR4/NF-κB signaling pathway. In this article, we tried to discuss our hypothesis regarding the possible role of CBD and Δ9-THC, as a potent neuroprotective and anti-inflammatory agents, in inhibition or treatment of METH-induced neurodegeneration, neuro-inflammation and mitochondrial dysfunction through its effects on TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fatemeh Majdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Fereshteh Taheri
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Salehi
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Research Center for Addiction and Risky Behaviors (ReCARB), Iran Psychiatric Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Mouro FM, Miranda-Lourenço C, Sebastião AM, Diógenes MJ. From Cannabinoids and Neurosteroids to Statins and the Ketogenic Diet: New Therapeutic Avenues in Rett Syndrome? Front Neurosci 2019; 13:680. [PMID: 31333401 PMCID: PMC6614559 DOI: 10.3389/fnins.2019.00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.
Collapse
Affiliation(s)
- Francisco Melo Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Rodrigues RS, Lourenço DM, Paulo SL, Mateus JM, Ferreira MF, Mouro FM, Moreira JB, Ribeiro FF, Sebastião AM, Xapelli S. Cannabinoid Actions on Neural Stem Cells: Implications for Pathophysiology. Molecules 2019; 24:E1350. [PMID: 30959794 PMCID: PMC6480122 DOI: 10.3390/molecules24071350] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
With the increase of life expectancy, neurodegenerative disorders are becoming not only a health but also a social burden worldwide. However, due to the multitude of pathophysiological disease states, current treatments fail to meet the desired outcomes. Therefore, there is a need for new therapeutic strategies focusing on more integrated, personalized and effective approaches. The prospect of using neural stem cells (NSC) as regenerative therapies is very promising, however several issues still need to be addressed. In particular, the potential actions of pharmacological agents used to modulate NSC activity are highly relevant. With the ongoing discussion of cannabinoid usage for medical purposes and reports drawing attention to the effects of cannabinoids on NSC regulation, there is an enormous, and yet, uncovered potential for cannabinoids as treatment options for several neurological disorders, specifically when combined with stem cell therapy. In this manuscript, we review in detail how cannabinoids act as potent regulators of NSC biology and their potential to modulate several neurogenic features in the context of pathophysiology.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Diogo M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Joana M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Miguel F Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
18
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Karoly HC, Ellingson JM, Hutchison KE. Interactions between TLR4 methylation and alcohol consumption on subjective responses to an alcohol infusion. Alcohol Alcohol 2018; 53:650-658. [PMID: 29982285 PMCID: PMC6203129 DOI: 10.1093/alcalc/agy046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/16/2023] Open
Abstract
AIMS Converging evidence has implicated perturbed inflammatory signaling in alcohol use disorders (AUDs), and both animal and human studies suggest that alcohol-induced inflammatory signaling is mediated by Toll-Like Receptor 4 (TLR4). We previously demonstrated that TLR4 is hypermethylated in subjects with AUD compared to control individuals. Examining the relationship between TLR4 methylation and subjective alcohol responses could shed light on the role of TLR4 in promoting AUDs, thereby highlighting its potential as a treatment target. SHORT SUMMARY Significant interactions were demonstrated between Toll-like Receptor 4 (TLR4) methylation and human alcohol consumption patterns, such that greater methylation was associated with decreased positive and negative self-reported arousal during an alcohol infusion among light-to-moderate drinkers, but increased self-reported positive arousal and physiological arousal (i.e. systolic blood pressure) among heavy drinkers. METHODS Latent growth models were used to examine the relationship between TLR4 methylation and subjective responses and physiological measures of arousal during an alcohol infusion across 222 drinkers. RESULTS We observed significant interactions of TLR4 methylation and alcohol use (drinks per week) on intercepts for self-report and physiological arousal measures. Specifically, light-to-moderate drinkers had positive associations between methylation and stimulation and tension (r's = 0.21-0.24), and heavy drinkers had negative associations (r's = -0.15 to -0.21). There were also significant interaction effects on changes in tension (β = 0.31, P < 0.01), systolic blood pressure (β = 0.74, P < 0.01) and marginal effects on stimulation (β = 0.15, P = 0.07) during the infusion, such that methylation was associated with decreased arousal among light-to-moderate drinkers (r's = -0.12 to -0.25) but stable or increased arousal among heavy drinkers (r's = 0.05-0.19). CONCLUSIONS Findings suggest that the relationship between TLR4 methylation and subjective and physiological arousal during acute alcohol intoxication depends upon on self-reported alcohol use. These data demonstrate the influence of TLR4 on subjective responses to alcohol, thereby supporting the need for further research on its potential as a pharmacological treatment target.
