1
|
Denkinger M, Baker S, Harrison TM, Chadwick T, Jagust WJ. Cross-sectional and longitudinal relationships among blood-brain barrier disruption, Alzheimer's disease biomarkers, and cognition in cognitively normal older adults. Neurobiol Aging 2025; 146:15-23. [PMID: 39571410 DOI: 10.1016/j.neurobiolaging.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Blood-brain barrier disruption (BBBd) occurs in aging, particularly in regions vulnerable to Alzheimer's disease (AD) pathology. However, its relationship to pathological protein accumulation, neurodegeneration, and cognitive impairment in normal aging is unclear. We used dynamic contrast-enhanced MRI (DCE-MRI) and positron emission tomography (PET) imaging in cognitively normal older adults to explore how BBBd correlates with brain atrophy and cognitive function, and whether these relationships are influenced by Aβ or tau. We found that greater BBBd in the hippocampus (HC) and an averaged BBBd-susceptible ROI were linked to worse episodic memory, with interactions between BBBd and atrophy influencing this relationship, independent of Aβ and tau. However, there were no significant relationships between BBBd and non-memory cognitive performance. In participants with longitudinal AD biomarker and cognitive data acquired prior to DCE-MRI, faster longitudinal entorhinal cortex (EC) tau accumulation and episodic memory decline were associated with greater HC BBBd, independent of global Aβ changes and regional atrophy. These findings enhance our understanding of the complex relationships between AD biomarkers, cognitive decline, and BBBd.
Collapse
Affiliation(s)
- Marisa Denkinger
- Department of Neuroscience, University of California, Berkeley, CA, United States.
| | - Suzanne Baker
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Theresa M Harrison
- Department of Neuroscience, University of California, Berkeley, CA, United States
| | - Trevor Chadwick
- Department of Neuroscience, University of California, Berkeley, CA, United States
| | - William J Jagust
- Department of Neuroscience, University of California, Berkeley, CA, United States; Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
2
|
Yu S, Chen X, Yang T, Cheng J, Liu E, Jiang L, Song M, Shu H, Ma Y. Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention. Rev Neurosci 2024; 35:895-916. [PMID: 38967133 DOI: 10.1515/revneuro-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
Collapse
Affiliation(s)
- Sixun Yu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Xin Chen
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Tao Yang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Jingmin Cheng
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Enyu Liu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Lingli Jiang
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Min Song
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
| | - Haifeng Shu
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan Province, China
| | - Yuan Ma
- Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan Province, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
3
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
4
|
Du M, Li J, Yu S, Chen X, She Y, Lu Y, Shu H. RAGE mediates hippocampal pericyte responses and neurovascular unit lesions after TBI. Exp Neurol 2024; 380:114912. [PMID: 39097075 DOI: 10.1016/j.expneurol.2024.114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Traumatic brain injury impairs brain function through various mechanisms. Recent studies have shown that alterations in pericytes in various diseases affect neurovascular function, but the effects of TBI on hippocampal pericytes remain unclear. Here, we investigated the effects of RAGE activation on pericytes after TBI using male C57BL/6 J mice. Hippocampal samples were collected at different time points within 7 days after TBI, the expression of PDGFR-β, NG2 and the HMGB1-S100B/RAGE signaling pathway was assessed by Western blotting, and the integrity of the hippocampal BBB at different time points was measured by immunofluorescence. RAGE-associated BBB damage in hippocampal pericytes occurred early after cortical impact. By culturing primary mouse brain microvascular pericytes, we determined the different effects of HMGB1-S100B on pericyte RAGE. To investigate whether RAGE blockade could protect neurological function after TBI, we reproduced the process of CCI by administering FPS-ZM1 to RAGE-/- mice. TEM images and BBB damage-related assays showed that inhibition of RAGE resulted in a significant improvement in the number of hippocampal vascular basement membranes and tight junctions and a reduction in perivascular oedema compared with those in the untreated group. In contrast, mouse behavioural testing and doublecortin staining indicated that targeting the HMGB1-S100B/RAGE axis after CCI could protect neurological function by reducing pericyte-associated BBB damage. In conclusion, the present study provides experimental evidence for the strong correlation between the pericyte HMGB1-S100B/RAGE axis and NVU damage in the hippocampus at the early stage of TBI and further demonstrates that pericyte RAGE serves as an important target for the protection of neurological function after TBI.
Collapse
Affiliation(s)
- Minghao Du
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Mini-Invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Jiani Li
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Youyu She
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Yichen Lu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| | - Haifeng Shu
- Department of Neurosurgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
5
|
Pujol A, Sanchis P, Tamayo MI, Godoy S, Calvó P, Olmos A, Andrés P, Speranskaya A, Espino A, Estremera A, Rigo E, Amengual GJ, Rodríguez M, Ribes JL, Gomila I, Grases F, González-Freire M, Masmiquel L. Metabolic-Associated Fatty Liver Disease and Cognitive Performance in Type 2 Diabetes: Basal Data from the Phytate, Neurodegeneration and Diabetes (PHYND) Study. Biomedicines 2024; 12:1993. [PMID: 39335505 PMCID: PMC11428552 DOI: 10.3390/biomedicines12091993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The effect of liver fibrosis on mild cognitive impairment (MCI) and dementia risk in type 2 diabetes mellitus (T2DM) patients is unclear. Therefore, we performed a prospective cross-sectional study on 219 patients with T2DM and older than 60 years to evaluate the association between liver fibrosis, liver steatosis, and cognitive impairment. The Montreal Cognitive Assessment (MoCA) was used to screen for MCI or dementia. Liver fibrosis was estimated using the non-invasive Fibrosis-4 (FIB-4) score, and liver steatosis was assessed with the hepatic steatosis index. The mean age was 71 ± 6 years, 47% were women and according to MoCA cut-off values, 53.88% had MCI and 16.43% had dementia. A moderate or high risk of advanced fibrosis was significantly higher in patients with MCI or dementia compared to those with normal cognition (p < 0.001). After adjusting for confounders, a FIB-4 score greater than 1.54 was associated with MCI or dementia (p = 0.039). Multivariate analysis identified age over 70.5 years, antiplatelet medication use, and a FIB-4 score above 1.54 as the most relevant risk factors. Liver fibrosis, but not liver steatosis, is associated with MCI or dementia in older T2DM patients, suggesting that FIB-4 score might be a simple biomarker for the detection of cognitive impairment.
Collapse
Affiliation(s)
- Antelm Pujol
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| | - Pilar Sanchis
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María I. Tamayo
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| | - Samantha Godoy
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Calvó
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Asier Olmos
- Neuropsychology and Cognition, Department of Psychology, Research Institute of Heath Science (IUNICS), University of Balearic Islands, Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Pilar Andrés
- Neuropsychology and Cognition, Department of Psychology, Research Institute of Heath Science (IUNICS), University of Balearic Islands, Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Aleksandra Speranskaya
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| | - Ana Espino
- Neurology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Ana Estremera
- Neuroradiology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Elena Rigo
- Balearic Research Group on Genetic Cardiopathies, Sudden Death, and TTR Amyloidosis, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Neuroopthalmology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Guillermo J. Amengual
- Neuroradiology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Manuel Rodríguez
- Neuroradiology Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - José Luis Ribes
- Clinical Analysis Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
| | - Isabel Gomila
- Clinical Analysis Department, Son Llàtzer University Hospital, 07198 Palma de Mallorca, Spain
- Clinical Toxicology Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Félix Grases
- Laboratory of Renal Lithiasis Research, University of Balearic Islands, Research Institute of Heath Science (IUNICS), Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta González-Freire
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain;
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Lluís Masmiquel
- Vascular and Metabolic Diseases Research Group, Endocrinology Department, Son Llàtzer University Hospital, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (A.P.); (L.M.)
| |
Collapse
|
6
|
Denkinger M, Baker S, Inglis B, Kobayashi S, Juarez A, Mason S, Jagust W. Associations between regional blood-brain barrier permeability, aging, and Alzheimer's disease biomarkers in cognitively normal older adults. PLoS One 2024; 19:e0299764. [PMID: 38837947 PMCID: PMC11152304 DOI: 10.1371/journal.pone.0299764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Increased blood-brain barrier permeability (BBBp) has been hypothesized as a feature of aging that may lead to the development of Alzheimer's disease (AD). We sought to identify the brain regions most vulnerable to greater BBBp during aging and examine their regional relationship with neuroimaging biomarkers of AD. METHODS We studied 31 cognitively normal older adults (OA) and 10 young adults (YA) from the Berkeley Aging Cohort Study (BACS). Both OA and YA received dynamic contrast-enhanced MRI (DCE-MRI) to quantify Ktrans values, as a measure of BBBp, in 37 brain regions across the cortex. The OA also received Pittsburgh compound B (PiB)-PET to create distribution volume ratios (DVR) images and flortaucipir (FTP)- PET to create partial volume corrected standardized uptake volume ratios (SUVR) images. Repeated measures ANOVA assessed the brain regions where OA showed greater BBBp than YA. In OA, Ktrans values were compared based on sex, Aβ positivity status, and APOE4 carrier status within a composite region across the areas susceptible to aging. We used linear models and sparse canonical correlation analysis (SCCA) to examine the relationship between Ktrans and AD biomarkers. RESULTS OA showed greater BBBp than YA predominately in the temporal lobe, with some involvement of parietal, occipital and frontal lobes. Within an averaged ROI of affected regions, there was no difference in Ktrans values based on sex or Aβ positivity, but OA who were APOE4 carriers had significantly higher Ktrans values. There was no direct relationship between averaged Ktrans and global Aβ pathology, but there was a trend for an Ab status by tau interaction on Ktrans in this region. SCCA showed increased Ktrans was associated with increased PiB DVR, mainly in temporal and parietal brain regions. There was not a significant relationship between Ktrans and FTP SUVR. DISCUSSION Our findings indicate that the BBB shows regional vulnerability during normal aging that overlaps considerably with the pattern of AD pathology. Greater BBBp in brain regions affected in aging is related to APOE genotype and may also be related to the pathological accumulation of Aβ.
