1
|
Maitland AD, McGriff SA, Glatfelter GC, Schindler CW, Baumann MH. Reinforcing effects of fentanyl analogs found in illicit drug markets. Psychopharmacology (Berl) 2024; 241:2375-2383. [PMID: 38965085 PMCID: PMC11513704 DOI: 10.1007/s00213-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
RATIONALE The potent synthetic opioid fentanyl, and its analogs, continue to drive opioid-related overdoses. Although the pharmacology of fentanyl is well characterized, there is little information about the reinforcing effects of clandestine fentanyl analogs (FAs). OBJECTIVES Here, we compared the effects of fentanyl and the FAs acetylfentanyl, butyrylfentanyl, and cyclopropylfentanyl on drug self-administration in male and female rats. These FAs feature chemical modifications at the carbonyl moiety of the fentanyl scaffold. METHODS Sprague-Dawley rats fitted with intravenous jugular catheters were placed in chambers containing two nose poke holes. Active nose poke responses resulted in drug delivery (0.2 mL) over 2 s on a fixed-ratio 1 schedule, followed by a 20 s timeout. Acquisition doses were 0.01 mg/kg/inj for fentanyl and cyclopropylfentanyl, and 0.03 mg/kg/inj for acetylfentanyl and butyrylfentanyl. After 10 days of acquisition, dose-effect testing was carried out, followed by 10 days of saline extinction. RESULTS Self-administration of fentanyl and FAs was acquired by both male and female rats, with no sex differences in acquisition rate. Fentanyl and FAs showed partial inverted-U dose-effect functions; cyclopropylfentanyl and fentanyl had similar potency, while acetylfentanyl and butyrylfentanyl were less potent. Maximal response rates were similar across drugs, with fentanyl and cyclopropylfentanyl showing maximum responding at 0.001 mg/kg/inj, acetylfentanyl at 0.01 mg/kg/inj, and butyrylfentanyl at 0.003 mg/kg/inj. No sex differences were detected for drug potency, efficacy, or rates of extinction. CONCLUSIONS Our work provides new evidence that FAs display significant abuse liability in male and female rats, which suggests the potential for compulsive use in humans.
Collapse
Affiliation(s)
- Alexander D Maitland
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), 333 Cassell Drive, Suite 4400, Baltimore, MD, 21224, USA
| | - Shelby A McGriff
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), 333 Cassell Drive, Suite 4400, Baltimore, MD, 21224, USA
| | - Grant C Glatfelter
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), 333 Cassell Drive, Suite 4400, Baltimore, MD, 21224, USA
| | - Charles W Schindler
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), 333 Cassell Drive, Suite 4400, Baltimore, MD, 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), 333 Cassell Drive, Suite 4400, Baltimore, MD, 21224, USA.
| |
Collapse
|
2
|
Bilel S, Azevedo Neto J, Tirri M, Corli G, Bassi M, Fantinati A, Serpelloni G, Malfacini D, Trapella C, Calo' G, Marti M. In vitro and in vivo study of butyrylfentanyl and 4-fluorobutyrylfentanyl in female and male mice: Role of the CRF 1 receptor in cardiorespiratory impairment. Br J Pharmacol 2024. [PMID: 39367619 DOI: 10.1111/bph.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Fentanyl analogues have been implicated in many cases of intoxication and death with overdose worldwide. The aim of this study is to investigate the pharmaco-toxicology of two fentanyl analogues: butyrylfentanyl (BUF) and 4-fluorobutyrylfentanyl (4F-BUF). EXPERIMENTAL APPROACH In vitro, we measured agonist opioid receptor efficacy, potency, and selectivity and ability to promote interaction of the μ receptor with G protein and β-arrestin 2. In vivo, we evaluated thermal antinociception, stimulated motor activity and cardiorespiratory changes in female and male CD-1 mice injected with BUF or 4F-BUF (0.1-6 mg·kg-1). Opioid receptor specificity was investigated using naloxone (6 mg·kg-1). We investigated the possible role of stress in increasing cardiorespiratory toxicity using the corticotropin-releasing factor 1 (CRF1) antagonist antalarmin (10 mg·kg-1). KEY RESULTS Agonists displayed the following rank of potency at μ receptors: fentanyl > 4F-BUF > BUF. Fentanyl and BUF behaved as partial agonists for the β-arrestin 2 pathway, whereas 4F-BUF did not promote β-arrestin 2 recruitment. In vivo, we revealed sex differences in motor and cardiorespiratory impairments but not antinociception induced by BUF and 4F-BUF. Antalarmin alone was effective in blocking respiratory impairment induced by BUF in both sexes but not 4F-BUF. The combination of naloxone and antalarmin significantly enhanced naloxone reversal of the cardiorespiratory impairments induced by BUF and 4F-BUF in mice. CONCLUSION AND IMPLICATIONS In this study, we have uncovered a novel mechanism by which synthetic opioids induce respiratory depression, shedding new light on the role of CRF1 receptors in cardiorespiratory impairments by μ agonists.
Collapse
Affiliation(s)
- Sabrine Bilel
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Joaquim Azevedo Neto
- Section of Pharmacology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marta Bassi
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit, Verona, Italy
- Department of Psychiatry, College of Medicine, Drug Policy Institute, University of Florida, Gainesville, Florida, USA
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Claudio Trapella
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Matteo Marti
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Center of Gender Medicine, University of Ferrara, Ferrara, Italy
- Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
3
|
Patocka J, Wu W, Oleksak P, Jelinkova R, Nepovimova E, Spicanova L, Springerova P, Alomar S, Long M, Kuca K. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon 2024; 10:e28795. [PMID: 38644874 PMCID: PMC11031787 DOI: 10.1016/j.heliyon.2024.e28795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Fentanyl is a synthetic μ-opioid receptor agonist approved to treat severe to moderate pain with faster onset of action and about 100 times more potent than morphine. Over last two decades, abuse of fentanyl and its derivatives has an increased trend, globally. Currently, the United States (US) faces the most serious situation related to fentanyl overdose, commonly referred to as the opioid epidemic. Nowadays, fentanyl is considered as the number one cause of death for adults aged 18-45 in the US. Synthesis and derivatization of fentanyl is inexpensive to manufacture and easily achievable. Indeed, more than 1400 fentanyl derivatives have been described in the scientific literature and patents. In addition, accessibility and efficacy of fentanyl and its derivatives can play a potential role in misuse of these compounds as a chemical weapon. In this review, the properties, general pharmacology, and overdose death cases associated with fentanyl and selected derivatives are presented. Moreover, current opioid epidemic in the US, Moscow theatre hostage crisis, and potential misuse of fentanyl and its derivatives as a chemical weapon are disclosed.
Collapse
Affiliation(s)
- Jiri Patocka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Romana Jelinkova
- NBC Defence Institute, University of Defence, 68201 Vyskov, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Lenka Spicanova
- Philosophical Faculty, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Pavlina Springerova
- Philosophical Faculty, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Kasai S, Ogawa N, Takagi M, Takahashi Y, Makino K, Arita H, Takahashi H, Yoshizawa K. Fentanyl Analogs Exert Antinociceptive Effects via Sodium Channel Blockade in Mice. Biol Pharm Bull 2024; 47:872-877. [PMID: 38658360 DOI: 10.1248/bpb.b24-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The formalin test is one approach to studying acute pain in rodents. Similar to formalin, injection with glutamate and veratrine can also produce a nociceptive response. This study investigated whether opioid-related compounds could suppress glutamate- and veratrine-induced nociceptive responses in mice at the same dose. The administration of morphine (3 mg/kg), hydromorphone (0.4 mg/kg), or fentanyl (0.03 mg/kg) suppressed glutamate-induced nociceptive response, but not veratrine-induced nociceptive response at the same doses. However, high doses of morphine (10 mg/kg), hydromorphone (2 mg/kg), or fentanyl (0.1 mg/kg) produced a significant reduction in the veratrine-induced nociceptive response. These results indicate that high doses are required when using morphine, hydromorphone, or fentanyl for sodium channel-related neuropathic pain, such as ectopic activity. As a result, concerns have arisen about overdose and abuse if the dose of opioids is steadily increased to relieve pain. In contrast, trimebutine (100 mg/kg) and fentanyl analog isobutyrylfentanyl (iBF; 0.1 mg/kg) suppressed both glutamate- and veratrine-induced nociceptive response. Furthermore, nor-isobutyrylfentanyl (nor-iBF; 1 mg/kg), which is a metabolite of iBF, suppressed veratrine-induced nociceptive response. Besides, the optimal antinociceptive dose of iBF, unlike fentanyl, only slightly increased locomotor activity and did not slow gastrointestinal transit. Cancer pain is a complex condition driven by inflammatory, neuropathic, and cancer-specific mechanisms. Thus, iBF may have the potential to be a superior analgesic than fentanyl.
