1
|
Jang JH, Jun HJ, Lee C, Sohn E, Kwon O, Kang DH, Umar M, Jung IC, Jeong SJ. Therapeutic Potential of Combined Herbal Medicine and Electroacupuncture in Mild Cognitive Impairment Through Cytokine Modulation: An Observational Study. Neuropsychiatr Dis Treat 2024; 20:1331-1344. [PMID: 38919562 PMCID: PMC11198010 DOI: 10.2147/ndt.s465650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose We aimed to investigate the efficacy of a combined herbal formula and electroacupuncture (EA) for mild cognitive impairment (MCI), a neurodegenerative disease leading to dementia, and its underlying mechanisms of action. Patients and Methods This was a prospective open-label observational pilot study at Daejeon Korean Medicine Hospital of Daejeon University in South Korea from March 2022 to March 2023. We included six Korean patients (50% male) aged ≥ 45 years and < 85 years with MCI, a clinical dementia rating score of 0.5, and a Montreal Cognitive Assessment-Korea (MoCA-K) score ≤ 22. The exclusion criterion was impaired cognitive function. Patients received combined therapy, including a herbal formula and EA, for 12-24 weeks. We prescribed the herbal formulas Gamiguibi-tang, Yukmijihwang-tang, and Banhasasim-tang to the patients for at least 70% of the treatment period, in combination with EA. Moreover, we investigated changes in cognitive and cognition-related symptoms and cytokine expression in the blood following combined traditional medicine therapy. At baseline and after 12 and 24 weeks, we administered the MoCA-K and cognitive-related questionnaires. We analyzed network pharmacology to reflect the herbal formula intervention mechanism comprehensively. Results The median score [interquartile range] of MoCA-K at baseline was 19.5 [16.0, 22.0], which improved significantly (24.5 [24.0, 26.0], p < 0.01) over 24 weeks following combined therapy. We obtained no significant conclusion regarding cytokine changes due to the small sample size. In network pharmacology, we analyzed the brain, head, heart, peripheral nerves, peripheral nervous system, and pancreas as the enriched organs from the common targets of the three herbal formulas. Conclusion Combined herbal medicine and EA improved cognitive function in patients with MCI. We assume the underlying mechanism of herbal formulas to be antioxidative and anti-inflammatory changes in cytokine expression. Combined traditional medicine has potential therapeutic application in preventing MCI progression to dementia.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyeong Joon Jun
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - ChaYoung Lee
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ojin Kwon
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Hoon Kang
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Muhammad Umar
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Soo-Jin Jeong
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Hou Z, Sun L, Jiang Z, Zeng T, Wu P, Huang J, Liu H, Xiao P. Neuropharmacological insights into Gardenia jasminoides Ellis: Harnessing therapeutic potential for central nervous system disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155374. [PMID: 38301302 DOI: 10.1016/j.phymed.2024.155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In China, Gardenia jasminoides Ellis (GJE) has a longstanding history of application. The Ministry of Health has listed it as one of the first pharmaceutical or food resources. In ethnic, traditional, and folk medicine, GJE has been used to treat fever and cold and relieve nervous anxiety. Recent studies have confirmed the significant efficacy of GJE for treating central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, and major depressive disorder; however, GJE has not been systematically evaluated. PURPOSE This research systematically summarizes global studies on the use of GJE for treating CNS disorders and explores the potential applications and underlying mechanisms via intestinal flora analysis and network pharmacology, aiming to establish a scientific basis for innovative CNS disorder treatment with GJE. METHODS The PRISMA guidelines were used, and electronic databases such as the Web of Science, PubMed, and China National Knowledge Infrastructure were searched using the following search terms: "Gardenia jasminoides Ellis" with "central nervous system disease," "neuroprotection," "Alzheimer's disease," "Parkinson's disease," "ischemic stroke," "Epilepsy," and "major depressive disorder." The published literature up to September 2023 was searched to obtain relevant information on the application of GJE for treating CNS disorders. RESULTS There has been an increase in research on the material formulation and mechanisms of action of GJE for treating CNS disorders, with marked effects on CNS disorder treatment in different countries and regions. We summarized the research results related to the role of GJE in vitro and in vivo via multitargeted interventions in response to the complex mechanisms of action of CNS disorders. CONCLUSION We systematically reviewed the research progress on traditional treatment for GJE and preclinical mechanisms of CNS disorders and explored the potential of optimizing network pharmacology strategies and intestinal flora analysis to elucidate the mechanisms of action of GJE. The remarkable therapeutic efficacy of GJE, an important resource in traditional medicine, has been well documented in the literature, highlighting its significant medicinal potential.
Collapse
Affiliation(s)
- Ziyu Hou
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Le Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Zheyu Jiang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Tiexin Zeng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Peiling Wu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jiali Huang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Haibo Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Peigen Xiao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development (IMPLAD), No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
3
|
Ma Y, Li SX, Zhou RY, Deng LJ, le He W, Guo LL, Wang L, Hao JH, Li Y, Fang MF, Cao YJ. Geniposide improves depression-like behavior in prenatal stress male offspring through restoring HPA axis- and glucocorticoid receptor-associated dysfunction. Life Sci 2024; 340:122434. [PMID: 38232800 DOI: 10.1016/j.lfs.2024.122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
AIMS Prenatal stress (PS) has an important impact on the brain development of offspring, which can lead to attention deficits, anxiety and depression in offspring. Geniposide (GE) is a kind of iridoid glycoside extracted from Gardenia jasminoides Ellis. It has various pharmacological effects and has been proved that have antidepressant effects. The aim of this study was to investigate the effect of GE on depression-like behavior in PS-induced male offspring mice and explore the possible molecular mechanisms. METHODS We used a prenatal restraint stress model, focusing on male PS-induced offspring mice to study the effects of GE. KEY FINDINGS The results showed that GE administration for 4 weeks significantly improved the depression-like behavior in PS offspring mice, which was manifested by markedly increasing the sucrose preference of PS offspring and the activity in the open field test, and reducing the immobility time in the forced swimming test. In addition, GE significantly reduced the levels of hypothalamic-pituitary-adrenal (HPA) axis-related hormones and exceedingly increased the protein expression of MAP2 and GAP43 in PS offspring. Furthermore, GE increased Glucocorticoid receptors (GR) nuclear translocation in the hippocampus of PS offspring, and enhanced the expression of synaptic plasticity-related proteins. CONCLUSION The results of this study showed that GE exerts antidepressant effects in male PS offspring mice by regulating the HPA axis, GR function and proteins related to synaptic plasticity.
Collapse
Affiliation(s)
- Yu Ma
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Shun Xin Li
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Rui Yuan Zhou
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Lin Jiao Deng
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Wen le He
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Lu Lu Guo
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China
| | - Lin Wang
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Jia Hui Hao
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Yang Li
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Min Feng Fang
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China
| | - Yan Jun Cao
- Biomedicine Key Laboratory of Shaanxi Province, The College of Life Science, Northwest University, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, PR China.
| |
Collapse
|
4
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
5
|
Kim HR, Shin HY, Yim TB, Jahng GH, Jin C, Kwon S, Cho SY, Park SU, Jung WS, Moon SK, Ko CN, Park JM. Efficacy of Kami Guibi-tang as an Add-On Therapy to Acetylcholinesterase Inhibitor for Cognitive Function in Mild Alzheimer's Disease: A Pilot Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4846770. [PMID: 36756039 PMCID: PMC9902163 DOI: 10.1155/2023/4846770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 12/23/2022] [Indexed: 02/01/2023]
Abstract
Background Kami Guibi-tang (KGT), a traditional Korean herbal medicine is mainly used to treat insomnia and nervousness. Acetylcholinesterase inhibitors (AChEIs) are the main treatments for mild Alzheimer's disease (AD), a degenerative brain disease. However, currently no drug can fundamentally treat AD or reverse the advanced cognitive decline. This clinical study explored the efficacy and safety of adding KGT to AChEI for cognitive function in mild AD. Methods This was a pilot study for a larger randomized, double-blind, placebo-controlled trial. Participants between 55-90 years diagnosed with mild AD were recruited from Kyung Hee University Hospital at Gangdong, Seoul, Korea. They were randomized to receive either KGT or placebo for 24 weeks, in addition to their regular AChEI. The primary outcome was treatment efficacy, as assessed by the relative amount of change over the study period in total scores on the Dementia version of the Seoul Neuropsychological Screening Battery (SNSB-D). Changes in SNSB subscores were assessed as secondary outcomes. Safety parameters, including adverse events and abnormalities in blood tests, electrocardiograms, and brain magnetic resonance imaging were also monitored. Results Between March 2018 and November 2020, seven participants each in the KGT group and the placebo group completed the 24-week trial. There were no significant changes in SNSB-D total or subindex scores for either group (p = 0.69 and 0.63, respectively), and no significant differences were observed between them (p=0.71). No adverse events related to KGT were reported. We also compared and analyzed the results of a previous pilot study conducted on amnestic mild cognitive impairment (aMCI) using protocol of this study. The aMCI group showed a significant improvement in the total SNSB-D score, especially in the memory domain, compared to the mild AD group (p = 0.04 and 0.02, respectively). The Korean Mini-Mental State Exam and Korean Instrumental Activities of Daily Living scores also significantly improved in the aMCI group (p = 0.01 and 0.02, respectively). Conclusions Compared to placebo, adding KGT to AChEI did not significantly improve cognitive function in SNSB in patients with mild AD. We suggest that KGT would have a positive effect on patients with early stages of cognitive impairment such as aMCI. The findings could assist design larger, longer-term clinical trials of KGT use in elderly patients with mild AD. This study was registered in the Korean Clinical Trial Registry on December 26, 2017, with the CRIS approval number KCT0002904.
