1
|
Grødem S, Thompson EH, Røe MB, Vatne GH, Nymoen Nystuen I, Buccino A, Otterstad T, Hafting T, Fyhn M, Lensjø KK. Differential impacts of germline and adult aggrecan knockout in PV+ neurons on perineuronal nets and PV+ neuronal function. Mol Psychiatry 2025:10.1038/s41380-025-02894-5. [PMID: 39837996 DOI: 10.1038/s41380-025-02894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism. The formation of PNNs is highly dependent on aggrecan, a proteoglycan encoded by the ACAN gene, but it remains unknown if it is produced by the PV+ neurons themselves. Thus, we established a knockout (KO) mouse model (ACANflx/PVcre) and an adeno-associated virus to specifically eliminate aggrecan production from PV+ neurons, in the germline or adult animals, respectively. The germline KO (ACANflx/PVcre) eliminated the expression of PNNs labeled by Wisteria floribunda agglutinin (WFA), the most commonly used PNN marker. Surprisingly, electrophysiological properties of PV+ interneurons and ocular dominance plasticity of adult ACANflx/PVcre mice were similar to controls. In contrast, AAV-mediated ACAN knockout in adult mice increased ocular dominance plasticity. Moreover, in vivo Chondroitinase ABC treatment of KO mice resulted in reduced firing rate of PV+ cells and increased frequency of spontaneous excitatory postsynaptic currents (sEPSC), a phenotype associated with chABC treatment of WT animals. These findings suggest that compensatory mechanisms may be activated during development in response to the germline loss of aggrecan. Indeed, qPCR of bulk tissue indicates that other PNN components, including neurocan and tenascin-R, are expressed at higher levels in the KO animals. Finally, behavioral testing revealed that ACANflx/PVcre mice had similar long-term memory as controls in the Morris water maze. However, they employed bolder search strategies during spatial learning and showed lower level of anxiety-related behavior in an open field and zero maze.
Collapse
Affiliation(s)
- Sverre Grødem
- Department of Bioscience, University of Oslo, Oslo, Norway
| | | | | | | | | | - Alessio Buccino
- Department of Bioscience, University of Oslo, Oslo, Norway
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | - Torkel Hafting
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Kristian Kinden Lensjø
- Department of Bioscience, University of Oslo, Oslo, Norway.
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Hazlett MF, Hall VL, Patel E, Halvorsen A, Calakos N, West AE. The Perineuronal Net Protein Brevican Acts in Nucleus Accumbens Parvalbumin-Expressing Interneurons of Adult Mice to Regulate Excitatory Synaptic Inputs and Motivated Behaviors. Biol Psychiatry 2024; 96:694-707. [PMID: 38346480 PMCID: PMC11315813 DOI: 10.1016/j.biopsych.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Experience-dependent functional adaptation of nucleus accumbens (NAc) circuitry underlies the development and expression of reward-motivated behaviors. Parvalbumin-expressing GABAergic (gamma-aminobutyric acidergic) interneurons (PVINs) within the NAc are required for this process. Perineuronal nets (PNNs) are extracellular matrix structures enriched around PVINs that arise during development and have been proposed to mediate brain circuit stability. However, their function in the adult NAc is largely unknown. Here, we studied the developmental emergence and adult regulation of PNNs in the NAc of male and female mice and examined the cellular and behavioral consequences of reducing the PNN component brevican in NAc PVINs. METHODS We characterized the expression of PNN components in mouse NAc using immunofluorescence and RNA in situ hybridization. We lowered brevican in NAc PVINs of adult mice using an intersectional viral and genetic method and quantified the effects on synaptic inputs to NAc PVINs and reward-motivated learning. RESULTS PNNs around NAc PVINs were developmentally regulated and appeared during adolescence. In the adult NAc, PVIN PNNs were also dynamically regulated by cocaine. Transcription of the gene that encodes brevican was regulated in a cell type- and isoform-specific manner in the NAc, with the membrane-tethered form of brevican being highly enriched in PVINs. Lowering brevican in NAc PVINs of adult mice decreased their excitatory inputs and enhanced both short-term novel object recognition and cocaine-induced conditioned place preference. CONCLUSIONS Regulation of brevican in NAc PVINs of adult mice modulates their excitatory synaptic drive and sets experience thresholds for the development of motivated behaviors driven by rewarding stimuli.
Collapse
Affiliation(s)
- Mariah F Hazlett
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Victoria L Hall
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Esha Patel
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Aaron Halvorsen
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina; Department of Neurology, Duke University Medical Center, Durham, North Carolina; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina; Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
3
|
Yao JY, Zhao TS, Guo ZR, Li MQ, Lu XY, Zou GJ, Chen ZR, Liu Y, Cui YH, Li F, Li CQ. Degradation of perineuronal nets in the medial prefrontal cortex promotes extinction and reduces reinstatement of methamphetamine-induced conditioned place preference in female mice. Behav Brain Res 2024; 472:115152. [PMID: 39032868 DOI: 10.1016/j.bbr.2024.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The high rate of relapse to compulsive methamphetamine (MA)-taking and seeking behaviors after abstinence constitutes a major obstacle to the treatment of MA addiction. Perineuronal nets (PNNs), essential components of the extracellular matrix, play a critical role in synaptic function, learning, and memory. Abnormalities in PNNs have been closely linked to a series of neurological diseases, such as addiction. However, the exact role of PNNs in MA-induced related behaviors remains elusive. Here, we established a MA-induced conditioned place preference (CPP) paradigm in female mice and found that the number and average optical density of PNNs increased significantly in the medial prefrontal cortex (mPFC) of mice during the acquisition, extinction, and reinstatement stages of CPP. Notably, the removal of PNNs in the mPFC via chondroitinase ABC (ChABC) before extinction training not only facilitated the extinction of MA-induced CPP and attenuated the relapse of extinguished MA preference but also significantly reduced the activation of c-Fos in the mPFC. Similarly, the ablation of PNNs in the mPFC before reinstatement markedly lessened the reinstatement of MA-induced CPP, which was accompanied by the decreased expression of c-Fos in the mPFC. Collectively, our results provide more evidence for the implication of degradation of PNNs in facilitating extinction and preventing relapse of MA-induced CPP, which indicate that targeting PNNs may be an effective therapeutic option for MA-induced CPP memories.