Collapse
Affiliation(s)
- Satoka Kasai
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Natsuki Ogawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Miho Takagi
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Yukino Takahashi
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hironobu Arita
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hideyo Takahashi
- Laboratory of Medicinal Chemistry, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
5
|
Mármol Contreras Y, Vasquez TES, Shah P, Payne K, Di Re J, Laezza F, Green TA. Bar press durations as a reliable and robust measure of frustration-related operant behavior: Sensitivity to incentive downshift and dose-response paradigms. PLoS One 2023; 18:e0296090. [PMID: 38127939 PMCID: PMC10734988 DOI: 10.1371/journal.pone.0296090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
In humans, frustrating experiences are known to trigger relapse events and individuals with higher frustration intolerance show increased risk of developing substance use disorders (SUDs). Despite this clear relationship, frustration-related behavior is seldom studied concurrently with self-administration behavior in rodent models. A major obstacle has been the lack of robust, quantitative assays of frustration-related operant behavior thus far. In previous work, we identified increased bar press (BP) durations in response to frustrating conditions in rats self-administering natural or drug rewards. Here, to propose BP durations as a measure of frustration-related behavior, we conducted an operant successive negative contrast (oSNC) study and found that increases in BP durations are observed in the absence of increased effort, providing evidence that this is a psychological phenomenon. Moreover, we assess the viability of widespread use of BP duration measurements as a behavioral tool by quantifying performance as it pertains to sensitivity, robustness, replicability, and sex differences. We conclude that increases in BP durations are a highly sensitive psychological response to frustrating conditions and that this measure is robust, replicable, and applicable to both sexes.
Collapse
Affiliation(s)
- Yorkiris Mármol Contreras
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Addiction Sciences and Therapeutics, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Mental Health Research Group, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tileena E. S. Vasquez
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Addiction Sciences and Therapeutics, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Mental Health Research Group, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Poonam Shah
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Addiction Sciences and Therapeutics, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Mental Health Research Group, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kelsey Payne
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Addiction Sciences and Therapeutics, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Mental Health Research Group, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jessica Di Re
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Addiction Sciences and Therapeutics, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Mental Health Research Group, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Addiction Sciences and Therapeutics, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Mental Health Research Group, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas A. Green
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Addiction Sciences and Therapeutics, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Mental Health Research Group, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
6
|
Singer ML, Shin MK, Kim LJ, Freire C, Aung O, Pho H, East JA, Sgambati FP, Latremoliere A, Pham LV, Polotsky VY. The efficacy of intranasal leptin for opioid-induced respiratory depression depends on sex and obesity state. Front Physiol 2023; 14:1320151. [PMID: 38162827 PMCID: PMC10756673 DOI: 10.3389/fphys.2023.1320151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Opioid-induced respiratory depression (OIRD) is the primary cause of death associated with opioids and individuals with obesity are particularly susceptible due to comorbid obstructive sleep apnea (OSA). Repeated exposure to opioids, as in the case of pain management, results in diminished therapeutic effect and/or the need for higher doses to maintain the same effect. With limited means to address the negative impact of repeated exposure it is critical to develop drugs that prevent deaths induced by opioids without reducing beneficial analgesia. Methods: We hypothesized that OIRD as a result of chronic opioid use can be attenuated by administration of IN leptin while also maintaining analgesia in both lean mice and mice with diet-induced obesity (DIO) of both sexes. To test this hypothesis, an opioid tolerance protocol was developed and a model of OIRD in mice chronically receiving morphine and tolerant to morphine analgesia was established. Subsequently, breathing was recorded by barometric plethysmography in four experimental groups: obese male, obese female, lean male, and lean female following acute administration of IN leptin. Respiratory data were complemented with measures of arterial blood gas. Operant behavioral assays were used to determine the impact of IN leptin on the analgesic efficacy of morphine. Results: Acute administration of IN leptin significantly attenuated OIRD in DIO male mice decreasing the apnea index by 58.9% and apnea time by 60.1%. In lean mice leptin was ineffective. Blood gas measures confirmed the effectiveness of IN leptin for preventing respiratory acidosis in DIO male mice. However, IN leptin was not effective in lean mice of both sexes and appeared to exacerbate acid-base disturbances in DIO female mice. Additionally, morphine caused a complete loss of temperature aversion which was not reduced by intranasal leptin indicating IN leptin does not decrease morphine analgesia. Discussion: IN leptin effectively treated OIRD in morphine-tolerant DIO male mice without impacting analgesia. In contrast, IN leptin had no effect in lean mice of either sex or DIO female mice. The arterial blood gas data were consistent with ventilatory findings showing that IN leptin reversed morphine-induced respiratory acidosis only in DIO male mice but not in other mouse groups. Finally, a hypercapnic sensitivity study revealed that IN leptin rescued minute ventilation under hypercapnic conditions only in DIO male mice, which suggests that differential responses to IN leptin are attributable to different leptin sensitivities depending on sex and the obesity status.
Collapse
Affiliation(s)
- Michele L. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - O Aung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua A. East
- The Johns Hopkins Center for Interdisciplinary Sleep Research and Education (CISRE), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frank P. Sgambati
- The Johns Hopkins Center for Interdisciplinary Sleep Research and Education (CISRE), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y. Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, WA, United States
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, WA, United States
| |
Collapse
|
7
|
Glatfelter GC, Vandeputte MM, Chen L, Walther D, Tsai MHM, Shi L, Stove CP, Baumann MH. Alkoxy chain length governs the potency of 2-benzylbenzimidazole 'nitazene' opioids associated with human overdose. Psychopharmacology (Berl) 2023; 240:2573-2584. [PMID: 37658878 DOI: 10.1007/s00213-023-06451-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
RATIONALE Novel synthetic opioids (NSOs) are emerging in recreational drug markets worldwide. In particular, 2-benzylbenzimidazole 'nitazene' compounds are problematic NSOs associated with serious clinical consequences, including fatal respiratory depression. Evidence from in vitro studies shows that alkoxy chain length can influence the potency of nitazenes at the mu-opioid receptor (MOR). However, structure-activity relationships (SARs) of nitazenes for inducing opioid-like effects in animal models are not well understood compared to relevant opioids contributing to the ongoing opioid crisis (e.g., fentanyl). OBJECTIVES Here, we examined the in vitro and in vivo effects of nitazene analogues with varying alkoxy chain lengths (i.e., metonitazene, etonitazene, isotonitazene, protonitazene, and butonitazene) as compared to reference opioids (i.e., morphine and fentanyl). METHODS AND RESULTS Nitazene analogues displayed nanomolar affinities for MOR in rat brain membranes and picomolar potencies to activate MOR in transfected cells. All compounds induced opioid-like effects on locomotor activity, hot plate latency, and body temperature in male mice, and alkoxy chain length markedly influenced potency. Etonitazene, with an ethoxy chain, was the most potent analogue in MOR functional assays (EC50 = 30 pM, Emax = 103%) and across all in vivo endpoints (ED50 = 3-12 μg/kg). In vivo SARs revealed that ethoxy, isopropoxy, and propoxy chains engendered higher potencies than fentanyl, whereas methoxy and butoxy analogues were less potent. MOR functional potencies, but not MOR affinities, were positively correlated with in vivo potencies to induce opioid effects. CONCLUSIONS Overall, our data show that certain nitazene NSOs are more potent than fentanyl as MOR agonists in mice, highlighting concerns regarding the high potential for overdose in humans who are exposed to these compounds.
Collapse
Affiliation(s)
- Grant C Glatfelter
- Designer Drug Research Unit, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA.
| | - Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Donna Walther
- Designer Drug Research Unit, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Meng-Hua M Tsai
- Computational Chemistry and Molecular Biophysics Section, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Michael H Baumann
- Designer Drug Research Unit, National Institute On Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
8
|
Neumueller SE, Buiter N, Hilbert G, Grams K, Taylor R, Desalvo J, Hodges GL, Hodges MM, Pan LG, Lewis SJ, Forster HV, Hodges MR. Effects of sub-lethal doses of fentanyl on vital physiologic functions and withdrawal-like behaviors in adult goats. Front Physiol 2023; 14:1277601. [PMID: 37885800 PMCID: PMC10598602 DOI: 10.3389/fphys.2023.1277601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Synthetic opioids like fentanyl have improved the standard of care for many patients in the clinical setting, but their abuse leads to tens of thousands of overdose deaths annually. The current opioid epidemic underscores a critical need for insights into the physiological effects of fentanyl on vital functions. High doses of opioids in small mammals cause opioid-induced respiratory depression (OIRD) leading to hypoventilation, hypoxemia, and hypercapnia. In addition, opioids can also increase the alveolar to arterial oxygen (A-a) gradient and airway dysfunction. However, little is known about the physiologic effects of sub-lethal doses of opioids in large mammals. Here we report the effects of a sub-lethal dose range of fentanyl (25-125 μg/kg; IV) on vital physiologic functions over 90 min (min) and withdrawal-like behaviors over the subsequent 4 h (h) in adult female goats (n = 13). Fentanyl induced decreases in breathing frequency in the first few min post-injection, but then led to a sustained increase in tidal volume, total ventilation, and blood pressure with a reduced heart rate for ≥90 min. These ventilatory changes resulted in time-dependent arterial hypocapnia and hypoxemia and an increased alveolar to arterial oxygen gradient ∼30 min post-injection indicative of impaired gas exchange in the lung. The predominant effects of fentanyl on breathing were stimulatory, underscored by an increased rate of rise of the diaphragm muscle activity and increased activation of upper airway, intercostal and abdominal muscles. Beginning 90 min post-injection we also quantified withdrawal-like behaviors over 4 h, demonstrating dose- and time-dependent increases in locomotor, biting, itching, and pawing behaviors. We conclude that fentanyl at sublethal doses induces multiple physiologic and behavior changes that emerge along different time courses suggesting multiple independent mechanisms underlying effects of opioids.