Collapse
Affiliation(s)
- Ha-Ri Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hee-Yeon Shin
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Bin Yim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Chul Jin
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
6
|
Sun Q, Zhang X, Fan J, Zhang L, Ji H, Xue J, Zhang C, Chen R, Zhao J, Chen J, Liu X, Song D. Geniposide protected against cerebral ischemic injury through the anti-inflammatory effect via the NF-κB signaling pathway. Transl Neurosci 2023; 14:20220273. [PMID: 37333874 PMCID: PMC10276575 DOI: 10.1515/tnsci-2022-0273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 06/20/2023] Open
Abstract
Context Accumulated evidence indicates that geniposide exhibits neuroprotective effects in ischemic stroke. However, the potential targets of geniposide remain unclear. Objective We explore the potential targets of geniposide in ischemic stroke. Materials and methods Adult male C57BL/6 mice were subjected to the middle cerebral artery occlusion (MCAO) model. Mice were randomly divided into five groups: Sham, MCAO, and geniposide-treated (i.p. twice daily for 3 days before MCAO) at doses of 25, 75, or 150 mg/kg. We first examined the neuroprotective effects of geniposide. Then, we further explored via biological information analysis and verified the underlying mechanism in vivo and in vitro. Results In the current study, geniposide had no toxicity at concentrations of up to 150 mg/kg. Compared with the MCAO group, the 150 mg/kg group of geniposide significantly (P < 0.05) improved neurological deficits, brain edema (79.00 ± 0.57% vs 82.28 ± 0.53%), and infarct volume (45.10 ± 0.24% vs 54.73 ± 2.87%) at 24 h after MCAO. Biological information analysis showed that the protective effect was closely related to the inflammatory response. Geniposide suppressed interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) expression in the brain homogenate, as measured by enzyme-linked immunosorbent assay (ELISA). Geniposide upregulated A20 and downregulated TNF receptor-associated factor-6 and nuclear factor kappa-B phosphorylation in the MCAO model and lipopolysaccharide-treated BV2 cells at 100 μM. Conclusions Geniposide exhibited a neuroprotective effect via attenuating inflammatory response, as indicated by biological information analysis, in vivo and in vitro experiments, which may provide a potential direction for the application of geniposide in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jingyi Fan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Hui Ji
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
| | - Degang Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease and Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei, China
- Department of Neurology, First Hospital of Qinhuangdao, Hebei, China
| |
Collapse
|
7
|
Liu H, Zang C, Shang J, Zhang Z, Wang L, Yang H, Sheng C, Yuan F, Ju C, Li F, Yu Y, Yao X, Bao X, Zhang D. <em>Gardenia jasminoides</em> J. Ellis extract GJ-4 attenuates hyperlipidemic vascular dementia in rats via regulating PPAR-γ-mediated microglial polarization. Food Nutr Res 2022; 66:8101. [PMID: 35950104 PMCID: PMC9338452 DOI: 10.29219/fnr.v66.8101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background GJ-4 is extracted from Gardenia jasminoides J. Ellis (Fructus Gardenia) with crocin composition and has been demonstrated to improve memory deficits in several dementia models in our previous studies. Objective This study aimed to evaluate the effects of GJ-4 on hyperlipidemic vascular dementia (VD) and explore the underlying mechanisms. Design In the current study, we employed a chronic hyperlipidemic VD rat model by permanent bilateral common carotid arteries occlusion (2-VO) based on high-fat diet (HFD), which is an ideal model to mimic the clinical pathogenesis of human VD. Results Our results showed that GJ-4 could significantly reduce serum lipids level and improve cerebral blood flow in hyperlipidemic VD rats. Additionally, treatment with GJ-4 remarkedly ameliorated memory impairment and alleviated neuronal injury. Mechanistic investigation revealed that the neuroprotective effects of GJ-4 might be attributed to the inhibition of microglia-mediated neuro-inflammation via regulating the M1/M2 polarization. Our data further illustrated that GJ-4 could regulate the phenotype of microglia through activating the peroxisome proliferator-activated receptor-γ (PPAR-γ) and subsequently inhibited nuclear factor-κB (NF-κB) nuclear translocation and increased CCAAT/enhancer-binding protein β (C/EBPβ) expression. Conclusion Our results implied that GJ-4 might be a promising drug to improve VD through the regulation of microglial M1/M2 polarization and the subsequent inhibition of neuro-inflammation.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of TCM & Natural Products College of Pharmacy, Jinan University, Guangzhou, China
| | - Xinsheng Yao
- Institute of TCM & Natural Products College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiuqi Bao and Dan Zhang, State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050 China ;
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiuqi Bao and Dan Zhang, State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050 China ;
| |
Collapse
|
8
|
Liu L, Wu Q, Chen Y, Gu G, Gao R, Peng B, Wang Y, Li A, Guo J, Xu X, Shao X, Li L, Shen Y, Sun J. Updated Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of Natural Product Geniposide. Molecules 2022; 27:3319. [PMID: 35630796 PMCID: PMC9144884 DOI: 10.3390/molecules27103319] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
At present, the potential of natural products in new drug development has attracted more and more scientists' attention, and natural products have become an important source for the treatment of various diseases or important lead compounds. Geniposide, as a novel iridoid glycoside compound, is an active natural product isolated from the herb Gardenia jasminoides Ellis (GJ) for the first time; it is also the main active component of GJ. Recent studies have found that geniposide has multiple pharmacological effects and biological activities, including hepatoprotective activity, an anti-osteoporosis effect, an antitumor effect, an anti-diabetic effect, ananti-myocardial dysfunction effect, a neuroprotective effect, and other protective effects. In this study, the latest research progress of the natural product geniposide is systematically described, and the pharmacological effects, pharmacokinetics, and toxicity of geniposide are also summarized and discussed comprehensively. We also emphasize the major pathways modulated by geniposide, offering new insights into the pharmacological effects of geniposide as a promising drug candidate for multiple disorders.
Collapse
Affiliation(s)
- Liping Liu
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Qin Wu
- Medical School, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (Q.W.); (G.G.)
| | - Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng 224005, China;
| | - Guoxiang Gu
- Medical School, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (Q.W.); (G.G.)
| | - Runan Gao
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Bo Peng
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Yue Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Anbang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Jipeng Guo
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Xinru Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Xiaochen Shao
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Lingxing Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Ya Shen
- School of Pharmacy, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China; (L.L.); (R.G.); (B.P.); (Y.W.); (A.L.); (J.G.); (X.X.); (X.S.); (L.L.); (Y.S.)
| | - Jihu Sun
- Institute of Biotechnology, Jiangsu Vocational College of Medicine, #283 Jiefang South Road, Yancheng 224000, China
| |
Collapse
|
9
|
Tian J, Qin S, Han J, Meng J, Liang A. A review of the ethnopharmacology, phytochemistry, pharmacology and toxicology of Fructus Gardeniae (Zhi-zi). JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:114984. [PMID: 35066066 DOI: 10.1016/j.jep.2022.114984] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Gardeniae (FG) is the dried fruit of Gardenia jasminoides Ellis (GjE), which belongs to the family Rubiaceae. FG has a long history of use as a herb, and was originally recorded in Sheng Nong's herbal classic. FG has also been widely used as both medicine and food. AIM OF STUDY This review aimed to provide a systematic and comprehensive analysis of the current research progress of FG in terms of ethnopharmacology, phytochemistry, pharmacology and toxicity, to provide new insights and extensive field of view for subsequent studies. METHODS Scientific databases, including CNKI, VIP (Chinese literature), PubMed, Science Direct, Elsevier and Google Scholar (English literatures) were searched to gather data about FG and its main active ingredients such as geniposide and genipin (only regarding toxicity). RESULTS Many chemical constituents have been identified from the fruit of GjE, including iridoids, terpenoids, flavonoids, organic acids, volatile oils and others. The constituents of different parts of FG and processed FG are different from those of whole FG. FG extract and its main active constituents have been reported to have pharmacological properties such as hepatoprotective, choleretic, anti-inflammatory, antioxidant, neuroprotective, anti-diabetic, anti-apoptotic and antitumor activities. However, an increasing number of studies have shown that FG induces multiple organ injury, especially causing hepatotoxicity and nephrotoxicity, which could increase the risk during clinical use. The available literature shows that geniposide, a major active component of FG and a critical marker for its quality, is associated with the pharmacology and toxicity of FG. CONCLUSION Although a large number of studies examining FG have been published, issues remain. In the aspect of FG's pharmacology, the traditional efficacy and modern pharmacological effects of FG should be combined, which to broadens clinical application prospects. In addition, few studies have assessed the toxicity of FG. Toxicity assessment of FG should tackle various aspects, including compatibility, processing and the symptom-based prescription theory, in addition to over-dosage or long-term use, for a reasonable clinical use.
Collapse
Affiliation(s)
- Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, , No. 16 Nanxiaojie, Dongzhimen Nei Ave, Beijing, 100700, China.
| |
Collapse
|
10
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
11
|
Tan Y, Wang X, Zhang J, Zhang H, Li H, Peng T, Chen W, Wei P, Liu Z, He F, Li J, Ding H, Li N, Wang Z, Zhang Z, Hua Q. NeuroProtect, a Candidate Formula From Traditional Chinese Medicine, Attenuates Amyloid- β and Restores Synaptic Structures in APP/PS1 Transgenic Mice. Front Pharmacol 2022; 13:850175. [PMID: 35586051 PMCID: PMC9108353 DOI: 10.3389/fphar.2022.850175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common cause of dementia. The emerging data suggest that cognitive decline occurred in the setting of Aβ accumulation with synaptic dysfunction, which started to happen at preclinical stages. Then, presymptomatic intervention is more critical to postponing AD processing. Traditional Chinese medicine has a long history of treating and preventing dementia. Findings have shown that the decoction of Panax notoginseng and Gardenia jasminoides Ellis enhances memory functions in patients with stroke, and their main components, Panax notoginseng saponins (PNS) and geniposide (GP), improved memory abilities in experimental AD models. Since herbal medicine has advantages in protection with few side effects, we wish to extend observations of the NeuroProtect (NP) formulation for reducing amyloid-β and restoring synaptic structures in APP/PS1 transgenic mice. Methods: APP/PS1 transgenic mice and their wild-type littermates were fed with control, NP, and their components from 4 to 7 months of age. We assessed the synaptic structure by Golgi staining, analyzed the amyloid deposits by Thioflavin-S staining, and measured related protein levels by Western blot or ELISA. We used the Morris water maze and shuttle box test to evaluate cognitive functions. Results: Compared to WT mice, APP/PS1 mice are characterized by the accumulation of amyloid plaques, reducing synaptic structure richness and memory deficits. NP prevents these changes and ameliorates cognitive deficits. These effects may have been due to the contribution of its components by inhibition of insoluble amyloid-β deposition and restoration of synaptic structures. Conclusion: These findings reveal a beneficial effect of NP on AD progression under an early intervention strategy and provide a food supplement for AD prevention.