Collapse
Affiliation(s)
- Marisa Denkinger
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Suzanne Baker
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Kobayashi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexis Juarez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Suzanne Mason
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
7
|
Li Q, Li B, Liu L, Wang KJ, Liu MY, Deng Y, Li Z, Zhao WD, Wu LY, Chen YH, Zhang K. Monocytes release cystatin F dimer to associate with Aβ and aggravate amyloid pathology and cognitive deficits in Alzheimer's disease. J Neuroinflammation 2024; 21:125. [PMID: 38730470 PMCID: PMC11088181 DOI: 10.1186/s12974-024-03119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aβ) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aβ clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aβ by monocytes in AD remains unclear. METHODS Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aβ by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aβ. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aβ deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aβ by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aβ to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aβ. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aβ metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Qiang Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bing Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Department of Neurology, Shenyang Fifth People Hospital, Shenyang, 110023, China
| | - Kang-Ji Wang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China
| | - Ming-Yue Liu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Ze Li
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China.
| | - Li-Yong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China.
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology,, Ministry of Public Health, China Medical University, 77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
8
|
Braunstein PW, Horovitz DJ, Hampton AM, Hollis F, Newman LA, Enos RT, McQuail JA. Daily fluctuations in blood glucose with normal aging are inversely related to hippocampal synaptic mitochondrial proteins. AGING BRAIN 2024; 5:100116. [PMID: 38596458 PMCID: PMC11002859 DOI: 10.1016/j.nbas.2024.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Defective brain glucose utilization is a hallmark of Alzheimer's disease (AD) while Type II diabetes and elevated blood glucose escalate the risk for AD in later life. Isolating contributions of normal aging from coincident metabolic or brain diseases could lead to refined approaches to manage specific health risks and optimize treatments targeted to susceptible older individuals. We evaluated metabolic, neuroendocrine, and neurobiological differences between young adult (6 months) and aged (24 months) male rats. Compared to young adults, blood glucose was significantly greater in aged rats at the start of the dark phase of the day but not during the light phase. When challenged with physical restraint, a potent stressor, aged rats effected no change in blood glucose whereas blood glucose increased in young adults. Tissues were evaluated for markers of oxidative phosphorylation (OXPHOS), neuronal glucose transport, and synapses. Outright differences in protein levels between age groups were not evident, but circadian blood glucose was inversely related to OXPHOS proteins in hippocampal synaptosomes, independent of age. The neuronal glucose transporter, GLUT3, was positively associated with circadian blood glucose in young adults whereas aged rats tended to show the opposite trend. Our data demonstrate aging increases daily fluctuations in blood glucose and, at the level of individual differences, negatively associates with proteins related to synaptic OXPHOS. Our findings imply that glucose dyshomeostasis may exacerbate metabolic aspects of synaptic dysfunction that contribute to risk for age-related brain disorders.
Collapse
Affiliation(s)
- Paul W. Braunstein
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - David J. Horovitz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lori A. Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY, USA
| | - Reilly T. Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Joseph A. McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Zhou X, Zhu Y, Gao L, Li Y, Li H, Huang C, Liu Y, Hu A, Ying C, Song Y. Binding of RAGE and RIPK1 induces cognitive deficits in chronic hyperglycemia-derived neuroinflammation. CNS Neurosci Ther 2024; 30:e14449. [PMID: 37665158 PMCID: PMC10916433 DOI: 10.1111/cns.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/08/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS Chronic hyperglycemia-induced inflammation of the hippocampus is an important cause of cognitive deficits in diabetic patients. The receptor for advanced glycation end products (RAGE), which is widely expressed in the hippocampus, is a crucial factor in this inflammation and the associated cognitive deficits. We aimed to reveal the underlying mechanism by which RAGE regulates neuroinflammation in the pathogenesis of diabetes-induced cognitive impairment. METHODS We used db/db mice as a model for type 2 diabetes to investigate whether receptor-interacting serine/threonine protein kinase 1 (RIPK1), which is expressed in microglia in the hippocampal region, is a key protein partner for RAGE. GST pull-down assays and AutoDock Vina simulations were performed to identify the key structural domain in RAGE that binds to RIPK1. Western blotting, co-immunoprecipitation (Co-IP), and immunofluorescence (IF) were used to detect the levels of key proteins or interaction between RAGE and RIPK1. Cognitive deficits in the mice were assessed with the Morris water maze (MWM) and new object recognition (NOR) and fear-conditioning tests. RESULTS RAGE binds directly to RIPK1 via the amino acid sequence (AAs) 362-367, thereby upregulating phosphorylation of RIPK1, which results in activation of the NLRP3 inflammasome in microglia and ultimately leads to cognitive impairments in db/db mice. We mutated RAGE AAs 362-367 to reverse neuroinflammation in the hippocampus and improve cognitive function, suggesting that RAGE AAs 362-367 is a key structural domain that binds directly to RIPK1. These results also indicate that hyperglycemia-induced inflammation in the hippocampus is dependent on direct binding of RAGE and RIPK1. CONCLUSION Direct interaction of RAGE and RIPK1 via AAs 362-367 is an important mechanism for enhanced neuroinflammation in the hyperglycemic environment and is a key node in the development of cognitive deficits in diabetes.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of GeneticsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yandong Zhu
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Lin Gao
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yan Li
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Hui Li
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Chengyu Huang
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yan Liu
- The Graduate SchoolXuzhou Medical UniversityXuzhouJiangsuChina
| | - Ankang Hu
- Lab Animal CenterXuzhou Medical UniversityXuzhouChina
| | - Changjiang Ying
- Department of EndocrinologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Yuanjian Song
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of GeneticsXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
10
|
Horvat A, Vlašić I, Štefulj J, Oršolić N, Jazvinšćak Jembrek M. Flavonols as a Potential Pharmacological Intervention for Alleviating Cognitive Decline in Diabetes: Evidence from Preclinical Studies. Life (Basel) 2023; 13:2291. [PMID: 38137892 PMCID: PMC10744738 DOI: 10.3390/life13122291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Diabetes mellitus is a complex metabolic disease associated with reduced synaptic plasticity, atrophy of the hippocampus, and cognitive decline. Cognitive impairment results from several pathological mechanisms, including increased levels of advanced glycation end products (AGEs) and their receptors, prolonged oxidative stress and impaired activity of endogenous mechanisms of antioxidant defense, neuroinflammation driven by the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), decreased expression of brain-derived neurotrophic factor (BDNF), and disturbance of signaling pathways involved in neuronal survival and cognitive functioning. There is increasing evidence that dietary interventions can reduce the risk of various diabetic complications. In this context, flavonols, a highly abundant class of flavonoids in the human diet, are appreciated as a potential pharmacological intervention against cognitive decline in diabetes. In preclinical studies, flavonols have shown neuroprotective, antioxidative, anti-inflammatory, and memory-enhancing properties based on their ability to regulate glucose levels, attenuate oxidative stress and inflammation, promote the expression of neurotrophic factors, and regulate signaling pathways. The present review gives an overview of the molecular mechanisms involved in diabetes-induced cognitive dysfunctions and the results of preclinical studies showing that flavonols have the ability to alleviate cognitive impairment. Although the results from animal studies are promising, clinical and epidemiological studies are still needed to advance our knowledge on the potential of flavonols to improve cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Anđela Horvat
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ignacija Vlašić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
12
|
Deng Y, Hong JS, Cao YY, Kang N, Han DY, Li YT, Chen L, Li ZQ, Zhan R, Guo XY, Yang N, Shi CM. Specific antagonist of receptor for advanced glycation end‑products attenuates delirium‑like behaviours induced by sevoflurane anaesthesia with surgery in aged mice partially by improving damage to the blood‑brain barrier. Exp Ther Med 2023; 26:317. [PMID: 38895540 PMCID: PMC11184639 DOI: 10.3892/etm.2023.12016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/16/2023] [Indexed: 06/21/2024] Open
Abstract
Postoperative delirium (POD), which occurs in hospital up to 1-week post-procedure or until discharge, is a common complication, especially in older adult patients. However, the pathogenesis of POD remains unclear. Although damage to blood-brain barrier (BBB) integrity is involved in the neuropathogenesis of POD, the specific role of the BBB in POD requires further elucidation. Anaesthesia using 2% isoflurane for 4 h results in the upregulation of hippocampal receptor for advanced glycation end-products (RAGE) expression and β-amyloid accumulation in aged rats. The present study investigated the role of RAGE in BBB integrity and its mechanisms in POD-like behaviours. The buried food, open field and Y maze tests were used to evaluate neurobehavioural changes in aged mice following 2.5% sevoflurane anaesthesia administration with exploratory laparotomy. Levels of tight junction proteins were assessed by western blotting. Multiphoton in vivo microscopy was used to observe the ultrastructural changes in the BBB in the hippocampal CA1 region. Anaesthesia with surgery decreased the levels of tight junction proteins occludin and claudin 5, increased matrix metalloproteinases (MMPs) 2 and 9, damaged the ultrastructure of the BBB and induced POD-like behaviour. FPS-ZM1, a specific RAGE antagonist, ameliorated POD-like behaviour induced by anaesthesia and surgery in aged mice. Furthermore, FPS-ZM1 also restored decreased levels of occludin and claudin 5 as well as increased levels of MMP2 and MMP9. The present findings suggested that RAGE signalling was involved in BBB damage following anaesthesia with surgery. Thus, RAGE has potential as a novel therapeutic intervention for the prevention of POD.