Collapse
Affiliation(s)
- Suzanne E. Neumueller
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Nicole Buiter
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Grace Hilbert
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kirstyn Grams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Reiauna Taylor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John Desalvo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Grace L. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Madeline M. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lawrence G. Pan
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Stephen J. Lewis
- Departments of Pediatrics and Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| | - Hubert V. Forster
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Acevedo-Canabal A, Grim TW, Schmid CL, McFague N, Stahl EL, Kennedy NM, Bannister TD, Bohn LM. Hyperactivity in Mice Induced by Opioid Agonists with Partial Intrinsic Efficacy and Biased Agonism Administered Alone and in Combination with Morphine. Biomolecules 2023; 13:935. [PMID: 37371516 PMCID: PMC10295947 DOI: 10.3390/biom13060935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Opioid analgesics such as morphine and fentanyl induce mu-opioid receptor (MOR)-mediated hyperactivity in mice. Herein, we show that morphine, fentanyl, SR-17018, and oliceridine have submaximal intrinsic efficacy in the mouse striatum using 35S-GTPγS binding assays. While all of the agonists act as partial agonists for stimulating G protein coupling in striatum, morphine, fentanyl, and oliceridine are fully efficacious in stimulating locomotor activity; meanwhile, the noncompetitive biased agonists SR-17018 and SR-15099 produce submaximal hyperactivity. Moreover, the combination of SR-17018 and morphine attenuates hyperactivity while antinociceptive efficacy is increased. The combination of oliceridine with morphine increases hyperactivity, which is maintained over time. These findings provide evidence that noncompetitive agonists at MOR can be used to suppress morphine-induced hyperactivity while enhancing antinociceptive efficacy; moreover, they demonstrate that intrinsic efficacy measured at the receptor level is not directly proportional to drug efficacy in the locomotor activity assay.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laura M. Bohn
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| |
Collapse
|
10
|
Varshneya NB, Hassanien SH, Holt MC, Stevens DL, Layle NK, Bassman JR, Iula DM, Beardsley PM. Fentanyl analog structure-activity relationships demonstrate determinants of diverging potencies for antinociception and respiratory depression. Pharmacol Biochem Behav 2023; 226:173572. [PMID: 37236405 PMCID: PMC10326888 DOI: 10.1016/j.pbb.2023.173572] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Opioid overdoses, particularly those involving fentanyl-related substances (FRS), present a significant public health challenge in the United States. This structure-activity relationship (SAR) study evaluated the relationship between the chemical structure of seventeen FRS and their in vivo mu-opioid-receptor (MOR) mediated effects. SAR evaluations included fluorine substitutions on the aniline or phenethyl ring and variations in N-acyl chain length. Adult male Swiss Webster mice were administered fluorinated regioisomers of fentanyl, butyrylfentantyl and valerylfentanyl, and compared to MOR standards including morphine, buprenorphine, and fentanyl to determine if they would elicit prototypical opioid-like effects including hyperlocomotion (open-field test), antinociception (warm-water tail-withdrawal test), and hypoventilation (whole-body plethysmography test). To determine if the MOR was the pharmacological mechanism responsible for these effects, naltrexone or naloxone pretreatments were administered to evaluate their actions on FRS-induced antinociception and hypoventilation. There were three main findings. First, FRS elicited hyperlocomotion, antinociception, and hypoventilation in mice to varying degrees, similar to prototypical MOR standards. Second, the rank order of potencies for hypoventilatory effects of FRS were different for each series including FRS with increasing N-acyl chain length (i.e., acetylfentanyl, fentanyl, butyrylfentanyl, valerylfentanyl, hexanoylfentanyl), phenethyl-fluorinated regioisomers (e.g., 2'-fluorofentanyl, 3'-fluorofentanyl, 4'-fluorofentanyl), and aniline-fluorinated regioisomers (e.g., ortho-fluorofentanyl, meta-fluorofentanyl, para-fluorofentanyl). Third, the degree of separation in potencies observed for the antinociceptive and hypoventilatory effects of these drugs did not always follow that which was observed for their antinociceptive and hyperlocomotor effects. This study clarifies the in vivo activities for these FRS and elucidates a SAR for MOR-mediated effects among structural isomers.
Collapse
Affiliation(s)
- Neil B Varshneya
- Center for Drug Evaluation and Research, Food and Drug Administration, United States Department of Health and Human Services, Silver Spring, MD, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Sherif H Hassanien
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Melissa C Holt
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nathan K Layle
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Jonathon R Bassman
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Donna M Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Center for Biomarker Research & Precision Medicine, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| |
Collapse
|
11
|
Xie B, Le Rouzic VP, Goldberg A, Tsai MHM, Chen L, Zhang T, Sinha A, Pan YX, Baumann MH, Shi L. Binding preference at the μ-opioid receptor underlies distinct pharmacology of cyclopropyl versus valeryl analogs of fentanyl. Neuropharmacology 2023; 227:109442. [PMID: 36731721 PMCID: PMC9974845 DOI: 10.1016/j.neuropharm.2023.109442] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Illicitly manufactured fentanyl is driving the current opioid crisis, and various fentanyl analogs are appearing in recreational drug markets worldwide. To assess the potential health risks posed by fentanyl analogs, it is necessary to understand structure-activity relationships for these compounds. Here we compared the pharmacology of two structurally related fentanyl analogs implicated in opioid overdose: cyclopropylfentanyl and valerylfentanyl. Cyclopropylfentanyl has a three-carbon ring attached to the carbonyl group on the fentanyl scaffold, whereas valerylfentanyl has a four-carbon chain at the same position. In vitro assays examining μ-opioid receptor (MOR) coupling to G proteins in CHO cells showed that cyclopropylfentanyl is a full agonist (EC50 = 8.6 nM, %Emax = 113%), with potency and efficacy similar to fentanyl (EC50 = 10.3 nM, %Emax = 113%). By contrast, valerylfentanyl is a partial agonist at MOR (EC50 = 179.8 nM, %Emax = 60%). Similar results were found in assays assessing MOR-mediated β-arrestin recruitment in HEK cells. In vivo studies in male CD-1 mice demonstrated that both fentanyl analogs induce naloxone-reversible antinociception and respiratory suppression, but cyclopropylfentanyl is 100-times more potent as an antinociceptive agent (ED50 = 0.04 mg/kg, s. c.) than valerylfentanyl (ED50 = 4.0 mg/kg, s. c.). Molecular simulation results revealed that the alkyl chain of valerylfentanyl cannot be well accommodated by the active state of MOR and may transition the receptor toward an inactive state, converting the fentanyl scaffold to a partial agonist. Taken together, our results suggest that cyclopropylfentanyl presents much greater risk of adverse effects when compared to valerylfentanyl. Moreover, the summed findings may provide clues to the design of therapeutic opioids with reduced adverse side effects.
Collapse
Affiliation(s)
- Bing Xie
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Valerie P Le Rouzic
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexander Goldberg
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Meng-Hua M Tsai
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Li Chen
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Tiffany Zhang
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Antara Sinha
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA; Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Bilel S, Murari M, Pesavento S, Arfè R, Tirri M, Torroni L, Marti M, Tagliaro F, Gottardo R. Toxicity and behavioural effects of ocfentanil and 2-furanylfentanyl in zebrafish larvae and mice. Neurotoxicology 2023; 95:83-93. [PMID: 36634872 DOI: 10.1016/j.neuro.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
The introduction of the so-called New Psychoactive Substances represents a problem of global concern due to several factors, including multiplicity of structures, poorly known activity, short half-life in the market, lack of pure standards etc. Among these problems, of the highest relevance is also the lack of information about metabolism and adverse effects, which must be faced using simple and low-cost animal models. On these grounds, the present work has been carried out on 5 days post fertilization zebrafish (Danio rerio) larvae in comparison with adult mice (Mus musculus). Ocfentanil and 2-furanylfentanyl were administered at different concentrations to zebrafish larvae (1, 10 µM) and mice (0.1, 1, 6, 15 mg/kg). The behavioural assay showed a decrease in basal locomotor activity in zebrafish, whereas in mice this effect was evident only after the mechanical stimulus. Larva extracts and mice urine were analysed by using liquid chromatography coupled to high resolution mass spectrometry to identify the metabolic pathways of the fentanyl analogs. For 2-furanylfentanyl, the most common biotransformations observed were hydroxylation, hydration and oxidation in zebrafish larvae, whereas mice produced mainly the dihydrodiol metabolite. Hydroxylation was the major route of metabolism for ocfentanil in zebrafish larvae, while in mice the O-demethylated derivative was the main metabolite. In addition, a study was conducted to evaluate morphological effects of the two drugs on zebrafish larvae. Malformations were noticeable only at the highest concentration of 2-furanylfentanyl, whereas no significant damage was observed with ocfentanil. In conclusion, the two animal models show similarities in behavioral response and in metabolism, considering the different biological investigated.
