1
|
Winkelman JW, Berkowski JA, DelRosso LM, Koo BB, Scharf MT, Sharon D, Zak RS, Kazmi U, Falck-Ytter Y, Shelgikar AV, Trotti LM, Walters AS. Treatment of restless legs syndrome and periodic limb movement disorder: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 2025; 21:137-152. [PMID: 39324694 PMCID: PMC11701286 DOI: 10.5664/jcsm.11390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION This guideline establishes clinical practice recommendations for treatment of restless legs syndrome (RLS) and periodic limb movement disorder (PLMD) in adults and pediatric patients. METHODS The American Academy of Sleep Medicine (AASM) commissioned a task force of experts in sleep medicine to develop recommendations and assign strengths based on a systematic review of the literature and an assessment of the evidence using the grading of recommendations assessment, development, and evaluation methodology. The task force provided a summary of the relevant literature and the certainty of evidence, the balance of benefits and harms, patient values and preferences, and resource use considerations that support the recommendations. The AASM Board of Directors approved the final recommendations. GOOD PRACTICE STATEMENT The following good practice statement is based on expert consensus, and its implementation is necessary for the appropriate and effective management of patients with RLS. 1. In all patients with clinically significant RLS, clinicians should regularly test serum iron studies including ferritin and transferrin saturation (calculated from iron and total iron binding capacity). Testing should ideally be administered in the morning avoiding all iron-containing supplements and foods at least 24 hours prior to blood draw. Analysis of iron studies greatly influences the decision to use oral or intravenous (IV) iron treatment. Consensus guidelines, which have not been empirically tested, suggest that supplementation of iron in adults with RLS should be instituted with oral or IV iron if serum ferritin ≤ 75 ng/mL or transferrin saturation < 20%, and only with IV iron if serum ferritin is between 75 and 100 ng/mL. In children, supplementation of iron should be instituted for serum ferritin < 50 ng/mL with oral or IV formulations. These iron supplementation guidelines are different than for the general population. 2. The first step in the management of RLS should be addressing exacerbating factors, such as alcohol, caffeine, antihistaminergic, serotonergic, antidopaminergic medications, and untreated obstructive sleep apnea. 3. RLS is common in pregnancy; prescribers should consider the pregnancy-specific safety profile of each treatment being considered. RECOMMENDATIONS The following recommendations are intended as a guide for clinicians in choosing a specific treatment for RLS and PLMD in adults and children. Each recommendation statement is assigned a strength ("strong" or "conditional"). A "strong" recommendation (ie, "We recommend…") is one that clinicians should follow under most circumstances. The recommendations listed below are ranked in the order of strength of recommendations and grouped by class of treatments within each PICO (Patient, Intervention, Comparator, Outcome) question. Some recommendations include remarks that provide additional context to guide clinicians with implementation of this recommendation. ADULTS WITH RLS 1. In adults with RLS, the AASM recommends the use of gabapentin enacarbil over no gabapentin enacarbil (strong recommendation, moderate certainty of evidence). 2. In adults with RLS, the AASM recommends the use of gabapentin over no gabapentin (strong recommendation, moderate certainty of evidence). 3. In adults with RLS, the AASM recommends the use of pregabalin over no pregabalin (strong recommendation, moderate certainty of evidence). 4. In adults with RLS, the AASM recommends the use of IV ferric carboxymaltose over no IV ferric carboxymaltose in patients with appropriate iron status (see good practice statement for iron parameters) (strong recommendation, moderate certainty of evidence). 5. In adults with RLS, the AASM suggests the use of IV low molecular weight iron dextran over no IV low molecular weight iron dextran in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, very low certainty of evidence). 6. In adults with RLS, the AASM suggests the use of IV ferumoxytol over no IV ferumoxytol in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, very low certainty of evidence). 7. In adults with RLS, the AASM suggests the use of ferrous sulfate over no ferrous sulfate in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, moderate certainty of evidence). 8. In adults with RLS, the AASM suggests the use of dipyridamole over no dipyridamole (conditional recommendation, low certainty of evidence). 9. In adults with RLS, the AASM suggests the use of extended-release oxycodone and other opioids over no opioids (conditional recommendation, moderate certainty of evidence). 10. In adults with RLS, the AASM suggests the use of bilateral high-frequency peroneal nerve stimulation over no peroneal nerve stimulation (conditional recommendation, moderate certainty of evidence). 11. In adults with RLS, the AASM suggests against the standard use of levodopa (conditional recommendation, very low certainty of evidence). Remarks: levodopa may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation). 12. In adults with RLS, the AASM suggests against the standard use of pramipexole (conditional recommendation, moderate certainty of evidence). Remarks: pramipexole may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation). 13. In adults with RLS, the AASM suggests against the standard use of transdermal rotigotine (conditional recommendation, low certainty of evidence). Remarks: transdermal rotigotine may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation). 14. In adults with RLS, the AASM suggests against the standard use of ropinirole (conditional recommendation, moderate certainty of evidence). Remarks: ropinirole may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation). 15. In adults with RLS, the AASM suggests against the use of bupropion for the treatment of RLS (conditional recommendation, moderate certainty of evidence). 16. In adults with RLS, the AASM suggests against the use of carbamazepine (conditional recommendation, low certainty of evidence). 17. In adults with RLS, the AASM suggests against the use of clonazepam (conditional recommendation, very low certainty of evidence). 18. In adults with RLS, the AASM suggests against the use of valerian (conditional recommendation, very low certainty of evidence). 19. In adults with RLS, the AASM suggests against the use of valproic acid (conditional recommendation, low certainty of evidence). 20. In adults with RLS, the AASM recommends against the use of cabergoline (strong recommendation, moderate certainty of evidence). SPECIAL ADULT POPULATIONS WITH RLS 21. In adults with RLS and end-stage renal disease (ESRD), the AASM suggests the use of gabapentin over no gabapentin (conditional recommendation, very low certainty of evidence). 22. In adults with RLS and ESRD, the AASM suggests the use of IV iron sucrose over no IV iron sucrose in patients with ferritin < 200 ng/mL and transferrin saturation < 20% (conditional recommendation, moderate certainty of evidence). 23. In adults with RLS and ESRD, the AASM suggests the use of vitamin C over no vitamin C (conditional recommendation, low certainty of evidence). 24. In adults with RLS and ESRD, the AASM suggests against the standard use of levodopa (conditional recommendation, low certainty of evidence). Remarks: levodopa may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation). 25. In adults with RLS and ESRD, the AASM suggests against the standard use of rotigotine (conditional recommendation, very low certainty of evidence). Remarks: rotigotine may be used to treat RLS in patients who place a higher value on the reduction of restless legs symptoms with short-term use and a lower value on adverse effects with long-term use (particularly augmentation). ADULTS WITH PLMD 26. In adults with PLMD, the AASM suggests against the use of triazolam (conditional recommendation, very low certainty of evidence). 27. In adults with PLMD, the AASM suggests against the use of valproic acid (conditional recommendation, very low certainty of evidence). CHILDREN WITH RLS 28. In children with RLS, the AASM suggests the use of ferrous sulfate over no ferrous sulfate in patients with appropriate iron status (see good practice statement for iron parameters) (conditional recommendation, very low certainty of evidence). CITATION Winkelman JW, Berkowski JA, DelRosso LM, et al. Treatment of restless legs syndrome and periodic limb movement disorder: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2025;21(1):137-152.