Collapse
Affiliation(s)
- Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Tian-Shu Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zi-Rui Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Sethi MK, Maccioni R, Hogan JD, Kawamura T, Repunte-Canonigo V, Chen J, Zaia J, Sanna PP. Comprehensive Glycomic and Proteomic Analysis of Mouse Striatum and Lateral Hypothalamus Following Repeated Exposures to Cocaine or Methamphetamine. Mol Cell Proteomics 2024; 23:100803. [PMID: 38880242 PMCID: PMC11324981 DOI: 10.1016/j.mcpro.2024.100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - John D Hogan
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, Massachusetts, USA; Bioinformatics Program, Boston University, Boston, Massachusetts, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
5
|
Li X, Wu X, Lu T, Kuang C, Si Y, Zheng W, Li Z, Xue Y. Perineuronal Nets in the CNS: Architects of Memory and Potential Therapeutic Target in Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:3412. [PMID: 38542386 PMCID: PMC10970535 DOI: 10.3390/ijms25063412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The extracellular matrix (ECM) within the brain possesses a distinctive composition and functionality, influencing a spectrum of physiological and pathological states. Among its constituents, perineuronal nets (PNNs) are unique ECM structures that wrap around the cell body of many neurons and extend along their dendrites within the central nervous system (CNS). PNNs are pivotal regulators of plasticity in CNS, both during development and adulthood stages. Characterized by their condensed glycosaminoglycan-rich structures and heterogeneous molecular composition, PNNs not only offer neuroprotection but also participate in signal transduction, orchestrating neuronal activity and plasticity. Interfering with the PNNs in adult animals induces the reactivation of critical period plasticity, permitting modifications in neuronal connections and promoting the recovery of neuroplasticity following spinal cord damage. Interestingly, in the adult brain, PNN expression is dynamic, potentially modulating plasticity-associated states. Given their multifaceted roles, PNNs have emerged as regulators in the domains of learning, memory, addiction behaviors, and other neuropsychiatric disorders. In this review, we aimed to address how PNNs contribute to the memory processes in physiological and pathological conditions.
Collapse
Affiliation(s)
- Xue Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xianwen Wu
- Department of Laboratory Animal Sciences, Peking University Health Sciences Center, Beijing 100191, China;
| | - Tangsheng Lu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chenyan Kuang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yue Si
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Zheng
- Peking-Tsinghua Centre for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China;
| | - Zhonghao Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanxue Xue
- National Institute on Drug Dependence, Peking University, Beijing 100191, China; (X.L.); (T.L.); (Y.S.); (Z.L.)
| |
Collapse
|
6
|
Wingert JC, Anguiano JN, Ramos JD, Blacktop JM, Gonzalez AE, Churchill L, Sorg BA. Enhanced expression of parvalbumin and perineuronal nets in the medial prefrontal cortex after extended-access cocaine self-administration in rats. Addict Biol 2023; 28:e13334. [PMID: 37855072 DOI: 10.1111/adb.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023]
Abstract
The medial prefrontal cortex (mPFC) drives cocaine-seeking behaviour in rodent models of cocaine use disorder. Parvalbumin (PV)-containing GABAergic interneurons powerfully control the output of the mPFC, yet few studies have focused on how these neurons modulate cocaine-seeking behaviour. Most PV neurons are surrounded by perineuronal nets (PNNs), which regulate the firing of PV neurons. We examined staining intensity and number of PV and PNNs after long-access (6 h/day) cocaine self-administration in rats followed by either 8-10 days extinction ± cue-induced reinstatement or short-term (1-2 days) or long-term (30-31 days) abstinence ± cue-induced reinstatement. The intensity of PNNs was increased in the prelimbic and infralimbic PFC after long-term abstinence in the absence of cue reinstatement and after cue reinstatement following both daily extinction sessions and after a 30-day abstinence period. PV intensity was increased after 30 days of abstinence in the prelimbic but not infralimbic PFC. Enzymatic removal of PNNs with chondroitinase ABC (ABC) in the prelimbic PFC did not prevent incubation of cue-induced reinstatement but decreased cocaine-seeking behaviour at both 2 and 31 days of abstinence, and this decrease at 31 days was accompanied by reduced c-Fos levels in the prelimbic PFC. Increases in PNN intensity have generally been associated with the loss of plasticity, suggesting that the persistent and chronic nature of cocaine use disorder may in part be attributed to long-lasting increases in PNN intensity that reduce the ability of stimuli to alter synaptic input to underlying PV neurons.
Collapse
Affiliation(s)
- Jereme C Wingert
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Jonathan N Anguiano
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Jonathan D Ramos
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Jordan M Blacktop
- Neuroscience, Washington State University, Vancouver, Washington, USA
| | - Angela E Gonzalez
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Lynn Churchill
- Neuroscience, Washington State University, Pullman, Washington, USA
| | - Barbara A Sorg
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| |
Collapse
|
7
|
Miao HT, Song RX, Xin Y, Wang LY, Lv JM, Liu NN, Wu ZY, Zhang W, Li Y, Zhang DX, Zhang LM. Spautin-1 Protects Against Mild TBI-Induced Anxiety-Like Behavior in Mice via Immunologically Silent Apoptosis. Neuromolecular Med 2023; 25:336-349. [PMID: 36745326 DOI: 10.1007/s12017-023-08737-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Anxiety is reportedly one of the most common mental changes after traumatic brain injury (TBI). Perineuronal nets (PNNs) produced by astrocytes in the lateral hypothalamus (LHA) that surround gamma-aminobutyric acid-ergic (GABAergic) neurons have been associated with anxiety. The potent anti-tumor effects of Spautin-1, a novel autophagy inhibitor, have been documented in malignant melanoma; moreover, the inhibition of autophagy is reported to mitigate anxiety disorders. However, little is known about the ability of spautin-1 to alleviate anxiety. In this study, we sought to investigate whether spautin-1 could alleviate anxiety-like behaviors post-TBI by reducing the loss of PNNs in the LHA. A mild TBI was established in mice through Feeney's weight-drop model. Then, Spautin-1 (20 mmol/2 μl) was immediately administered into the left lateral ventricle. Behavioral and pathological changes were assessed at 24 h, 7 days, 30 days, 31 days and 32 days after TBI by the neurological severity scores (NSS), open field test (OFT), elevated plus-maze (EPM) test, western blot, immunofluorescence assays and electron microscopy. Spautin-1 significantly reversed TBI-induced decreased time in the central zone during OFT and in the open-arm during the EPM test. Spautin-1 also increased PNNs around GABAergic neurons indicated by WFA- plus GAD2- positive A2-type astrocytes and attenuated M1-type microglia in the LHA 32 days after TBI compared to TBI alone. Moreover, compared to mice that only underwent TBI, spautin-1 downregulated autophagic vacuoles, abnormal organelles, the expression of Beclin 1, USP13, phospho-TBK1, and phospho-IRF3 and upregulated the levels of cleaved caspase-3, -7 and -9, but failed to increase TUNEL-positive cells in the LHA at 24 h. Spautin-1 alleviated anxiety-like behavior in mice exposed to mild TBI; this protective mechanism may be associated with decreased PNNs loss around GABAergic neurons via immunologically silent apoptosis induced by the caspase cascade.