Collapse
Affiliation(s)
- Ying Deng
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jing-Shu Hong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Yun Cao
- Department of Anaesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | - Ning Kang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Deng-Yang Han
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yi-Tong Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lei Chen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Zheng-Qian Li
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Rui Zhan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, P.R. China
| | - Xiang-Yang Guo
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing 100191, P.R. China
| | - Ning Yang
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Cheng-Mei Shi
- Department of Anaesthesiology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
13
|
Li N, Wen L, Shen Y, Li T, Wang T, Qiao M, Song L, Huang X. Differential expression of SLC30A10 and RAGE in mouse pups by early life lead exposure. J Trace Elem Med Biol 2023; 79:127233. [PMID: 37315391 DOI: 10.1016/j.jtemb.2023.127233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND SLC30A10 and RAGE are widely recognized as pivotal regulators of Aβ plaque transport and accumulation. Prior investigations have established a link between early lead exposure and cerebral harm in offspring, attributable to Aβ buildup and amyloid plaque deposition. However, the impact of lead on the protein expression of SLC30A10 and RAGE has yet to be elucidated. This study seeks to confirm the influence of maternal lead exposure during pregnancy, specifically through lead-containing drinking water, on the protein expression of SLC30A10 and RAGE in mice offspring. Furthermore, this research aims to provide further evidence of lead-induced neurotoxicity. METHODS Four cohorts of mice were subjected to lead exposure at concentrations of 0 mM, 0.25 mM, 0.5 mM, and 1 mM over a period of 42 uninterrupted days, spanning from pregnancy to the weaning phase. On postnatal day 21, the offspring mice underwent assessments. The levels of lead in the blood, hippocampus, and cerebral cortex were scrutinized, while the mice's cognitive abilities pertaining to learning and memory were probed through the utilization of the Morris water maze. Furthermore, Western blotting and immunofluorescence techniques were employed to analyze the expression levels of SLC30A10 and RAGE in the hippocampus and cerebral cortex. RESULTS The findings revealed a significant elevation in lead concentration within the brains and bloodstreams of mice, mirroring the increased lead exposure experienced by their mothers during the designated period (P < 0.05). Notably, in the Morris water maze assessment, the lead-exposed group exhibited noticeably diminished spatial memory compared to the control group (P < 0.05). Both immunofluorescence and Western blot analyses effectively demonstrated the concomitant impact of varying lead exposure levels on the hippocampal and cerebral cortex regions of the offspring. The expression levels of SLC30A10 displayed a negative correlation with lead doses (P < 0.05). Surprisingly, under identical circumstances, the expression of RAGE in the hippocampus and cortex of the offspring exhibited a positive correlation with lead doses (P < 0.05). CONCLUSION SLC30A10 potentially exerts distinct influence on exacerbated Aβ accumulation and transportation in contrast to RAGE. Disparities in brain expression of RAGE and SLC30A10 may contribute to the neurotoxic effects induced by lead.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Yue Shen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| |
Collapse
|
14
|
Li T, Li D, Wei Q, Shi M, Xiang J, Gao R, Chen C, Xu ZX. Dissecting the neurovascular unit in physiology and Alzheimer's disease: Functions, imaging tools and genetic mouse models. Neurobiol Dis 2023; 181:106114. [PMID: 37023830 DOI: 10.1016/j.nbd.2023.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
The neurovascular unit (NVU) plays an essential role in regulating neurovascular coupling, which refers to the communication between neurons, glia, and vascular cells to control the supply of oxygen and nutrients in response to neural activity. Cellular elements of the NVU coordinate to establish an anatomical barrier to separate the central nervous system from the milieu of the periphery system, restricting the free movement of substances from the blood to the brain parenchyma and maintaining central nervous system homeostasis. In Alzheimer's disease, amyloid-β deposition impairs the normal functions of NVU cellular elements, thus accelerating the disease progression. Here, we aim to describe the current knowledge of the NVU cellular elements, including endothelial cells, pericytes, astrocytes, and microglia, in regulating the blood-brain barrier integrity and functions in physiology as well as alterations encountered in Alzheimer's disease. Furthermore, the NVU functions as a whole, therefore specific labeling and targeting NVU components in vivo enable us to understand the mechanism mediating cellular communication. We review approaches including commonly used fluorescent dyes, genetic mouse models, and adeno-associated virus vectors for imaging and targeting NVU cellular elements in vivo.
Collapse
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Dianyi Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Qingyuan Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Minghong Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Jiakun Xiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Ruiwei Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China.
| | - Chao Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China.
| | - Zhi-Xiang Xu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Sousa JA, Bernardes C, Bernardo-Castro S, Lino M, Albino I, Ferreira L, Brás J, Guerreiro R, Tábuas-Pereira M, Baldeiras I, Santana I, Sargento-Freitas J. Reconsidering the role of blood-brain barrier in Alzheimer's disease: From delivery to target. Front Aging Neurosci 2023; 15:1102809. [PMID: 36875694 PMCID: PMC9978015 DOI: 10.3389/fnagi.2023.1102809] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The existence of a selective blood-brain barrier (BBB) and neurovascular coupling are two unique central nervous system vasculature features that result in an intimate relationship between neurons, glia, and blood vessels. This leads to a significant pathophysiological overlap between neurodegenerative and cerebrovascular diseases. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease whose pathogenesis is still to be unveiled but has mostly been explored under the light of the amyloid-cascade hypothesis. Either as a trigger, bystander, or consequence of neurodegeneration, vascular dysfunction is an early component of the pathological conundrum of AD. The anatomical and functional substrate of this neurovascular degeneration is the BBB, a dynamic and semi-permeable interface between blood and the central nervous system that has consistently been shown to be defective. Several molecular and genetic changes have been demonstrated to mediate vascular dysfunction and BBB disruption in AD. The isoform ε4 of Apolipoprotein E is at the same time the strongest genetic risk factor for AD and a known promoter of BBB dysfunction. Low-density lipoprotein receptor-related protein 1 (LRP-1), P-glycoprotein, and receptor for advanced glycation end products (RAGE) are examples of BBB transporters implicated in its pathogenesis due to their role in the trafficking of amyloid-β. This disease is currently devoid of strategies that change the natural course of this burdening illness. This unsuccess may partly be explained by our misunderstanding of the disease pathogenesis and our inability to develop drugs that are effectively delivered to the brain. BBB may represent a therapeutic opportunity as a target itself or as a therapeutic vehicle. In this review, we aim to explore the role of BBB in the pathogenesis of AD including the genetic background and detail how it can be targeted in future therapeutic research.
Collapse
Affiliation(s)
- João André Sousa
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Catarina Bernardes
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sara Bernardo-Castro
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Lino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Inês Albino
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Miguel Tábuas-Pereira
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Kang S, Kim E, Cho H, Kim DJ, Kim HC, Jung SJ. Associations between non-alcoholic fatty liver disease and cognitive impairment and the effect modification of inflammation. Sci Rep 2022; 12:12614. [PMID: 35871085 PMCID: PMC9308768 DOI: 10.1038/s41598-022-16788-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThis study aimed to evaluate the association between non-alcoholic fatty liver disease (NAFLD) and cognitive impairment and explore the effect modification by the inflammatory status. A total of 4400 community-based participants aged 50–64 years from the Cardiovascular and Metabolic Disease Etiology Research Center were included in this cross-sectional study. NAFLD was identified as the Fatty Liver Index 30 or higher in the absence of excessive alcohol consumption. Cognitive impairment was defined as the total score of the Mini-Mental State Examination (cutoff 24). The inflammatory status was evaluated using white blood cell (WBC) and high-sensitivity C-reactive protein (hsCRP). Multivariate logistic regression analyses were performed. Stratified analyses by the WBC count (the highest quartile) and the hsCRP level (≥ 1.0 mg/dL vs. < 1.0 mg/dL) were conducted. Participants with NAFLD showed an increased prevalence of cognitive impairment (odds ratio [OR] = 1.26; 95% confidence interval [CI] = 1.04–1.52) compared with the non-NAFLD population. In women, this association was significantly stronger in the highest quartile WBC group than in lower WBC group (OR = 1.81; 95% CI = 1.19–2.74 vs. OR = 1.02; 95% CI = 0.78–1.33, p-interaction = 0.05). NAFLD was positively associated with a higher proportion of cognitive impairment, and this association was stronger in women with higher inflammatory status.
Collapse
|
17
|
Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer’s Disease? Molecules 2022; 27:molecules27165066. [PMID: 36014310 PMCID: PMC9414153 DOI: 10.3390/molecules27165066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD. However, the molecular determinants underlying pathogenic Aβ/tau cross interactions are not fully understood. Here, we discuss the common features of Aβ and tau molecules, with special emphasis on: (i) the critical role played by metal dyshomeostasis in promoting both Aβ and tau aggregation and oxidative stress, in AD; (ii) the effects of lipid membranes on Aβ and tau (co)-aggregation at the membrane interface; (iii) the potential of small peptide-based inhibitors of Aβ and tau misfolding as therapeutic tools in AD. Although the molecular mechanism underlying the direct Aβ/tau interaction remains largely unknown, the arguments discussed in this review may help reinforcing the current view of a synergistic Aβ/tau molecular crosstalk in AD and stimulate further research to mechanism elucidation and next-generation AD therapeutics.
Collapse
|
18
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
19
|
Hypoxia-induced HMGB1 promotes glioma stem cells self-renewal and tumorigenicity via RAGE. iScience 2022; 25:104872. [PMID: 36034219 PMCID: PMC9399482 DOI: 10.1016/j.isci.2022.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Glioma stem cells (GSCs) in the hypoxic niches contribute to tumor initiation, progression, and recurrence in glioblastoma (GBM). Hypoxia induces release of high-mobility group box 1 (HMGB1) from tumor cells, promoting the development of tumor. Here, we report that HMGB1 is overexpressed in human GBM specimens. Hypoxia promotes the expression and secretion of HMGB1 in GSCs. Furthermore, silencing HMGB1 results in the loss of stem cell markers and a reduction in self-renewal ability of GSCs. Additionally, HMGB1 knockdown inhibits the activation of RAGE-dependent ERK1/2 signaling pathway and arrests the cell cycle in GSCs. Consistently, FPS-ZM1, an inhibitor of RAGE, downregulates HMGB1 expression and the phosphorylation of ERK1/2, leading to a reduction in the proliferation of GSCs. In xenograft mice of GBM, HMGB1 knockdown inhibits tumor growth and promotes mouse survival. Collectively, these findings uncover a vital function for HMGB1 in regulating GSC self-renewal potential and tumorigenicity. Glioma stem cells overexpress HMGB1 in human glioblastoma Hypoxia induces the upregulation and release of HMGB1 in glioma stem cells HMGB1 promotes the self-renewal of glioma stem cells via RAGE Targeting HMGB1 inhibits the tumorigenesis of glioma stem cells
Collapse
|
20
|
Zhou X, Ying C, Hu B, Zhang Y, Gan T, Zhu Y, Wang N, Li A, Song Y. Receptor for advanced glycation end products aggravates cognitive deficits in type 2 diabetes through binding of C-terminal AAs 2-5 to mitogen-activated protein kinase kinase 3 (MKK3) and facilitation of MEKK3-MKK3-p38 module assembly. Aging Cell 2022; 21:e13543. [PMID: 35080104 PMCID: PMC8844116 DOI: 10.1111/acel.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).