Collapse
Affiliation(s)
- John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | | | - Brian B. Koo
- Department of Neurology, Yale University, New Haven, Connecticut
- Connecticut Veterans Affairs Healthcare System, West Haven, Connecticut
| | - Matthew T. Scharf
- Comprehensive Sleep Center, Division of Pulmonary and Critical Care, Departments of Medicine and Neurology, Rutgers/Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Denise Sharon
- Keck Medical Center of University of Southern California Sleep Disorder Center, Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- Adult and Children Sleep Disorders Center, Pomona Valley Hospital and Medical Center, Claremont, California
| | - Rochelle S. Zak
- Sleep Disorders Center, University of California, San Francisco, California
| | - Uzma Kazmi
- American Academy of Sleep Medicine, Darien, Illinois
| | - Yngve Falck-Ytter
- Case Western Reserve University, Cleveland, Ohio
- Department of Gastroenterology and Hepatology, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Anita V. Shelgikar
- University of Michigan Sleep Disorders Center, University of Michigan, Ann Arbor, Michigan
| | - Lynn Marie Trotti
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Arthur S. Walters
- Department of Neurology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
2
|
Lee HG, Kwon S, Goto H, Fujimoto M, Kainuma M, Cho KH. Successful treatment of restless legs syndrome accompanied by headaches for 30 years with herbal prescriptions containing Paeoniae Radix: A case report. Explore (NY) 2024; 20:103003. [PMID: 38763856 DOI: 10.1016/j.explore.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Restless legs syndrome (RLS) is a neurological disorder that causes unpleasant symptoms in the legs when resting, which are relieved by movement. Pharmacotherapy is the standard treatment. However, current treatment provides only symptomatic relief and may result in adverse effects with long-term use. Treatment protocols using herbal medicines have emerged to compensate for this limitation. CASE PRESENTATION A 70-year-old Asian woman visited our hospital with worsening headaches that had persisted for 30 years. Her headaches were aggravated by night-time lower-extremity discomfort. The patient was diagnosed with RLS based on the 2012 Revised International Restless Leg Syndrome Study Group Diagnostic Criteria (IRIS). The patient was prescribed herbal medicines, Shihogyeji-tang, Gyejibokryeong-hwan, and Jakyakgamcho-tang, all of which contain Paeoniae Radix. Fourteen days after starting herbal medicine treatment, the IRIS score decreased from 30 to 18. The patient experienced less leg discomfort. Moreover, her sleep time increased, and her headaches resolved. After 28 days of herbal treatment, the IRIS score decreased to 9. Importantly, the patient reported no sleep disturbance or headaches. Subsequently, conventional medications were discontinued. The patient remained stable (IRIS score: 9-10). Herbal treatment was discontinued on day 163. At the last follow-up, (day 364), the patient has not reported any symptom recurrence. CONCLUSIONS We described a female patient with a 30-year history of RLS symptoms and related sleep disturbances that induced chronic uncontrolled headaches, who experienced improvements shortly after using herbal medicines containing Paeoniae Radix. Conventional medications were discontinued and the patient had no recurrence of symptoms. Considering these, herbal medicines containing Paeoniae Radix may be a suitable alternative treatment for RLS and its related symptoms.
Collapse
Affiliation(s)
- Han-Gyul Lee
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea.
| | | | - Makoto Fujimoto
- Department of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 9300194, Japan
| | - Mosaburo Kainuma
- Department of Japanese Oriental Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 9300194, Japan
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Ferré S, Winkelman JW, García-Borreguero D, Belcher AM, Chang JH, Earley CJ. Restless legs syndrome, neuroleptic-induced akathisia, and opioid-withdrawal restlessness: shared neuronal mechanisms? Sleep 2024; 47:zsad273. [PMID: 37864837 PMCID: PMC10925952 DOI: 10.1093/sleep/zsad273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/23/2023] Open
Abstract
Restlessness is a core symptom underlying restless legs syndrome (RLS), neuroleptic-induced akathisia, and opioid withdrawal. These three conditions also share other clinical components suggesting some overlap in their pathophysiology. Recent prospective studies demonstrate the frequent incidence of RLS-like symptoms during opioid withdrawal and supervised prescription opioid tapering. Based on the therapeutic role of µ-opioid receptor (MOR) agonists in the three clinical conditions and recent preclinical experimental data in rodents, we provide a coherent and unifying neurobiological basis for the restlessness observed in these three clinical syndromes and propose a heuristic hypothesis of a key role of the specific striatal neurons that express MORs in akathisia/restlessness.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - John W Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Annabelle M Belcher
- Division of Addiction, Research, and Treatment, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Joy H Chang
- Substance Abuse Consultation Service, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Christopher J Earley
- Department of Neurology and Sleep Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Chenini S, Barateau L, Dauvilliers Y. Restless legs syndrome: From clinic to personalized medicine. Rev Neurol (Paris) 2023; 179:703-714. [PMID: 37689536 DOI: 10.1016/j.neurol.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Restless legs syndrome (RLS) is a common neurological sensorimotor disorder that impairs sleep, mood and quality of life. RLS is defined by an urge to move the legs at rest that increases in the evening and at night, and is frequently associated with metabolic and cardiovascular diseases. Symptoms frequency, age at RLS onset, severity, familial history and consequences of RLS vary widely between patients. A genetic susceptibility, iron deficiency, dopamine deregulation, and possible hypo-adenosinergic state may play a role in the pathophysiology of RLS. Polysomnographic recordings found often periodic leg movements during sleep and wakefulness in patients with RLS. RLS can be classified as primary or comorbid with major diseases: iron deficiency, renal, neurological, rheumatological and lung diseases. First-line treatments are low-dose dopamine agonists, and alpha-2-delta ligands depending on the clinical context, and second/third line opiates for pharmacoresistant forms of RLS. Augmentation syndrome is a serious complication of dopamine agonists and should be prevented by using the recommended low dose. Despite an increase in knowledge, RLS is still underdiagnosed, poorly recognized, resulting in substantial individual health burden and socioeconomic coast, and education is urgently needed to increase awareness of this disabling disorder.
Collapse
Affiliation(s)
- S Chenini
- National Reference Centre for Orphan Diseases Narcolepsy and Rare Hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, University of Montpellier, Montpellier, France; Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.
| | - L Barateau
- National Reference Centre for Orphan Diseases Narcolepsy and Rare Hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, University of Montpellier, Montpellier, France; Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Y Dauvilliers
- National Reference Centre for Orphan Diseases Narcolepsy and Rare Hypersomnias, Sleep Unit, Department of Neurology, CHU Montpellier, University of Montpellier, Montpellier, France; Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
5
|
Woods S, Basco J, Clemens S. Effects of iron-deficient diet on sleep onset and spinal reflexes in a rodent model of Restless Legs Syndrome. Front Neurol 2023; 14:1160028. [PMID: 37273717 PMCID: PMC10234126 DOI: 10.3389/fneur.2023.1160028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Restless Legs Syndrome (RLS) is a common sensorimotor and a sleep disorder that affects 2.5-10% of the European and North American populations. RLS is also often associated with periodic leg movements during sleep (PLMS). Despite ample evidence of genetic contributions, the underlying mechanisms that elicit the sensory and motor symptoms remain unidentified. Clinically, RLS has been correlated with an altered central iron metabolism, particularly in the brain. While several animal models have been developed to determine the outcome of an altered iron homeostasis on brain function, the potential role of an altered iron homeostasis on sleep and sensorimotor circuits has not yet been investigated. Here, we utilize a mouse model to assess the effects of an iron-deficient (ID) but non-anemic state on sleep time and episodes, and sensorimotor reflexes in male and female mice. We found that animals on the ID diet displayed an increased expression of the transferrin receptor in the spinal cord, confirming the results of previous studies that focused only on the impact of ID in the brain. We also demonstrate that the ID diet reduced hematocrit levels compared to controls but not into the anemic range, and that animals on the ID diet exhibited RLS-like symptoms with regard to sleep onset and spinal cord reflex excitability. Interestingly, the effects on the spinal cord were stronger in females than in males, and the ID diet-induced behaviors were rescued by the return of the animals to the control diet. Taken together, these results demonstrate that diet-induced ID changes to CNS function are both inducible and reversible, and that they mimic the sleep and sensorimotor RLS symptoms experienced in the clinic. We therefore propose replacing the commonly used phrase "brain iron deficiency" (BID) hypothesis in the RLS research field with the term "iron deficiency in the central nervous system" (ID-CNS), to include possible effects of altered iron levels on spinal cord function.