Collapse
Affiliation(s)
- Hui-Tao Miao
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jin-Meng Lv
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Na-Na Liu
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| |
Collapse
|
8
|
Valeri J, Gisabella B, Pantazopoulos H. Dynamic regulation of the extracellular matrix in reward memory processes: a question of time. Front Cell Neurosci 2023; 17:1208974. [PMID: 37396928 PMCID: PMC10311570 DOI: 10.3389/fncel.2023.1208974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Substance use disorders are a global health problem with increasing prevalence resulting in significant socioeconomic burden and increased mortality. Converging lines of evidence point to a critical role of brain extracellular matrix (ECM) molecules in the pathophysiology of substance use disorders. An increasing number of preclinical studies highlight the ECM as a promising target for development of novel cessation pharmacotherapies. The brain ECM is dynamically regulated during learning and memory processes, thus the time course of ECM alterations in substance use disorders is a critical factor that may impact interpretation of the current studies and development of pharmacological therapies. This review highlights the evidence for the involvement of ECM molecules in reward learning, including drug reward and natural reward such as food, as well as evidence regarding the pathophysiological state of the brain's ECM in substance use disorders and metabolic disorders. We focus on the information regarding time-course and substance specific changes in ECM molecules and how this information can be leveraged for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
9
|
Brown TE, Sorg BA. Net gain and loss: influence of natural rewards and drugs of abuse on perineuronal nets. Neuropsychopharmacology 2023; 48:3-20. [PMID: 35568740 PMCID: PMC9700711 DOI: 10.1038/s41386-022-01337-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Overindulgence, excessive consumption, and a pattern of compulsive use of natural rewards, such as certain foods or drugs of abuse, may result in the development of obesity or substance use disorder, respectively. Natural rewards and drugs of abuse can trigger similar changes in the neurobiological substrates that drive food- and drug-seeking behaviors. This review examines the impact natural rewards and drugs of abuse have on perineuronal nets (PNNs). PNNs are specialized extracellular matrix structures that ensheathe certain neurons during development over the critical period to provide synaptic stabilization and a protective microenvironment for the cells they surround. This review also analyzes how natural rewards and drugs of abuse impact the density and maturation of PNNs within reward-associated circuitry of the brain, which may contribute to maladaptive food- and drug-seeking behaviors. Finally, we evaluate the relatively few studies that have degraded PNNs to perturb reward-seeking behaviors. Taken together, this review sheds light on the complex way PNNs are regulated by natural rewards and drugs and highlights a need for future studies to delineate the molecular mechanisms that underlie the modification and maintenance of PNNs following exposure to rewarding stimuli.
Collapse
Affiliation(s)
- Travis E Brown
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| | - Barbara A Sorg
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR, 97232, USA
| |
Collapse
|
10
|
Ruzicka J, Dalecka M, Safrankova K, Peretti D, Jendelova P, Kwok JCF, Fawcett JW. Perineuronal nets affect memory and learning after synapse withdrawal. Transl Psychiatry 2022; 12:480. [PMID: 36379919 PMCID: PMC9666654 DOI: 10.1038/s41398-022-02226-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Perineuronal nets (PNNs) enwrap mature neurons, playing a role in the control of plasticity and synapse dynamics. PNNs have been shown to have effects on memory formation, retention and extinction in a variety of animal models. It has been proposed that the cavities in PNNs, which contain synapses, can act as a memory store and that they remain stable after events that cause synaptic withdrawal such as anoxia or hibernation. We examine this idea by monitoring place memory before and after synaptic withdrawal caused by acute hibernation-like state (HLS). Animals lacking hippocampal PNNs due to enzymatic digestion by chondroitinase ABC or knockout of the PNN component aggrecan were compared with wild type controls. HLS-induced synapse withdrawal caused a memory deficit, but not to the level of untreated naïve animals and not worsened by PNN attenuation. After HLS, only animals lacking PNNs showed memory restoration or relearning. Absence of PNNs affected the restoration of excitatory synapses on PNN-bearing neurons. The results support a role for hippocampal PNNs in learning, but not in long-term memory storage for correction of deficits.
Collapse
Affiliation(s)
- Jiri Ruzicka
- grid.424967.a0000 0004 0404 6946Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Marketa Dalecka
- grid.418095.10000 0001 1015 3316Imaging Methods Core Facility, BIOCEV, CAS, Vestec, Czech Republic
| | - Kristyna Safrankova
- grid.424967.a0000 0004 0404 6946Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Diego Peretti
- grid.5335.00000000121885934UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Pavla Jendelova
- grid.424967.a0000 0004 0404 6946Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Jessica C. F. Kwok
- grid.424967.a0000 0004 0404 6946Institute of Experimental Medicine, CAS, Prague, Czech Republic ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - James W. Fawcett
- grid.424967.a0000 0004 0404 6946Institute of Experimental Medicine, CAS, Prague, Czech Republic ,grid.5335.00000000121885934John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology 2022; 218:109210. [PMID: 35985392 DOI: 10.1016/j.neuropharm.2022.109210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
Abstract
Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
12
|
Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry 2022; 27:3192-3203. [PMID: 35760878 PMCID: PMC9708575 DOI: 10.1038/s41380-022-01634-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023]
Abstract
All components of the CNS are surrounded by a diffuse extracellular matrix (ECM) containing chondroitin sulphate proteoglycans (CSPGs), heparan sulphate proteoglycans (HSPGs), hyaluronan, various glycoproteins including tenascins and thrombospondin, and many other molecules that are secreted into the ECM and bind to ECM components. In addition, some neurons, particularly inhibitory GABAergic parvalbumin-positive (PV) interneurons, are surrounded by a more condensed cartilage-like ECM called perineuronal nets (PNNs). PNNs surround the soma and proximal dendrites as net-like structures that surround the synapses. Attention has focused on the role of PNNs in the control of plasticity, but it is now clear that PNNs also play an important part in the modulation of memory. In this review we summarize the role of the ECM, particularly the PNNs, in the control of various types of memory and their participation in memory pathology. PNNs are now being considered as a target for the treatment of impaired memory. There are many potential treatment targets in PNNs, mainly through modulation of the sulphation, binding, and production of the various CSPGs that they contain or through digestion of their sulphated glycosaminoglycans.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic.