Collapse
Affiliation(s)
- Xiao‐Yan Zhou
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| | - Chang‐Jiang Ying
- Department of Endocrinology Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yu‐Sheng Zhang
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Tian Gan
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Yan‐Dong Zhu
- The Graduate School Xuzhou Medical University Xuzhou China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - An‐An Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
| | - Yuan‐Jian Song
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology Xuzhou Medical University Xuzhou China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation Xuzhou Medical University Xuzhou China
| |
Collapse
|
21
|
Liu L, Wang N, Kalionis B, Xia S, He Q. HMGB1 plays an important role in pyroptosis induced blood brain barrier breakdown in diabetes-associated cognitive decline. J Neuroimmunol 2022; 362:577763. [PMID: 34844084 DOI: 10.1016/j.jneuroim.2021.577763] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus increases the risk of dementia, and evidence suggests hyperglycemia is a key contributor to neurodegeneration. However, our understanding of diabetes-associated cognitive decline, an important complication of diabetes mellitus, is lacking and the underlying mechanism is unclear. Blood brain barrier (BBB) breakdown is a possible cause of dementia in diabetes mellitus and Alzheimer's disease. Accumulating evidence shows BBB dysfunction caused by hyperglycemia contributes to cognitive decline. A specific type of inflammatory programmed cell death, called pyroptosis, has potential as a therapeutic target for BBB-associated diseases. Potential inducers of pyroptosis include inflammasomes such as NLRP3, whose activation relies on damage-associated molecular patterns. High mobility group box 1 (HMGB1) is a highly conserved, ubiquitous protein found in most cell types, and acts as a damage-associated molecular pattern when released from the nucleus. We propose that HMGB1 influences vascular inflammation by activating the NLRP3 inflammasome and thereby initiating pyroptosis in vascular cells. Moreover, HMGB1 plays a pivotal role in the pathogenesis of diabetes mellitus and diabetic complications. Here, we review the role of HMGB1 in BBB dysfunction induced by hyperglycemia and propose that HMGB1 is a promising therapeutic target for countering diabetes-associated cognitive decline.
Collapse
Affiliation(s)
- Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Neng Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, Parkville, Australia; University of Melbourne, Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville, Australia
| | - Shijin Xia
- Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai, PR China.
| | - Qinghu He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, PR China; Hunan University of Medicine, Huaihua, PR China.
| |
Collapse
|
22
|
Ma S, Bi W, Liu X, Li S, Qiu Y, Huang C, Lv R, Yin Q. Single-Cell Sequencing Analysis of the db/db Mouse Hippocampus Reveals Cell-Type-Specific Insights Into the Pathobiology of Diabetes-Associated Cognitive Dysfunction. Front Endocrinol (Lausanne) 2022; 13:891039. [PMID: 35721719 PMCID: PMC9200615 DOI: 10.3389/fendo.2022.891039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes-associated cognitive decline (DCD), is one of the complications of diabetes, which is characterized by a series of neurophysiological and pathological abnormalities. However, the exact pathogenesis of DCD is still unknown. Single-cell RNA sequencing (scRNA-seq) could discover unusual subpopulations, explore functional heterogeneity and identify signaling pathways and potential markers. The aim of this research was to provide deeper opinion into molecular and cellular changes underlying DCD, identify different cellular types of the diabetic mice hippocampus at single-cell level, and elucidate the factors mediating the pathogenesis of DCD. To elucidate cell specific gene expression changes in the hippocampus of diabetic encephalopathy. Single-cell RNA sequencing of hippocampus from db/m and db/db mice was carried out. Subclustering analysis was performed to further describe microglial cell subpopulations. Interestingly using immunohistochemistry, these findings were confirmed at the protein level. Single cell analysis yielded transcriptome data for 14621 hippocampal cells and defined 11 different cell types. Analysis of differentially expressed genes in the microglia compartments indicated that infection- and immune system process- associated terms, oxidative stress and inflammation play vital roles in the progression of DCD. Compared with db/m mouse, experiments at the protein level supported the activation of microglia, increased expression of inflammatory factors and oxidative stress damage in the hippocampus of db/db mouse. In addition, a major finding of our research was the subpopulation of microglia that express genes related to pro-inflammatory disease-associated microglia (DAM). Our research reveals pathological alterations of inflammation and oxidative stress mediated hippocampal damage in the db/db mice, and may provide potential diagnostic biomarkers and therapeutic interventions for DCD.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenkai Bi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangbin Li
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaxin Qiu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chengcheng Huang
- Clinical Education Administration, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Renjun Lv
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Renjun Lv, ; Qingqing Yin,
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Renjun Lv, ; Qingqing Yin,
| |
Collapse
|
23
|
Meng J, Zhu Y, Ma H, Wang X, Zhao Q. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114464. [PMID: 34329715 DOI: 10.1016/j.jep.2021.114464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic cognitive dysfunction (DCD) is mainly one of the complications of type 2 diabetes mellitus (T2DM) with complex and obscure pathogenesis. Extensive evidence has demonstrated the effectiveness and safety of traditional Chinese medicine (TCM) for DCD management. AIM OF THE STUDY This review attempted to systematically summarize the possible pathogenesis of DCD and the current Chinese medicine on the treatment of DCD. MATERIALS AND METHODS We acquired information of TCM on DCD treatment from PubMed, Web of Science, Science Direct and CNKI databases. We then dissected the potential mechanisms of currently reported TCMs and their active ingredients for the treatment of DCD by discussing the deficiencies and giving further recommendations. RESULTS Most TCMs and their active ingredients could improve DCD through alleviating insulin resistance, microvascular dysfunction, abnormal gut microbiota composition, inflammation, and the damages of the blood-brain barrier, cerebrovascular and neurons under hyperglycemia conditions. CONCLUSIONS TCM is effective in the treatment of DCD with few adverse reactions. A large number of in vivo and in vitro, and clinical trials are still needed to further reveal the potential quality markers of TCM on DCD treatment.
Collapse
Affiliation(s)
- Jinni Meng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, China
| | - Huixia Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
24
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
25
|
Zhou R, Chen LL, Yang H, Li L, Liu J, Chen L, Hong WJ, Wang CG, Ma JJ, Huang J, Zhou XF, Liu D, Zhou HD. Effect of High Cholesterol Regulation of LRP1 and RAGE on Aβ Transport Across the Blood-Brain Barrier in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:428-442. [PMID: 34488598 DOI: 10.2174/1567205018666210906092940] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND High cholesterol aggravates the risk development of Alzheimer's disease (AD). AD is closely related to the transport impairment of Amyloid-β (Aβ) in the blood-brain barrier. It is unclear whether high cholesterol affects the risk of cognitive impairment in AD by affecting Aβ transport. The purpose of the study is to investigate whether high cholesterol regulates Aβ transport through low-density Lipoprotein Receptor-Related Protein 1 (LRP1) and Receptor for Advanced Glycation End products (RAGE) in the risk development of AD. METHODS We established high cholesterol AD mice model. The learning and memory functions were evaluated by Morris Water Maze (MWM). Cerebral microvascular endothelial cells were isolated, cultured, and observed. The expression levels of LRP1 and RAGE of endothelial cells and their effect on Aβ transport in vivo were observed. The expression level of LRP1 and RAGE was detected in cultured microvessels after using Wnt inhibitor DKK-1 and β-catenin inhibitor XAV-939. RESULTS Hypercholesterolemia exacerbated spatial learning and memory impairment. Hypercholesterolemia increased serum Aβ40 level, while serum Aβ42 level did not change significantly. Hypercholesterolemia decreased LRP1 expression and increased RAGE expression in cerebral microvascular endothelial cells. Hypercholesterolemia increased brain apoptosis in AD mice. In in vitro experiment, high cholesterol decreased LRP1 expression and increased RAGE expression, increased Aβ40 expression in cerebral microvascular endothelial cells. High cholesterol regulated the expressions of LRP1 and RAGE and transcriptional activity of LRP1 and RAGE promoters by the Wnt/β-catenin signaling pathway. CONCLUSION High cholesterol decreased LRP1 expression and increased RAGE expression in cerebral microvascular endothelial cells, which led to Aβ transport disorder in the blood-brain barrier. Increased Aβ deposition in the brain aggravated apoptosis in the brain, resulting to cognitive impairment of AD mice.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Orthopedics, The Orthopedic Surgery Center of Chinese PLA, Southwest Hospital, Army Medical University, Chongqing 400042, China
| | - Li-Li Chen
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hai Yang
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ling Li
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Juan Liu
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Le Chen
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Wen-Juan Hong
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Cong-Guo Wang
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Jing-Jing Ma
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Jie Huang
- Postgraduate School, Bengbu Medical College, Anhui 233004, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, University of South Australia, Adelaide, SA, Australia
| | - Dong Liu
- Laboratory of Field Surgery Institute, Army Medical University, Chongqing 400042, China
| | - Hua-Dong Zhou
- Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
26
|
Pickering J, Wong R, Al-Salami H, Lam V, Takechi R. Cognitive Deficits in Type-1 Diabetes: Aspects of Glucose, Cerebrovascular and Amyloid Involvement. Pharm Res 2021; 38:1477-1484. [PMID: 34480263 DOI: 10.1007/s11095-021-03100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
The evidence shows that individuals with type-1 diabetes mellitus (T1DM) are at greater risk of accelerated cognitive impairment and dementia. Although, to date the mechanisms are largely unknown. An emerging body of literature indicates that dysfunction of cerebral neurovascular network and plasma dyshomeostasis of soluble amyloid-β in association with impaired lipid metabolism are central to the onset and progression of cognitive deficits and dementia. However, the latter has not been extensively considered in T1DM. Therefore, in this review, we summarised the literature concerning altered lipid metabolism and cerebrovascular function in T1DM as an implication for potential pathways leading to cognitive decline and dementia.