Collapse
|
6
|
Ferré S, Sarasola LI, Quiroz C, Ciruela F. Presynaptic adenosine receptor heteromers as key modulators of glutamatergic and dopaminergic neurotransmission in the striatum. Neuropharmacology 2023; 223:109329. [PMID: 36375695 DOI: 10.1016/j.neuropharm.2022.109329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A1 and A2A receptors (A1Rs and A2ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons. A1Rs and A2ARs are colocalized in the cortico-striatal glutamatergic terminals, where they form A1R-A2AR and A2AR-cannabinoid CB1 receptor (CB1R) heteromers. We then evaluate recent findings on the unique properties of A1R-A2AR and A2AR-CB1R heteromers, which depend on their different quaternary tetrameric structure. These properties involve different allosteric mechanisms in the two receptor heteromers that provide fine-tune modulation of adenosine and endocannabinoid-mediated striatal glutamate release. Finally, we evaluate the evidence supporting the use of different heteromers containing striatal adenosine receptors as targets for drug development for neuropsychiatric disorders, such as Parkinson's disease and restless legs syndrome, based on the ability or inability of the A2AR to demonstrate constitutive activity in the different heteromers, and the ability of some A2AR ligands to act preferentially as neutral antagonists or inverse agonists, or to have preferential affinity for a specific A2AR heteromer.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA.
| | - Laura I Sarasola
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
7
|
Silvani A, Ghorayeb I, Manconi M, Li Y, Clemens S. Putative Animal Models of Restless Legs Syndrome: A Systematic Review and Evaluation of Their Face and Construct Validity. Neurotherapeutics 2023; 20:154-178. [PMID: 36536233 PMCID: PMC10119375 DOI: 10.1007/s13311-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder that severely affects sleep. It is characterized by an urge to move the legs, which is often accompanied by periodic limb movements during sleep. RLS has a high prevalence in the population and is usually a life-long condition. While its origins remain unclear, RLS is initially highly responsive to treatment with dopaminergic agonists that target D2-like receptors, in particular D2 and D3, but the long-term response is often unsatisfactory. Over the years, several putative animal models for RLS have been developed, mainly based on the epidemiological and neurochemical link with iron deficiency, treatment efficacy of D2-like dopaminergic agonists, or genome-wide association studies that identified risk factors in the patient population. Here, we present the first systematic review of putative animal models of RLS, provide information about their face and construct validity, and report their role in deciphering the underlying pathophysiological mechanisms that may cause or contribute to RLS. We propose that identifying the causal links between genetic risk factors, altered organ functions, and changes to molecular pathways in neural circuitry will eventually lead to more effective new treatment options that bypass the side effects of the currently used therapeutics in RLS, especially for long-term therapy.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Ravenna Campus, Ravenna, Italy
| | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Université de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, CNRS, Bordeaux, France
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, EOC, Ospedale Civico, Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yuqing Li
- Department of Neurology, College of Medicine, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
8
|
Earley CJ, Jones BC, Ferré S. Brain-iron deficiency models of restless legs syndrome. Exp Neurol 2022; 356:114158. [PMID: 35779614 PMCID: PMC9357217 DOI: 10.1016/j.expneurol.2022.114158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/04/2022]
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder for which two main pathological elements are fairly well accepted: Brain iron deficiency (BID) and an altered dopaminergic system. The ability to better understand the causal and consequential factors related to these two pathological elements, would hopefully lead to the development of better therapeutic strategies for treating, if not curing, this disease. The current understanding of the relationship between these two elements is that BID leads to some alterations in neurotransmitters and subsequent changes in the dopaminergic system. Therefore, rodent models based on diet-induced BID, provide a biological substrate to understand the consequences of BID on dopaminergic pathway and on alternative pathways that may be involved. In this review, we present the current research on dopaminergic changes found in RLS subjects and compare that to what is seen in the BID rodent model to provide a validation of the BID rodent model. We also demonstrate the ability of the BID model to predict changes in other neurotransmitter systems and how that has led to new treatment options. Finally, we will present arguments for the utility of recombinant inbred mouse strains that demonstrate natural variation in brain iron, to explore the genetic basis of altered brain iron homeostasis as a model to understand why in idiopathic RLS there can exist a BID despite normal peripheral iron store. This review is the first to draw on 25 years of human and basic research into the pathophysiology of RLS to provide strong supportive data as to the validity of BID model as an important translational model of the disease. As we will demonstrate here, not only does the BID model closely and accurately mimic what we see in the dopaminergic system of RLS, it is the first model to identify alternative systems from which new treatments have recently been developed.
Collapse
Affiliation(s)
- Christopher J Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institutes of Health/National Institute on Drug Abuse, Baltimore, MD, USA
| |
Collapse
|
9
|
Salminen AV, Clemens S, García-Borreguero D, Ghorayeb I, Li Y, Manconi M, Ondo W, Rye D, Siegel JM, Silvani A, Winkelman JW, Allen RP, Ferré S. Consensus guidelines on the construct validity of rodent models of restless legs syndrome. Dis Model Mech 2022; 15:dmm049615. [PMID: 35946581 PMCID: PMC9393041 DOI: 10.1242/dmm.049615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2022] [Indexed: 12/16/2022] Open
Abstract
Our understanding of the causes and natural course of restless legs syndrome (RLS) is incomplete. The lack of objective diagnostic biomarkers remains a challenge for clinical research and for the development of valid animal models. As a task force of preclinical and clinical scientists, we have previously defined face validity parameters for rodent models of RLS. In this article, we establish new guidelines for the construct validity of RLS rodent models. To do so, we first determined and agreed on the risk, and triggering factors and pathophysiological mechanisms that influence RLS expressivity. We then selected 20 items considered to have sufficient support in the literature, which we grouped by sex and genetic factors, iron-related mechanisms, electrophysiological mechanisms, dopaminergic mechanisms, exposure to medications active in the central nervous system, and others. These factors and biological mechanisms were then translated into rodent bioequivalents deemed to be most appropriate for a rodent model of RLS. We also identified parameters by which to assess and quantify these bioequivalents. Investigating these factors, both individually and in combination, will help to identify their specific roles in the expression of rodent RLS-like phenotypes, which should provide significant translational implications for the diagnosis and treatment of RLS.
Collapse
Affiliation(s)
- Aaro V. Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, 33076 Bordeaux, France
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Regional Hospital of Lugano, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
| | - William Ondo
- Houston Methodist Hospital Neurological Institute, Weill Cornell Medical School, Houston, TX 77070, USA
| | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, USA
- Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences Alma Mater Studiorum, Università di Bologna, 48121 Ravenna Campus, Ravenna, Italy
| | - John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard P. Allen
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
10
|
Khachatryan SG, Ferri R, Fulda S, Garcia‐Borreguero D, Manconi M, Muntean M, Stefani A. Restless legs syndrome: Over 50 years of European contribution. J Sleep Res 2022; 31:e13632. [PMID: 35808955 PMCID: PMC9542244 DOI: 10.1111/jsr.13632] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Restless legs syndrome (RLS) is a sensorimotor neurological disorder characterised by an urge to move the limbs with a circadian pattern (occurring in the evening/at night), more prominent at rest, and relieved with movements. RLS is one of the most prevalent sleep disorders, occurring in 5%-10% of the European population. Thomas Willis first described RLS clinical cases already in the 17th century, and Karl-Axel Ekbom described the disease as a modern clinical entity in the 20th century. Despite variable severity, RLS can markedly affect sleep (partly through the presence of periodic leg movements) and quality of life, with a relevant socio-economic impact. Thus, its recognition and treatment are essential. However, screening methods present limitations and should be improved. Moreover, available RLS treatment options albeit providing sustained relief to many patients are limited in number. Additionally, the development of augmentation with dopamine agonists represents a major treatment problem. A better understanding of RLS pathomechanisms can bring to light novel treatment possibilities. With emerging new avenues of research in pharmacology, imaging, genetics, and animal models of RLS, this is an interesting and constantly growing field of research. This review will update the reader on the current state of RLS clinical practice and research, with a special focus on the contribution of European researchers.
Collapse
Affiliation(s)
- Samson G. Khachatryan
- Department of Neurology and NeurosurgeryNational Institute of HealthYerevanArmenia
- Sleep Disorders CenterSomnus Neurology ClinicYerevanArmenia
| | | | - Stephany Fulda
- Sleep Medicine UnitNeurocenter of Southern Switzerland, Ospedale CivicoLuganoSwitzerland
| | | | - Mauro Manconi
- Sleep Medicine UnitNeurocenter of Southern Switzerland, Ospedale CivicoLuganoSwitzerland
- Department of NeurologyUniversity HospitalInselspitalBernSwitzerland
| | - Maria‐Lucia Muntean
- Center for Parkinson's Disease and Movement DisordersParacelsus‐Elena KlinikKasselGermany
| | - Ambra Stefani
- Sleep Disorders Clinic, Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
11
|
Rodrigues MS, Ferreira SG, Quiroz C, Earley CJ, García-Borreguero D, Cunha RA, Ciruela F, Köfalvi A, Ferré S. Brain Iron Deficiency Changes the Stoichiometry of Adenosine Receptor Subtypes in Cortico-Striatal Terminals: Implications for Restless Legs Syndrome. Molecules 2022; 27:1489. [PMID: 35268590 PMCID: PMC8911604 DOI: 10.3390/molecules27051489] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/01/2023] Open
Abstract
Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients. It was also found that BID in rodents leads to changes in the adenosinergic system, a downregulation of the inhibitory adenosine A1 receptors (A1Rs) and upregulation of the excitatory adenosine A2A receptors (A2ARs). It was then hypothesized, but not proven, that the BID-induced increased sensitivity of cortico-striatal glutamatergic terminals could be induced by a change in A1R/A2AR stoichiometry in favor of A2ARs. Here, we used a newly developed FACS-based synaptometric analysis to compare the relative abundance on A1Rs and A2ARs in cortico-striatal and thalamo-striatal glutamatergic terminals (labeled with vesicular glutamate transporters VGLUT1 and VGLUT2, respectively) of control and BID rats. It could be demonstrated that BID (determined by measuring transferrin receptor density in the brain) is associated with a selective decrease in the A1R/A2AR ratio in VGLUT1 positive-striatal terminals.