Collapse
Affiliation(s)
- Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiani Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huawei Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haiyan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Peng
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Weihang Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoheng Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fang He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiao Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China,Xi’an Satellite Control Center, Xi’an, China
| | - Haimin Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoyang Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Zhenqiang Zhang, ; Qian Hua, ,
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Zhenqiang Zhang, ; Qian Hua, ,
| |
Collapse
|
12
|
Chen Y, Wang Y, Qin Q, Zhang Y, Xie L, Xiao J, Cao Y, Su Z, Chen Y. Carnosic acid ameliorated Aβ-mediated (amyloid-β peptide) toxicity, cholinergic dysfunction and mitochondrial defect in Caenorhabditis elegans of Alzheimer's Model. Food Funct 2022; 13:4624-4640. [PMID: 35357374 DOI: 10.1039/d1fo02965g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid-β peptide (Aβ)-induced cholinergic system and mitochondrial dysfunction are major risk factors for Alzheimer's disease (AD). Our previous studies found that carnosic acid (CA), an important polyphenol antioxidant, could significantly delay Aβ1-42-mediated acute paralysis. However, many details and underlying mechanisms of CA's neuroprotection against Aβ-induced cholinergic system defects and mitochondrial dysfunction remain unclear. Herein, we deeply investigated the effects and the possible mechanisms of CA-mediated protection against Aβ toxicity in vivo through several AD Caenorhabditis elegans strains. The results showed CA delayed age-related paralysis and Aβ deposition, and significantly protected neurons from Aβ-induced toxicity. CA might downgrade the expression of ace-1 and ace-2 genes, and upregulate cha-1 and unc-17 genes to inhibit acetylcholinesterase activity and relieve Aβ-caused cholinergic system defects. Furthermore, CA might also ameliorate Aβ-induced mitochondrial imbalance and oxidative stress through up-regulating the expression of phb-1, phb-2, eat-3, and drp-1 genes. The enhancements of the cholinergic system and mitochondrial function might be the reasons for the amelioration of Aβ-mediated toxicity and Aβ aggregation mediated by CA. These findings have helped us to understand the CA anti-Aβ activity in C. elegans and the potential mechanism of action.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Yarong Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Qiao Qin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Yali Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Lingling Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| | - Zuanxian Su
- College of Horticulture, South China Agricultural University, Guangzhou 510640, Guangdong, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510640, Guangdong, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, Guangdong, China
| |
Collapse
|
13
|
Qi YY, Heng X, Yao ZY, Qu SY, Ge PY, Zhao X, Ni SJ, Guo R, Yang NY, Zhang QC, Zhu HX. Involvement of Huanglian Jiedu Decoction on Microglia with Abnormal Sphingolipid Metabolism in Alzheimer's Disease. Drug Des Devel Ther 2022; 16:931-950. [PMID: 35391788 PMCID: PMC8979960 DOI: 10.2147/dddt.s357061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/13/2022] [Indexed: 12/19/2022] Open
Abstract
Background Abnormal sphingolipid metabolism is closely related to the occurrence and development of Alzheimer’s disease (AD). With heat-clearing and detoxifying effects, Huanglian Jiedu decoction (HLJDD) has been used to treat dementia and improve learning and memory impairments. Purpose To study the therapeutic effect of HLJDD on AD as it relates to sphingolipid metabolism. Methods The level of sphingolipids in the brains of APP/PS1 mice and in the supernatant of β-amyloid (Aβ)25–35-induced BV2 microglia was detected by HPLC-QTOF-MS and HPLC-QTRAP-MS techniques, respectively. The co-expression of ionized calcium-binding adapter molecule 1 (Iba1) and Aβ as well as four enzymes related to sphingolipid metabolism, including serine palmitoyltransferase 2 (SPTLC2), cer synthase 2 (CERS2), sphingomyelin phosphodiesterase 1 (SMPD1), and sphingomyelin synthase 1 (SGMS1), in the brains of APP/PS1 mice were evaluated by immunofluorescence double labelling. In addition, real-time quantitative reverse transcription-polymerase chain reaction was conducted to determine the mRNA expression of SPTLC2, CERS2, SMPD1, SGMS1, galactosylceramidase (GALC), and sphingosine kinase 2 (SPHK2) in Aβ25-35-stimulated BV2 microglia. Results Abnormal sphingolipid metabolism was observed both in APP/PS1 mouse brain tissues and Aβ25-35-stimulated BV2 cells. The levels of sphingosine, sphinganine, sphingosine-1-phosphate, sphinganine-1-phosphate and sphingomyelin were significantly reduced, while the levels of ceramide-1-phosphate, ceramide, lactosylceramide and hexosylceramide significantly increased in Aβ25-35-stimulated BV2 cells. In AD mice, more microglia were clustered in the Aβ-positive region. The decreased level of SGMS1 and increased levels of CERS2, SPTLC and SMPD1 were also found. In addition, the expressions of SPTLC2, CERS2, and SMPD1 in Aβ25-35-stimulated BV2 cells were increased significantly, while the expressions of GALC, SPHK2, and SGMS1 were decreased. These changes all showed a significant correction after HLJDD treatment. Conclusion HLJDD is a good candidate for treating AD. This study provides a novel perspective on the potential roles of the sphingolipid metabolism in AD.
Collapse
Affiliation(s)
- Yi-Yu Qi
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xia Heng
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Zeng-Ying Yao
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Shu-Yue Qu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ping-Yuan Ge
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Xin Zhao
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Sai-Jia Ni
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Rui Guo
- Department of Physiological, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Nian-Yun Yang
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Qi-Chun Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hua-Xu Zhu
- Department of Traditional Chinese Medicine Processing and Preparation, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
14
|
Ma C, Hong F, Yang S. Amyloidosis in Alzheimer's Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules 2022; 27:1210. [PMID: 35209007 PMCID: PMC8876037 DOI: 10.3390/molecules27041210] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
The amyloid hypothesis of Alzheimer's disease has long been the predominant theory, suggesting that Alzheimer's disease is caused by the accumulation of amyloid beta protein (Aβ) in the brain, leading to neuronal toxicity in the central nervous system (CNS). Because of breakthroughs in molecular medicine, the amyloid pathway is thought to be central to the pathophysiology of Alzheimer's disease (AD). Currently, it is believed that altered biochemistry of the Aβ cycle remains a central biological feature of AD and is a promising target for treatment. This review provides an overview of the process of amyloid formation, explaining the transition from amyloid precursor protein to amyloid beta protein. Moreover, we also reveal the relationship between autophagy, cerebral blood flow, ACHE, expression of LRP1, and amyloidosis. In addition, we discuss the detailed pathogenesis of amyloidosis, including oxidative damage, tau protein, NFTs, and neuronal damage. Finally, we list some ways to treat AD in terms of decreasing the accumulation of Aβ in the brain.
Collapse
Affiliation(s)
- Chen Ma
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330006, China;
- Queen Marry College, School of Medicine, Nanchang University, Nanchang 330036, China
| | - Fenfang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang 330006, China;
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Nanchang 344099, China
| |
Collapse
|
15
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Tan Y, Zhang J, Yang K, Xu Z, Zhang H, Chen W, Peng T, Wang X, Liu Z, Wei P, Li N, Zhang Z, Liu T, Hua Q. Anti-Stroke Chinese Herbal Medicines Inhibit Abnormal Amyloid-β Protein Precursor Processing in Alzheimer's Disease. J Alzheimers Dis 2021; 85:261-272. [PMID: 34776438 DOI: 10.3233/jad-210652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chinese Herbal Medicines (CHMs), as an important and integral part of a larger system of medicine practiced in China, called Traditional Chinese Medicine (TCM), have been used in stroke therapy for centuries. A large body of studies suggest that some Chinese herbs can help reverse cognitive impairment in stroke patients, while whether these herbs also exert therapeutic benefits for Alzheimer's disease remains to be seen. OBJECTIVE To address this issue, we selected four types of CHMs that are commonly prescribed for stroke treatment in clinical practice, namely DengZhanXiXin (D1), TongLuoJiuNao (T2), QingKaiLing (Q3), and HuangQinGan (H4), and tested their effects on amyloid-β protein precursor (AβPP) processing in vitro. METHODS AβPP, β-secretase (BACE1), and 99-amino acid C-terminal fragment of AβPP (C99) stably transfected cells were used for the tests of AβPP processing. The production of Aβ, activity of BACE1, neprilysin (NEP), and γ-secretase were assessed by ELISA, RT-PCR, and western blot. RESULTS By upregulating BACE1 activity, D1 increased Aβ production whereas decreased the ratio of Aβ 42/Aβ 40; by downregulating BACE1 activity and modulating the expression of γ-secretase, T2 decreased Aβ production and the ratio of Aβ 42/Aβ 40; by downregulating BACE1 activity, Q3 decreased Aβ production; H4 did not change Aβ production due to the simultaneously downregulation of BACE1 and NEP activity. CONCLUSION Our study indicates that these four anti-stroke CHMs regulate AβPP processing through different mechanisms. Particularly, T2 with relatively simple components and prominent effect on AβPP processing may be a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Yan Tan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiani Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Xu
- Beijing University of Chinese Medicine, Beijing, China
| | - Huawei Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Weihang Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Peng
- Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoheng Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tonghua Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Qian Hua
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Zhou XB, Zhang YX, Zhou CX, Ma JJ. Chinese Herbal Medicine Adjusting Brain Microenvironment via Mediating Central Nervous System Lymphatic Drainage in Alzheimer's Disease. Chin J Integr Med 2021; 28:176-184. [PMID: 34731433 DOI: 10.1007/s11655-021-3342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
Due to its complex pathogenesis and lack of effective therapeutic methods, Alzheimer's disease (AD) has become a severe public health problem worldwide. Recent studies have discovered the function of central nervous system lymphatic drainage, which provides a new strategy for the treatment of AD. Chinese herbal medicine (CHM) has been considered as a cure for AD for hundreds of years in China, and its effect on scavenging β-amyloid protein in the brain of AD patients has been confirmed. In this review, the mechanism of central nervous system lymphatic drainage and the regulatory functions of CHM on correlation factors were briefly summarized. The advances in our understanding regarding the treatment of AD via regulating the central lymphatic system with CHM will promote the clinical application of CHM in AD patients and the discovery of new therapeutic drugs.