| | - Marianne Fyhn
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Jessica C F Kwok
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jiri Ruzicka
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine CAS, Videnska 1083, Prague 4, Prague, Czech Republic
| | - Barbara A Sorg
- Robert S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
13
|
Guarque-Chabrera J, Gil-Miravet I, Olucha-Bordonau F, Melchor-Eixea I, Miquel M. When the front fails, the rear wins. Cerebellar correlates of prefrontal dysfunction in cocaine-induced memory in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110429. [PMID: 34416354 DOI: 10.1016/j.pnpbp.2021.110429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/03/2023]
Abstract
Reciprocal pathways connecting the cerebellum to the prefrontal cortex provide a biological and functional substrate to modulate cognitive functions. Dysfunction of both medial prefrontal cortex (mPFC) and cerebellum underlie the phenotypes of several neuropsychiatric disorders that exhibit comorbidity with substance use disorder (SUD). In people with SUD, cue-action-reward associations appears to be particularly strong and salient, acting as powerful motivational triggers for craving and relapse. Studies of cue reactivity in human with SUD have shown cerebellar activations when drug-related cues are presented. Our preclinical research showed that cocaine-induced conditioned preference increases neural activity and upregulates perineuronal nets (PNNs) around Golgi interneurons in the posterior cerebellar cortex. In the present investigation, we aimed at evaluating cerebellar signatures of conditioned preference for cocaine when drug learning is established under mPFC impairment. We used lidocaine to temporarily inactivate in male rats either the Prelimbic (PL) or the Infralimbic (IL) cortices during cocaine-induced conditioning. The inactivation of the IL, but not the PL, encouraged the acquisition of preference for cocaine-related cues, increased posterior cerebellar cortex activity, and upregulated the expression of PNNs around Golgi interneurons. Moreover, IL impairment not only increased vGluT2- and vGAT-related activity around Golgi cells but also regulated PNNs differently on subpopulations of Golgi cells, increasing the number of neurogranin+ PNN-expressing Golgi cells. Our findings suggest that IL dysfunction may facilitate the acquisition of cocaine-induced memory and cerebellar drug-related learning hallmarks. Overall, IL perturbation during cocaine-induced Pavlovian learning increased cerebellar activity and drug effects. Importantly, cerebellum involvement requires a contingent experience with the drug, and it is not the effect of a mere inactivation of IL cortex.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | | | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Comunitat Valenciana 12071, Spain.
| |
Collapse
|
14
|
Addiction and the cerebellum with a focus on actions of opioid receptors. Neurosci Biobehav Rev 2021; 131:229-247. [PMID: 34555385 DOI: 10.1016/j.neubiorev.2021.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 01/19/2023]
Abstract
Increasing evidence suggests that the cerebellum could play a role in the higher cognitive processes involved in addiction as the cerebellum contains anatomical and functional pathways to circuitry controlling motivation and saliency. In addition, the cerebellum exhibits a widespread presence of receptors, including opioid receptors which are known to play a prominent role in synaptic and circuit mechanisms of plasticity associated with drug use and development of addiction to opioids and other drugs of abuse. Further, the presence of perineural nets (PNNs) in the cerebellum which contain proteins known to alter synaptic plasticity could contribute to addiction. The role the cerebellum plays in processes of addiction is likely complex, and could depend on the particular drug of abuse, the pattern of use, and the stage of the user within the addiction cycle. In this review, we discuss functional and structural modifications shown to be produced in the cerebellum by opioids that exhibit dependency-inducing properties which provide support for the conclusion that the cerebellum plays a role in addiction.
Collapse
|
15
|
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021; 157:1450-1472. [PMID: 33420731 PMCID: PMC8178159 DOI: 10.1111/jnc.15297] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- These authors share senior authorship
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
- These authors share senior authorship
| |
Collapse
|
16
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
17
|
Jorgensen ET, Gonzalez AE, Harkness JH, Hegarty DM, Thakar A, Burchi DJ, Aadland JA, Aicher SA, Sorg BA, Brown TE. Cocaine memory reactivation induces functional adaptations within parvalbumin interneurons in the rat medial prefrontal cortex. Addict Biol 2021; 26:e12947. [PMID: 32750200 PMCID: PMC9148679 DOI: 10.1111/adb.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 02/01/2023]
Abstract
Substance use disorder is a complex disease created in part by maladaptive learning and memory mechanisms following repeated drug use. Exposure to drug-associated stimuli engages prefrontal cortex circuits, and dysfunction of the medial prefrontal cortex (mPFC) is thought to underlie drug-seeking behaviors. Growing evidence supports a role for parvalbumin containing fast-spiking interneurons (FSI) in modulating prefrontal cortical microcircuit activity by influencing the balance of excitation and inhibition, which can influence learning and memory processes. Most parvalbumin FSIs within layer V of the prelimbic mPFC are surrounded by specialized extracellular matrix structures called perineuronal nets (PNN). Previous work by our group found that cocaine exposure altered PNN-surrounded FSI function, and pharmacological removal of PNNs reduced cocaine-seeking behavior. However, the role of FSIs and associated constituents (parvalbumin and PNNs) in cocaine-related memories was not previously explored and is still unknown. Here, we found that reactivation of a cocaine conditioned place preference memory produced changes in cortical PNN-surrounded parvalbumin FSIs, including decreased parvalbumin intensity, increased parvalbumin cell axis diameter, decreased intrinsic excitability, and increased excitatory synaptic input. Further investigation of intrinsic properties revealed changes in the interspike interval, membrane capacitance, and afterhyperpolarization recovery time. Changes in these specific properties suggest an increase in potassium-mediated currents, which was validated with additional electrophysiological analysis. Collectively, our results indicate that cocaine memory reactivation induces functional adaptations in PNN-surrounded parvalbumin neurons, which likely alters cortical output to promote cocaine-seeking behavior.