Collapse
Affiliation(s)
- Matilde S. Rodrigues
- CNC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.R.); (S.G.F.); (R.A.C.); (A.K.)
| | - Samira G. Ferreira
- CNC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.R.); (S.G.F.); (R.A.C.); (A.K.)
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA;
| | | | | | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.R.); (S.G.F.); (R.A.C.); (A.K.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Belvitge, Idibell, 08907 L’Hospitalet de Llobregat, Spain
| | - Attila Köfalvi
- CNC-Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.R.); (S.G.F.); (R.A.C.); (A.K.)
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Baltimore, MD 21224, USA;
| |
Collapse
|
12
|
Ferré S, Belcher AM, Bonaventura J, Quiroz C, Sánchez-Soto M, Casadó-Anguera V, Cai NS, Moreno E, Boateng CA, Keck TM, Florán B, Earley CJ, Ciruela F, Casadó V, Rubinstein M, Volkow ND. Functional and pharmacological role of the dopamine D 4 receptor and its polymorphic variants. Front Endocrinol (Lausanne) 2022; 13:1014678. [PMID: 36267569 PMCID: PMC9578002 DOI: 10.3389/fendo.2022.1014678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The functional and pharmacological significance of the dopamine D4 receptor (D4R) has remained the least well understood of all the dopamine receptor subtypes. Even more enigmatic has been the role of the very prevalent human DRD4 gene polymorphisms in the region that encodes the third intracellular loop of the receptor. The most common polymorphisms encode a D4R with 4 or 7 repeats of a proline-rich sequence of 16 amino acids (D4.4R and D4.7R). DRD4 polymorphisms have been associated with individual differences linked to impulse control-related neuropsychiatric disorders, with the most consistent associations established between the gene encoding D4.7R and attention-deficit hyperactivity disorder (ADHD) and substance use disorders. The function of D4R and its polymorphic variants is being revealed by addressing the role of receptor heteromerization and the relatively avidity of norepinephrine for D4R. We review the evidence conveying a significant and differential role of D4.4R and D4.7R in the dopaminergic and noradrenergic modulation of the frontal cortico-striatal pyramidal neuron, with implications for the moderation of constructs of impulsivity as personality traits. This differential role depends on their ability to confer different properties to adrenergic α2A receptor (α2AR)-D4R heteromers and dopamine D2 receptor (D2R)-D4R heteromers, preferentially localized in the perisomatic region of the frontal cortical pyramidal neuron and its striatal terminals, respectively. We also review the evidence to support the D4R as a therapeutic target for ADHD and other impulse-control disorders, as well as for restless legs syndrome.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
- *Correspondence: Sergi Ferré,
| | - Annabelle M. Belcher
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Marta Sánchez-Soto
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Comfort A. Boateng
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point, NC, United States
| | - Thomas M. Keck
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Benjamín Florán
- Departament of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christopher J. Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
13
|
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder characterized by an urge to move that appears during rest or is exacerbated by rest, that occurs in the evening or night and that disappears during movement or is improved by movement. Symptoms vary considerably in age at onset, frequency and severity, with severe forms affecting sleep, quality of life and mood. Patients with RLS often display periodic leg movements during sleep or resting wakefulness. RLS is considered to be a complex condition in which predisposing genetic factors, environmental factors and comorbidities contribute to the expression of the disorder. RLS occurs alone or with comorbidities, for example, iron deficiency and kidney disease, but also with cardiovascular diseases, diabetes mellitus and neurological, rheumatological and respiratory disorders. The pathophysiology is still unclear, with the involvement of brain iron deficiency, dysfunction in the dopaminergic and nociceptive systems and altered adenosine and glutamatergic pathways as hypotheses being investigated. RLS is poorly recognized by physicians and it is accordingly often incorrectly diagnosed and managed. Treatment guidelines recommend initiation of therapy with low doses of dopamine agonists or α2δ ligands in severe forms. Although dopaminergic treatment is initially highly effective, its long-term use can result in a serious worsening of symptoms known as augmentation. Other treatments include opioids and iron preparations.
Collapse
|
14
|
Seo Y, Jin C, Jang BH, Jeon JP, Lee YS, Yang SB, Jung WS, Moon SK, Cho KH, Kwon S. Successful treatment of restless leg syndrome with the traditional herbal medicines Dangguijakyak-san and Shihogyeji-tang: A case report (CARE-compliant). Medicine (Baltimore) 2021; 100:e26800. [PMID: 34397832 PMCID: PMC8341247 DOI: 10.1097/md.0000000000026800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Dopamine replacement is currently the standard treatment for restless leg syndrome (RLS); however, various adverse effects are associated with long-term therapy, and the benefits disappear upon discontinuation. To overcome these limitations, interest in traditional East Asian medicine has increased. PATIENT CONCERNS A 72-year-old Asian woman originally admitted for an intracerebral hemorrhage presented with complaints of an unpleasant sensation throughout the body that appeared at night. DIAGNOSES The patient was diagnosed with chronic persistent RLS based on the 2012 Revised International Restless Leg Syndrome Study Group Diagnostic Criteria. INTERVENTIONS The patient was treated with extracts of the traditional herbal medicines Dangguijakyak-san (DS) and Shihogyeji-tang (ST). After 47 days of therapy, all herbal medicines were discontinued, and symptoms had not returned by the last follow-up 244 days after the initial treatment. OUTCOMES One week after initiating herbal treatment with DS and ST, the RLS symptoms began to improve, and the total hours of sleep had increased from 2 to 9 hours by day 21, with a Korean version of the international restless legs scale score of 11 points. On day 36, ST was discontinued, given the continued improvement of symptoms. On day 47, symptoms had disappeared (Korean version of the international restless legs scale score: 0), and sleep disturbances caused by RLS had completely resolved. After day 47, DS was also discontinued. There were no adverse effects associated with the administration of DS and ST, and the symptoms had not recurred by the last follow-up on day 244. LESSONS In this case, RLS related symptoms, which had been present for approximately 60 years, were improved using only the traditional herbal medicines DS and ST (without dopamine replacement), and no symptoms recurred for 244 days. This case suggests that if replacement therapy is difficult or not desired, herbal medicinal therapies may be an effective alternative. This also suggests that the effect of herbal medicine on RLS might be semi-permanent. Further investigations, including clinical trials, are needed to confirm these effects.