Collapse
Affiliation(s)
- Xi-Bin Zhou
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yu-Xing Zhang
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Chun-Xiang Zhou
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.,Department of Traditional Chinese Medicine, Nanjing BenQ Hospital, Nanjing, 210036, China
| | - Jun-Jie Ma
- Department of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
18
|
Crocetin Exerts Its Anti-inflammatory Property in LPS-Induced RAW264.7 Cells Potentially via Modulation on the Crosstalk between MEK1/JNK/NF- κB/iNOS Pathway and Nrf2/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6631929. [PMID: 34545298 PMCID: PMC8449229 DOI: 10.1155/2021/6631929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/17/2021] [Accepted: 08/13/2021] [Indexed: 11/18/2022]
Abstract
Crocetin is a main bioactive component with a carotenoid skeleton in Gardenia jasminoides, a typical traditional Chinese medicine with a long history in Southeast Asia. Crocetin is being commonly consumed as spices, dyes, and food colorants. Recent pharmacological studies had implied that crocetin may possess potent anti-inflammatory properties; however, the underlying molecular mechanism is not fully elucidated. In the present study, the regulatory effect of crocetin on redox balance was systematically investigated in lipopolysaccharide- (LPS-) stimulated RAW264.7 cells. The results showed that crocetin dose-dependently inhibited LPS-induced nitric oxide production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells. Molecular data revealed that crocetin exerted its anti-inflammatory property by inhibiting the MEK1/JNK/NF-κB/iNOS pathway and activating the Nrf2/HO-1 pathway. The shRNA-knockdown (KD) of MEK1 and ERK1 confirmed that the activation of MEK1 and inhibition of JNK mediated the anti-inflammatory effect of crocetin. Moreover, the pull-down assay and computational molecule docking showed that crocetin could directly bind to MEK1 and JNK1/2. It is noticed that both KD and knockout (KO) of HO-1 gene blocked this action. More detailed data have shown that HO-1-KO blocked the inhibition of p-IκB-α by crocetin. These data indicated that crocetin exerted its anti-inflammatory property via modulating the crosstalk between the MEK1/JNK/NF-κB/iNOS pathway and the Nrf2/HO-1 pathway, highlighting HO-1 as a major player. Therefore, the present study reveals that crocetin can act as a potential candidate for redox-balancing modulation in charge of its anti-inflammatory and chemopreventive effect, which strengthens its potency in the subsequent clinic application in the near future.
Collapse
|
19
|
Zhang W, Zhang F, Hu Q, Xiao X, Ou L, Chen Y, Luo S, Cheng Y, Jiang Y, Ma X, Zhao Y. The emerging possibility of the use of geniposide in the treatment of cerebral diseases: a review. Chin Med 2021; 16:86. [PMID: 34454545 PMCID: PMC8400848 DOI: 10.1186/s13020-021-00486-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 12/19/2022] Open
Abstract
With the advanced discoveries in the field of pathogenesis, a series of cerebral diseases, such as cerebral ischaemia, Alzheimer's disease, and depression, have been found to have multiple signalling targets in the microenvironment. Only a few existing agents have been shown to have curative effects due to this specific circumstance. In recent decades, active ingredients isolated from natural plants have been shown to be crucial for original drug development. Geniposide, mainly extracted from Gardenia jasminoides Ellis, is representative of these natural products. Geniposide demonstrates various biological activities in the treatment of cerebral, cardiovascular, hepatic, tumorous, and other diseases. The multiple protective effects of geniposide on the brain have especially drawn increasing attention. Thus, this article specifically reviews the characteristics of current models of cerebral ischaemia and illustrates the possible effects of geniposide and its pathogenetic mechanisms on these models. Geniposide has been shown to significantly reduce the area of cerebral infarction and alleviate neuronal damage and necrosis mainly by inhibiting inflammatory signals, including NLRP3, TNF-α, IL-6, and IL-1β. Neuronal protection was also involved in activating the PI3K/Akt and Wnt/catenin pathways. Geniposide was able to increase autophagy and inhibit apoptosis by regulating the function of mTOR in treating Alzheimer's disease. Geniposide has also been shown to act as a glucagon-like peptide-1 receptor (GLP-1R) agonist to reduce amyloid plaques and inhibit oxidative stress to alleviate memory impairment as well as synaptic loss. Moreover, geniposide has been shown to exert antidepressant effects primarily by regulating the hypothalamic-pituitary-adrenal (HPA) axis. Detailed explorations have shown that the biological activities of inhibiting inflammatory cytokine secretion, alleviating oxidative stress, and suppressing mitochondrial damage are also involved in the mechanism of action of geniposide. Therefore, geniposide is a promising agent awaiting further exploration for the treatment of cerebral diseases via various phenotypes or signalling pathways.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linbo Ou
- College of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiqing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yonghong Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Centre of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
20
|
Zhang X, Liu K, Shi M, Xie L, Deng M, Chen H, Li X. Therapeutic potential of catalpol and geniposide in Alzheimer's and Parkinson's diseases: A snapshot of their underlying mechanisms. Brain Res Bull 2021; 174:281-295. [PMID: 34216649 DOI: 10.1016/j.brainresbull.2021.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 01/28/2023]
Abstract
Rehmannia glutinosa, the fresh or dried root of Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & Mey., and Gardenia, the fruit of Gardenia jasminoides Ellis from Rubiaceae, both are famous traditional Chinese medicines that have been traditionally used in China. Catalpol and geniposide, as two kinds of iridoid glycosides with high activities, are the main bioactive components in Rehmannia glutinosa and Gardenia jasminoides Ellis, respectively. Over the past few decades, catalpol and geniposide have been widely studied for their therapeutic effects. The preclinical experiments demonstrated that they possessed significant neuroprotective activities against Alzheimer's disease, Parkinson's disease, stroke, and depression, etc. In this paper, the pharmacological effects and mechanisms of catalpol and geniposide on Alzheimer's disease and Parkinson's disease from 2005 to now were systematically summarized and comprehensively analyzed. At the same time, the pharmacokinetic characteristics of the analyzed compounds were also described, hoping to provide some enlightenment for the design, research, and development of iridoid glycosides.
Collapse
Affiliation(s)
- Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mingyi Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
21
|
Wang Y, Pan Y, Liu Y, Disasa D, Akira M, Xiang L, Qi J. A New Geniposidic Acid Derivative Exerts Antiaging Effects through Antioxidative Stress and Autophagy Induction. Antioxidants (Basel) 2021; 10:987. [PMID: 34205671 PMCID: PMC8234659 DOI: 10.3390/antiox10060987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 01/22/2023] Open
Abstract
Two compounds that can prolong the replicative lifespan of yeast, geniposidic acid (Compound 1) and geniposide (Compound 2), were isolated from Gardenia jasminoides Ellis. Compared with Compound 1, Compound 2 was different at C11 and showed better bioactivity. On this basis, seven new geniposidic derivatives (3-9) were synthesized. Geniposidic 4-isoamyl ester (8, GENI), which remarkably prolonged the replicative and chronological lifespans of K6001 yeast at 1 µM, was used as the lead compound. Autophagy and antioxidative stress were examined to clarify the antiaging mechanism of GENI. GENI increased the enzymes activities and gene expression levels of superoxide dismutase (SOD) and reduced the contents of reactive oxygen species (ROS) and malondialdehyde (MDA) to improve the survival rate of yeast under oxidative stress. In addition, GENI did not extend the replicative lifespan of ∆sod1, ∆sod2, ∆uth1, ∆skn7, ∆cat, and ∆gpx mutants with K6001 background. The free green fluorescent protein (GFP) signal from the cleavage of GFP-Atg8 was increased by GENI. The protein level of free GFP showed a considerable increase and was time-dependent. Furthermore, GENI failed to extend the replicative lifespans of ∆atg32 and ∆atg2 yeast mutants. These results indicated that antioxidative stress and autophagy induction were involved in the antiaging effect of GENI.