Collapse
Affiliation(s)
- S Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - M Murari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - S Pesavento
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - R Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - M Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - L Torroni
- Unit of Epidemiology and Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - M Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| | - F Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy; "World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - R Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| |
Collapse
|
13
|
Elder HJ, Varshneya NB, Walentiny DM, Beardsley PM. Amphetamines modulate fentanyl-depressed respiration in a bidirectional manner. Drug Alcohol Depend 2023; 243:109740. [PMID: 36608481 PMCID: PMC9881117 DOI: 10.1016/j.drugalcdep.2022.109740] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The opioid epidemic remains one of the most pressing public health crises facing the United States. Fentanyl and related synthetic opioid agonists have largely driven the rising rates of associated overdose deaths, in part, because of their surreptitious use as substitutes for other opioids and as adulterants in psychostimulants. Deaths involving opioids typically result from lethal respiratory depression, and it is currently unknown how co-use of psychostimulants with opioids affects respiratory toxicity. Considering psychostimulant overdoses have increased over 3-fold since 2013, and half of those co-involved opioids, this is a cardinal question. METHODS Naloxone, d-amphetamine (AMPH), and (±)-methamphetamine (METH) were evaluated for their effects on basal and fentanyl-depressed respiration. Minute volume (MVb) was measured in awake, freely moving mice via whole-body plethysmography to quantify fentanyl-induced respiratory depression and its modulation by dose ranges of each test drug. RESULTS Naloxone immediately reversed respiratory depression induced by fentanyl only at the highest dose tested (10 mg/kg). Both AMPH and METH exhibited bidirectional effects on MVb under basal conditions, producing significant (p ≤ 0.05) depressions then elevations of respiration as dose increased. Under depressed conditions the bidirectional effects of AMPH and METH on respiration were exaggerated, exacerbating and then reversing fentanyl-induced depression as dose increased. CONCLUSIONS These results indicate that co-use of amphetamines with fentanyl may worsen respiratory depression, but conversely, monoaminergic components of the amphetamines may possibly be exploited to mitigate fentanyl overdose.
Collapse
Affiliation(s)
- Harrison J Elder
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Neil B Varshneya
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Center for Drug Evaluation and Research, Food and Drug Administration, United States Department of Health and Human Services, Silver Spring, MD, USA
| | - D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Center for Biomarker Research & Precision Medicine, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA.
| |
Collapse
|
14
|
Structurally diverse fentanyl analogs yield differential locomotor activities in mice. Pharmacol Biochem Behav 2023; 222:173496. [PMID: 36435268 PMCID: PMC9845183 DOI: 10.1016/j.pbb.2022.173496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Synthetic narcotics have been implicated as the single greatest contributor to increases in opioid-related fatalities in recent years. This study evaluated the effects of nine fentanyl-related substances that have emerged in the recreational drug marketplace, and for which there are no existing or only limited in vivo data. Adult male Swiss Webster mice were administered fentanyl-related substances and their effects on locomotion as compared to MOR agonist standards were recorded. In locomotor activity tests, morphine (100, 180 mg/kg), buprenorphine (1, 10 mg/kg), fentanyl (1, 10 mg/kg), cyclopropylfentanyl (1, 10 mg/kg), cyclopentylfentanyl (10 mg/kg), (±)-cis-3-methylbutyrylfentanyl (0.1, 1, 10 mg/kg), ortho-methylacetylfentanyl (10 mg/kg), para-chloroisobutyrylfentanyl (100 mg/kg), ocfentanil (1, 10 mg/kg), and ortho-fluoroacrylfentanyl (0.1, 1, 10 mg/kg) elicited significant (p ≤ 0.05) dose-dependent increases in locomotion. However, 2,2,3,3-tetramethylcyclopropylfentanyl did not have any effects on locomotion, even when tested up to 100 mg/kg, and 4'-methylacetylfentanyl (10, 100 mg/kg) significantly decreased locomotion. The rank order of efficacy for stimulating locomotion (maximum effect as a % of fentanyl's maximum effect) for fentanyl-related substances relative to MOR agonist standards was cyclopropylfentanyl (108.84 ± 20.21) > fentanyl (100 ± 15.3) > ocfentanil (79.27 ± 16.92) > morphine (75.9 ± 14.5) > (±)-cis-3-methylbutyrylfentanyl (68.04 ± 10.08) > ortho-fluoroacrylfentanyl (63.56 ± 19.88) > cyclopentylfentanyl (56.46 ± 8.54) > para-chloroisobutyrylfentanyl (22.44 ± 8.51) > buprenorphine (11.26 ± 2.30) > ortho-methylacetylfentanyl (9.45 ± 2.92) > 2,2,3,3-tetramethylcyclopropylfentanyl (6.75 ± 1.43) > 4'-methylacetylfentanyl (3.47 ± 0.43). These findings extend in vivo results from previous reports documenting additional fentanyl related-related substances that stimulate locomotion similar to known abused opioids while also identifying some anomalies.
Collapse
|
15
|
Zhuang T, Xiong J, Ren X, Liang L, Qi Z, Zhang S, Du W, Chen Y, Liu X, Zhang G. Benzylaminofentanyl derivates: Discovery of bifunctional μ opioid and σ1 receptor ligands as novel analgesics with reduced adverse effects. Eur J Med Chem 2022; 241:114649. [DOI: 10.1016/j.ejmech.2022.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/04/2022]
|
16
|
Baird TR, Akbarali HI, Dewey WL, Elder H, Kang M, Marsh SA, Peace MR, Poklis JL, Santos EJ, Negus SS. Opioid-like adverse effects of tianeptine in male rats and mice. Psychopharmacology (Berl) 2022; 239:2187-2199. [PMID: 35211768 PMCID: PMC10055856 DOI: 10.1007/s00213-022-06093-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/13/2022] [Indexed: 01/22/2023]
Abstract
RATIONALE Tianeptine is a mu-opioid receptor (MOR) agonist with increasing reports of abuse in human populations. Preclinical data regarding the abuse potential and other opioid-like adverse effects of tianeptine at supratherapeutic doses are sparse. OBJECTIVES The present study evaluated tianeptine in a rat model of abuse potential assessment and in mouse models of motor, gastrointestinal, and respiratory adverse effects. METHODS Abuse potential was assessed in adult male Sprague-Dawley rats using an intracranial self-stimulation (ICSS) procedure to determine effects of acute and repeated tianeptine on responding for electrical brain stimulation. Male ICR mice were used to determine the effects of tianeptine in assays of locomotor behavior and gastrointestinal motility. Male Swiss-Webster mice were monitored for respiratory changes using whole-body plethysmography. RESULTS In rats, acute tianeptine produced weak and delayed evidence for abuse-related ICSS facilitation at an intermediate dose (10 mg/kg, IP) and pronounced, naltrexone-preventable ICSS depression at a higher dose (32 mg/kg, IP). Repeated 7-day tianeptine (10 and 32 mg/kg/day, IP) produced no increase in abuse-related ICSS facilitation, only modest tolerance to ICSS depression, and no evidence of physical dependence. In mice, tianeptine produced dose-dependent, naltrexone-preventable locomotor activation. Tianeptine (100 mg/kg, SC) also significantly inhibited gastrointestinal motility and produced naloxone-reversible respiratory depression. CONCLUSIONS Tianeptine presents as a MOR agonist with resistance to tolerance and dependence in our ICSS assay in rats, and it has lower abuse potential by this metric than many commonly abused opioids. Nonetheless, tianeptine produces MOR agonist-like acute adverse effects that include motor impairment, constipation, and respiratory depression.
Collapse
Affiliation(s)
- T R Baird
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, 1000 West Cary St., Richmond, VA, 23284, USA.,Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, VA, 23284, USA
| | - H I Akbarali
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA
| | - W L Dewey
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA
| | - H Elder
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA
| | - M Kang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA
| | - S A Marsh
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA
| | - M R Peace
- Department of Forensic Science, Virginia Commonwealth University, 1015 Floyd Avenue, Richmond, VA, 23284, USA
| | - J L Poklis
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA
| | - E J Santos
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA
| | - S S Negus
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th St, Richmond, VA, 23298, USA.
| |
Collapse
|
17
|
Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull 2022; 38:1365-1382. [PMID: 35570233 PMCID: PMC9107910 DOI: 10.1007/s12264-022-00872-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Fentanyl is a fully synthetic opioid with analgesic and anesthetic properties. It has become a primary driver of the deadliest opioid crisis in the United States and elsewhere, consequently imposing devastating social, economic, and health burdens worldwide. However, the neural mechanisms that underlie the behavioral effects of fentanyl and its analogs are largely unknown, and approaches to prevent fentanyl abuse and fentanyl-related overdose deaths are scarce. This review presents the abuse potential and unique pharmacology of fentanyl and elucidates its potential mechanisms of action, including neural circuit dysfunction and neuroinflammation. We discuss recent progress in the development of pharmacological interventions, anti-fentanyl vaccines, anti-fentanyl/heroin conjugate vaccines, and monoclonal antibodies to attenuate fentanyl-seeking and prevent fentanyl-induced respiratory depression. However, translational studies and clinical trials are still lacking. Considering the present opioid crisis, the development of effective pharmacological and immunological strategies to prevent fentanyl abuse and overdose are urgently needed.