Collapse
Affiliation(s)
- Yuna Seo
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chul Jin
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bo-Hyoung Jang
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ye-Seul Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Seung-Bo Yang
- Department of Korean Internal Medicine, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Garcia-Borreguero D, Garcia-Malo C, Granizo JJ, Ferré S. A Randomized, Placebo-Controlled Crossover Study with Dipyridamole for Restless Legs Syndrome. Mov Disord 2021; 36:2387-2392. [PMID: 34137476 PMCID: PMC8530834 DOI: 10.1002/mds.28668] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/25/2023] Open
Abstract
Background New pharmacological targets are needed for restless legs syndrome. Preclinical data suggest that a hypoadenosinergic state plays an important pathogenetic role. Objective The objective of this study was to determine whether inhibitors of equilibrative nucleoside transporters, for example, dipyridamole, could provide effective symptomatic treatment. Methods A 2‐week double‐blind, placebo‐controlled crossover study assessed the efficacy of dipyridamole (possible up‐titration to 300 mg) in untreated patients with idiopathic restless legs syndrome. Multiple suggested immobilization tests and polysomnography were performed after each treatment phase. Severity was assessed weekly using the International Restless Legs Rating Scale, Clinical Global Impression, and the Medical Outcomes Study Sleep scale. The primary end point was therapeutic response. Results Twenty‐eight of 29 patients recruited were included. International Restless Legs Rating Scale scores improved from a mean ± standard deviation of 24.1 ± 3.1 at baseline to 11.1 ± 2.3 at the end of week 2, versus 23.7 ± 3.4 to 18.7 ± 3.2 under placebo (P < 0.001). Clinical Global Impression, Medical Outcomes Study Sleep, and Multiple Suggested Immobilization Test scores all improved (P < 0.001). The mean effective dose of dipyridamole was 217.8 ± 33.1 mg/d. Sleep variables improved. The mean periodic leg movement index at the end of treatment with dipyridamole was 8.2 ± 3.5 versus. 28.1 ± 6.7 under placebo. Side effects (dipyridamole vs placebo) included abdominal distension (18% vs. 7%), dizziness (10.7% vs 7.1%), diarrhea, and asthenia (each 7.1% vs 3.6%). Conclusions Dipyridamole has significant therapeutic effects on both sensory and motor symptoms of restless legs syndrome and on sleep. Our findings confirm the efficacy of dipyridamole in restless legs syndrome predicted from preclinical studies and support a key role of adenosine in restless legs syndrome. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
| | | | - Juan José Granizo
- Department of Clinical Epidemiology, Hospital Universitario Infanta Cristina, Instituto de Investigaciones Sanitarias Puerta de Hierro, Madrid, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Ferré S, Guitart X, Quiroz C, Rea W, García-Malo C, Garcia-Borreguero D, Allen RP, Earley CJ. Akathisia and Restless Legs Syndrome: Solving the Dopaminergic Paradox. Sleep Med Clin 2021; 16:249-267. [PMID: 33985651 DOI: 10.1016/j.jsmc.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Akathisia is an urgent need to move that is associated with treatment with dopamine receptor blocking agents (DRBAs) and with restless legs syndrome (RLS). The pathogenetic mechanism of akathisia has not been resolved. This article proposes that it involves an increased presynaptic dopaminergic transmission in the ventral striatum and concomitant strong activation of postsynaptic dopamine D1 receptors, which form complexes (heteromers) with dopamine D3 and adenosine A1 receptors. It also proposes that in DRBA-induced akathisia, increased dopamine release depends on inactivation of autoreceptors, whereas in RLS it depends on a brain iron deficiency-induced down-regulation of striatal presynaptic A1 receptors.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Xavier Guitart
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - César Quiroz
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - William Rea
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Building, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Celia García-Malo
- Sleep Research Institute, Paseo de la Habana 151, Madrid 28036, Spain
| | | | - Richard P Allen
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Christopher J Earley
- Department of Neurology, Johns Hopkins University, Johns Hopkins Bayview Medical Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
17
|
Abstract
Restless legs syndrome (RLS) is a chronic sensorimotor disorder characterized by an urge to move the legs. This urge is often accompanied by pain or other uncomfortable and unpleasant sensations, it either occurs or worsens during rest, particularly in the evening and/or at night, and temporarily improves with activity. Affecting nearly 3% of the North American and European populations in its moderate-to-severe form, RLS has a considerable negative impact on the quality of life, and sleep and is associated with significant morbidity. Although new developments have deepened our understanding of the disorder, yet, the corresponding pathophysiologic features that underlie the sensorimotor presentation are still not fully understood. Usually, symptoms respond well to dopamine agonists (DA), anticonvulsants, or opiates, used either alone or in any combination, but still, a subset of patients remains refractory to medical therapy and serious side effects such as augmentation and impulse control disorder may occur in patients with RLS under DA. Convincing treatment alternative are lacking but recently patients' spontaneous reports of a remarkable and total remission of RLS symptoms following cannabis use has been reported. The antinociceptive effect of marijuana has been documented in many painful neurological conditions and the potential benefit of cannabis use in patients with refractory RLS should, therefore, be questioned by robust clinical trials. Here, we review basic knowledge of RLS and the putative mechanisms by which cannabis may exert its analgesic effects.
Collapse
|
18
|
ADORA2A variation and adenosine A 1 receptor availability in the human brain with a focus on anxiety-related brain regions: modulation by ADORA1 variation. Transl Psychiatry 2020; 10:406. [PMID: 33235193 PMCID: PMC7686488 DOI: 10.1038/s41398-020-01085-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/11/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Adenosine, its interacting A1 and A2A receptors, and particularly the variant rs5751876 in the A2A gene ADORA2A have been shown to modulate anxiety, arousal, and sleep. In a pilot positron emission tomography (PET) study in healthy male subjects, we suggested an effect of rs5751876 on in vivo brain A1 receptor (A1AR) availability. As female sex and adenosinergic/dopaminergic interaction partners might have an impact on this rs5751876 effect on A1AR availability, we aimed to (1) further investigate the pilot male-based findings in an independent, newly recruited cohort including women and (2) analyze potential modulation of this rs5751876 effect by additional adenosinergic/dopaminergic gene variation. Healthy volunteers (32/11 males/females) underwent phenotypic characterization including self-reported sleep and A1AR-specific quantitative PET. Rs5751876 and 31 gene variants of adenosine A1, A2A, A2B, and A3 receptors, adenosine deaminase, and dopamine D2 receptor were genotyped. Multivariate analysis revealed an rs5751876 effect on A1AR availability (P = 0.047), post hoc confirmed in 30 of 31 brain regions (false discovery rate (FDR) corrected P values < 0.05), but statistically stronger in anxiety-related regions (e.g., amygdala, hippocampus). Additional effects of ADORA1 rs1874142 were identified; under its influence rs5751876 and rs5751876 × sleep had strengthened effects on A1AR availability (Pboth < 0.02; post hoc FDR-corrected Ps < 0.05 for 29/30 regions, respectively). Our results support the relationship between rs5751876 and A1AR availability. Additional impact of rs1874142, together with rs5751876 and sleep, might be involved in regulating arousal and thus the development of mental disorders like anxiety disorders. The interplay of further detected suggestive ADORA2A × DRD2 interaction, however, necessitates larger future samples more comparable to magnetic resonance imaging (MRI)-based samples.
Collapse
|
19
|
Romero-Peralta S, Cano-Pumarega I, García-Borreguero D. Emerging Concepts of the Pathophysiology and Adverse Outcomes of Restless Legs Syndrome. Chest 2020; 158:1218-1229. [PMID: 32247713 DOI: 10.1016/j.chest.2020.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/15/2020] [Accepted: 03/13/2020] [Indexed: 01/05/2023] Open
Abstract
Restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED), is a common neurological disorder affecting up to 5% to 10% of the population, but it remains an underdiagnosed condition. RLS/WED is characterized by uncomfortable sensations, mainly in the legs, which appear during inactivity and worsen in the evening or at night. The prevalence of RLS/WED and periodic leg movements (PLMs) is increased in patients with sleep-disordered breathing, particularly in those with OSA, the most common sleep disorder encountered in sleep centers. New advances in the pathophysiology of RLS/WED have shown important implications for various genetic markers, neurotransmitter dysfunction, and iron deficiency. A practical approach to RLS/WED management includes an accurate diagnosis, the identification of reversible contributing factors, and the use of nonpharmacological therapies, including iron substitution (oral or IV) therapy. Many pharmacological agents are effective for the treatment of RLS/WED. Until recently, the first-line treatment of RLS/WED consisted of low-dose dopamine agonists (DA). However, given the fact that DAs cause high rates of augmentation of symptoms, international guidelines recommend that whenever possible the initial treatment of choice should be an α2δ ligand, and avoidance of dopaminergic agents unless absolutely necessary. If necessary, the lowest effective dose should be used for only the shortest possible time. The symptoms of RLS/WED can disrupt the quality of sleep as well as the quality of life. IV iron therapy may be considered in patients with refractory RLS. A better understanding of RLS/WED pathophysiology will allow patients to receive tailored therapy, resulting in an improved quality of life.
Collapse
Affiliation(s)
- Sofía Romero-Peralta
- Sleep Research Institute, Madrid; Sleep Unit, Respiratory Department, Hospital Universitario Guadalajara, Guadalajara
| | - Irene Cano-Pumarega
- Sleep Research Institute, Madrid; Sleep Unit, Respiratory Department, Hospital Universitario Ramón y, Madrid, Spain
| | | |
Collapse
|
20
|
Köfalvi A, Moreno E, Cordomí A, Cai NS, Fernández-Dueñas V, Ferreira SG, Guixà-González R, Sánchez-Soto M, Yano H, Casadó-Anguera V, Cunha RA, Sebastião AM, Ciruela F, Pardo L, Casadó V, Ferré S. Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biol 2020; 18:9. [PMID: 31973708 PMCID: PMC6979073 DOI: 10.1186/s12915-020-0739-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
Collapse
Affiliation(s)
- Attila Köfalvi
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ramón Guixà-González
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marta Sánchez-Soto
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Hideaki Yano
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain. .,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain.