Collapse
Affiliation(s)
- Ying Wang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Yanjun Pan
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Yanan Liu
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Dejene Disasa
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Matsuura Akira
- Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan;
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China; (Y.W.); (Y.P.); (Y.L.); (D.D.)
| |
Collapse
|
22
|
Ran D, Hong W, Yan W, Mengdie W. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113958. [PMID: 33639206 DOI: 10.1016/j.jep.2021.113958] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application. RESULTS GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways. CONCLUSION According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wang Mengdie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
23
|
Li H, Wang Y, Wang B, Li M, Liu J, Yang H, Shi Y. Baicalin and Geniposide Inhibit Polarization and Inflammatory Injury of OGD/R-Treated Microglia by Suppressing the 5-LOX/LTB4 Pathway. Neurochem Res 2021; 46:1844-1858. [PMID: 33891262 PMCID: PMC8187209 DOI: 10.1007/s11064-021-03305-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. Baicalin (BC), geniposide (GP), and their combination (BC/GP) have been shown to inhibit post-ischemic inflammatory injury by inhibiting the 5-LOX/CysLTs pathway. The aims of this study were to observe the inhibitory effects of BC/GP on the activation of microglial cells induced by oxygen glucose deprivation and reoxygenation (OGD/R) and to investigate whether the 5-LOX/LTB4 pathway was involved in these effects. Molecular docking showed that BC and GP exhibited considerable binding activity with LTB4 synthase LTA4H. BV-2 microglia were transfected with a 5-LOX overexpression lentiviral vector, and then OGD/R was performed. The effects of different concentrations of BC, GP, and BC/GP (6.25 μM, 12.5 μM, and 25 μM) on cell viability and apoptosis of microglia were evaluated by MTT and flow cytometry. The expression of TNF-α, IL-1β, NF-κB, and pNF-κB also was measured by ELISA, Western blots and immunofluorescence. Western blots and qRT-PCR analysis were used to determine the levels of CD11b, CD206, and 5-LOX pathway proteins. Results showed that BC, GP, and BC/GP reduced the apoptosis caused by OGD/R in a dose-dependent manner, and cell viability was significantly increased at a concentration of 12.5 μM. OGD/R significantly increased the release of TNF-α, IL-1β, NF-κB, pNF-κB, and CD11b. These effects were suppressed by BC, GP, and BC/GP, and the OGD/R-induced transfer of NF-κB p65 from the ctytoplasm to the nucleus was inhibited in microglia. Interestingly, the LTB4 inhibitor, U75302, exhibited the same effect. Also, BC, GP, and BC/GP significantly reduced the expression of 5-LOX pathway proteins. These results demonstrated that BC/GP inhibited OGD/R-induced polarization in BV2 microglia by regulating the 5-LOX/LTB4 signaling pathways and attenuating the inflammatory response. Our results supported the theoretical basis for additional in-depth study of the function of BC/GP and the value of determining its unique target, which might provide a new therapeutic strategy for ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- HuiMin Li
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Provincial Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yan Wang
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Provincial Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bin Wang
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Provincial Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Min Li
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Provincial Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - JiPing Liu
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Provincial Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - HongLian Yang
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - YongHeng Shi
- Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Provincial Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
24
|
Liu Y, Li H, Wang J, Xue Q, Yang X, Kang Y, Li M, Xu J, Li G, Li C, Chang HC, Su KP, Wang F. Association of Cigarette Smoking With Cerebrospinal Fluid Biomarkers of Neurodegeneration, Neuroinflammation, and Oxidation. JAMA Netw Open 2020; 3:e2018777. [PMID: 33006621 PMCID: PMC7532384 DOI: 10.1001/jamanetworkopen.2020.18777] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Cigarette smoking has been associated with risk of neurodegenerative disorders, such as Alzheimer disease. The association between smoking and biomarkers of changes in human cerebrospinal fluid (CSF) is not fully understood. OBJECTIVE To investigate the association of cigarette smoking with CSF biomarkers of neurodegeneration, neuroinflammation, oxidation, and neuroprotection. DESIGN, SETTING, AND PARTICIPANTS In this case-control study of 191 adult men in China, biomarkers in the CSF of participants with and without significant cigarette exposure were examined. Participants who did not smoke and had no history of substance use disorder or dependence were assigned to the nonsmoking group. The active smoking group included participants who consumed at least 10 cigarettes per day for 1 year. Five-milliliter samples of CSF were obtained from routine lumbar puncture conducted before anterior cruciate ligament reconstruction surgery. Data collection took place from September 2014 to January 2016, and analysis took place from January to February 2016. EXPOSURES Cigarette smoking. MAIN OUTCOMES AND MEASURES CSF levels of β-amyloid 42 (Aβ42), which has diagnostic specificity for Alzheimer disease, tumor necrosis factor alpha (TNFα), brain-derived neurotrophic factor (BDNF), total superoxide dismutase (SOD), and nitric oxide synthase (NOS) were measured. Sociodemographic data and history of smoking were obtained. RESULTS Of 191 participants, 87 (45.5%) were included in the active smoking group and 104 (54.4%) in the nonsmoking group. Compared with the active smoking group, the nonsmoking group was younger (mean [SD] age, 34.4 [10.5] years vs 29.6 [9.5] years; P = .01), had more education (mean [SD] duration of education, 11.9 [3.1] years vs 13.2 [2.6] years; P = .001), and had lower body mass index (mean [SD], 25.9 [3.6] vs 24.9 [4.0]; P = .005). Comparing the nonsmoking group with the smoking group, mean (SD) CSF levels of Aβ42 (38.0 [25.9] pg/mL vs 52.8 [16.5] pg/mL; P < .001) and TNFα (23.0 [2.5] pg/mL vs 28.0 [2.0] pg/mL; P < .001) were significantly lower, while BDNF (23.1 [3.9] pg/mL vs 13.8 [2.7] pg/mL; P < .001), total SOD (15.7 [2.6] U/L vs 13.9 [2.4] U/L; P < .001), total NOS (28.3 [7.2] U/L vs 14.7 [5.6] U/L; P < .001), inducible NOS (16.0 [5.4] U/L vs 10.3 [2.7] U/L; P < .001), and constitutive NOS (12.4 [6.9] U/mL vs 4.4 [3.9] U/mL) were higher. In addition, in participants in the smoking group who were aged 40 years or older, total SOD levels were negatively correlated with Aβ42 levels (r = -0.57; P = .02). In those who smoked at least 20 cigarettes per day, TNFα levels were positively correlated with Aβ42 levels (r = 0.51; P = .006). The association of TNFα with Aβ42 production was stronger than that of total SOD with Aβ42 production (z = -4.38; P < .001). CONCLUSIONS AND RELEVANCE This case-control study found that cigarette smoking was associated with at-risk biomarkers for Alzheimer disease, as indicated by higher Aβ42 levels, excessive oxidative stress, neuroinflammation, and impaired neuroprotection found in the CSF of participants in the active smoking group.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Jian Wang
- Department of Psychology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Xue
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | | | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Mengjie Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
- Sleep Medicine Center, Peking University International Hospital, Beijing, China
| | - Jinzhong Xu
- Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Guohua Li
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cunbao Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Hui-Chih Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry and Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Pin Su
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry and Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Fan Wang
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
25
|
Chen L, Li M, Yang Z, Tao W, Wang P, Tian X, Li X, Wang W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112829. [PMID: 32311486 DOI: 10.1016/j.jep.2020.112829] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis is a popular shrub in the Rubiaceae family. The desiccative ripe fruits of this plant (called Zhizi in China) are well known and frequently used not only as an excellent natural colourant, but also as an important traditional medicine for the treatment of different diseases, such as reducing fire except vexed, clearing away heat evil, and cooling blood and eliminating stasis to activate blood circulation. It has also been declared as the first batch of dual-purpose plants used for food and medical functions in China. AIM OF THE STUDY This review aims to provide a critical and systematic summary of the traditional uses, ethnopharmacology, phytochemistry, pharmacology, toxicity and industrial applications of Gardenia jasminoides Ellis and briefly proposes several suggestions for future application prospects. MATERIALS AND METHODS The related information on Gardenia jasminoides Ellis was obtained from internationally recognized scientific databases through the Internet (PubMed, CNKI, Google Scholar, Baidu Scholar, Web of Science, Medline Plus, ACS, Elsevier and Flora of China) and libraries. RESULTS Approximately 162 chemical compounds have been isolated and identified from this herb. Among them, iridoid glycosides and yellow pigment are generally considered the main bioactive and characteristic ingredients. Various pharmacological properties, such as a beneficial effect on the nervous, cardiovascular and digestive systems, hepatoprotective activity, antidepressant activity, and anti-inflammatory activity, were also validated in vitro and in vivo. Moreover, geniposide and genipin are the most important iridoid compounds isolated from Gardenia jasminoides Ellis, and genipin is the aglycone of geniposide. As the predominant active ingredient with a distinct pharmacological activity, genipin is also an outstanding biological crosslinking agent. Gardenia yellow pigment has also been widely used as an excellent natural dye-stuff. Hence, Gardenia jasminoides Ellis has been applied to many other fields, including the food industry, textile industry and chemical industry, in addition to its predominant medicinal uses. CONCLUSIONS According to this review, Gardenia jasminoides Ellis is outstanding traditional medical plant used in medicine and food. Pharmacological investigations support the traditional use of this herb and may validate the folk medicinal use of Gardenia jasminoides Ellis to treat different diseases. Iridoid glycosides are potential medicines. Gardenia yellow pigment has been the most important source of a natural colourant for food, cloth and paint for thousands of years. This herb has made great contributions to human survival and development. Moreover, it has also achieved outstanding progress in human life and even in art. Although Gardenia jasminoides Ellis has extremely high and comprehensive utilization values, it is still far from being completely explored. Therefore, the comprehensive development of Gardenia jasminoides Ellis deserves further analysis.