Collapse
|
18
|
Santos EJ, Banks ML, Negus SS. Role of Efficacy as a Determinant of Locomotor Activation by Mu Opioid Receptor Ligands in Female and Male Mice. J Pharmacol Exp Ther 2022; 382:44-53. [PMID: 35489781 DOI: 10.1124/jpet.121.001045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Mu opioid receptor (MOR) agonists produce locomotor hyperactivity in mice as one sign of opioid-induced motor disruption. The goal of this study was to evaluate the degree of MOR efficacy required to produce this hyperactivity. Full dose-effect curves were determined for locomotor activation produced in male and female ICR mice by (1) eight different single-molecule opioids with high to low MOR efficacy, and (2) a series of fixed-proportion fentanyl/naltrexone mixtures with high to low fentanyl proportions. Data from the mixtures were used to quantify the efficacy requirement for MOR agonist-induced hyperactivity relative to efficacy requirements determined previously for other MOR agonist effects. Specifically, efficacy requirement was quantified as the EP50 value, which is the "Effective Proportion" of fentanyl in a fentanyl/naltrexone mixture that produces a maximal effect equal to 50% of the maximal effect of fentanyl alone. Maximal hyperactivity produced by each drug and mixture in the present study correlated with previously published data for maximal stimulation of GTPɣS binding in MOR-expressing Chinese hamster ovary cells as an in vitro measure of relative efficacy. Additionally, the EP50 value for hyperactivity induced by fentanyl/naltrexone mixtures indicated that opioid-induced hyperactivity in mice has a relatively high efficacy requirement in comparison to some other MOR agonist effects, and in particular is higher than the efficacy requirement for thermal antinociception in mice or fentanyl discrimination in rats. Taken together, these data show that MOR agonist-induced hyperactivity in mice is efficacy dependent and requires relatively high levels of MOR agonist efficacy for its full expression. Significance Statement Mu opioid receptor (MOR) agonist-induced hyperlocomotion in mice is dependent on the MOR efficacy of the agonist and requires a relatively high degree of efficacy for its full expression.
Collapse
Affiliation(s)
- Edna J Santos
- Pharmacology and Toxicology, Virginia Commonwealth University, United States
| | - Matthew L Banks
- Pharmacology and Toxicology, Virginia Commonwealth University, United States
| | - S Stevens Negus
- Pharmacology and Toxicology, Virginia Commonwealth University, United States
| |
Collapse
|
19
|
Jiménez-Vargas NN, Yu Y, Jensen DD, Bok DD, Wisdom M, Latorre R, Lopez C, Jaramillo-Polanco JO, Degro C, Guzman-Rodriguez M, Tsang Q, Snow Z, Schmidt BL, Reed DE, Lomax AE, Margolis KG, Stein C, Bunnett NW, Vanner SJ. Agonist that activates the µ-opioid receptor in acidified microenvironments inhibits colitis pain without side effects. Gut 2022; 71:695-704. [PMID: 33785555 PMCID: PMC8608554 DOI: 10.1136/gutjnl-2021-324070] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The effectiveness of µ-opioid receptor (MOPr) agonists for treatment of visceral pain is compromised by constipation, respiratory depression, sedation and addiction. We investigated whether a fentanyl analogue, (±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide (NFEPP), which preferentially activates MOPr in acidified diseased tissues, would inhibit pain in a preclinical model of inflammatory bowel disease (IBD) without side effects in healthy tissues. DESIGN Antinociceptive actions of NFEPP and fentanyl were compared in control mice and mice with dextran sodium sulfate colitis by measuring visceromotor responses to colorectal distension. Patch clamp and extracellular recordings were used to assess nociceptor activation. Defecation, respiration and locomotion were assessed. Colonic migrating motor complexes were assessed by spatiotemporal mapping of isolated tissue. NFEPP-induced MOPr signalling and trafficking were studied in human embryonic kidney 293 cells. RESULTS NFEPP inhibited visceromotor responses to colorectal distension in mice with colitis but not in control mice, consistent with acidification of the inflamed colon. Fentanyl inhibited responses in both groups. NFEPP inhibited the excitability of dorsal root ganglion neurons and suppressed mechanical sensitivity of colonic afferent fibres in acidified but not physiological conditions. Whereas fentanyl decreased defecation and caused respiratory depression and hyperactivity in mice with colitis, NFEPP was devoid of these effects. NFEPP did not affect colonic migrating motor complexes at physiological pH. NFEPP preferentially activated MOPr in acidified extracellular conditions to inhibit cAMP formation, recruit β-arrestins and evoke MOPr endocytosis. CONCLUSION In a preclinical IBD model, NFEPP preferentially activates MOPr in acidified microenvironments of inflamed tissues to induce antinociception without causing respiratory depression, constipation and hyperactivity.
Collapse
Affiliation(s)
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Dane D Jensen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Diana Daeun Bok
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Matthew Wisdom
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Cintya Lopez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Josue O Jaramillo-Polanco
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Claudius Degro
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Mabel Guzman-Rodriguez
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Quentin Tsang
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Zachary Snow
- Department of Pediatrics, Columbia University in the City of New York, New York, New York, USA
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York, USA
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Alan Edward Lomax
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University in the City of New York, New York, New York, USA
| | - Christoph Stein
- Department Experimental Anaesthesiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
- Department of Neuroscience and Physiology, Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queens University, Kingston, Ontario, Canada
| |
Collapse
|
20
|
Bilel S, Azevedo Neto J, Arfè R, Tirri M, Gaudio RM, Fantinati A, Bernardi T, Boccuto F, Marchetti B, Corli G, Serpelloni G, De-Giorgio F, Malfacini D, Trapella C, Calo' G, Marti M. In vitro and in vivo pharmaco-dynamic study of the novel fentanyl derivatives: Acrylfentanyl, Ocfentanyl and Furanylfentanyl. Neuropharmacology 2022; 209:109020. [PMID: 35247453 DOI: 10.1016/j.neuropharm.2022.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023]
Abstract
Fentanyl derivatives (FENS) belongs to the class of Novel Synthetic Opioids that emerged in the illegal drug market of New Psychoactive Substances (NPS). These substances have been implicated in many cases of intoxication and death with overdose worldwide. Therefore, the aim of this study is to investigate the pharmaco-dynamic profiles of three fentanyl (FENT) analogues: Acrylfentanyl (ACRYLF), Ocfentanyl (OCF) and Furanylfentanyl (FUF). In vitro, we measured FENS opioid receptor efficacy, potency, and selectivity in calcium mobilization studies performed in cells coexpressing opioid receptors and chimeric G proteins and their capability to promote the interaction of the mu receptor with G protein and β-arrestin 2 in bioluminescence resonance energy transfer (BRET) studies. In vivo, we investigated the acute effects of the systemic administration of ACRYLF, OCF and FUF (0.01-15 mg/kg i.p.) on mechanical and thermal analgesia, motor impairment, grip strength and cardiorespiratory changes in CD-1 male mice. Opioid receptor specificity was investigated in vivo using naloxone (NLX; 6 mg/kg i.p) pre-treatment. In vitro, the three FENS were able to activate the mu opioid receptor in a concentration dependent manner with following rank order potency: FUF > FENT=OCF > ACRYLF. All compounds were able to elicit maximal effects similar to that of dermorphin, with the exception of FUF which displayed lower maximal effects thus behaving as a partial agonist. In the BRET G-protein assay, all compounds behaved as partial agonists for the β-arrestin 2 pathway in comparison with dermorphin, whereas FUF did not promote β-arrestin 2 recruitment, behaving as an antagonist. In vivo, all the compounds increased mechanical and thermal analgesia with following rank order potency ACRYLF = FENT > FUF > OCF and impaired motor and cardiorespiratory parameters. Among the substances tested, FUF showed lower potency for cardiorespiratory and motor effects. These findings reveal the risks associated with the use of FENS and the importance of studying the pharmaco-dynamic properties of these drugs to better understand possible therapeutic interventions in the case of toxicity.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Joaquim Azevedo Neto
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17/19, 44121, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Center of Gender Medicine, University of Ferrara, Italy
| | - Anna Fantinati
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Federica Boccuto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center & TMS Unit Verona, Italy and Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, United States
| | - Fabio De-Giorgio
- Institute of Public Health, Section of Legal Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Italy
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Italy; Center of Gender Medicine, University of Ferrara, Italy; Collaborative Center of the National Early Warning System, Department for Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
21
|
Characteristics of fatal 'novel' synthetic opioid toxicity in Australia. Drug Alcohol Depend 2022; 232:109292. [PMID: 35030539 DOI: 10.1016/j.drugalcdep.2022.109292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aims: To determine 1. The characteristics of all recorded cases of fatal drug poisoning involving novel synthetic opioids (NSOs) in Australia; 2. The toxicology of cases; and 3. The major autopsy findings. METHODS Review of all fatal poisonings related to NSOs in Australia 2000-2021 identified in the National Coronial Information System. RESULTS Thirty-one cases were identified, 96.8% due to unintentional drug toxicity. The mean age was 31.9 years and 87.1% were male. Only six were aged over forty. A history of substance use problems was documented in 80.6% and 58.1% had a history of injecting drug use. In 32.3% the final route of administration of a NSO was by non-injecting routes of administration. Ten NSOs were identified. Fentanyl analogues were present in 67.2%, most commonly furanylfenatyl (19.4%). Other NSO types were present in 39.7%, most commonly U-47700 (35.5%). Substances other than NSOs were present in 90.3%, most commonly benzodiazepines (67.7%) and other opioids (51.6%). A CNS depressant in addition to NSOs was present in 90.3%, and a new psychoactive substance other than a NSO in 25.8%. Pulmonary oedema was diagnosed in 82.6%, aspiration of vomitus in 30.4%, and acute bronchopneumonia in 17.4%. CONCLUSIONS Ten NSOs were identified. Case characteristics suggest a younger cohort whose profile is more typical of use of other NPS than of the established opioids. A large proportion used NSOs by non-injecting routes of administration.