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
21
|
Ferré S, Ciruela F. Functional and Neuroprotective Role of Striatal Adenosine A 2A Receptor Heterotetramers. J Caffeine Adenosine Res 2019; 9:89-97. [PMID: 31559390 PMCID: PMC6761580 DOI: 10.1089/caff.2019.0008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the striatum, adenosine A2A receptors (A2AR) are mainly expressed within the soma and dendrites of the striatopallidal neuron. A predominant proportion of these striatal postsynaptic A2AR form part of the macromolecular complexes that include A2AR-dopamine D2 receptor (D2R) heteromers, Golf and Gi/o proteins, and the effector adenylyl cyclase (AC), subtype AC5. The A2AR-D2R heteromers have a tetrameric structure, constituted by A2AR and D2R homomers. By means of reciprocal antagonistic allosteric interactions and antagonistic interactions at the effector level between adenosine and dopamine, the A2AR-D2R heterotetramer-AC5 complex acts an integrative molecular device, which determines a switch between the adenosine-facilitated activation and the dopamine-facilitated inhibition of the striatopallidal neuron. Striatal adenosine also plays an important presynaptic modulatory role, driving the function of corticostriatal terminals. This control is mediated by adenosine A1 receptors (A1R) and A2AR, which establish intermolecular interactions forming A1R-A2AR heterotetramers. Here, we review the functional role of both presynaptic and postsynaptic striatal A2AR heterotetramers as well as their possible neuroprotective role. We hypothesize that alterations in the homomer/heteromer stoichiometry (i.e., increase or decrease in the proportion of A2AR forming homomers or heteromers) are pathogenetically involved in neurological disorders, specifically in Parkinson's disease and restless legs syndrome.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine, IDIBELL, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Lyu S, DeAndrade MP, Mueller S, Oksche A, Walters AS, Li Y. Hyperactivity, dopaminergic abnormalities, iron deficiency and anemia in an in vivo opioid receptors knockout mouse: Implications for the restless legs syndrome. Behav Brain Res 2019; 374:112123. [PMID: 31376441 DOI: 10.1016/j.bbr.2019.112123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Previous studies have uncovered a potential role of the opioid system in iron hemostasis and dopamine metabolism. Abnormalities in both of these systems have been noted in human RLS. Autopsy studies of human RLS have shown an endogenous opioid deficiency in the thalamus. Opioids, particularly prolonged-release oxycodone/naloxone, have been approved in Europe to be a second-line therapy for severe restless legs syndrome (RLS). To study the role of opioid receptors in the pathogenesis of RLS, we used a triple knockout (KO) mouse strain that lack mu, delta, and kappa opioid receptors and explored the behavioral and biochemical parameters relevant to RLS. The triple KO mice showed hyperactivity and a trend of increased probability of waking during the rest period (day) akin to that in human RLS (night). Surprisingly, triple KO mice also exhibit decreased serum iron concentration, evidence of anemia, a significant dysfunction in dopamine metabolism akin to that noted in human RLS, as well as an increased latency in response to thermal stimuli. To our knowledge, this is the first study to demonstrate that the endogenous opioid system may play a role in iron metabolism and subsequently in the pathogenesis of anemia. It is also the first study showing that opioid receptors are involved in the production of motor restlessness with a circadian predominance. Our findings support the role of endogenous opioids in the pathogenesis of RLS, and the triple KO mice can be used to understand the relationship between iron deficiency, anemia, dopaminergic dysfunction, and RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Mueller
- Mundipharma Research GmbH & Co. KG, Höhenstraße 10, Limburg, Germany
| | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK; Rudolf-Buchheim-Institut für Pharmakologie, University of Giessen, Giessen, Germany
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
D3 and D1 receptors: The Yin and Yang in the treatment of restless legs syndrome with dopaminergics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:79-100. [PMID: 31229178 DOI: 10.1016/bs.apha.2019.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dopaminergic treatments targeting the D3 receptor subtype to reduce the symptoms of RLS show substantial initial clinical benefits but fail to maintain their efficacy over time. Sensorimotor circuits in the spinal cord are the gateway for the sensory processing of the symptoms and critical for the associated leg movements that relieve the symptoms and the periodic limb movements that often develop during sleep. There is a high preponderance of the inhibitory D3 receptor in the sensory-processing areas of the spinal cord (dorsal horn), whereas the motor areas in the ventral horn more strongly express the excitatory D1 receptor subtype. D3 and D1 receptors can form functional heteromeric ensembles that influence each other. In the spinal cord, long-term treatment with D3 receptor agonists is associated with the upregulation of the D1 receptor subtype and block of D1 receptor function at this stage can restore the D3 receptor effect. Alternate scenarios for a role of dopamine involve a role for the D5 receptor in regulating motor excitability and for the D4 receptor subtype in controlling D3-like effects. A model emerges that proposes that the behavioral changes in RLS, while responsive to D3 receptor agonists, may be ultimately be the result of unmasked increased D1-like receptor activities.
Collapse
|
24
|
Restless legs syndrome: Clinical changes in nervous system excitability at the spinal cord level. Sleep Med Rev 2019; 47:9-17. [PMID: 31212170 DOI: 10.1016/j.smrv.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/30/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
Restless legs syndrome (RLS) is a complex multifactorial disorder whose aetiology has yet to be fully elucidated. Some of the features of RLS, such as processing of sensations and activation of movement, may result from a dysfunction in spinal processing giving rise to a state of spinal hyperexcitability. In the current article we review studies investigating spinal excitability in RLS patients looking specifically at electrophysiological studies of spinal activity, sensory evaluations, and spinal reflex studies. Increased spinal excitability has been shown in RLS patients based on the combined data from electrophysiological studies. Results from studies assessing sensory evaluations in RLS patients show enhanced spinal processing of nociceptive inputs possibly due to central sensitisation. However, not all sensory modalities demonstrate an increase in sensitivity. An increase in nervous system excitability would result in an increase in reflex responses in RLS patients however the data from reflex analyses in RLS patients has failed to consistently show this expected result. Overall changes to RLS spinal excitability have been demonstrated though these changes might be heterogeneous as not all afferent input appears to be affected in the same manner. There may be phase-dependent and modality-dependent alterations in spinal excitability suggesting that the theory of absolute spinal hyperexcitability in RLS patients' needs to be reconsidered.
Collapse
|
25
|
Paeoniae Radix-containing herbal medicine for patients with restless legs syndrome: A systematic review and meta-analysis. Complement Ther Clin Pract 2019; 35:329-341. [DOI: 10.1016/j.ctcp.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022]
|
26
|
Wanner V, Garcia Malo C, Romero S, Cano-Pumarega I, García-Borreguero D. Non-dopaminergic vs. dopaminergic treatment options in restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:187-205. [PMID: 31229171 DOI: 10.1016/bs.apha.2019.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two types of drugs have been extensively investigated for the treatment of restless legs syndrome (RLS)/Willis-Ekbom disease (WED): dopamine agonists and α2δ ligands to the α2δ subunit of calcium channels. Comparative studies show that both classes of drugs are similarly effective in treating RLS symptoms over the short- and long-term. While dopamine agonists are more effective in treating periodic limb movements (PLMs), α2δ ligands are more effective in consolidating sleep. However, given the fact that dopamine agonists cause high rates of augmentation of symptoms, recent international guidelines recommend that whenever possible the initial treatment of choice should be an α2δ ligand. In fact, the most effective preventive strategy involves not using dopaminergic agents unless absolutely necessary. Indeed, should dopaminergic treatment be needed to handle the symptoms effectively, then it is recommended that the dopaminergic load be reduced by using the lowest effective dose for the shortest possible period of time. However, it must be taken into account that the only α2δ ligand approved for RLS/WED is gabapentin enacarbil, which is not yet available in Europe. Furthermore, recent studies have also reported on the efficacy of opioids as a second-line treatment of RLS/WED, following treatment failure with dopamine agonists. Recent guidelines have taken these new data into account and highlight that a low dose of an opioid (prolonged-release oxycodone or methadone) may be considered in patients with very severe augmentation of symptoms. Alternative non-dopaminergic treatment concepts based on glutamatergic and adenosinergic mechanisms are currently in development, and are likely to provide encouraging therapeutic alternatives.