Collapse
Affiliation(s)
- Liping Chen
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Maoxing Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China.
| | - Zhiqiang Yang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Wendi Tao
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Peng Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Xiuyu Tian
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Xiaolin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| | - Weigang Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, 730050, PR China
| |
Collapse
|
26
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
27
|
Yuan J, Zhang J, Cao J, Wang G, Bai H. Geniposide Alleviates Traumatic Brain Injury in Rats Via Anti-Inflammatory Effect and MAPK/NF-kB Inhibition. Cell Mol Neurobiol 2020; 40:511-520. [PMID: 31677006 DOI: 10.1007/s10571-019-00749-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022]
Abstract
We aimed to investigate whether geniposide, a main component extracted from Gardenia jasminoides Ellis fruit, could exert neuroprotective functions against traumatic brain injury (TBI). Enzyme-linked immunosorbent assay (ELISA) was used for detection of plasma cytokines. Real-time polymerase chain reaction (RT-PCR) was employed for measurements of mRNA levels of cytokines. Neurological outcomes were evaluated by modified neurological severity score (mNSS) and Rota-Rod. Blood-brain barrier (BBB) integrity and brain edema were assessed. Protein expression was tested by Western blot. The plasma levels of interleukin (IL)-1β, IL-6, IL-8 and IL-10 were all elevated in patients with TBI compared to those of healthy controls. TBI rats treated with geniposide showed lower mNSS and longer fall latency time than untreated TBI rats. BBB integrity was maintained and brain edema was reduced by geniposide treatment in TBI rats. Plasma levels of IL-1β, IL-6 and IL-8 were significantly repressed by geniposide treatment in TBI rats, whereas IL-10 level was upregulated. mRNA expression levels of these cytokines in the brain tissues of TBI rats exhibited the same trends of changes. By testing p38 mitogen-activated protein kinase and NF-κB p65 activities, it was observed that phosphorylated (p)-p38 and p-p65 were dramatically inhibited by geniposide. In conclusion, geniposide exerts neuroprotective functions against TBI by inhibiting p-p38 and p-p65.
Collapse
Affiliation(s)
- Jianwei Yuan
- Heze Municipal Hospital of Shandong Province, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China
| | - Jinghua Zhang
- Heze Medical College, No. 1950 University Road, Mudan District, Heze, 274000, Shandong, China
| | - Juan Cao
- Heze Medical College, No. 1950 University Road, Mudan District, Heze, 274000, Shandong, China
| | - Guangxing Wang
- Heze Municipal Hospital of Shandong Province, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China
| | - Hansheng Bai
- Heze Municipal Hospital of Shandong Province, No. 2888 Caozhou Road, Mudan District, Heze, 274000, Shandong, China.
| |
Collapse
|
28
|
Zhang Z, Liu H, Zhao Z, Zang C, Ju C, Li F, Wang L, Yang H, Bao X, Yu Y, Yao X, Zhang D. GJ-4 alleviates Aβ 25-35-induced memory dysfunction in mice through protecting the neurovascular unit. Biomed Pharmacother 2020; 127:110131. [PMID: 32325348 DOI: 10.1016/j.biopha.2020.110131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. AD has become an important social health problem but there are few therapeutic drugs. Many researchers devote to the development of drugs for the treatment of AD. GJ-4 is crocin enrichments from Gardenia jasminoides J. Ellis, and our previous studies have shown GJ-4 had potent neuroprotective effects on several AD animal models. However, the underlying mechanisms have not been fully elucidated. The aim of the present study was to explore the mechanism of GJ-4 on a Aβ25-35-intoxicated mouse model. The results demonstrated that GJ-4 treatment significantly improved spatial learning and memory abilities of the AD mice challenged by Aβ25-35. Mechanistic study indicated that GJ-4 could alleviate endothelial dysfunction, as GJ-4 markedly reduced endothelial cell edema, as well as improved tight junction structures by up-regulating Zonula occludens-1 (ZO-1), Claudin-5 and Occludin expressions. Moreover, GJ-4 markedly reduced receptor for advanced glycation end products (RAGE) expression and increased low-density lipoprotein receptor-related protein-1 (LRP-1) expression, suggesting endothelial transduction and clearance of toxic species capabilities improved by GJ-4 treatment. The results also indicated that GJ-4 significantly decreased IL-6 and IL-1β mRNA expressions, as well as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expressions, implying the inhibition of glial activation and vascular inflammation by GJ-4 treatment. Furthermore, GJ-4 treatment inhibited glial activation mediated neuroinflammation through inhibiting high-mobility group box protein 1(HMGB-1)/RAGE/NF-κB signaling pathway, which might confer to the neuroprotection. In conclusion, our present study proved GJ-4 could protect the neurovascular unit (NVU), through attenuating endothelial cell damage, enhancing tight junction function, inhibiting of glial activation and protecting of neurons. This study provided evidence that the beneficial effects of GJ-4 on AD might be owing to its protection on NVU.
Collapse
Affiliation(s)
- Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yang Yu
- Institute of TCM & Natural Products College of Pharmacy, Jinan University Guangzhou 510632, China
| | - Xinsheng Yao
- Institute of TCM & Natural Products College of Pharmacy, Jinan University Guangzhou 510632, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
29
|
Zhang Z, Wang X, Zhang D, Liu Y, Li L. Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer's disease. Aging (Albany NY) 2020; 11:536-548. [PMID: 30684442 PMCID: PMC6366989 DOI: 10.18632/aging.101759] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022]
Abstract
Geniposide, an iridoid glycoside extract from the gardenia fruit, is used in traditional Chinese medicine to alleviate symptoms of liver and inflammatory diseases. Geniposide activates GLP-1 receptors, known to modulate the activity of mechanistic target of rapamycin (mTOR), a key kinase regulating energy balance, proliferation, and survival in cells. mTOR activation inhibits autophagy, which is often disrupted in age-related diseases. Modulation of mTOR function to increase autophagy and inhibit apoptosis is involved in the protective effects of pharmacologic agents targeting diabetes and Alzheimer’s disease (AD). We investigated whether such mechanism could mediate geniposide’s neuroprotective effects in the APP/PS1 mouse model of AD. Eight-week treatment with geniposide improved cognitive scores in behavioral tests, reduced amyloid-β 1-40 plaque deposition, and reduced soluble Aβ1-40 and Aβ1-42 levels in the APP/PS1 mouse brain.This also showed increased p-Akt/Akt, p-mTOR/mTOR and decreased p-4E-BP1/4E-BP1 expression, and these patterns were partially reversed by geniposide. Evidence for enhanced autophagy, denoted by increased expression of LC3-II and Beclin1, was also seen after treatment with geniposide. Our data suggests that down regulation of mTOR signaling, leading to enhanced autophagy and lysosomal clearance of Aβ fibrils, underlies the beneficial effects of geniposide against neuropathological damage and cognitive deficits characteristic of AD.
Collapse
Affiliation(s)
- Zhihua Zhang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Shanxi Medical College for Continuing Education, Taiyuan, Shanxi, PR China
| | - Xiaojian Wang
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Shanxi Provincial People's Hospital, Taiyuan, Shanxi, PR China
| | - Di Zhang
- Chemistry Department, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yueze Liu
- Second Hospital, Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Lin Li
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
30
|
The protective effect of Geniposide on diabetic cognitive impairment through BTK/TLR4/NF-κB pathway. Psychopharmacology (Berl) 2020; 237:465-477. [PMID: 31811349 DOI: 10.1007/s00213-019-05379-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022]
Abstract
The purpose of the present study was to elucidate the pharmacological effects of Geniposide (GEN) on high diet fed and streptozotocin (STZ)-caused diabetic cognitive impairment. The mice were fed with high fat diet (HFD) for 4 weeks and intraperitoneally injected with 60 mg/kg STZ for three times within 72 h. The mice with glucose level over 15 mmol/l were regarded as diabetic and selected for further studies. The animals were intragastrically treated with metformin or GEN once daily for 4 weeks. Afterwards, the animals were applied for Y maze, novel object recognition (NOR) test, step-through passive avoidance test, and Morris water maze (MWM) test. The blood glucose and body weight were examined. The SH-SY5Y cells were treated with GEN in the presence or absence of ibrutinib and stimulated with high-glucose culture medium. The tumor necrosis factor-a (TNF-α) and interleukin (IL)-6 in serum, hippocampus, and supernatant were measured using ELISA method. The protein expressions of Bruton's tyrosine kinase (BTK), Toll-like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), nuclear factor kappa-B (NF-κB), p-NF-κB, brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB), p-CREB, and glucagon-like peptide-1 receptor (GLP-1R) were detected by western blot analyses. As a result, the GEN treatment notably attenuated the body weight, blood glucose, and cognitive decline. GEN also inhibited the generations of inflammatory cytokines. Furthermore, the administrations of GEN ameliorated the alterations of BTK, TLR4, MyD88, NF-κB, and BDNF in HFD + STZ-induced mice. With the application of ibrutinib, the selective inhibitor of BTK, it was also found that BTK/TLR4/NF-κB pathway was associated with the GEN treatment in high glucose-induced SH-SY5Y cells. In summary, the results suggested that GEN exerted the protective effect on STZ-induced cognitive impairment possibly through the modulation of BTK/TLR4/NF-κB signaling.
Collapse
|
31
|
Gardenia jasminoides Enhances CDDP-Induced Apoptosis of Glioblastoma Cells via AKT/mTOR Pathway While Protecting Death of Astrocytes. Nutrients 2020; 12:nu12010196. [PMID: 31936835 PMCID: PMC7019269 DOI: 10.3390/nu12010196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/29/2022] Open
Abstract
Gliomas are the most observed primary brain tumor, of which glioblastoma multiform (GBM) shows the highest incidence. Radiotherapy with temozolomide is the standard therapeutic method, but because of side effects, search for alternative therapies is required. Gardenia jasminoides (GJ) is flavonoid abundant with beneficial effects on inflammation, metabolic diseases, and cancers. In this study, we investigated the synergistic combination of GJ and cisplatin (CDDP) in U87MG and U373MG GBM cells. GJ and CDDP both showed cytotoxicity in U87MG cells, however GJ did not affect viability of normal astrocytes while CDDP displayed high toxicity. Cytotoxic effect of GJ and CDDP was related in apoptosis when confirmed by Western blot assays on cleaved caspase-3, caspase-9, and PARP. Moreover, GJ and CDDP showed synergistic combination in cell death of GBM cells, which was further confirmed by Western blot assays of apoptosis factors and also flow cytometry of Annexin V. Analysis on autophagy factors showed that GJ/CDDP combination induced autophagy, and through inhibition of autophagy, we could confirm autophagy is crucial to cytotoxicity of GJ/CDDP in GBM cell lines. The autophagy-mediated apoptosis of GJ/CDDP was dependent on the AKT/mTOR pathway. Overall, our results suggest GJ/CDDP combination as an effective yet safe therapeutic approach to GBMs.