Collapse
|
22
|
Mitragynine improves cognitive performance in morphine-withdrawn rats. Psychopharmacology (Berl) 2022; 239:313-325. [PMID: 34693456 DOI: 10.1007/s00213-021-05996-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The treatment of opiate addiction is an unmet medical need. Repeated exposure to opiates disrupts cognitive performance. Opioid substitution therapy, with, e.g., methadone, may further exacerbate the cognitive deficits. Growing evidence suggests that mitragynine, the primary alkaloid from the Kratom (Mitragyna speciosa) leaves, may serve as a promising alternative therapy for opiate addiction. However, the knowledge of its health consequences is still limited. OBJECTIVES We aimed to examine the cognitive effects of mitragynine substitution in morphine-withdrawn rats. Furthermore, we asked whether neuronal addiction markers like the brain-derived neurotrophic factor (BDNF) and Ca2+/calmodulin-dependent kinase II alpha (αCaMKII) might mediate the observed effects. METHODS Male Sprague-Dawley rats were given morphine at escalating doses before treatment was discontinued to induce a spontaneous morphine withdrawal. Then, vehicle or mitragynine (5 mg/kg, 15 mg/kg, or 30 mg/kg) substitution was given for 3 days. A vehicle-treated group was used as a control. Withdrawal signs were scored after 24 h, 48 h, and 72 h, while novel object recognition (NOR) and attentional set-shifting (ASST) were tested during the substitution period. RESULTS Discontinuation of morphine significantly induced morphine withdrawal signs and cognitive deficit in the ASST. The substitution with mitragynine was able to alleviate the withdrawal signs. Mitragynine did not affect the recognition memory in the NOR but significantly improved the reversal learning deficit in the morphine-withdrawn rats. CONCLUSIONS These data support the idea that mitragynine could be used as safe medication therapy to treat opiate addiction with beneficial effects on cognitive deficits.
Collapse
|
23
|
Thirteen Cases of Valeryl Fentanyl in Michigan: A Call for Expanding Opioid Testing. Am J Forensic Med Pathol 2021; 42:367-372. [PMID: 34793410 DOI: 10.1097/paf.0000000000000722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT In this report, we describe 13 cases of drug overdose in Michigan in which valeryl fentanyl was found in postmortem blood. Valeryl fentanyl is a schedule I opioid that is rarely found in drug overdoses in the United States. Although little data exist on the mortality and morbidity associated with valeryl fentanyl, its molecular structure indicates that it would be less potent than fentanyl.When analyzing blood samples for valeryl fentanyl, samples from peripheral sites were sometimes negative for quantitative levels; however, samples from central sites in the same decedent were positive. This could indicate unique pharmacokinetics for valeryl fentanyl, which could have implications for other fentanyl analogs. Given the paucity of pharmacodynamic information, the prohibition of its use, the potential to buttress law enforcement efforts in monitoring drug trafficking trends, and to determine the efficacy of current regulations, laboratories should test for valeryl fentanyl. When testing for valeryl fentanyl, and likely other fentanyl analogs, the site of sample collection is important: central sources of blood are preferred to peripheral sources.
Collapse
|
24
|
Varshneya NB, Hassanien SH, Holt MC, Stevens DL, Layle NK, Bassman JR, Iula DM, Beardsley PM. Respiratory depressant effects of fentanyl analogs are opioid receptor-mediated. Biochem Pharmacol 2021; 195:114805. [PMID: 34673011 DOI: 10.1016/j.bcp.2021.114805] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/04/2023]
Abstract
Opioid-related fatalities involving synthetic opioids have reached unprecedented levels. This study evaluated the respiratory depressant effects of seven fentanyl analogs that have either emerged in the illicit drug supply or been identified in toxicological analyses following fatal or non-fatal intoxications. Adult male Swiss Webster mice were administered fentanyl analogs (isobutyrylfentanyl, crotonylfentanyl, para-methoxyfentanyl, para-methoxybutyrylfentanyl, 3-furanylfentanyl, thiophenefentanyl, and benzodioxolefentanyl) and their effects on minute volume as compared to mu-opioid receptor (MOR) agonist standards (fentanyl, morphine, and buprenorphine) were measured using whole body plethysmography (WBP). All drugs elicited significant (p ≤ 0.05) hypoventilation relative to vehicle for at least one dose tested: morphine (1, 3.2, 10, 32 mg/kg), buprenorphine, (0.032, 0.1, 0.32, 1, 3.2 mg/kg), fentanyl (0.0032, 0.01, 0.032, 0.1, 1, 32 mg/kg), isobutyrylfentanyl (0.1, 0.32, 1, 3.2, 10 mg/kg), crotonylfentanyl (0.1, 0.32, 1, 3.2, 10 mg/kg), para-methoxyfentanyl (0.1, 0.32, 1, 3.2, 10 mg/kg), para-methoxybutyrylfentanyl (0.32, 1, 3.2, 10 mg/kg), 3-furanylfentanyl (0.1, 0.32, 1, 3.2, 10 mg/kg), thiophenefentanyl (1, 3.2, 10, 32, 100 mg/kg), and benzodioxolefentanyl (3.2, 10, 32, 100 mg/kg). The ED50 values for hypoventilation showed a rank order of potency as follows: fentanyl (ED50 = 0.96 mg/kg) > 3-furanylfentanyl (ED50 = 2.60 mg/kg) > crotonylfentanyl (ED50 = 2.72 mg/kg) > para-methoxyfentanyl (ED50 = 3.31 mg/kg) > buprenorphine (ED50 = 10.8 mg/kg) > isobutyrylfentanyl (ED50 = 13.5 mg/kg) > para-methoxybutyrylfentanyl (ED50 = 16.1 mg/kg) > thiophenefentanyl (ED50 = 18.0 mg/kg) > morphine (ED50 = 55.3 mg/kg) > benzodioxolefentanyl (ED50 = 10,168 mg/kg). A naloxone pretreatment (10 mg/kg) attenuated the hypoventilatory effects of all drugs. These results establish that the respiratory depressant effects of these fentanyl analogs are at least in part mediated by the MOR.
Collapse
Affiliation(s)
- Neil B Varshneya
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Sherif H Hassanien
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Melissa C Holt
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nathan K Layle
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Jonathon R Bassman
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Donna M Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Center for Biomarker Research & Precision Medicine, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| |
Collapse
|
25
|
Varshneya NB, Walentiny DM, Moisa LT, Walker TD, Akinfiresoye LR, Beardsley PM. Fentanyl-related substances elicit antinociception and hyperlocomotion in mice via opioid receptors. Pharmacol Biochem Behav 2021; 208:173242. [PMID: 34302853 DOI: 10.1016/j.pbb.2021.173242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Synthetic opioids have been implicated as the single greatest contributor to rising drug-related fatalities in recent years. This study evaluated mu-opioid receptor (MOR) mediated effects of seven fentanyl-related substances that have emerged in the recreational drug marketplace, and for which there are no existing or only limited in vivo data. Adult male Swiss Webster mice were administered fentanyl-related substances and their effects on nociception and locomotion as compared to MOR agonist standards were observed. In locomotor activity tests, morphine (100, 180 mg/kg), fentanyl (1, 10 mg/kg), beta-methylfentanyl (10 mg/kg), para-methoxyfentanyl (10 mg/kg), fentanyl carbamate (100 mg/kg), and 3-furanylfentanyl (10 mg/kg), elicited significant (p ≤ 0.05) dose-dependent increases in locomotion. However, para-methylfentanyl and beta'-phenylfentanyl did not produce significant effects on locomotion at doses up to 100 mg/kg and phenylfentanyl (100 mg/kg) significantly decreased locomotion. In warm-water tail-withdrawal tests, all substances produced significant dose-dependent increases in antinociception with increasing ED50 values (95% CI) of fentanyl [0.08 mg/kg (0.04-0.16)] > para-methoxyfentanyl [0.43 mg/kg (0.23-0.77)] > 3-furanylfentanyl [0.51 mg/kg (0.36-0.74)] > beta-methylfentanyl [0.74 mg/kg (0.64-0.85)] > para-methylfentanyl [1.92 mg/kg (1.48-2.45)] > fentanyl carbamate [5.59 mg/kg (4.11-7.54)] > morphine [7.82 mg/kg (5.42-11.0)] > beta'-phenylfentanyl [19.4 mg/kg (11.0-34.4)] > phenylfentanyl [55.2 mg/kg (33.5-93.0)]. Naltrexone (1 mg/kg) increased ED50 values several fold with decreasing magnitudes of para-methylfentanyl (63.1×) > para-methoxyfentanyl (22.5×) > beta'-phenylfentanyl (21.0×) > 3-furanylfentanyl (20.6×) > beta-methylfentanyl (19.2×) > phenylfentanyl (5.23×) > fentanyl (3.95×) > fentanyl carbamate (2.21×) > morphine (1.48×). These findings expand upon in vivo results from previous studies and establish that the effects of these fentanyl related-related substances are at least in part mediated by the MOR.