Collapse
Affiliation(s)
- Emily T. Jorgensen
- Neuroscience Graduate Program, University of Wyoming, Laramie, WY 82071
- School of Pharmacy, University of Wyoming, Laramie, WY 82071
| | - Angela E. Gonzalez
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA 98686
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97239
| | - John H. Harkness
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA 98686
| | - Deborah M. Hegarty
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Amit Thakar
- Neuroscience Graduate Program, University of Wyoming, Laramie, WY 82071
- School of Pharmacy, University of Wyoming, Laramie, WY 82071
| | - Delta J. Burchi
- School of Pharmacy, University of Wyoming, Laramie, WY 82071
| | - Jake A. Aadland
- School of Pharmacy, University of Wyoming, Laramie, WY 82071
| | - Sue A. Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Barbara A. Sorg
- Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA 98686
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, OR 97239
| | - Travis E. Brown
- Neuroscience Graduate Program, University of Wyoming, Laramie, WY 82071
- School of Pharmacy, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
18
|
Sanchez-Hernandez A, Nicolas C, Gil-Miravet I, Guarque-Chabrera J, Solinas M, Miquel M. Time-dependent regulation of perineuronal nets in the cerebellar cortex during abstinence of cocaine-self administration. Psychopharmacology (Berl) 2021; 238:1059-1068. [PMID: 33388819 DOI: 10.1007/s00213-020-05752-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE The probability of structural remodeling in brain circuits may be modulated by molecules of perineuronal nets (PNNs) that restrict neuronal plasticity to stabilize circuits. Animal research demonstrates that addictive drugs can remodel PNNs in different brain regions, including the cerebellum. OBJECTIVE This study aimed to investigate the effects of short versus extended access to cocaine self-administration on PNN expression around Golgi interneurons in the cerebellar cortex after different periods of abstinence. METHODS After 1 week of training (2 h/day), Sprague-Dawley rats self-administered cocaine daily for 20 days under short (ShA) or extended (LgA) access. PNN expression in the cerebellum was assessed after 1 day, 7 days, and 28 days of forced abstinence. PNNs were immunolabeled using Wisteria floribunda agglutinin (WFA) and captured by confocal microscopy. RESULTS WFA intensity increased in PNN-bearing Golgi neurons over the abstinence period and a higher proportion of more intense PNNs were formed throughout the first month of abstinence. After the first 24 h of cocaine abstinence, however, we found a reduction in WFA intensity in the cerebellar cortex of rats with ShA to cocaine as compared to naïve animals. When comparing with naïve rats, LgA rats showed consistent PNN upregulation at 28 days of cocaine abstinence. CONCLUSIONS Our results suggest that cocaine self-administration produces modifications in PNN that enhance conditions for synaptic plasticity in the cerebellar cortex. These modifications are revealed shortly after the cessation of drug intake but PNNs become more intense during protracted abstinence in the LgA group, pointing to the stabilization of drug-induced synaptic changes. These findings indicate that extended access to cocaine self-administration dynamically regulates conditions for plasticity in the cerebellum during abstinence.
Collapse
Affiliation(s)
- Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Celine Nicolas
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marcello Solinas
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
19
|
An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int J Mol Sci 2021; 22:ijms22052434. [PMID: 33670945 PMCID: PMC7957817 DOI: 10.3390/ijms22052434] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.
Collapse
|
20
|
Kalafateli AL, Aranäs C, Jerlhag E. Activation of the amylin pathway modulates cocaine-induced activation of the mesolimbic dopamine system in male mice. Horm Behav 2021; 127:104885. [PMID: 33166561 DOI: 10.1016/j.yhbeh.2020.104885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022]
Abstract
Besides food intake reduction, activation of the amylin pathway by salmon calcitonin (sCT), an amylin and calcitonin receptor agonist, inhibits alcohol-mediated behaviors in rodents. This involves brain areas processing reward, i.e. the laterodorsal (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc). However, the effects of stimulation of the amylin pathway on behaviors caused by cocaine and the brain areas involved in these processes have not yet been investigated. We therefore explored in male mice, the effects of systemic administration of sCT on cocaine-induced locomotor stimulation, dopamine release in the NAc and cocaine reward, as well as reward-dependent memory of cocaine, in the conditioned place preference (CPP) paradigm. Moreover, the outcome of systemic sCT and cocaine co-administration for five days on locomotor activity was investigated. Lastly, the impact of sCT infusions into the LDTg, VTA, NAc shell or core on cocaine-evoked locomotor stimulation was explored. We found that sCT attenuated cocaine-induced locomotor stimulation and accumbal dopamine release, without altering cocaine's rewarding properties or reward-dependent memory retrieval in the CPP paradigm. Five days of cocaine administration caused locomotor stimulation in mice pre-treated with vehicle, but not with sCT. In mice infused with vehicle into the aforementioned reward-related areas, cocaine caused locomotor stimulation, a response that was not evident following sCT infusions. The current findings suggest a novel role for the amylinergic pathway as regulator of cocaine-evoked activation of the mesolimbic dopamine system, opening the way for the investigation of the amylin signalling in the modulation of other drugs of abuse.