Collapse
|
32
|
Combination of Geniposide and Eleutheroside B Exerts Antidepressant-like Effect on Lipopolysaccharide-Induced Depression Mice Model. Chin J Integr Med 2019; 27:534-541. [PMID: 31784933 DOI: 10.1007/s11655-019-3051-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the antidepressant-like effect and action mechanism of geniposide and eleutheroside B combination treatment on the lipopolysaccharide (LPS)-induced depression mice model. METHODS Depression mice model was established by lipopolysaccharide (LPS) injection. Totally 48 mice were randomly divided into 6 groups (8 rats per group) according to a random number table, including normal, model, fluoxetine (20 mg/kg), geniposide (100 mg/kg) + eleutheroside B (100 mg/kg), geniposide + eleutheroside B + WAY 100635 (0.03 mg/kg), geniposide + eleutheroside B+ N-methyl-D-aspartic acid receptor (NMDA, 75 mg/kg) groups, respectively. After continuous administration for 10 days, autonomic activity tests after 30 min of administration were performed on the 10th day. On the 11th day, except for the normal group, the mice in the other groups were intraperitoneally injected with LPS (1 mg/kg), and the behavioral tests were performed 4 h later. Enzyme linked immunosorbent assay was used to detect tumor necrosis factor alpha (TNF- α) and interleukin-1 β (IL-1 β) levels in mice serum. The mRNA expression of indoleamine 2,3-dioxygenase (IDO) and nuclear transcription factor (NF- κB) were detected by real-time quantitative polymerase chain reaction. Western-blot analysis was used to detect IDO and NF- κB protein expressions in hippocampus tissue. RESULTS Compared with the normal group, a single administration of LPS increased the immobility time in the forced swimming test (FST) and tail suspension test (TST, P<0.01), without affecting autonomous activity. Compared with the model group, fluoxetine and geniposide + eleutheroside B administration significantly improved the immobility time of depressed mice in the FST and TST, decreased serum IL-1 β content, inhibited the expression levels of NF- κ B gene and protein in hippocampus tissues (P<0.05 or P<0.01). Compared with the model group, geniposide + eleutheroside B treatment significantly reduced serum TNF-α content and inhibited IDO mRNA and protein expressions in hippocampus (P<0.05 or P<0.01). In addition, NMDA partly prevented the inhibition of IDO mRNA expression by geniposide + eleutheroside B; NMDA and WAY-100635 also partly prevented the reduction of IL-1 ß content induced by geniposide + eleutheroside B treatment (P<0.05 or P<0.01). CONCLUSIONS The combination of geniposide and eleutheroside B showed a certain antidepression-like effect. Its main mechanism of action may be contributed to inhibiting the activation of NF- κB, decreasing the proinflammatory cytokines such as TNF-α, IL-1 β, and inhibiting in the neuroinflammatory reaction. Additionally, it also affects tryptophan metabolism, reduces the expression of a key enzyme of tryptophan metabolism, IDO. And this antidepressant-like effect may be mediated by 5-hydroxytryptamine and glutamate systems.
Collapse
|
33
|
Anti-hyperuricemic and nephroprotective effect of geniposide in chronic hyperuricemia mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
34
|
Zhang J, He Y, Jiang X, Jiang H, Shen J. Nature brings new avenues to the therapy of central nervous system diseases—An overview of possible treatments derived from natural products. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1332-1367. [DOI: 10.1007/s11427-019-9587-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
|
35
|
Yue S, He T, Li B, Qu Y, Peng H, Chen J, Lei M, Chen C, Wu W. Effectiveness of Yi-Zhi-An-Shen granules on cognition and sleep quality in older adults with amnestic mild cognitive impairment: protocol for a randomized, double-blind, placebo-controlled trial. Trials 2019; 20:518. [PMID: 31429790 PMCID: PMC6701140 DOI: 10.1186/s13063-019-3607-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amnestic mild cognitive impairment (aMCI) is a syndrome characterized by significant forgetfulness that does not meet the criteria of dementia. Individuals with aMCI are at greater risk of progressing to dementia. Current studies suggest that good sleep quality is linked with preserved cognition in the elderly, and sleep complaints are common among the elderly with amnesia. Therefore, improving their sleep may be helpful for maintaining and improving their cognitive capacity. According to the theory of traditional Chinese medicine, Yi-Zhi-An-Shen is an herbal compound which may ameliorate forgetfulness and sleep disorders. As growing evidence indicates that the gut microbiome is associated with major mental symptoms, a hypothesis was proposed that Yi-Zhi-An-Shen granules (YZASG) might work by alternating microbial abundance and diversity. In this study, the investigators intend to assess the efficacy of YZASG on global cognition in the elderly suffering from aMCI and evaluate its safety as well as its potential mechanisms via sleep quality, fecal microbial 16S ribosomal DNA and metagenomics analyses, and serum markers. METHODS/DESIGN This study is a randomized, double-blind, placebo-controlled clinical trial. A total of 80 patients (aged 60-85 years) will be recruited and allocated randomly to a treatment group and a placebo group in a 1:1 ratio and will then be administered YZASG or isodose placebo three times a day. The intervention course is 16 weeks, with an 18 months follow-up. The primary outcome is the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Secondary outcome measures are the Mini-Mental State Examination, Montreal Cognitive Assessment, Pittsburgh Sleep Quality Index, serum concentrations of immunological factors and inflammatory cytokines, and fecal microbiota. Fecal microbiota will only be collected at the baseline and endpoint of the intervention. DISCUSSION The results of this trial will be conducive to assessing the safety and effectiveness on cognition of YZASG in intervening aMCI among the elderly and determining if it takes effect via the improvement of sleep quality, regulation of gut microbiota, and concentration of certain serum markers. TRIAL REGISTRATION ClinicalTrials.gov, NCT03601000 . Registered on 26 July 2018.
Collapse
Affiliation(s)
- Shengnan Yue
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 1177 Liu-tai Avenue, Chengdu, 611137, Sichuan Province, People's Republic of China.,Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Ting He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 1177 Liu-tai Avenue, Chengdu, 611137, Sichuan Province, People's Republic of China
| | - Baiyang Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 1177 Liu-tai Avenue, Chengdu, 611137, Sichuan Province, People's Republic of China
| | - Yanqin Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 1177 Liu-tai Avenue, Chengdu, 611137, Sichuan Province, People's Republic of China
| | - Hongmei Peng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 1177 Liu-tai Avenue, Chengdu, 611137, Sichuan Province, People's Republic of China
| | - Jinxin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 1177 Liu-tai Avenue, Chengdu, 611137, Sichuan Province, People's Republic of China
| | - Ming Lei
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Chongli Chen
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Wenbin Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No. 1177 Liu-tai Avenue, Chengdu, 611137, Sichuan Province, People's Republic of China. .,Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
36
|
Jeon SG, Song EJ, Lee D, Park J, Nam Y, Kim JI, Moon M. Traditional Oriental Medicines and Alzheimer's Disease. Aging Dis 2019; 10:307-328. [PMID: 31435482 PMCID: PMC6667206 DOI: 10.14336/ad.2018.0328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD), which is the most major cause of dementia, is a progressive neurodegenerative disease that affects cognitive functions. Even though the prevalence of AD is continuously increasing, few drugs including cholinesterase inhibitors and N-methyl D-aspartate-receptor antagonists were approved to treat AD. Because the clinical trials of AD drugs with single targets, such as β-amyloid and tau, have failed, the development of multi-target drugs that ameliorate many of the symptoms of AD is needed. Thus, recent studies have investigated the effects and underlying mechanisms of herbal formulae consisting of various herb combinations used to treat AD. This review discusses the results of clinical and nonclinical studies of the therapeutic efficacy in AD and underlying mechanisms of the herbal formulae of traditional Oriental medicines and bioactive compounds of medicinal plants.