Collapse
Affiliation(s)
- Justin Pickering
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Rachel Wong
- Institute for Resilient Regions, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Hani Al-Salami
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Virginie Lam
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia.,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Ryu Takechi
- School of Population Health, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia. .,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
27
|
Liraglutide Alleviates Cognitive Deficit in db/db Mice: Involvement in Oxidative Stress, Iron Overload, and Ferroptosis. Neurochem Res 2021; 47:279-294. [PMID: 34480710 DOI: 10.1007/s11064-021-03442-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Studies have shown that diabetes is associated with the occurrence of neurodegenerative diseases and cognitive decline. However, there is currently no effective treatment for diabetes-induced cognitive dysfunction. The superior efficacy of liraglutide (LIRA) for cognitive impairment and numerous neurodegenerative diseases has been widely demonstrated. This study determined the effects of LIRA on diabetic cognitive impairment and on the levels of oxidative stress, lipid peroxidation, iron metabolism and ferroptosis in the hippocampus. Mice were injected daily with liraglutide (200 μg/kg/d) for 5 weeks. LIRA could repair damaged neurons and synapses, and it increased the protein expression levels of PSD 95, SYN, and BDNF. Furthermore, LIRA significantly decreased oxidative stress and lipid peroxidation levels by downregulating the production of ROS and MDA and upregulating SOD and GSH-Px in the serum and hippocampus, and the upregulation of SOD2 expression was also proven. The decreased levels of TfR1 and the upregulation of FPN1 and FTH proteins observed in the LIRA-treated db/db group were shown to reduce iron overload in the hippocampus, whereas the increased expression of Mtft and decreased expression of Mfrn in the mitochondria indicated that mitochondrial iron overload was ameliorated. Finally, LIRA was shown to prevent ferroptosis in the hippocampus by elevating the expression of GPX4 and SLC7A11 and suppressing the excessive amount of ACSL4; simultaneously, the damage to the mitochondria observed by TEM was also repaired. For the first time, we proved in the T2DM model that ferroptosis occurs in the hippocampus, which may play a role in diabetic cognitive impairment. LIRA can reduce oxidative stress, lipid peroxidation and iron overload in diabetic cognitive disorders and further inhibit ferroptosis, thereby weakening the damage to hippocampal neurons and synaptic plasticity and ultimately restoring cognitive function.
Collapse
|
28
|
Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179461. [PMID: 34502369 PMCID: PMC8431716 DOI: 10.3390/ijms22179461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present review is to discuss traditional hypotheses on the etiopathogenesis of Alzheimer's disease (AD), as well as the role of metabolic-syndrome-related mechanisms in AD development with a special focus on advanced glycation end-products (AGEs) and their role in metal-induced neurodegeneration in AD. Persistent hyperglycemia along with oxidative stress results in increased protein glycation and formation of AGEs. The latter were shown to possess a wide spectrum of neurotoxic effects including increased Aβ generation and aggregation. In addition, AGE binding to receptor for AGE (RAGE) induces a variety of pathways contributing to neuroinflammation. The existing data also demonstrate that AGE toxicity seems to mediate the involvement of copper (Cu) and potentially other metals in AD pathogenesis. Specifically, Cu promotes AGE formation, AGE-Aβ cross-linking and up-regulation of RAGE expression. Moreover, Aβ glycation was shown to increase prooxidant effects of Cu through Fenton chemistry. Given the role of AGE and RAGE, as well as metal toxicity in AD pathogenesis, it is proposed that metal chelation and/or incretins may slow down oxidative damage. In addition, selenium (Se) compounds seem to attenuate the intracellular toxicity of the deranged tau and Aβ, as well as inhibiting AGE accumulation and metal-induced neurotoxicity.
Collapse
|
29
|
HMGB1-RAGE Pathway Contributes to the Abnormal Migration of Endogenous Subventricular Zone Neural Progenitors in an Experimental Model of Focal Microgyria. J Mol Neurosci 2021; 72:56-68. [PMID: 34373986 DOI: 10.1007/s12031-021-01891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/13/2021] [Indexed: 12/09/2022]
Abstract
Abnormal migration of subventricular zone (SVZ)-derived neural progenitor cells (SDNPs) is involved in the pathological and epileptic processes of focal cortical dysplasias (FCDs), but the underlying mechanisms are not clear. Recent studies indicated that high mobility group box 1 (HMGB1)/receptor for advanced glycation end products (RAGE) are widely expressed in epileptic specimens of FCDs, which suggests that the HMGB1-RAGE pathway is involved in the pathological and/or epileptic processes of FCDs. The present study used Nestin-GFPtg/+ transgenic mice, and we established a model of freezing lesion (FL), as described in our previous report. A "migrating stream" composed of GFP-Nestin+ SDNPs was derived from the SVZ region and migrated to the cortical FL area. We found that translocated HMGB1 and RAGE were expressed in cortical lesion in a clustered distribution pattern, which was especially obvious in the early stage of FL compared to the sham group. Notably, the number of GFP-Nestin+ SDNPs within the "migrating stream" was significantly decreased when the HMGB1-RAGE pathway was blocked by a RAGE antagonist or deletion of the RAGE gene. The absence of RAGE also decreased the activity of pentylenetetrazol-induced cortical epileptiform discharge. In summary, this study provided experimental evidence that the levels of extranuclear HMGB1 and its receptor RAGE were increased in cortical lesion in the early stage of the FL model. Activation of the HMGB1-RAGE pathway may contribute to the abnormal migration of SDNPs and the hyperexcitability of cortical lesion in the FL model.
Collapse
|
30
|
Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2021; 15:695479. [PMID: 34349624 PMCID: PMC8326917 DOI: 10.3389/fncel.2021.695479] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β (Aβ) is the predominant pathologic protein in Alzheimer's disease (AD). The production and deposition of Aβ are important factors affecting AD progression and prognosis. The deposition of neurotoxic Aβ contributes to damage of the blood-brain barrier. However, the BBB is also crucial in maintaining the normal metabolism of Aβ, and dysfunction of the BBB aggravates Aβ deposition. This review characterizes Aβ deposition and BBB damage in AD, summarizes their interactions, and details their respective mechanisms.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | | | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| | - Xintong Ge
- Tianjin Neurological Institute, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
31
|
Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. J Drug Target 2021; 30:61-81. [PMID: 33983096 DOI: 10.1080/1061186x.2021.1927055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and its incidence is increasing due to the ageing population. Currently, the main limitations of AD treatment are low blood-brain barrier permeability, severe off-target of drugs, and immune abnormality. In this review, four hypotheses for Alzheimer's pathogenesis and three challenges for Alzheimer's drug delivery are discussed. In addition, this article summarises the different strategies of brain targeting nano-drug delivery systems (NDDSs) developed in the last 10 years. These strategies include receptor-mediated (transferrin receptor, low-density lipoprotein receptor-related protein, lactoferrin receptor, etc.), adsorption-mediated (cationic, alkaline polypeptide, cell-penetrating peptides, etc.), and transporter-mediated (P-gp, GLUT1, etc.). Moreover, it provides insights into novel strategies used in AD, such as exosomes, virus-like particles, and cell membrane coating particles. Hence, this review will help researchers to understand the current progress in the field of NDDSs for the central nervous system and find new directions for AD therapy.HighlightsCharacteristics and challenges based on the pathogenesis of AD were discussed.Recent advances in novel brain-targeting NDDSs for AD over the past 10 years were summarised.
Collapse
Affiliation(s)
- Qin Ouyang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Jianbin Tong
- Department of Anaesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Zhang L, Jiang Y, Deng S, Mo Y, Huang Y, Li W, Ge C, Ren X, Zhang H, Zhang X, Peng Q, Liu Z, Huang L, Zhou F, Ai Y. S100B/RAGE/Ceramide signaling pathway is involved in sepsis-associated encephalopathy. Life Sci 2021; 277:119490. [PMID: 33862114 DOI: 10.1016/j.lfs.2021.119490] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is one of the most common complications of sepsis, and it might lead to long-term cognitive dysfunction and disability. This study aimed to explore the role of S100 calcium binding protein B (S100B)/RAGE/ceramide signaling pathway in SAE. MAIN METHODS FPS-ZM1 (an inhibitor of RAGE), myriocin and GW4869 (an inhibitor of ceramide) were used to explore the role of S100B/RAGE/ceramide in acute brain injury and long-term cognitive impairment in sepsis. In addition, Mdivi-1 (inhibitor of Drp1) and Drp1 siRNA were utilized to assess the effects of C2-ceramide on neuronal mitochondria, and to explore the specific underlying mechanism in C2 ceramide-induced death of HT22 mouse hippocampal neuronal cells. KEY FINDINGS Western blot analysis showed that sepsis significantly up-regulated S100B and RAGE. Nissl staining and Morris water maze (MWM) test revealed that inhibition of RAGE with FPS-ZM1 markedly attenuated cecal ligation and puncture (CLP)-induced brain damage and cognitive dysfunction. Furthermore, FPS-ZM1 relieved sepsis-induced C2-ceramide accumulation and abnormal mitochondrial dynamics. Moreover, inhibition of ceramide also showed similar protective effects both in vivo and in vitro. Furthermore, Mdivi-1 and Drp1 siRNA significantly reduced C2-ceramide-induced neuronal mitochondrial fragmentation and cell apoptosis in vitro. SIGNIFICANCE This study confirmed that S100B regulates mitochondrial dynamics through RAGE/ceramide pathway, in addition to the role of this pathway in acute brain injury and long-term cognitive impairment during sepsis.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yuan Jiang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yan Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Chenglong Ge
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xinshu Ren
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Haisong Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xiaolei Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Zhiyong Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Li Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Fan Zhou
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
33
|
Shen L, Zhang T, Yang Y, Lu D, Xu A, Li K. FPS-ZM1 Alleviates Neuroinflammation in Focal Cerebral Ischemia Rats via Blocking Ligand/RAGE/DIAPH1 Pathway. ACS Chem Neurosci 2021; 12:63-78. [PMID: 33300334 DOI: 10.1021/acschemneuro.0c00530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptor for advanced glycation end products (RAGEs), a multiligand receptor belonging to the cell-surface immunoglobulin superfamily, has been reported to play a crucial role in neuroinflammation and neurodegenerative diseases. Here, we tested our hypothesis that the RAGE-specific antagonist FPS-ZM1 is neuroprotective against ischemic brain injury. Distal middle cerebral artery occlusion (MCAO) or sham operation was performed on anesthetized Sprague-Dawley male rats (n = 60), which were then treated with FPS-ZM1 or vehicle (four groups in total = Vehicle + MCAO, FPS-ZM1 + MCAO, Vehicle + sham, and FPS-ZM1 + sham). After 1 week, neurological function was evaluated, and then, brain tissues were collected for 2,3,5-triphenyltetrazolium chloride staining, Nissl staining, TUNEL staining, Western blotting, and immunohistochemical analyses. FPS-ZM1 treatment after MCAO markedly attenuated neurological deficits and reduced the infarct area. More interestingly, FPS-ZM1 inhibited ischemia-induced astrocytic activation and microgliosis and decreased the elevated levels of proinflammatory cytokines. Furthermore, FPS-ZM1 blocked the increase in the level of RAGE and, notably, of DIAPH1, the key cytoplasmic hub for RAGE-ligand-mediated activation of cellular signaling. Accordingly, FPS-ZM1 also reversed the MCAO-induced increase in phosphorylation of NF-κB targets that are potentially downstream from RAGE/DIAPH1. Our findings reveal that FPS-ZM1 treatment reduces neuroinflammation in rats with focal cerebral ischemia and further suggest that the ligand/RAGE/DIAPH1 pathway contributes to this FPS-ZM1-mediated alleviation of neuroinflammation.