Collapse
Affiliation(s)
- Hollis C Karoly
- Department of Psychology and Neuroscience, University of Colorado Boulder, UCB 344, Boulder, CO, USA
| | - Jarrod M Ellingson
- Department of Psychology and Neuroscience, University of Colorado Boulder, UCB 344, Boulder, CO, USA
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, UCB 344, Boulder, CO, USA
| |
Collapse
|
20
|
Mouro FM, Ribeiro JA, Sebastião AM, Dawson N. Chronic, intermittent treatment with a cannabinoid receptor agonist impairs recognition memory and brain network functional connectivity. J Neurochem 2018; 147:71-83. [PMID: 29989183 PMCID: PMC6220860 DOI: 10.1111/jnc.14549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
Elucidating how cannabinoids affect brain function is instrumental for the development of therapeutic tools aiming to mitigate 'on target' side effects of cannabinoid-based therapies. A single treatment with the cannabinoid receptor agonist, WIN 55,212-2, disrupts recognition memory in mice. Here, we evaluate how prolonged, intermittent (30 days) exposure to WIN 55,212-2 (1 mg/kg) alters recognition memory and impacts on brain metabolism and functional connectivity. We show that chronic, intermittent treatment with WIN 55,212-2 disrupts recognition memory (Novel Object Recognition Test) without affecting locomotion and anxiety-like behaviour (Open Field and Elevated Plus Maze). Through 14 C-2-deoxyglucose functional brain imaging we show that chronic, intermittent WIN 55,212-2 exposure induces hypometabolism in the hippocampal dorsal subiculum and in the mediodorsal nucleus of the thalamus, two brain regions directly involved in recognition memory. In addition, WIN 55,212-2 exposure induces hypometabolism in the habenula with a contrasting hypermetabolism in the globus pallidus. Through the application of the Partial Least Squares Regression (PLSR) algorithm to the brain imaging data, we observed that prolonged WIN 55,212-2 administration alters functional connectivity in brain networks that underlie recognition memory, including that between the hippocampus and prefrontal cortex, the thalamus and prefrontal cortex, and between the hippocampus and the perirhinal cortex. In addition, our results support disturbed lateral habenula and serotonin system functional connectivity following WIN 55,212-2 exposure. Overall, this study provides new insight into the functional mechanisms underlying the impact of chronic cannabinoid exposure on memory and highlights the serotonin system as a particularly vulnerable target.
Collapse
Affiliation(s)
- Francisco M. Mouro
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Joaquim A. Ribeiro
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Ana M. Sebastião
- Faculdade de MedicinaInstituto de Farmacologia e NeurociênciasUniversidade de LisboaLisboaPortugal
- Faculdade de MedicinaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Neil Dawson
- Division of Biomedical and Life SciencesUniversity of LancasterLancashireUK
| |
Collapse
|
21
|
Traditional Uses of Cannabinoids and New Perspectives in the Treatment of Multiple Sclerosis. MEDICINES 2018; 5:medicines5030091. [PMID: 30111755 PMCID: PMC6164967 DOI: 10.3390/medicines5030091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022]
Abstract
Recent findings highlight the emerging role of the endocannabinoid system in the control of symptoms and disease progression in multiple sclerosis (MS). MS is a chronic, immune-mediated, demyelinating disorder of the central nervous system with no cure so far. It is widely reported in the literature that cannabinoids might be used to control MS symptoms and that they also might exert neuroprotective effects and slow down disease progression. This review aims to give an overview of the principal cannabinoids (synthetic and endogenous) used for the symptomatic amelioration of MS and their beneficial outcomes, providing new potentially possible perspectives for the treatment of this disease.