Collapse
|
27
|
Affiliation(s)
- Sergi Ferré
- Editor in Chief of the Journal of Caffeine and Adenosine Research
- Integrative Neurobiology Section, National Institute on Drug Abuse, IRP, NIH, DHHS, Baltimore, Maryland
| |
Collapse
|
28
|
Cortés A, Casadó-Anguera V, Moreno E, Casadó V. The heterotetrameric structure of the adenosine A 1-dopamine D 1 receptor complex: Pharmacological implication for restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:37-78. [PMID: 31229177 DOI: 10.1016/bs.apha.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dopaminergic and purinergic signaling play a pivotal role in neurological diseases associated with motor symptoms, including Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, Huntington disease, Restless Legs Syndrome (RLS), spinal cord injury (SCI), and ataxias. Extracellular dopamine and adenosine exert their functions interacting with specific dopamine (DR) or adenosine (AR) receptors, respectively, expressed on the surface of target cells. These receptors are members of the family A of G protein-coupled receptors (GPCRs), which is the largest protein superfamily in mammalian genomes. GPCRs are target of about 40% of all current marketed drugs, highlighting their importance in clinical medicine. The striatum receives the densest dopamine innervations and contains the highest density of dopamine receptors. The modulatory role of adenosine on dopaminergic transmission depends largely on the existence of antagonistic interactions mediated by specific subtypes of DRs and ARs, the so-called A2AR-D2R and A1R-D1R interactions. Due to the dopamine/adenosine antagonism in the CNS, it was proposed that ARs and DRs could form heteromers in the neuronal cell surface. Therefore, adenosine can affect dopaminergic signaling through receptor-receptor interactions and by modulations in their shared intracellular pathways in the striatum and spinal cord. In this work we describe the allosteric modulations between GPCR protomers, focusing in those of adenosine and dopamine within the A1R-D1R heteromeric complex, which is involved in RLS. We also propose that the knowledge about the intricate allosteric interactions within the A1R-D1R heterotetramer, may facilitate the treatment of motor alterations, not only when the dopamine pathway is hyperactivated (RLS, chorea, etc.) but also when motor function is decreased (SCI, aging, PD, etc.).
Collapse
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
29
|
Ferré S, Quiroz C, Rea W, Guitart X, García-Borreguero D. Adenosine mechanisms and hypersensitive corticostriatal terminals in restless legs syndrome. Rationale for the use of inhibitors of adenosine transport. PHARMACOLOGY OF RESTLESS LEGS SYNDROME (RLS) 2019; 84:3-19. [DOI: 10.1016/bs.apha.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Zucconi M, Galbiati A, Rinaldi F, Casoni F, Ferini-Strambi L. An update on the treatment of Restless Legs Syndrome/Willis-Ekbom Disease: prospects and challenges. Expert Rev Neurother 2018; 18:705-713. [PMID: 30095315 DOI: 10.1080/14737175.2018.1510773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Restless Legs Syndrome/Willis-Ekbom Disease (RLS/WED) is a sleep disorder characterized by an urge to move the legs, frequently associated or triggered by unpleasant sensations in the lower limbs that affects approximately 2.5% of adults. Therapy and management of RLS/WED require long-term interventions, since the typical manifestation of this disorder is chronic. Areas covered: In this review, we provide an update regarding the treatment of RLS/WED with particular attention to future challenges for its management. We reviewed a large variety of treatments studied in clinical trials and supported by the most updated guidelines. Alongside with first-line interventions other pharmacological options including opioids, benzodiazepines, iron therapy, and newly studied drugs are discussed. Furthermore, due to the occurrence of augmentation and worsening of symptoms we also reviewed the development of non-pharmacologic alternatives. Expert commentary: The management of RLS/WED is a challenge because of different long-term issues. Several complications, such as loss of the therapeutic effect of dopaminergic or non-dopaminergic agents and augmentation, are still unsolved concerns. However, the development of new drugs acting on adenosinergic and glutamatergic neurotransmission seems promising. Randomized controlled trials are needed in order to recognize effectiveness of new drugs or non-pharmacological treatment strategies.
Collapse
Affiliation(s)
- Marco Zucconi
- a Department of Clinical Neurosciences, Neurology - Sleep Disorders Center , IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Andrea Galbiati
- a Department of Clinical Neurosciences, Neurology - Sleep Disorders Center , IRCCS San Raffaele Scientific Institute , Milan , Italy.,b Faculty of Psychology , "Vita-Salute" San Raffaele University , Milan , Italy
| | - Fabrizio Rinaldi
- a Department of Clinical Neurosciences, Neurology - Sleep Disorders Center , IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Francesca Casoni
- a Department of Clinical Neurosciences, Neurology - Sleep Disorders Center , IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Luigi Ferini-Strambi
- a Department of Clinical Neurosciences, Neurology - Sleep Disorders Center , IRCCS San Raffaele Scientific Institute , Milan , Italy.,b Faculty of Psychology , "Vita-Salute" San Raffaele University , Milan , Italy
| |
Collapse
|
31
|
Ferré S, García-Borreguero D, Allen RP, Earley CJ. New Insights into the Neurobiology of Restless Legs Syndrome. Neuroscientist 2018; 25:113-125. [PMID: 30047288 DOI: 10.1177/1073858418791763] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder, whose basic components include a sensory experience, akathisia, and a sleep-related motor sign, periodic leg movements during sleep (PLMS), both associated with an enhancement of the individual's arousal state. The present review attempts to integrate the major clinical and experimental neurobiological findings into a heuristic pathogenetic model. The model also integrates the recent findings on RLS genetics indicating that RLS has aspects of a genetically moderated neurodevelopmental disorder involving mainly the cortico-striatal-thalamic-cortical circuits. Brain iron deficiency (BID) remains the key initial pathobiological factor and relates to alterations of iron acquisition by the brain, also moderated by genetic factors. Experimental evidence indicates that BID leads to a hyperdopaminergic and hyperglutamatergic states that determine the dysfunction of cortico-striatal-thalamic-cortical circuits in genetically vulnerable individuals. However, the enhanced arousal mechanisms critical to RLS are better explained by functional changes of the ascending arousal systems. Recent experimental and clinical studies suggest that a BID-induced hypoadenosinergic state provides the link for a putative unified pathophysiological mechanism for sensorimotor signs of RLS and the enhanced arousal state.
Collapse
Affiliation(s)
- Sergi Ferré
- 1 National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Richard P Allen
- 3 Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
32
|
Bollu PC, Yelam A, Thakkar MM. Sleep Medicine: Restless Legs Syndrome. MISSOURI MEDICINE 2018; 115:380-387. [PMID: 30228773 PMCID: PMC6140269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Restless Legs Syndrome is a highly prevalent sensorimotor disorder characterized by urge to move the legs due to discomfort that primarily happens in the evening or at nights. Although the exact pathophysiology remains unclear, brain iron deficiency and altered dopaminergic function appears to play an important role in the pathogenesis of this condition. This disorder affects women more frequently and is associated with significant morbidity.
Collapse
Affiliation(s)
- Pradeep C Bollu
- Pradeep C. Bollu, MD, Anudeep Yelam, MD and Mahesh Thakkar, PhD are in the Department of Neurology, University of Missouri-Columbia
| | - Anudeep Yelam
- Pradeep C. Bollu, MD, Anudeep Yelam, MD and Mahesh Thakkar, PhD are in the Department of Neurology, University of Missouri-Columbia
| | - Mahesh M Thakkar
- Pradeep C. Bollu, MD, Anudeep Yelam, MD and Mahesh Thakkar, PhD are in the Department of Neurology, University of Missouri-Columbia
| |
Collapse
|
33
|
Rivera-Oliver M, Moreno E, Álvarez-Bagnarol Y, Ayala-Santiago C, Cruz-Reyes N, Molina-Castro GC, Clemens S, Canela EI, Ferré S, Casadó V, Díaz-Ríos M. Adenosine A 1-Dopamine D 1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron. Mol Neurobiol 2018; 56:797-811. [PMID: 29797183 DOI: 10.1007/s12035-018-1120-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A1-dopamine D1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D1 receptor-mediated signaling. A1-D1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.