Collapse
Affiliation(s)
- Lingling Shen
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Tianyuan Zhang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Yu Yang
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Dan Lu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Anding Xu
- Department of Neurology and Stroke Centre, the Fist Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| | - Keshen Li
- Clinical Neuroscience Institute of Jinan University, Guangzhou 510632, China
| |
Collapse
|
34
|
Li Y, Tang H, Andrikopoulos N, Javed I, Cecchetto L, Nandakumar A, Kakinen A, Davis TP, Ding F, Ke PC. The membrane axis of Alzheimer's nanomedicine. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000040. [PMID: 33748816 PMCID: PMC7971452 DOI: 10.1002/anbr.202000040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major neurological disorder impairing its carrier's cognitive function, memory and lifespan. While the development of AD nanomedicine is still nascent, the field is evolving into a new scientific frontier driven by the diverse physicochemical properties and theranostic potential of nanomaterials and nanocomposites. Characteristic to the AD pathology is the deposition of amyloid plaques and tangles of amyloid beta (Aβ) and tau, whose aggregation kinetics may be curbed by nanoparticle inhibitors via sequence-specific targeting or nonspecific interactions with the amyloidogenic proteins. As literature implicates cell membrane as a culprit in AD pathogenesis, here we summarize the membrane axis of AD nanomedicine and present a new rationale that the field development may greatly benefit from harnessing our existing knowledge of Aβ-membrane interaction, nanoparticle-membrane interaction and Aβ-nanoparticle interaction.
Collapse
Affiliation(s)
- Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Luca Cecchetto
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemical and Pharmaceutical Science, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
35
|
Giridharan VV, Generoso JS, Collodel A, Dominguini D, Faller CJ, Tardin F, Bhatti GS, Petronilho F, Dal-Pizzol F, Barichello T. Receptor for Advanced Glycation End Products (RAGE) Mediates Cognitive Impairment Triggered by Pneumococcal Meningitis. Neurotherapeutics 2021; 18:640-653. [PMID: 32886341 PMCID: PMC8116405 DOI: 10.1007/s13311-020-00917-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pneumococcal meningitis is a life-threatening infection of the central nervous system (CNS), and half of the survivors of meningitis suffer from neurological sequelae. We hypothesized that pneumococcal meningitis causes CNS inflammation via the disruption of the blood-brain barrier (BBB) and by increasing the receptor for advanced glycation end product (RAGE) expression in the brain, which causes glial cell activation, leading to cognitive impairment. To test our hypothesis, 60-day-old Wistar rats were subjected to meningitis by receiving an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a control group and were treated with a RAGE-specific inhibitor (FPS-ZM1) in saline. The rats also received ceftriaxone 100 mg/kg intraperitoneally, bid, and fluid replacements. Experimental pneumococcal meningitis triggered BBB disruption after meningitis induction, and FPS-ZM1 treatment significantly suppressed BBB disruption. Ten days after meningitis induction, surviving animals were free from infection, but they presented increased levels of TNF-α and IL-1β in the prefrontal cortex (PFC); high expression levels of RAGE, amyloid-β (Aβ1-42), and microglial cell activation in the PFC and hippocampus; and memory impairment, as evaluated by the open-field, novel object recognition task and Morris water maze behavioral tasks. Targeted RAGE inhibition was able to reduce cytokine levels, decrease the expression of RAGE and Aβ1-42, inhibit microglial cell activation, and improve cognitive deficits in meningitis survivor rats. The sequence of events generated by pneumococcal meningitis can persist long after recovery, triggering neurocognitive decline; however, RAGE blocker attenuated the development of brain inflammation and cognitive impairment in experimental meningitis.
Collapse
Affiliation(s)
- Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Jaqueline S Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Allan Collodel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Flavio Tardin
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Gursimrat S Bhatti
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, 88704-900, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil.
| |
Collapse
|
36
|
Brzecka A, Madetko N, Nikolenko VN, Ashraf GM, Ejma M, Leszek J, Daroszewski C, Sarul K, Mikhaleva LM, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. Sleep Disturbances and Cognitive Impairment in the Course of Type 2 Diabetes-A Possible Link. Curr Neuropharmacol 2020; 19:78-91. [PMID: 32148197 PMCID: PMC7903492 DOI: 10.2174/1570159x18666200309101750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing number of patients worldwide with sleep disturbances and diabetes. Various sleep disorders, including long or short sleep duration and poor sleep quality of numerous causes, may increase the risk of diabetes. Some symptoms of diabetes, such as painful peripheral neuropathy and nocturia, or associated other sleep disorders, such as sleep breathing disorders or sleep movement disorders, may influence sleep quality and quantity. Both sleep disorders and diabetes may lead to cognitive impairment. The risk of development of cognitive impairment in diabetic patients may be related to vascular and non-vascular and other factors, such as hypoglycemia, hyperglycemia, central insulin resistance, amyloid and tau deposits and other causes. Numerous sleep disorders, e.g., sleep apnea, restless legs syndrome, insomnia, and poor sleep quality are most likely are also associated with cognitive impairment. Adequate functioning of the system of clearance of the brain from toxic substances, such as amyloid β, i.e. glymphatic system, is related to undisturbed sleep and prevents cognitive impairment. In the case of coexistence, sleep disturbances and diabetes either independently lead to and/or mutually aggravate cognitive impairment.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Madetko
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Cyryl Daroszewski
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Sarul
- Department of Pulmonology and Lung Cancer, Wroclaw Medical University, Wroclaw, Poland
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology,3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426, United States
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation
| |
Collapse
|
37
|
Meta-analysis of cognitive and behavioral tests in leptin- and leptin receptor-deficient mice. Neurosci Res 2020; 170:217-235. [PMID: 33316303 DOI: 10.1016/j.neures.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 01/19/2023]
Abstract
Leptin is a hormone produced by adipocytes that regulates food intake and metabolism. Leptin-related gene-deficient mice, such as db/db and ob/ob mice, are widely used to study diabetes and its related diseases. However, broad effects of leptin appear to cause variability in behavioral test results. We performed a meta-analysis of major behavioral tests in db/db and ob/ob mice. These mice exhibited significant impairments in the Morris water maze, forced swim, novel object recognition, Y-maze, tail suspension, and light-dark box tests, whereas the elevated plus maze and open field tests did not reveal significant changes. We also performed correlation and regression analyses between the animals' performances and the experimental protocols and conditions. The memory-related tests were characterized by the correlations of their results with animal age, while the performances in the elevated plus-maze and forced swim tests were affected by the width of the devices used. In conclusion, db/db and ob/ob mice mainly exhibit memory deficits and depression-like behavior, although experimenters should be aware of animal age and device size in conducting experiments.
Collapse
|
38
|
RAGE signaling is required for AMPA receptor dysfunction in the hippocampus of hyperglycemic mice. Physiol Behav 2020; 229:113255. [PMID: 33221393 DOI: 10.1016/j.physbeh.2020.113255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Diabetes in humans has been associated for a long time with cognitive dysfunction. In rodent animal models, cognitive dysfunction can manifest as impaired hippocampal synaptic plasticity. Particular attention has been concentrated on the receptor for advanced glycation end products (RAGE), which is implicated in multiple diabetic complications involving the development of vascular and peripheral nerve abnormalities. In this study, we hypothesize that RAGE signaling alters glutamate receptor function and expression, impairing synaptic transmission in the hippocampus. Using preparations of hippocampal slices from male mice, we show a RAGE-dependent decrease in long-term potentiation (LTP) and an increase in paired-pulse facilitation (PPF) following streptozotocin (STZ)-induced diabetes. Consistently, in hippocampal cultures from male and female neonatal mice, high glucose caused a RAGE-dependent reduction of AMPA- but not NMDA-evoked currents, and an increase in cytosolic reactive oxygen species (ROS). Consistently, when cultures were co-treated with high glucose and the RAGE antagonist FPS-ZM1, AMPA-evoked currents were unchanged. Hippocampi from STZ-induced hyperglycemic wild type (WT) mice showed increased RAGE expression concomitant with a decrease of both expression and phosphorylation (Ser 831 and 845) of the AMPA GluA1 subunit. We found these changes correlated to activation of the MAPK pathway, consistent with decreased pJNK/JNK ratio and the JNK kinase, pMEK7. As no changes in expression or phosphorylation of regulatory proteins were observed in hippocampi from STZ-induced hyperglycemic RAGE-KO mice, we report a RAGE-dependent impairment in the hippocampi of hyperglycemic WT mice, with reduced AMPA receptor expression/function and LTP deficits.