Collapse
|
22
|
Shi H, Hua X, Kong D, Stein D, Hua F. Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology 2018; 145:259-267. [PMID: 30075158 DOI: 10.1016/j.neuropharm.2018.07.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying secondary brain damage following traumatic brain injury (TBI) remain unclear. A great many studies have demonstrated that inflammatory cascades contribute to brain damage through the activation of immune/inflammatory responses, including the increased release of cytokines and chemokines, and the recruitment of leukocytes. The cells and tissues damaged by primary mechanical injury release a number of endogenous factors acting as damage-associated molecular patterns (DAMPs), which initiate and perpetuate noninfectious inflammatory responses through transduction signaling pathways. Toll-like receptors (TLRs) are a transmembrane receptor family that can recognize the specific DAMPs released from damaged cells and recruit a set of adaptors leading to the activation of downstream kinases and nuclear factors which regulate the expression of inflammatory genes. The activation of inflammatory responses mediated by TLR signaling is closely associated with brain tissue damage and neurological dysfunction following TBI. TLRs and their downstream protein kinases may be potential targets for the treatment of TBI. Modulation of TLR-mediated signaling may attenuate brain damage and improve TBI outcome. In this review, we briefly discuss the role of TLR-mediated signaling in TBI and the new treatments targeting TLR signaling. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Hongjuan Shi
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Xiaodong Hua
- Augusta University/University of Georgia Medical Partnership, Athens, GA, 30606, USA; Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Delian Kong
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Donald Stein
- Brain Research Laboratory, Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, 30032, USA
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China; Key Laboratory of Anesthesiology of Jiangsu Province, Xuzhou, 221002, China.
| |
Collapse
|
23
|
Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chem Biol Interact 2018; 293:77-88. [PMID: 30040916 DOI: 10.1016/j.cbi.2018.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
The psychoactive property of cannabinoids is well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by its negative physiological activities. This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. We further highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer's disease, multiple sclerosis, pain, inflammation, glaucoma and many others. Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments of utilizing cannabinoids as therapeutic agents.
Collapse
Affiliation(s)
- Nancy Maurya
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | | |
Collapse
|
24
|
Oláh A, Szekanecz Z, Bíró T. Targeting Cannabinoid Signaling in the Immune System: "High"-ly Exciting Questions, Possibilities, and Challenges. Front Immunol 2017; 8:1487. [PMID: 29176975 PMCID: PMC5686045 DOI: 10.3389/fimmu.2017.01487] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
It is well known that certain active ingredients of the plants of Cannabis genus, i.e., the "phytocannabinoids" [pCBs; e.g., (-)-trans-Δ9-tetrahydrocannabinol (THC), (-)-cannabidiol, etc.] can influence a wide array of biological processes, and the human body is able to produce endogenous analogs of these substances ["endocannabinoids" (eCB), e.g., arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol (2-AG), etc.]. These ligands, together with multiple receptors (e.g., CB1 and CB2 cannabinoid receptors, etc.), and a complex enzyme and transporter apparatus involved in the synthesis and degradation of the ligands constitute the endocannabinoid system (ECS), a recently emerging regulator of several physiological processes. The ECS is widely expressed in the human body, including several members of the innate and adaptive immune system, where eCBs, as well as several pCBs were shown to deeply influence immune functions thereby regulating inflammation, autoimmunity, antitumor, as well as antipathogen immune responses, etc. Based on this knowledge, many in vitro and in vivo studies aimed at exploiting the putative therapeutic potential of cannabinoid signaling in inflammation-accompanied diseases (e.g., multiple sclerosis) or in organ transplantation, and to dissect the complex immunological effects of medical and "recreational" marijuana consumption. Thus, the objective of the current article is (i) to summarize the most recent findings of the field; (ii) to highlight the putative therapeutic potential of targeting cannabinoid signaling; (iii) to identify open questions and key challenges; and (iv) to suggest promising future directions for cannabinoid-based drug development.
Collapse
Affiliation(s)
- Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Li H, Zhang Q, Jin X, Zou X, Wang Y, Hao D, Fu F, Jiao W, Zhang C, Lin H, Matsuzaki K, Zhao F. Dysifragilone A inhibits LPS‑induced RAW264.7 macrophage activation by blocking the p38 MAPK signaling pathway. Mol Med Rep 2017; 17:674-682. [PMID: 29115475 DOI: 10.3892/mmr.2017.7884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/22/2017] [Indexed: 11/06/2022] Open
Abstract
Dysifragilone A, a sesquiterpene aminoquinone based on a rearranged avarone skeleton, has been previously isolated and identified from the South China Sea sponge Dysidea fragilis. In the present study, anti‑inflammatory activity and the underlying molecular mechanism of dysifragilone A were studied using the classical inflammation model of lipopolysaccharide (LPS)‑activated RAW264.7 macrophage cells and an MTT assay, Griess method, ELISA and western blotting were used. The results revealed that dysifragilone A significantly reduced the release of inflammatory mediators and inflammatory cytokines in activated RAW264.7 cells, including nitric oxide (NO), prostaglandin E2,(PGE2) and interleukin‑6 (IL‑6). The protein expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase‑2 (COX‑2), and the enzymatic activity of iNOS and COX‑2 were also inhibited by dysifragilone A in a dose dependent manner. Further mechanistic investigations suggested that the anti‑inflammatory activity of dysifragilone A results from the suppression of p38 mitogen‑activated protein kinase (MAPK) activation in LPS‑activated macrophages; however, this was not associated with inhibition of the extracellular signal‑regulated kinase (ERK) or c‑Jun N‑terminal kinase (JNK) signaling pathways. Therefore, dysifragilone A and similar compounds may be anti‑inflammatories that have potential to be used in the clinic.