Collapse
Affiliation(s)
- Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
21
|
Jiang F, Zheng W, Wu C, Li Y, Shen F, Liang J, Li M, Zhang J, Sui N. Double dissociation of inhibitory effects between the hippocampal TET1 and TET3 in the acquisition of morphine self-administration in rats. Addict Biol 2021; 26:e12875. [PMID: 32031744 DOI: 10.1111/adb.12875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
The development of opioid addiction involves DNA methylation. Accordingly, the DNA demethylation, induced by ten-eleven translocation (Tet) enzymes, may represent a novel approach to prevent opioid addiction. The present study examined the role of TET1 and TET3 in the development of morphine-seeking behavior in rats. We showed that 1 day of morphine self-administration (SA) training upregulated TET3 but not TET1 expression in the hippocampal CA1. With 7 days of morphine SA training, the expression of TET3 in the CA1 returned to the baseline level, while the TET1 expression was downregulated. No change of TET1 and TET3 in the nucleus accumbens shell was observed in morphine SA trained rats, or in the yoked morphine rats, or in rats trained for saccharin SA. Furthermore, we found that knocking down TET3 expression in the CA1 accelerated the acquisition of morphine SA, while overexpression of the catalytic domain of TET1 in the CA1 attenuated the acquisition. Together, these findings suggest that TET1 and TET3 in the CA1 are important epigenetic modulators involved in the morphine-seeking behavior and provide a new strategy in the treatment of opioid addiction.
Collapse
Affiliation(s)
- Feng‐Ze Jiang
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Wei Zheng
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Chao Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Yonghui Li
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Ming Li
- Department of Psychology University of Nebraska—Lincoln Lincoln Nebraska USA
| | - Jian‐Jun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
22
|
Gil‐Miravet I, Melchor‐Eixea I, Arias‐Sandoval E, Vasquez‐Celaya L, Guarque‐Chabrera J, Olucha‐Bordonau F, Miquel M. From back to front: A functional model for the cerebellar modulation in the establishment of conditioned preferences for cocaine-related cues. Addict Biol 2021; 26:e12834. [PMID: 31808992 DOI: 10.1111/adb.12834] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023]
Abstract
It is now increasingly clear that the cerebellum may modulate brain functions altered in drug addiction. We previously demonstrated that cocaine-induced conditioned preference increased activity at the dorsal posterior cerebellar vermis. Unexpectedly, a neurotoxic lesion at this region increased the probability of cocaine-induced conditioned preference acquisition. The present research aimed at providing an explanatory model for such as facilitative effect of the cerebellar lesion. First, we addressed a tracing study in which we found a direct projection from the lateral (dentate) nucleus to the ventral tegmental area (VTA) that also receives Purkinje axons from lobule VIII in the vermis. This pathway might control the activity and plasticity of the cortico-striatal circuitry. Then we evaluated cFos expression in different regions of the medial prefrontal cortex and striatum after a lesion in lobule VIII before conditioning. Additionally, perineuronal net (PNN) expression was assessed to explore whether the cerebellar lesion might affect synaptic stabilization mechanisms in the medial prefrontal cortex (mPFC). Damage in this region of the vermis induced general disinhibition of the mPFC and striatal subdivisions that receive dopaminergic projections, mainly from the VTA. Moreover, cerebellar impairment induced an upregulation of PNN expression in the mPFC. The major finding of this research was to provide an explanatory model for the function of the posterior cerebellar vermis on drug-related memory. In this model, damage of the posterior vermis would release striatum-cortical networks from the inhibitory tonic control exerted by the cerebellar cortex over VTA, thereby promoting drug effects.
Collapse
Affiliation(s)
- Isis Gil‐Miravet
- Área de Psicobiología Universitat Jaume I Castellón de la Plana Spain
| | | | | | | | | | | | - Marta Miquel
- Área de Psicobiología Universitat Jaume I Castellón de la Plana Spain
| |
Collapse
|
23
|
Bertocchi I, Mele P, Ferrero G, Oberto A, Carulli D, Eva C. NPY-Y1 receptor signaling controls spatial learning and perineuronal net expression. Neuropharmacology 2020; 184:108425. [PMID: 33285203 DOI: 10.1016/j.neuropharm.2020.108425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Perineuronal nets (PNNs) are extracellular matrix structures that form around some types of neurons at the end of critical periods, limiting neuronal plasticity. In the adult brain, PNNs play a crucial role in the regulation of learning and cognitive processes. Neuropeptide Y (NPY) is involved in the regulation of many physiological functions, including learning and memory abilities, via activation of Y1 receptors (Y1Rs). Here we demonstrated that the conditional depletion of the gene encoding the Y1R for NPY in adult forebrain excitatory neurons (Npy1rrfb mutant mice), induces a significant slowdown in spatial learning, which is associated with a robust intensification of PNN expression and an increase in the number of c-Fos expressing cells in the cornus ammonis 1 (CA1) of the dorsal hippocampus. Importantly, the enzymatic digestion of PNNs in CA1 normalizes c-Fos activity and completely rescues learning abilities of Npy1rrfb mice. These data highlight a previously unknown functional link between NPY-Y1R transmission and PNNs, which may play a role in the control of dorsal hippocampal excitability and related cognitive functions.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy
| | - Paolo Mele
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy
| | - Giuliano Ferrero
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy
| | - Daniela Carulli
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy; Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, Netherlands
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126, Turin, Italy; Neuroscience Institute of Turin (NIT), Italy.
| |
Collapse
|
24
|
Chen H, Lasek AW. Perineuronal nets in the insula regulate aversion-resistant alcohol drinking. Addict Biol 2020; 25:e12821. [PMID: 31433552 DOI: 10.1111/adb.12821] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/13/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
One of the most pernicious characteristics of alcohol use disorder is the compulsion to drink despite negative consequences. The insular cortex controls decision making under conditions of risk or conflict. Cortical activity is tightly controlled by inhibitory interneurons that are often enclosed by specialized extracellular matrix structures known as perineuronal nets (PNNs), which regulate neuronal excitability and plasticity. The density of PNNs in the insula increases after repeated bouts of binge drinking, suggesting that they may play a role in the transition from social to compulsive, or aversion-resistant, drinking. Here, we investigated whether insular PNNs play a role in aversion-resistant alcohol drinking using a mouse model in which ethanol was adulterated with the bitter tastant quinine. Disrupting PNNs in the insula rendered mice more sensitive to quinine-adulterated ethanol but not ethanol alone. Activation of the insula, as measured by c-fos expression, occurred during aversion-resistant drinking and was further enhanced by elimination of PNNs. These results demonstrate that PNNs control the activation of the insula during aversion-resistant drinking and suggest that proper excitatory/inhibitory balance is important for decision making under conditions of conflict. Disrupting PNNs in the insula or optimizing insula activation may be a novel strategy to reduce aversion-resistant drinking.