Collapse
|
39
|
Eucalyptol Inhibits Amyloid-β-Induced Barrier Dysfunction in Glucose-Exposed Retinal Pigment Epithelial Cells and Diabetic Eyes. Antioxidants (Basel) 2020; 9:antiox9101000. [PMID: 33076507 PMCID: PMC7602655 DOI: 10.3390/antiox9101000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia elicits tight junction disruption and blood-retinal barrier breakdown, resulting in diabetes-associated vison loss. Eucalyptol is a natural compound found in eucalyptus oil with diverse bioactivities. This study evaluated that eucalyptol ameliorated tight junctions and retinal barrier function in glucose/amyloid-β (Aβ)-exposed human retinal pigment epithelial (RPE) cells and in db/db mouse eyes. RPE cells were cultured in media containing 33 mM glucose or 5 μM Aβ for 4 days in the presence of 1–20 μM eucalyptol. The in vivo animal study employed db/db mice orally administrated with 10 mg/kg eucalyptol. Nontoxic eucalyptol inhibited the Aβ induction in glucose-loaded RPE cells and diabetic mouse eyes. Eucalyptol reversed the induction of tight junction-associated proteins of ZO-1, occludin-1 and matrix metalloproteinases in glucose- or Aβ-exposed RPE cells and in diabetic eyes, accompanying inhibition of RPE detachment from Bruch’s membrane. Adding eucalyptol to glucose- or Aβ-loaded RPE cells, and diabetic mouse eyes reciprocally reversed induction/activation of apoptosis-related bcl-2, bax, cytochrome C/Apaf-1 and caspases. Eucalyptol attenuated the generation of reactive oxygen species and the induction of receptor for advanced glycation end products in Aβ-exposed RPE cells and diabetic eyes. Eucalyptol may ameliorate RPE barrier dysfunction in diabetic eyes through counteracting Aβ-mediated oxidative stress-induced RPE cell apoptosis.
Collapse
|
40
|
Xu Y, Cao K, Guo B, Xiang J, Dong YT, Qi XL, Yu WF, Xiao Y, Guan ZZ. Lowered levels of nicotinic acetylcholine receptors and elevated apoptosis in the hippocampus of brains from patients with type 2 diabetes mellitus and db/db mice. Aging (Albany NY) 2020; 12:14205-14218. [PMID: 32701482 PMCID: PMC7425467 DOI: 10.18632/aging.103435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/25/2020] [Indexed: 02/05/2023]
Abstract
Cognitive impairment caused by diabetes has been gradually recognized. Generally, nicotinic acetylcholine receptors (nAChRs) play an important role in the pathogenesis in dementia disorders including Alzheimer's disease (AD). However, the expression of nAChRs in the brains of type 2 diabetes mellitus (T2DM) is unexplored. This study explored the alterations of nAChRs in the postmortem brains of patients with T2DM and brains of db/db mice. Morris water maze test was used to appraise the ability of spatial learning and memory; Western blotting and RT-qPCR were performed to determine the expressions of target protein and mRNA, respectively; TUNEL was used to detect the apoptosis of neurons. We found that the protein levels of nAChR α7 and α4 subunits were significantly decreased and the apoptosis rates in neurons elevated in the hippocampus of T2DM patients and db/db mice as comparison to controls. Furthermore, the db/db mice exhibited the impaired cognition, the elevated level of pro-apoptotic protein and the reduced level of anti-apoptotic and synaptic proteins. This study shows the lowered level of nAChR α7 and α4 subunits and the elevated apoptosis in the hippocampus of T2DM patients and db/db mice, which might help explain the impaired cognition in T2DM.
Collapse
Affiliation(s)
- Yi Xu
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China
| | - Kun Cao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550004, P. R. of China
| | - Jie Xiang
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China
| | - Yang-Ting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Wen-Feng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| | - Zhi-Zhong Guan
- Departments of Pathology at Guizhou Medical University and the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P. R. of China.,Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University of the Ministry of Education, Guiyang 550004, P. R. of China.,Provincial Key Laboratory of Medical Molecular Biology, Guiyang 550004, P. R. of China
| |
Collapse
|
41
|
Kong Y, Wang F, Wang J, Liu C, Zhou Y, Xu Z, Zhang C, Sun B, Guan Y. Pathological Mechanisms Linking Diabetes Mellitus and Alzheimer's Disease: the Receptor for Advanced Glycation End Products (RAGE). Front Aging Neurosci 2020; 12:217. [PMID: 32774301 PMCID: PMC7388912 DOI: 10.3389/fnagi.2020.00217] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes and Alzheimer’s disease (AD) place a significant burden on health care systems in the world and its aging populations. These diseases have long been regarded as separate entities; however, advanced glycation end products (AGEs) and the receptors for AGEs (RAGE) may be a link between diabetes and AD. In our study, mice injected with AGEs through stereotaxic surgery showed significant AD-like features: behavior showed decreased memory; immunofluorescence showed increased phosphorylated tau and APP. These results suggest links between diabetes and AD. Patients with diabetes are at a higher risk of developing AD, and the possible underlying molecular components of this association are now beginning to emerge.
Collapse
Affiliation(s)
- Yanyan Kong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengqin Xu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Safar MM, Shahin NN, Mohamed AF, Abdelkader NF. Suppression of BACE1 and amyloidogenic/RAGE axis by sitagliptin ameliorates PTZ kindling-induced cognitive deficits in rats. Chem Biol Interact 2020; 328:109144. [PMID: 32653415 DOI: 10.1016/j.cbi.2020.109144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
The debilitating nature of cognitive impairment in epilepsy and the potential of some traditional antiepileptics to further deteriorate cognitive function are areas of growing concern. Glucagon-like peptide-1 (GLP-1) deficiency has been linked to reduced seizure threshold as well as cognitive dysfunction. Here, we tested whether sitagliptin (SITA), by virtue of its neuroprotective properties, could alleviate both epilepsy and associated cognitive dysfunction in a rat model of kindling epilepsy. Chemical kindling was induced by subconvulsive doses of pentylenetetrazol (PTZ) (30 mg/kg; i.p). SITA (50 mg/kg; p.o) was administered 1 h before PTZ injections. SITA conceivably attenuated PTZ hippocampal histological insult, preserved neuronal integrity and amended neurotransmitter perturbations in rat hippocampi paralleled with enhanced hippocampal GLP-1 levels as well as the downstream cAMP content and protein kinase A (PKA) activity. Moreover, SITA improved cognitive functioning of rats in the Morris water maze which was coupled with hampered hippocampal p(Ser404)-tau and β-amyloid proteins. SITA replenished p(Ser9)-glycogen synthase kinase-3β (GSK-3β). It also opposed the boosted matrix metalloproteinase-9 (MMP-9), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor-1 (IGF-1) levels associated with PTZ administration along with mitigation of both β-secretase-1 (BACE1) immunoreactivity and receptor for advanced glycation end products (RAGE) protein level in rat hippocampi. In conclusion, SITA subdues epileptic and cognitive upshots of PTZ kindling in rats, which might correspond to the modulation of BACE1, amyloidogenic/RAGE axis as well as GSK-3β/MMP-9/BDNF signaling cascade. SITA effects are probably mediated via boosting GLP-1 and subsequently enhancing GLP-1/GLP-1R signaling.
Collapse
Affiliation(s)
- Marwa M Safar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Liu Y, Shen W, Chen Q, Cao Q, Di W, Lan R, Chen Z, Bai J, Han Z, Xu W. Inhibition of RAGE by FPS-ZM1 alleviates renal injury in spontaneously hypertensive rats. Eur J Pharmacol 2020; 882:173228. [PMID: 32502492 DOI: 10.1016/j.ejphar.2020.173228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
The current study was designed to examine the protection of RAGE-specific inhibitor FPS-ZM1 against renal injury in spontaneously hypertensive rats (SHR) and investigate the underlying mechanism. The adult male SHR were treated with FPS-ZM1 via oral gavages for 12 weeks, and age-matched male Wistar-Kyoto rats (WKY) were used as control. Treatment of SHR with FPS-ZM1 slightly reduced blood pressure, and significantly improved baroreflex sensitivity in SHR. Treatment of SHR with FPS-ZM1 improved renal function, evidenced by increased glomerular filtration rate and renal blood flow, and reduced plasma creatinine, blood urea nitrogen and urine albumin excretion rate. Histology results revealed that treatment of SHR with FPS-ZM1 alleviated renal injury and reduced tubulointerstitial fibrosis. Treatment of SHR with FPS-ZM1 suppressed activation of NF-κB and reduced expression of pro-inflammatory cytokines including Tnf, Il6, and Il1b. Treatment of SHR with FPS-ZM1 abated oxidative stress and downregulated mRNA levels of components of NADPH oxidase (Nox) including Cyba, Nox1, Nox2, Nox4 and Ncf1 in kidneys. In addition, treatment of SHR with FPS-ZM1 reduced renal AngII levels, downregulated mRNA expression of Ace and upregulated expression of Agtr2. In conclusion, treatment with FPS-ZM1 alleviated hypertension-related renal dysfunction, possibly by suppressing NF-κB-mediated inflammation, abating Nox-mediated oxidative stress, and improving local renal renin-angiotensin system (RAS).