Collapse
Affiliation(s)
- Neil B Varshneya
- Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lea T Moisa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Teneille D Walker
- Diversion Control Division, Drug Enforcement Administration, United States Department of Justice, Springfield, VA, USA
| | - Luli R Akinfiresoye
- Diversion Control Division, Drug Enforcement Administration, United States Department of Justice, Springfield, VA, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Center for Biomarker Research & Precision Medicine, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| |
Collapse
|
26
|
Walsh E, Forni A, Pardi J, Cooper G. Acute Intoxications Involving Valerylfentanyl Identified at the New York City Office of Chief Medical Examiner. J Anal Toxicol 2021; 45:835-839. [PMID: 34110421 DOI: 10.1093/jat/bkab066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The detection of novel fentanyl analogs in both seized drugs and toxicological specimens has presented a significant challenge to laboratories with respect to identification, sourcing reference drug standards, time required for method development and ensuring sufficient method sensitivity. The New York City Office of Chief Medical Examiner (NYC OCME) has included testing for valerylfentanyl as part of a panel of synthetic opioids since May 2017 but did not identify the first valerylfentanyl positive case until July 2018. Unlike many other illicit fentanyl analogs that were briefly identified before being replaced with a new analog, valerylfentanyl has persisted over time and continues to be identified in New York City acute polydrug intoxications. Since July 2018, a total of 69 cases were identified with valerylfentanyl present, but there were no cases where it was the sole intoxicant. 84% of decedents were male, with the majority between the ages of 50 and 59 years (39%) and were predominantly Hispanic (49%). The cause of death in all 69 cases involved acute polydrug intoxication, while the manner of death was deemed an accident in 68 cases and undetermined in one case. Concentrations of valerylfentanyl in postmortem blood ranged from < 0.10 to 21 ng/mL with 44.9% (N = 31) of the concentrations at or below the lower limit of quantification (0.10 ng/mL) but above the limit of detection (0.05 ng/mL). Fentanyl was present in 100% of the cases and in higher concentrations (1.6-116 ng/mL). The most common drug classes detected with valerylfentanyl were other opiates (76.8%), cocaine/metabolites (50.7%), benzodiazepines (29%), and ethanol (21.7%). Valerylfentanyl is a relatively unknown fentanyl analog with limited information in the scientific literature. This study presents the first publication detailing a series of postmortem cases involving valerylfentanyl in acute intoxications and includes key demographic information and femoral blood concentrations for improved interpretation and analysis.
Collapse
Affiliation(s)
- Erin Walsh
- Department of Forensic Toxicology, NYC Office of Chief Medical Examiner, New York, NY, USA
| | - Amanda Forni
- Department of Forensic Toxicology, NYC Office of Chief Medical Examiner, New York, NY, USA
| | - Justine Pardi
- Department of Forensic Toxicology, NYC Office of Chief Medical Examiner, New York, NY, USA
| | - Gail Cooper
- Department of Forensic Toxicology, NYC Office of Chief Medical Examiner, New York, NY, USA
| |
Collapse
|
27
|
Zhou Z, Qiu N, Ou Y, Wei Q, Tang W, Zheng M, Xing Y, Li JJ, Ling Y, Li J, Zhu Q. N-Demethylsinomenine, an active metabolite of sinomenine, attenuates chronic neuropathic and inflammatory pain in mice. Sci Rep 2021; 11:9300. [PMID: 33927244 PMCID: PMC8085237 DOI: 10.1038/s41598-021-88521-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic pain is a significant public health problem that afflicts nearly 30% of the global population, but current pharmacotherapies are insufficient. Previous report indicated that N-demethylsinomenine, an active metabolite of sinomenine, is efficacious against postoperative pain. The present study investigated whether N-demethylsinomenine is effective for chronic painful conditions or whether repeated treatment alters its effect. Both chronic constriction injury (CCI) surgery and complete Freund’s adjuvant (CFA) intraplantar injection induced significant and reliable mechanical allodynia at least for 7 days. Acute treatment with N-demethylsinomenine (10–40 mg/kg, i.p.) dose-dependently attenuated the mechanical allodynia both in CCI-induced neuropathic pain and CFA-induced inflammatory pain in mice. The potency of N-demethylsinomenine for reducing CFA-induced mechanical allodynia was slightly higher than sinomenine. During the period of repeated treatment, N-demethylsinomenine maintained its anti-allodynic effect against both neuropathic and inflammatory pain without producing carry-over effect. Pretreatment with bicuculline, a selective γ-aminobutyric acid type A (GABAA) receptor antagonist, almost completely blocked the anti-allodynia of N-demethylsinomenine (40 mg/kg) both in CCI and CFA-treated mice. Our findings indicated that N-demethylsinomenine exhibits GABAA receptor-mediated anti-allodynic effects in mouse models of neuropathic and inflammatory pain, suggesting it may be a useful novel pharmacotherapy for the control of chronic pain.
Collapse
Affiliation(s)
- Zhiyong Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Nanqing Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yuntao Ou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Qianqian Wei
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Wenting Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Mingcong Zheng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yaluan Xing
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Jie-Jia Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Yong Ling
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China
| | - Junxu Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| | - Qing Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
28
|
Monroe SC, Radke AK. Aversion-resistant fentanyl self-administration in mice. Psychopharmacology (Berl) 2021; 238:699-710. [PMID: 33226446 PMCID: PMC7914171 DOI: 10.1007/s00213-020-05722-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
RATIONALE Animal models of compulsive drug use that continues despite negative consequences can be used to investigate the neural mechanisms of addiction. However, models of punished or aversion-resistant opioid self-administration are notably lacking. OBJECTIVES We sought to develop an aversion-resistant, oral fentanyl self-administration paradigm. METHODS In Experiment 1, C57BL/6J male and female, adult mice consumed fentanyl (10 μg/mL) in a two-bottle drinking in the dark task and escalating concentrations of quinine were added to the bottles. In Experiment 2, mice were trained to administer oral fentanyl (10 μg/mL) in an operant response task. Quinine was next added to the fentanyl solution in escalating concentrations. In Experiment 3, mice were trained to respond for oral fentanyl or fentanyl adulterated with 500 μM quinine on every session. In Experiment 4, mice were trained to respond for a 1% sucrose solution before introduction of quinine. RESULTS Quinine reduced two-bottle choice consumption in males but not in females. Both sexes demonstrated the ability to detect the selected concentrations of quinine in fentanyl. In the operant chamber, mice responded robustly for oral fentanyl but introduction of quinine at any stage of training was insufficient to reduce responding. In contrast, quinine reduced responding for sucrose at concentrations above 250 μM. CONCLUSIONS Mice will respond for and consume oral fentanyl in both a two-bottle choice and an operant response task. Quinine is detectable in fentanyl but mice will continue to respond for and consume fentanyl with quinine in both paradigms. These data support the use of these models in behavioral studies of compulsive-like opioid use.
Collapse
Affiliation(s)
| | - Anna K. Radke
- Correspondence to: Anna K. Radke, PhD, 90 N Patterson Ave, Oxford, OH, USA 45056,
| |
Collapse
|
29
|
Untargeted Metabolic Profiling of 4-Fluoro-Furanylfentanyl and Isobutyrylfentanyl in Mouse Hepatocytes and Urine by Means of LC-HRMS. Metabolites 2021; 11:metabo11020097. [PMID: 33578841 PMCID: PMC7916627 DOI: 10.3390/metabo11020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
The diffusion of new psychoactive substances (NPS) is highly dynamic and the available substances change over time, resulting in forensic laboratories becoming highly engaged in NPS control. In order to manage NPS diffusion, efficient and innovative legal responses have been provided by several nations. Metabolic profiling is also part of the analytical fight against NPS, since it allows us to identify the biomarkers of drug intake which are needed for the development of suitable analytical methods in biological samples. We have recently reported the characterization of two new analogs of fentanyl, i.e., 4-fluoro-furanylfentanyl (4F-FUF) and isobutyrylfentanyl (iBF), which were found for the first time in Italy in 2019; 4F-FUF was identified for the first time in Europe and was notified to the European Early Warning System. The goal of this study was the characterization of the main metabolites of both drugs by in vitro and in vivo experiments. To this end, incubation with mouse hepatocytes and intraperitoneal administration to mice were carried out. Samples were analyzed by means of liquid chromatography-high resolution mass spectrometry (LC-HRMS), followed by untargeted data evaluation using Compound Discoverer software with a specific workflow, designed for the identification of the whole metabolic pattern, including unexpected metabolites. Twenty metabolites were putatively annotated for 4-FFUF, with the dihydrodiol derivative appearing as the most abundant, whereas 22 metabolites were found for iBF, which was mainly excreted as nor-isobutyrylfentanyl. N-dealkylation of 4-FFUF dihydrodiol and oxidation to carbonyl metabolites for iBF were also major biotransformations. Despite some differences, in general there was a good agreement between in vitro and in vivo samples.