Collapse
Affiliation(s)
- Hu Chen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| | - Amy W. Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
25
|
Miquel M, Gil-Miravet I, Guarque-Chabrera J. The Cerebellum on Cocaine. Front Syst Neurosci 2020; 14:586574. [PMID: 33192350 PMCID: PMC7641605 DOI: 10.3389/fnsys.2020.586574] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
The traditional cerebellum’s role has been linked to the high computational demands for sensorimotor control. However, several findings have pointed to its involvement in executive and emotional functions in the last decades. First in 2009 and then, in 2016, we raised why we should consider the cerebellum when thinking about drug addiction. A decade later, mounting evidence strongly suggests the cerebellar involvement in this disorder. Nevertheless, direct evidence is still partial and related mainly to drug-induced reward memory, but recent results about cerebellar functions may provide new insights into its role in addiction. The present review does not intend to be a compelling revision on available findings, as we did in the two previous reviews. This minireview focuses on specific findings of the cerebellum’s role in drug-related reward memories and the way ahead for future research. The results discussed here provide grounds for involving the cerebellar cortex’s apical region in regulating behavior driven by drug-cue associations. They also suggest that the cerebellar cortex dysfunction may facilitate drug-induced learning by increasing glutamatergic output from the deep cerebellar nucleus (DCN) to the ventral tegmental area (VTA) and neural activity in its projecting areas.
Collapse
Affiliation(s)
- Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | - Isis Gil-Miravet
- Área de Psicobiología, Universitat Jaume I, Castellón de la Plana, Spain
| | | |
Collapse
|
26
|
Marchant NJ. Break the net, break the cycle: removal of perineuronal nets in the lateral hypothalamus decreases cocaine relapse. Neuropsychopharmacology 2019; 44:835-836. [PMID: 30867569 PMCID: PMC6461892 DOI: 10.1038/s41386-018-0245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Nathan J. Marchant
- 0000 0004 0435 165Xgrid.16872.3aDepartment of Anatomy and Neuroscience, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Blacktop JM, Sorg BA. Perineuronal nets in the lateral hypothalamus area regulate cue-induced reinstatement of cocaine-seeking behavior. Neuropsychopharmacology 2019; 44:850-858. [PMID: 30258113 PMCID: PMC6461795 DOI: 10.1038/s41386-018-0212-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 11/09/2022]
Abstract
We previously reported that a small, circumscribed region of the lateral hypothalamus, the anterior dorsal region (LHAad), stains heavily for PNNs and dense extracellular matrix (PNNs/ECM) with Wisteria floribunda agglutinin (WFA), and critically contributes to the acquisition of cocaine-induced conditioned place preference and cocaine self-administration. Here we tested the role of LHAad PNNs/ECM in cue-induced reinstatement in cocaine self-administering (SA) rats and identified how it is embedded in the circuitry of motivated behavior and drug reward. Degradation of PNNs/ECM in the LHAad using chondroitinase ABC (Ch-ABC) blocked the expression of cue-induced reinstatement of cocaine- but not sucrose-seeking behavior. We also identified for the first time the phenotype of LHAad PNN/ECM-surrounded neurons. LHAad neurons co-localized mainly with parvalbumin (PV+) and GABA. Predominant co-localization of WFA with VGLUT2 and GABA but not with GAD65/67 or glutamate indicates that the PNN/ECM-rich LHAad is predominantly GABAergic and receives dense glutamatergic input. The LHAad did not express significant amounts of melanin-concentrating hormone (MCH), orexin, or galanin; neuropeptides that regulate both food-induced and cocaine-induced behavior. In addition, retrobead injections demonstrated that the LHAad receives robust prelimbic prefrontal cortex (PFC) input and provides moderate input to the prelimbic PFC and ventral tegmental area (VTA), with no apparent input to the nucleus accumbens. In summary, the dense PNN/ECM zone in the LHAad embedded within the circuitry associated with reward pinpoints a novel region that controls the expression of cocaine-seeking behavior.
Collapse
Affiliation(s)
- Jordan M. Blacktop
- 0000 0001 2157 6568grid.30064.31Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA 98686 USA
| | - Barbara A. Sorg
- 0000 0001 2157 6568grid.30064.31Department of Integrative Physiology and Neuroscience, Translational Addiction Research Center, Washington State University, Vancouver, WA 98686 USA
| |
Collapse
|
28
|
Traver VJ, Pla F, Miquel M, Carbo-Gas M, Gil-Miravet I, Guarque-Chabrera J. Cocaine-Induced Preference Conditioning: a Machine Vision Perspective. Neuroinformatics 2018; 17:343-359. [PMID: 30357708 DOI: 10.1007/s12021-018-9401-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Existing work on drug-induced synaptic changes has shown that the expression of perineuronal nets (PNNs) at the cerebellar cortex can be regulated by cocaine-related memory. However, these studies on animals have mostly relied on limited manually-driven procedures, and lack some more rigorous statistical approaches and more automated techniques. In this work, established methods from computer vision and machine learning are considered to build stronger evidence of those previous findings. To that end, an image descriptor is designed to characterize PNNs images; unsupervised learning (clustering) is used to automatically find distinctive patterns of PNNs; and supervised learning (classification) is adopted for predicting the experiment group of the mice from their PNN images. Experts in neurobiology, who were not aware of the underlying computational procedures, were asked to describe the patterns emerging from the automatically found clusters, and their descriptions were found to align surprisingly well with the two types of PNN images revealed from previous studies, namely strong and weak PNNs. Furthermore, when the set of PNN images corresponding to every mice in the saline (control) group and the conditioned (experimental) group were characterized using a bag-of-words representation, and subject to supervised learning (saline vs conditioned mice), the high classification results suggest the ability of the proposed representation and procedures in recognizing these groups. Therefore, despite the limited size of the dataset (1,032 PNN images of 6 saline and 6 conditioned mice), the results support existing evidence on the drug-related brain plasticity, while providing higher objectivity.