Collapse
Affiliation(s)
- Seong Gak Jeon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Eun Ji Song
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Dongje Lee
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Junyong Park
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- 2Center for Organic Devices and Advanced Materials, Kyungsung University, Busan 48434, Republic of Korea
| | - Jin-Il Kim
- 3Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
37
|
Lv S, Ding Y, Zhao H, Liu S, Zhang J, Wang J. Therapeutic Potential and Effective Components of the Chinese Herb Gardeniae Fructus in the Treatment of Senile Disease. Aging Dis 2018; 9:1153-1164. [PMID: 30574425 PMCID: PMC6284761 DOI: 10.14336/ad.2018.0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gardeniae fructus (GF), an evergreen Rubiaceae shrub, is one of the most commonly used Chinese herbs in traditional Chinese medicine (TCM) and has been used for over a thousand years. It is usually prescribed for the treatment of brain aging, vascular aging, bone and joint aging, and other age-related diseases. It has been demonstrated that several effective compounds of GF, such as geniposide, genipin and crocin, have neuroprotective or related activities which are involved in senile disease treatment. These bioactivities include the mitochondrion dysfunction, antioxidative activity, apoptosis regulation and an anti-inflammatory activity, which related to multiple signaling pathways such as the nuclear factor-κB pathway, AMP-activated protein kinase signaling pathway, and the mitogen-activated protein kinase pathway. To lay the ground for fully elucidating the potential mechanisms of GF in treating age-related pathologies, we summarized the available research conducted in the last fifteen years about GF and its effective components, which have been studied in vivo and in vitro
Collapse
Affiliation(s)
- Shichao Lv
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Ding
- 3Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haiping Zhao
- 4Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shihao Liu
- 5Department of Cell and Developmental Biology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, USA
| | - Junping Zhang
- 2Department of Geriatric Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Wang
- 1Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Feng LD, Tian Y, Wang X, Dai R, Cai S, Cao YJ, Si YC. Therapy of Dredging the Bowels Enhanced the Neuroprotective Effect of Nourishing Kidney Herbs on Hippocampal Cholinergic System in Alzheimer's Disease Model Rat Induced by A β 1-42. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:3282385. [PMID: 30298092 PMCID: PMC6157172 DOI: 10.1155/2018/3282385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/03/2018] [Accepted: 08/15/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Therapy of nourishing kidney has been used for treating memory deficits of Alzheimer's disease (AD) for thousands of years based on traditional Chinese medicine. However, we found the therapy of dredging the bowels could alleviate both memory deficits and mental symptoms of AD in clinic. OBJECTIVE To determine whether the therapy of dredging the bowels could enhance the neuroprotective effect of nourishing kidney herbs for treating AD rats, and to explore the underlying mechanism of the combination of nourishing kidney and dredging the bowels (NKDB) herbs. METHODS 60 rats were randomly divided into sham-operated group (SOG), model group (MG), nourishing kidney group (NKG), dredging the bowels group (DBG), nourishing kidney and dredging the bowels group (NKDBG), and donepezil hydrochloride group (DHG). The model establishment was performed by injecting Aβ 1-42 into the hippocampal CA1 region. Animals received aqueous solution of Chinese herbal medicine or western medicine while SOG received only distilled water. Ability of learning and memory were assessed by Morris water maze. Acetylcholinesterase(AChE) and choline acetyltransferase (ChAT) activity and positive cells in the hippocampus were detected by the biochemical and immunofluorescent assay. RESULTS All rats were in the same baseline. While after model establishment, ability of learning and memory of MG, NKG, DBG, NKDBG, and DHG were significantly impaired compared with SOG. Whereas after treatment, ability of learning and memory of NKG, DBG, NKDBG, and DHG were significantly improved compared with MG. Additionally, AChE activity of NKG, DBG, and NKDBG was significantly decreased, meanwhile ChAT activity showed an increased tendency. The number of AChE-positive cells and ChAT-positive cells of both NKDBG and DHG were significantly decreased and increased respectively, superior to those when compared with NKG and DBG. What's more, there was no significant difference between NKDBG and DHG. CONCLUSION Therapy of dredging the bowels could enhance the neuroprotective effect of nourishing kidney herbs by reversing morphological damage of hippocampal cholinergic system. Furthermore, treatment with NKDB herbs could be effectively against AD, providing a practical therapeutic strategy in clinic.
Collapse
Affiliation(s)
- Lu-Da Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Tian
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
- Neuroscience Department, Tufts University, Boston MA, 02111, USA
| | - Xin Wang
- Research Center of TCM Information Engineering, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Run Dai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Song Cai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yu-Jia Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yin-Chu Si
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
39
|
Ko YH, Kwon SH, Ma SX, Seo JY, Lee BR, Kim K, Kim SY, Lee SY, Jang CG. The memory-enhancing effects of 7,8,4’-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res Bull 2018; 142:197-206. [DOI: 10.1016/j.brainresbull.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022]
|
40
|
Zang CX, Bao XQ, Li L, Yang HY, Wang L, Yu Y, Wang XL, Yao XS, Zhang D. The Protective Effects of Gardenia jasminoides (Fructus Gardenia) on Amyloid-β-Induced Mouse Cognitive Impairment and Neurotoxicity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:389-405. [DOI: 10.1142/s0192415x18500192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease in the world. Although the exact causes of AD have not yet been fully elucidated, cholinergic dysfunction, mitochondrial damage, oxidative stress and neuroinflammation have been recognized as influential factors. Current drugs that are designed to address only a single target are unable to mitigate or prevent the progression of this complicated disease, so new disease-modifying drugs are urgently needed. Chinese herbs with thousand years of effective usage might be a good source for potential drugs. Gardenia jasminoides J. Ellis (Fructus Gardenia) is a common traditional Chinese medicine with tranquilizing effects, which is an important component of widely-used traditional Chinese medicine for dementia. GJ-4 is crocin richments extracted from Gardenia jasminoides J. Ellis. In our study, we attempted to observe the effects of GJ-4 on learning and memory injury induced by amyloid-[Formula: see text] 25-35 (A[Formula: see text] injection in mice. Treatment with GJ-4 dose-dependently enhanced the memory and cognition ability of A[Formula: see text]-injected mice. Preliminary mechanistic studies revealed the protective effect of GJ-4 was related to its protection of neurons and cholinergic dysfunction. The mechanistic results also indicated that GJ-4 could enhance antioxidant capacity and attenuate neuroinflammation. Our results implied that GJ-4 might be a promising drug to improve cognitive and memory impairment, with multiple targets.
Collapse
Affiliation(s)
- Cai-Xia Zang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xiu-Qi Bao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Lin Li
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Han-Yu Yang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Lu Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yang Yu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xiao-Liang Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xin-Sheng Yao
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Zhang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
41
|
Shan M, Yu S, Yan H, Guo S, Xiao W, Wang Z, Zhang L, Ding A, Wu Q, Li SFY. A Review on the Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Geniposide, a Natural Product. Molecules 2017; 22:E1689. [PMID: 28994736 PMCID: PMC6151614 DOI: 10.3390/molecules22101689] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology, pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as well as to help us develop and utilize this iridoid glycoside more efficiently and safely.
Collapse
Affiliation(s)
- Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wei Xiao
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China.
| | - Zhenzhong Wang
- National Key Laboratory of Pharmaceutical New Technology for Chinese Medicine, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang 222001, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Anwei Ding
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qinan Wu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
42
|
Li X, Zhang Y, Wang Y, Xu J, Xin P, Meng Y, Wang Q, Kuang H. The Mechanisms of Traditional Chinese Medicine Underlying the Prevention and Treatment of Parkinson's Disease. Front Pharmacol 2017; 8:634. [PMID: 28970800 PMCID: PMC5609571 DOI: 10.3389/fphar.2017.00634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/28/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD), characterized with bradykinesia, static tremor, rigidity and disturbances in balance, is the second most common neurodegenerative disorder. Along with the largely aging population in the world, the incidence is increasing year by year, which imposes the negative impacts on patients, their families and the whole society. Traditional Chinese medicine (TCM) has a positive prospect for the prevention and cure of PD due to its advantages of less side effects and multi-target effects. At present, the pathogenesis of PD is not yet fully discovered. This paper elaborates the mechanisms of TCM underlying the prevention and treatment of PD with regards to the inhibition of oxidative stress, the regulation of mitochondrial dysfunction, the reduction of toxic excitatory amino acids (EAA), the inhibition of neuroinflammation, the inhibition of neuronal apoptosis, and the inhibition of abnormal protein aggregation.
Collapse
Affiliation(s)
- Xiaoliang Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China.,Science of Chinese Materia Medica, Jiamusi College, Heilongjiang University of Chinese MedicineJiamusi, China
| | - YaNan Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Yu Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Jing Xu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Ping Xin
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - YongHai Meng
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| | - Qiuhong Wang
- Science of Processing Chinese Materia Medica, College of Pharmacy, Guangdong Pharmaceutical UniversityGuangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese MedicineHarbin, China
| |
Collapse
|
43
|
Zhang H, Zhao C, Lv C, Liu X, Du S, Li Z, Wang Y, Zhang W. Geniposide Alleviates Amyloid-Induced Synaptic Injury by Protecting Axonal Mitochondrial Trafficking. Front Cell Neurosci 2017; 10:309. [PMID: 28179878 PMCID: PMC5263130 DOI: 10.3389/fncel.2016.00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/26/2016] [Indexed: 12/04/2022] Open
Abstract
Synaptic and mitochondrial pathologies are early events in the progression of Alzheimer's disease (AD). Normal axonal mitochondrial function and transport play crucial roles in maintaining synaptic function by producing high levels of adenosine triphosphate and buffering calcium. However, there can be abnormal axonal mitochondrial trafficking, distribution, and fragmentation, which are strongly correlated with amyloid-β (Aβ)-induced synaptic loss and dysfunction. The present study examined the neuroprotective effect of geniposide, a compound extracted from gardenia fruit in Aβ-treated neurons and an AD mouse model. Geniposide alleviated Aβ-induced axonal mitochondrial abnormalities by increasing axonal mitochondrial density and length and improving mitochondrial motility and trafficking in cultured hippocampal neurons, consequently ameliorating synaptic damage by reversing synaptic loss, addressing spine density and morphology abnormalities, and ameliorating the decreases in synapse-related proteins in neurons and APPswe/PS1dE9 mice. These findings provide new insights into the effects of geniposide administration on neuronal and synaptic functions under conditions of Aβ enrichment.
Collapse
Affiliation(s)
- Haijing Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; College of Life Science, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China
| | - Chunhui Zhao
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Cui Lv
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Shandong Academy of ScienceJinan, China
| | - Xiaoli Liu
- College of Resources Science Technology, Beijing Normal UniversityBeijing, China; Engineering Research Center of Sanqi Biotechnology and PharmaceuticalKunming, China
| | - Shijing Du
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Zhi Li
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Yongyan Wang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China
| | - Wensheng Zhang
- Beijing Area Major Laboratory of Protection and Utilization of Traditional Chinese Medicine, Beijing Normal UniversityBeijing, China; Engineering Research Center of Natural Medicine, Ministry of Education, Beijing Normal UniversityBeijing, China; College of Resources Science Technology, Beijing Normal UniversityBeijing, China; Engineering Research Center of Sanqi Biotechnology and PharmaceuticalKunming, China
| |
Collapse
|