Collapse
Affiliation(s)
- Marla Rivera-Oliver
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Yocasta Álvarez-Bagnarol
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Christian Ayala-Santiago
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Nicole Cruz-Reyes
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Gian Carlo Molina-Castro
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Enric I Canela
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| |
Collapse
|
34
|
Garcia-Borreguero D, Guitart X, Garcia Malo C, Cano-Pumarega I, Granizo JJ, Ferré S. Treatment of restless legs syndrome/Willis-Ekbom disease with the non-selective ENT1/ENT2 inhibitor dipyridamole: testing the adenosine hypothesis. Sleep Med 2018; 45:94-97. [DOI: 10.1016/j.sleep.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/15/2017] [Accepted: 02/14/2018] [Indexed: 01/20/2023]
|
35
|
Oliveira-Giacomelli Á, Naaldijk Y, Sardá-Arroyo L, Gonçalves MCB, Corrêa-Velloso J, Pillat MM, de Souza HDN, Ulrich H. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy. Front Pharmacol 2018; 9:325. [PMID: 29692728 PMCID: PMC5902708 DOI: 10.3389/fphar.2018.00325] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
Collapse
Affiliation(s)
| | - Yahaira Naaldijk
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Laura Sardá-Arroyo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Maria C. B. Gonçalves
- Department of Neurology and Neuroscience, Medical School, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Micheli M. Pillat
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Héllio D. N. de Souza
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Nuermaimaiti M, Oyama G, Kasemsuk C, Hattori N. Istradefylline for Restless Legs Syndrome Associated with Parkinson's Disease. Tremor Other Hyperkinet Mov (N Y) 2018; 8:521. [PMID: 29423337 PMCID: PMC5803507 DOI: 10.7916/d86h5r1h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - Genko Oyama
- Department of Neurology, Juntendo University, Tokyo, Japan,*To whom correspondence should be addressed. E-mail:
| | - Chayut Kasemsuk
- Department of Neurology, Juntendo University, Tokyo, Japan,Department of Neurology, Prasat Neurological Institute, Bangkok, Thailand
| | | |
Collapse
|
37
|
Ferré S, Quiroz C, Guitart X, Rea W, Seyedian A, Moreno E, Casadó-Anguera V, Díaz-Ríos M, Casadó V, Clemens S, Allen RP, Earley CJ, García-Borreguero D. Pivotal Role of Adenosine Neurotransmission in Restless Legs Syndrome. Front Neurosci 2018; 11:722. [PMID: 29358902 PMCID: PMC5766678 DOI: 10.3389/fnins.2017.00722] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 11/13/2022] Open
Abstract
The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID) is well-recognized as a main initial pathophysiological mechanism of RLS. BID in rodents have provided a pathogenetic model of RLS that recapitulates the biochemical alterations of the dopaminergic system of RLS, although without PLMS-like motor abnormalities. On the other hand, BID in rodents reproduces the circadian sleep architecture of RLS, indicating the model could provide clues for the hyperglutamatergic state in RLS. We recently showed that BID in rodents is associated with changes in adenosinergic transmission, with downregulation of adenosine A1 receptors (A1R) as the most sensitive biochemical finding. It was hypothesized that A1R downregulation leads to hypersensitive striatal glutamatergic terminals and facilitation of striatal dopamine release. Hypersensitivity of striatal glutamatergic terminals was demonstrated by an optogenetic-microdialysis approach in the rodent with BID, indicating that it could represent a main pathogenetic factor that leads to PLMS in RLS. In fact, the dopaminergic agonists pramipexole and ropinirole and the α2δ ligand gabapentin, used in the initial symptomatic treatment of RLS, completely counteracted optogenetically-induced glutamate release from both normal and BID-induced hypersensitive corticostriatal glutamatergic terminals. It is a main tenet of this essay that, in RLS, a single alteration in the adenosinergic system, downregulation of A1R, disrupts the adenosine-dopamine-glutamate balance uniquely controlled by adenosine and dopamine receptor heteromers in the striatum and also the A1R-mediated inhibitory control of glutamatergic neurotransmission in the cortex and other non-striatal brain areas, which altogether determine both PLMS and hyperarousal. Since A1R agonists would be associated with severe cardiovascular effects, it was hypothesized that inhibitors of nucleoside equilibrative transporters, such as dipyridamole, by increasing the tonic A1R activation mediated by endogenous adenosine, could represent a new alternative therapeutic strategy for RLS. In fact, preliminary clinical data indicate that dipyridamole can significantly improve the symptomatology of RLS.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Arta Seyedian
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Richard P Allen
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Christopher J Earley
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
38
|
Yepes G, Guitart X, Rea W, Newman AH, Allen RP, Earley CJ, Quiroz C, Ferré S. Targeting hypersensitive corticostriatal terminals in restless legs syndrome. Ann Neurol 2017; 82:951-960. [PMID: 29171915 DOI: 10.1002/ana.25104] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The first aim was to demonstrate a previously hypothesized increased sensitivity of corticostriatal glutamatergic terminals in the rodent with brain iron deficiency (BID), a pathogenetic model of restless legs syndrome (RLS). The second aim was to determine whether these putative hypersensitive terminals could constitute a significant target for drugs effective in RLS, including dopamine agonists (pramipexole and ropinirole) and α2 δ ligands (gabapentin). METHODS A recently introduced in vivo optogenetic-microdialysis approach was used, which allows the measurement of the extracellular concentration of glutamate upon local light-induced stimulation of corticostriatal glutamatergic terminals. The method also allows analysis of the effect of local perfusion of compounds within the same area being sampled for glutamate. RESULTS BID rats showed hypersensitivity of corticostriatal glutamatergic terminals (lower frequency of optogenetic stimulation to induce glutamate release). Both hypersensitive and control glutamatergic terminals were significant targets for locally perfused pramipexole, ropinirole, and gabapentin, which significantly counteracted optogenetically induced glutamate release. The use of selective antagonists demonstrated the involvement of dopamine D4 and D2 receptor subtypes in the effects of pramipexole. INTERPRETATION Hypersensitivity of corticostriatal glutamatergic terminals can constitute a main pathogenetic mechanism of RLS symptoms. Selective D4 receptor agonists, by specifically targeting these terminals, should provide a new efficient treatment with fewer secondary effects. Ann Neurol 2017;82:951-960.
Collapse
Affiliation(s)
- Gabriel Yepes
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Xavier Guitart
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Amy H Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Richard P Allen
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Christopher J Earley
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| |
Collapse
|
39
|
Rotigotine transdermal patch and sleep in Parkinson's disease: where are we now? NPJ PARKINSONS DISEASE 2017; 3:28. [PMID: 28890931 PMCID: PMC5585311 DOI: 10.1038/s41531-017-0030-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022]
Abstract
A wide range of sleep dysfunction complicates Parkinson’s disease during its course from prodromal to palliative stage. It is now increasingly acknowledged that sleep disturbances are thus integral to the disease and pose a significant burden impacting on quality of life of patients. Sleep fragmentation, restless legs syndrome, nocturia, and nocturnal pain are regarded as one of the main components of night-time sleep dysfunction with possible secondary impact on cognition and well-being. The role of dopaminergic therapies, particularly using a continuous drug delivery strategy in managing some of these sleep issues, have been reported but the overall concept remains unclear. This review provides an overview of several aspects of night-time sleep dysfunction in Parkinson’s disease and describes all available published open-label and blinded studies that investigated the use of rotigotine transdermal patch targeting sleep. Blinded studies have suggested beneficial effects of rotigotine transdermal patch on maintenance insomnia and restless legs syndrome in Parkinson’s disease patients. Open-label studies support these observations and also suggest beneficial effects on nocturia and nocturnal pain.
Collapse
|
40
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pathological overproduction: the bad side of adenosine. Br J Pharmacol 2017; 174:1945-1960. [PMID: 28252203 PMCID: PMC6398520 DOI: 10.1111/bph.13763] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine is an endogenous ubiquitous purine nucleoside, which is increased by hypoxia, ischaemia and tissue damage and mediates a number of physiopathological effects by interacting with four GPCRs, identified as A1 , A2A , A2B and A3 . Physiological and acutely increased adenosine is mostly associated with beneficial effects that include vasodilatation and a decrease in inflammation. In contrast, chronic overproduction of adenosine occurs in important pathological states, where long-lasting increases in the nucleoside levels are responsible for the bad side of adenosine associated with chronic inflammation, fibrosis and organ damage. In this review, we describe and critically discuss the pathological overproduction of adenosine and analyse when, where and how adenosine exerts its detrimental effects throughout the body.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Gessi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Stefania Merighi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Fabrizio Vincenzi
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| | - Katia Varani
- Department of Medical SciencesUniversity of FerraraFerrara44121Italy
| |
Collapse
|
41
|
Högl B, Stefani A. Restless legs syndrome and periodic leg movements in patients with movement disorders: Specific considerations. Mov Disord 2017; 32:669-681. [DOI: 10.1002/mds.26929] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Birgit Högl
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| | - Ambra Stefani
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|