Collapse
Affiliation(s)
- Yu Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China
| | - Wenzhi Shen
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China
| | - Qi Chen
- Department of Cardiology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingxin Cao
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Wencheng Di
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China
| | - Rongfang Lan
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China
| | - Zheng Chen
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China
| | - Jian Bai
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China
| | - Zhonglin Han
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China
| | - Wei Xu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing, Drum Tower Hospital, Nanjing, China.
| |
Collapse
|
44
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
45
|
Prevention of Cognitive Decline in Alzheimer's Disease by Novel Antioxidative Supplements. Int J Mol Sci 2020; 21:ijms21061974. [PMID: 32183152 PMCID: PMC7139972 DOI: 10.3390/ijms21061974] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a crucial role in Alzheimer’s disease (AD) from its prodromal stage of mild cognitive impairment. There is an interplay between oxidative stress and the amyloid β (Aβ) cascade via various mechanisms including mitochondrial dysfunction, lipid peroxidation, protein oxidation, glycoxidation, deoxyribonucleotide acid damage, altered antioxidant defense, impaired amyloid clearance, inflammation and chronic cerebral hypoperfusion. Based on findings that indicate that oxidative stress plays a major role in AD, oxidative stress has been considered as a therapeutic target of AD. In spite of favorable preclinical study outcomes, previous antioxidative components, including a single antioxidative supplement such as vitamin C, vitamin E or their mixtures, did not clearly show any therapeutic effect on cognitive decline in AD. However, novel antioxidative supplements can be beneficial for AD patients. In this review, we summarize the interplay between oxidative stress and the Aβ cascade, and introduce novel antioxidative supplements expected to prevent cognitive decline in AD.
Collapse
|
46
|
Santoro AM, Lanza V, Bellia F, Sbardella D, Tundo GR, Cannizzo A, Grasso G, Arizzi M, Nicoletti VG, Alcaro S, Costa G, Pietropaolo A, Malgieri G, D'Abrosca G, Fattorusso R, García‐Viñuales S, Ahmed IMM, Coletta M, Milardi D. Pyrazolones Activate the Proteasome by Gating Mechanisms and Protect Neuronal Cells from β‐Amyloid Toxicity. ChemMedChem 2019; 15:302-316. [DOI: 10.1002/cmdc.201900612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Anna Maria Santoro
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Francesco Bellia
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Diego Sbardella
- IRCCS – Fondazione G.B. Bietti Via Livenza 3 00189 Roma Italy
- Università di Roma Tor Vergata Dipartimento di Scienze Cliniche e Medicina Traslazionale Via Montpellier 1 00133 Roma Italy
| | - Grazia R. Tundo
- Università di Roma Tor Vergata Dipartimento di Scienze Cliniche e Medicina Traslazionale Via Montpellier 1 00133 Roma Italy
| | - Alessandra Cannizzo
- Università degli Studi di Catania Dipartimento di Scienze Chimiche V.le Andrea Doria 6 95125 Catania Italy
| | - Giuseppe Grasso
- Università degli Studi di Catania Dipartimento di Scienze Chimiche V.le Andrea Doria 6 95125 Catania Italy
| | - Mariaconcetta Arizzi
- Università degli Studi di Catania Dipartimento di Scienze Chimiche V.le Andrea Doria 6 95125 Catania Italy
| | - Vincenzo G. Nicoletti
- Università degli Studi di Catania Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC) Università di Catania Via Santa Sofia 97 95124 Catania
| | - Stefano Alcaro
- Università degli Studi Magna Graecia di Catanzaro Dipartimento di Scienze della Salute Viale Europa 88100 Catanzaro Italy
| | - Giosuè Costa
- Università degli Studi Magna Graecia di Catanzaro Dipartimento di Scienze della Salute Viale Europa 88100 Catanzaro Italy
| | - Adriana Pietropaolo
- Università degli Studi Magna Graecia di Catanzaro Dipartimento di Scienze della Salute Viale Europa 88100 Catanzaro Italy
| | - Gaetano Malgieri
- Università della Campania “Luigi Vanvitelli” Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche Via Vivaldi 43 81100 Caserta Italy
| | - Gianluca D'Abrosca
- Università della Campania “Luigi Vanvitelli” Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche Via Vivaldi 43 81100 Caserta Italy
| | - Roberto Fattorusso
- Università della Campania “Luigi Vanvitelli” Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche Via Vivaldi 43 81100 Caserta Italy
| | - Sara García‐Viñuales
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Ikhlas M. M. Ahmed
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| | - Massimiliano Coletta
- Università di Roma Tor Vergata Dipartimento di Scienze Cliniche e Medicina Traslazionale Via Montpellier 1 00133 Roma Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche Istituto di Cristallografia Via P. Gaifami 18 95126 Catania Italy
| |
Collapse
|
47
|
Karvani M, Simos P, Stavrakaki S, Kapoukranidou D. Neurocognitive impairment in type 2 diabetes mellitus. Hormones (Athens) 2019; 18:523-534. [PMID: 31522366 DOI: 10.1007/s42000-019-00128-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
There is emerging evidence that cognitive impairment could be a diabetes mellitus-related complication. It has been suggested that diabetic people are at increased risk of cognitive decline, since the metabolic and vascular disturbances of the disease affect brain function. Additionally, prolonged exposure to olther potential detrimental factors leads to irreversible cognitive decrements over time due to the aging process. Neurocognitive impairment signifies decreased performance in cognitive domains such as verbal and nonverbal memory, both immediate and delayed memory, executive function, attention, visuospatial and psychomotor performance, information processing speed, semantic knowledge, and language abilities. The aim of the present article is to review the existing literature on the issue of the neurocognitive decline in type 2 diabetes. A literature search of databases was performed, using as keywords "diabetes" and "cognitive impairment," and the reference list of papers so identified were examined, with only English language papers being used. Understanding and preventing diabetes-associated cognitive deficits remains a key priority for future research. It is important to ascertain whether interventions to delay diabetes onset or better control of established disease could prevent some of its adverse effects on cognitive skills.
Collapse
Affiliation(s)
- Marianna Karvani
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - P Simos
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Herakleion, Crete, Greece
| | - S Stavrakaki
- Department of Italian Language and Literature, School of Philosophy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - D Kapoukranidou
- Department of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
48
|
Cuevas E, Rosas-Hernandez H, Burks SM, Ramirez-Lee MA, Guzman A, Imam SZ, Ali SF, Sarkar S. Amyloid Beta 25-35 induces blood-brain barrier disruption in vitro. Metab Brain Dis 2019; 34:1365-1374. [PMID: 31267346 DOI: 10.1007/s11011-019-00447-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/05/2019] [Indexed: 11/27/2022]
Abstract
The amyloid β-peptide (Aβ) is transported across the blood-brain barrier (BBB) by binding with the receptor for advanced glycation end products (RAGE). Previously, we demonstrated that the Aβ fraction 25-35 (Aβ25-35) increases RAGE expression in the rat hippocampus, likely contributing to its neurotoxic effects. However, it is still debated if the interaction of Aβ with RAGE compromises the BBB function in Alzheimer' disease (AD). Here, we evaluated the effects of Aβ25-35 in an established in vitro model of the BBB. Rat brain microvascular endothelial cells (rBMVECs) were treated with 20 μM active Aβ25-35 or the inactive Aβ35-25 (control), for 24 h. Exposure to Aβ25-35 significantly decreased cell viability, increased cellular necrosis, and increased the production of reactive oxygen species (ROS), which triggered a decrease in the enzyme glutathione peroxidase when compared to the control condition. Aβ25-35 also increased BBB permeability by altering the expression of tight junction proteins (decreasing zonula occludens-1 and increasing occludin). Aβ25-35 induced monolayer disruption and cellular disarrangement of the BBB, with RAGE being highly expressed in the zones of disarrangement. Together, these data suggest that Aβ25-35-induces toxicity by compromising the functionality and integrity of the BBB in vitro. Graphical abstract Aβ25-35 induces BBB dysfunction in vitro, wich is likely mediated by OS and ultimately leads to disruption of BBB integrity and cell death.
Collapse
Affiliation(s)
- Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Hector Rosas-Hernandez
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Susan M Burks
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Manuel A Ramirez-Lee
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Aida Guzman
- Escuela Nacional Preparatoria-UNAM, Mexico, Mexico
| | - Syed Z Imam
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
49
|
Cai Z, Qiao PF, Wan CQ, Cai M, Zhou NK, Li Q. Role of Blood-Brain Barrier in Alzheimer's Disease. J Alzheimers Dis 2019; 63:1223-1234. [PMID: 29782323 DOI: 10.3233/jad-180098] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) is involved in the pathogenesis of Alzheimer's disease (AD). BBB is a highly selective semipermeable structural and chemical barrier which ensures a stable internal environment of the brain and prevents foreign objects invading the brain tissue. BBB dysfunction induces the failure of Aβ transport from brain to the peripheral circulation across the BBB. Especially, decreased levels of LRP-1 (low density lipoprotein receptor-related protein 1) and increased levels of RAGE (receptor for advanced glycation endproducts) at the BBB can cause the failure of Aβ transport. The pathogenesis of AD is related to the BBB structural components, including pericytes, astrocytes, vascular endothelial cells, and tight junctions. BBB dysfunction will trigger neuroinflammation and oxidative stress, then enhance the activity of β-secretase and γ-secretase, and finally promote Aβ generation. A progressive accumulation of Aβ in brain and BBB dysfunction may become a feedback loop that gives rise to cognitive impairment and the onset of dementia. The correlation between BBB dysfunction and tau pathology has been well-reported. Therefore, regulating BBB function may be a new therapeutic target for treating AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Pei-Feng Qiao
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Cheng-Qun Wan
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Min Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Nan-Kai Zhou
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| | - Qin Li
- Department of Neurology, Chongqing General Hospital, Chongqing, Chongqing, China
| |
Collapse
|
50
|
Khotskin NV, Plyusnina AV, Kulikova EA, Bazhenova EY, Fursenko DV, Sorokin IE, Kolotygin I, Mormede P, Terenina EE, Shevelev OB, Kulikov AV. On association of the lethal yellow (A) mutation in the agouti gene with the alterations in mouse brain and behavior. Behav Brain Res 2019; 359:446-456. [DOI: 10.1016/j.bbr.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|