Collapse
Affiliation(s)
- Huixiang Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Qian Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Xin Jin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Xiaowen Zou
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Yuexuan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Dexiang Hao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Fenghua Fu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Weihua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Cuixia Zhang
- Pharmaceutical Preparation Section, Xing Fu Hospital of Zhi Fu, Yantai, Shandong 264000, P.R. China
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Keiichi Matsuzaki
- School of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba 274‑8555, Japan
| | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| |
Collapse
|
26
|
Occurrence of Multiple Sclerosis After Drug Exposure: Insights From Evidence Mapping. Drug Saf 2017; 40:823-834. [DOI: 10.1007/s40264-017-0551-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G. Role of N-Arachidonoyl-Serotonin (AA-5-HT) in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation. Front Mol Neurosci 2017; 10:152. [PMID: 28611585 PMCID: PMC5447686 DOI: 10.3389/fnmol.2017.00152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], receptors (CB1 and CB2), enzymes such as [fatty acid amide hydrolase (FAHH) and monoacylglycerol lipase (MAGL)], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1), N-arachidonoyl-serotonin (AA-5-HT) in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p.) injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W) and increased slow wave sleep (SWS) as well as rapid eye movement sleep (REMS). Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT) whereas the levels of adenosine (AD) were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD) or modafinil (MOD) during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD). The injection of CBD or MOD increased alertness during sleep rebound period after TSD. However, AA-5-HT blocked this effect by allowing animals to display an enhancement in sleep across sleep rebound period. Overall, our findings provide evidence that AA-5-HT is an important modulator of sleep, sleep homeostasis and neurotransmitter contents.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación en Envejecimiento, División Ciencias de la Salud, Universidad Anáhuac MayabMérida, Mexico.,Grupo de Investigación Desarrollos Tecnológicos para la Salud, División de Ingeniería y Ciencias Exactas, Universidad Anáhuac MayabMérida, Mexico.,Intercontinental Neuroscience Research Group
| | - Vincenzo Di Marzo
- Intercontinental Neuroscience Research Group.,Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Sergio Machado
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Postgraduate Program, Salgado de Oliveira UniversityRio de Janeiro, Brazil
| | - Nuno B Rocha
- Intercontinental Neuroscience Research Group.,Faculty of Health Sciences, Polytechnic Institute of PortoPorto, Portugal
| | - André B Veras
- Intercontinental Neuroscience Research Group.,Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,Dom Bosco Catholic UniversityRio de Janeiro, Brazil
| | - Geraldo A M Neto
- Intercontinental Neuroscience Research Group.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Henning Budde
- Intercontinental Neuroscience Research Group.,Faculty of Human Sciences, Medical School HamburgHamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering Reykjavik UniversityReykjavik, Iceland.,Department of Health, Physical and Social Education, Lithuanian Sports UniversityKaunas, Lithuania
| | - Oscar Arias-Carrión
- Intercontinental Neuroscience Research Group.,Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General "Dr. Manuel Gea González"Ciudad de México, Mexico
| | - Gloria Arankowsky-Sandoval
- Intercontinental Neuroscience Research Group.,Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de YucatánMérida, Mexico
| |
Collapse
|
28
|
Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA, Sebastião AM. Chronic and acute adenosine A 2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB 1 receptor activation. Neuropharmacology 2017; 117:316-327. [PMID: 28235548 DOI: 10.1016/j.neuropharm.2017.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/17/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022]
Abstract
Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/administration & dosage
- Animals
- Benzoxazines/pharmacology
- Calcium Channel Blockers/pharmacology
- Cannabinoid Receptor Agonists/toxicity
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory Disorders/chemically induced
- Memory Disorders/metabolism
- Memory Disorders/prevention & control
- Memory, Episodic
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Purines/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Adenosine A2A/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Triazoles/administration & dosage
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Younis Baqi
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Christa E Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
29
|
Dev K, Irving A. Lipid sensing G protein-coupled receptors in the CNS. Neuropharmacology 2017; 113:595-596. [DOI: 10.1016/j.neuropharm.2016.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 11/26/2022]
|
30
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|