Collapse
Affiliation(s)
- V Javier Traver
- Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain.
| | - Filiberto Pla
- Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain
| | - Marta Miquel
- Area de Psicobiología, Universitat Jaume I, Castellón, Spain
| | - Maria Carbo-Gas
- Area de Psicobiología, Universitat Jaume I, Castellón, Spain.,INSERM U1215, Psychobiology of Drug Addiction, NeuroCentre Magendie, Bordeaux, France
| | | | | |
Collapse
|
29
|
Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 2018; 89:125-135. [PMID: 30273653 DOI: 10.1016/j.semcdb.2018.09.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022]
Abstract
Perineuronal nets (PNNs) in the brain are condensed glycosaminoglycan-rich extracellular matrix structures with heterogeneous composition yet specific organization. They typically assemble around a subset of fast-spiking interneurons that are implicated in learning and memory. Owing to their unique structural organization, PNNs have neuroprotective capacities but also participate in signal transduction and in controlling neuronal activity and plasticity. In this review, we define PNN structure in detail and describe its various biochemical and physiological functions. We further discuss the role of PNNs in brain disorders such as schizophrenia, bipolar disorder, Alzheimer disease and addictions. Lastly, we describe therapeutic approaches that target PNNs to alter brain physiology and counter brain dysfunction.
Collapse
Affiliation(s)
- Damien Testa
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, PSL University, Labex MemoLife, 75005 Paris, France.
| |
Collapse
|
30
|
Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol 2018; 78-79:272-283. [PMID: 29408010 DOI: 10.1016/j.matbio.2018.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis in mammals is a tightly regulated process where neural stem cells (NSCs), especially in the subgranular zone (SGZ) of the hippocampal dentate gyrus, proliferate and differentiate into new neurons that form new circuits or integrate into old circuits involved in episodic memory, pattern discrimination, and emotional responses. Recent evidence suggests that changes in the hyaluronan (HA)-based extracellular matrix of the SGZ may regulate neurogenesis by controlling NSC proliferation and early steps in neuronal differentiation. These studies raise the intriguing possibility that perturbations in this matrix, including HA accumulation with aging, could impact adult neurogenesis and cognitive functions, and that alterations to this matrix could be beneficial following insults to the central nervous system that impact hippocampal functions.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Integrative Biosciences Department, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
31
|
Lasek AW, Chen H, Chen WY. Releasing Addiction Memories Trapped in Perineuronal Nets. Trends Genet 2017; 34:197-208. [PMID: 29289347 DOI: 10.1016/j.tig.2017.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 12/20/2022]
Abstract
Drug addiction can be conceptualized at a basic level as maladaptive learning and memory. Addictive substances elicit changes in brain circuitry involved in reward, cognition, and emotional state, leading to the formation and persistence of strong drug-associated memories that lead to craving and relapse. Recently, perineuronal nets (PNNs), extracellular matrix (ECM) structures surrounding neurons, have emerged as regulators of learning, memory, and addiction behaviors. PNNs do not merely provide structural support to neurons but are dynamically remodeled in an experience-dependent manner by metalloproteinases. They function in various brain regions through constituent proteins such as brevican that are implicated in neural plasticity. Understanding the function of PNN components in memory processes may lead to new therapeutic approaches to treating addiction.
Collapse
Affiliation(s)
- Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Hu Chen
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wei-Yang Chen
- Center for Alcohol Research in Epigenetics and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Cerebellar perineuronal nets in cocaine-induced pavlovian memory: Site matters. Neuropharmacology 2017; 125:166-180. [PMID: 28712684 DOI: 10.1016/j.neuropharm.2017.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
One of the key mechanisms for the stabilization of synaptic changes near the end of critical periods for experience-dependent plasticity is the formation of specific lattice extracellular matrix structures called perineuronal nets (PNNs). The formation of drug memories depends on local circuits in the cerebellum, but it is unclear to what extent it may also relate to changes in their PNN. Here, we investigated changes in the PNNs of the cerebellum following cocaine-induced preference conditioning. The formation of cocaine-related preference memories increased expression of PNN-related proteins surrounding Golgi inhibitory interneurons as well as that of cFos in granule cells at the apex of the cerebellar cortex. In contrast, the expression of PNNs surrounding projection neurons in the medial deep cerebellar nucleus (DCN) was reduced in all cocaine-treated groups, independently of whether animals expressed a preference for cocaine-related cues. Discriminant function analysis confirmed that stronger PNNs in Golgi neurons and higher cFos levels in granule cells of the apex might be considered as the cerebellar hallmarks of cocaine-induced preference conditioning. Blocking the output of cerebellar granule cells in α6Cre-Cacna1a mutant mice prevented re-acquisition, but not acquisition, of cocaine-induced preference conditioning. Interestingly, this impairment in consolidation was selectively accompanied by a reduction in the expression of PNN proteins around Golgi cells. Our data suggest that PNNs surrounding Golgi interneurons play a role in consolidating drug-related memories.
Collapse
|
33
|
Miyata S, Kitagawa H. Formation and remodeling of the brain extracellular matrix in neural plasticity: Roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 2017. [PMID: 28625420 DOI: 10.1016/j.bbagen.2017.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) of the brain is rich in glycosaminoglycans such as chondroitin sulfate (CS) and hyaluronan. These glycosaminoglycans are organized into either diffuse or condensed ECM. Diffuse ECM is distributed throughout the brain and fills perisynaptic spaces, whereas condensed ECM selectively surrounds parvalbumin-expressing inhibitory neurons (PV cells) in mesh-like structures called perineuronal nets (PNNs). The brain ECM acts as a non-specific physical barrier that modulates neural plasticity and axon regeneration. SCOPE OF REVIEW Here, we review recent progress in understanding of the molecular basis of organization and remodeling of the brain ECM, and the involvement of several types of experience-dependent neural plasticity, with a particular focus on the mechanism that regulates PV cell function through specific interactions between CS chains and their binding partners. We also discuss how the barrier function of the brain ECM restricts dendritic spine dynamics and limits axon regeneration after injury. MAJOR CONCLUSIONS The brain ECM not only forms physical barriers that modulate neural plasticity and axon regeneration, but also forms molecular brakes that actively controls maturation of PV cells and synapse plasticity in which sulfation patterns of CS chains play a key role. Structural remodeling of the brain ECM modulates neural function during development and pathogenesis. GENERAL SIGNIFICANCE Genetic or enzymatic manipulation of the brain ECM may restore neural plasticity and enhance recovery from nerve injury. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Shinji Miyata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan.
| |
Collapse
|