Collapse
|
30
|
Pharmacokinetics and pharmacodynamics of cyclopropylfentanyl in male rats. Psychopharmacology (Berl) 2021; 238:3629-3641. [PMID: 34613431 PMCID: PMC8629808 DOI: 10.1007/s00213-021-05981-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/06/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Illicitly manufactured fentanyl and its analogs are a major driving force behind the ongoing opioid crisis. Cyclopropylfentanyl is a fentanyl analog associated with many overdose deaths, but limited knowledge is available about its pharmacology. In the present study, we developed a bioanalytical method for the determination of cyclopropylfentanyl and its main metabolite cyclopropylnorfentanyl and evaluated pharmacokinetic-pharmacodynamic relationships in rats. METHOD An ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for determination of cyclopropylfentanyl and cyclopropylnorfentanyl in rat plasma. Male Sprague-Dawley rats fitted with jugular catheters and temperature transponders received cyclopropylfentanyl (30, 100, and 300 μg/kg) or saline subcutaneously. Blood specimens were withdrawn over an 8-h time period, along with measurements of pharmacodynamic endpoints. RESULTS The analytical method was validated, and both analytes exhibited a low limit of quantification (15 pg/mL). Cyclopropylfentanyl caused dose-related increases in hot plate latency (ED50 = 48 µg/kg) and catalepsy (ED50 = 87 µg/kg) and produced long-lasting hypothermia at the highest dose. Plasma cyclopropylfentanyl rose rapidly in a dose-related fashion, reaching maximal concentration (Cmax) after 15-28 min, whereas metabolite Cmax occurred later at 45-90 min. Cyclopropylfentanyl Cmax values were similar to concentrations measured in non-fatal intoxications in humans; however, differences in parent drug: metabolite ratio indicated possible interspecies variance in metabolism. CONCLUSION Our study shows that cyclopropylfentanyl produces typical opioid-like effects in male rats. Cyclopropylfentanyl displays much greater analgesic potency when compared to morphine, suggesting that cyclopropylfentanyl poses increased overdose risk for unsuspecting users.
Collapse
|
31
|
Eshleman AJ, Nagarajan S, Wolfrum KM, Reed JF, Nilsen A, Torralva R, Janowsky A. Affinity, potency, efficacy, selectivity, and molecular modeling of substituted fentanyls at opioid receptors. Biochem Pharmacol 2020; 182:114293. [PMID: 33091380 DOI: 10.1016/j.bcp.2020.114293] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023]
Abstract
Substituted fentanyls are abused and cause rapid fatal overdose. As their pharmacology is not well characterized, we examined in vitro pharmacology and structure-activity relationships of 22 substituted fentanyls with modifications of the fentanyl propyl group, and conducted in silico receptor/ligand modeling. Affinities for mu, kappa, and delta opioid receptors (MOR, KOR, and DOR, respectively) heterologously expressed in mammalian cells were assessed in agonist radioligand binding assays. At MOR, furanyl fentanyl had higher affinity than fentanyl, while acryl, isobutyryl and cyclopropyl fentanyls had similar affinities. Comparing affinities, thiophene and methoxyacetyl fentanyls had highest selectivity for MOR (2520- and 2730-fold compared to KOR and DOR, respectively). Functional activities were assessed using [35S]GTPγS binding assays. At MOR, furanyl fentanyl had higher potency and 11 substituted fentanyls had similar high potencies compared to fentanyl. Eight compounds were full agonists of MOR and twelve compounds were partial agonists, with efficacies from 8.8% (phenyl fentanyl) to 60.2% (butyryl fentanyl). All efficacious compounds had selective functional potency for MOR. The predicted binding poses of flexible fentanyl and rigid morphine against MOR show partially overlapping binding pockets, with fentanyl maintaining additional interaction with the transmembrane (TM) 2 helix. Subsequent molecular dynamics simulations revealed a predominant fentanyl binding pose involving various TM interactions. The piperidine nitrogen of substituted fentanyls establishes a salt-bridge with the conserved D-1473.32 residue and the propanamide carbonyl group establishes a hydrogen bond with the indole side-chain (-NH) of W-3187.35. The simulation suggests theN-linked phenethyl group may regulate the rotameric switch of W-2936.48. The predicted binding pose, in conjunction with in vitro binding affinity, clarified the molecular basis of the binding/selectivity profile of furanyl fentanyl and other derivatives at the sequence level. In summary, substituted fentanyls with high MOR potencies, selectivities, and efficacies are likely to have abuse and overdose potential. The work presented here is a prototype to investigate fentanyl derivatives and their abuse potential.
Collapse
Affiliation(s)
- Amy J Eshleman
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States; Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Shanthi Nagarajan
- Medicinal Chemistry Core, Oregon Health and Science University, Portland, OR, United States
| | - Katherine M Wolfrum
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - John F Reed
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Aaron Nilsen
- Medicinal Chemistry Core, Oregon Health and Science University, Portland, OR, United States
| | - Randy Torralva
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States; Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Aaron Janowsky
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States; Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States; The Methamphetamine Abuse Research Center, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
32
|
Townsend EA, Banks ML. Preclinical Evaluation of Vaccines to Treat Opioid Use Disorders: How Close are We to a Clinically Viable Therapeutic? CNS Drugs 2020; 34:449-461. [PMID: 32248427 PMCID: PMC7223115 DOI: 10.1007/s40263-020-00722-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ongoing opioid crisis, now into its second decade, represents a global public health challenge. Moreover, the opioid crisis has manifested despite clinical access to three approved opioid use disorder medications: the full opioid agonist methadone, the partial opioid agonist buprenorphine, and the opioid antagonist naltrexone. Although current opioid use disorder medications are underutilized, the ongoing opioid crisis has also identified the need for basic research to develop both safer and more effective opioid use disorder medications. Emerging preclinical evidence suggests that opioid-targeted vaccines or immunopharmacotherapies may be promising opioid use disorder therapeutics. One premise for this article is to critically examine whether vaccine effectiveness evaluated using preclinical antinociceptive endpoints is predictive of vaccine effectiveness on abuse-related endpoints such as drug self-administration, drug discrimination, and conditioned place preference. A second premise is to apply decades of knowledge in the preclinical evaluation of candidate small-molecule therapeutics for opioid use disorder to the preclinical evaluation of candidate opioid use disorder immunopharmacotherapies. We conclude with preclinical experimental design attributes to enhance preclinical-to-clinical translatability and potential future directions for immunopharmacotherapies to address the dynamic illicit opioid environment.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th St, Box 980613, Richmond, VA, 23298, USA.
| |
Collapse
|
33
|
Baumann MH, Pasternak GW, Negus SS. Confronting the opioid crisis with basic research in neuropharmacology. Neuropharmacology 2020; 166:107972. [PMID: 31958407 DOI: 10.1016/j.neuropharm.2020.107972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michael H Baumann
- Designer Drug Research Unit (DDRU), National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Suite 4400, Baltimore, MD 21224, USA.
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sidney S Negus
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, VA 23298, USA.
| |
Collapse
|
34
|
Hill R, Santhakumar R, Dewey W, Kelly E, Henderson G. Fentanyl depression of respiration: Comparison with heroin and morphine. Br J Pharmacol 2020; 177:254-266. [PMID: 31499594 PMCID: PMC6989952 DOI: 10.1111/bph.14860] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Fentanyl overdose deaths have reached "epidemic" levels in North America. Death in opioid overdose invariably results from respiratory depression. In the present work, we have characterized how fentanyl depresses respiration, and by comparing fentanyl with heroin and morphine, the active breakdown product of heroin, we have sought to determine the factors, in addition to high potency, that contribute to the lethality of fentanyl. EXPERIMENTAL APPROACH Respiration (rate and tidal volume) was measured in awake, freely moving mice by whole body plethysmography. KEY RESULTS Intravenously administered fentanyl produced more rapid depression of respiration than equipotent doses of heroin or morphine. Fentanyl depressed both respiratory rate and tidal volume. Fentanyl did not depress respiration in μ-opioid receptor knockout mice. Naloxone, the opioid antagonist widely used to treat opioid overdose, reversed the depression of respiration by morphine more readily than that by fentanyl, whereas diprenorphine, a more lipophilic antagonist, was equipotent in reversing fentanyl and morphine depression of respiration. Prolonged treatment with morphine induced tolerance to respiratory depression, but the degree of cross tolerance to fentanyl was less than the tolerance to morphine itself. CONCLUSION AND IMPLICATIONS We propose that several factors (potency, rate of onset, lowered sensitivity to naloxone, and lowered cross tolerance to heroin) combine to make fentanyl more likely to cause opioid overdose deaths than other commonly abused opioids. Lipophilic antagonists such as diprenorphine may be better antidotes than naloxone to treat fentanyl overdose.
Collapse
MESH Headings
- Animals
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/toxicity
- Dose-Response Relationship, Drug
- Drug Tolerance
- Fentanyl/administration & dosage
- Fentanyl/toxicity
- Heroin/administration & dosage
- Heroin/toxicity
- Injections, Intraperitoneal
- Injections, Intravenous
- Lung/drug effects
- Lung/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Morphine/toxicity
- Narcotic Antagonists/pharmacology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Respiration/drug effects
- Respiratory Insufficiency/chemically induced
- Respiratory Insufficiency/drug therapy
- Respiratory Insufficiency/metabolism
- Respiratory Insufficiency/physiopathology
- Respiratory Rate/drug effects
- Risk Assessment
- Tidal Volume/drug effects
- Mice
Collapse
Affiliation(s)
- Rob Hill
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Rakulan Santhakumar
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - William Dewey
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginia
| | - Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|