1
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2024; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
2
|
Tochon L, Henkous N, Besson M, Maskos U, David V. Distinct Chrna5 mutations link excessive alcohol use to types I/II vulnerability profiles and IPN GABAergic neurons. Transl Psychiatry 2024; 14:461. [PMID: 39505853 PMCID: PMC11541707 DOI: 10.1038/s41398-024-03164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Genome wide association and animal studies have implicated genetic variations in CHRNΑ5, encoding the α5 subunit-containing nicotinic acetylcholine receptors (α5*nAChRs), as a risk factor for developing alcohol use disorders (AUDs). To understand how α5*nAChR mutations may influence alcohol (EtOH) drinking behavior, we used a two-bottle choice procedure with intermittent access to alcohol in male and female transgenic mice expressing either the highly frequent human single nucleotide polymorphism (α5SNP/rs16969968) or a deletion of the Chrna5 gene (α5KO). AUDs-related preconsommatory traits (anxiety, sensation-seeking and impulsivity) were assessed with a battery of relevant tasks (elevated-plus maze, novel place preference and step-down inhibitory avoidance). The implication of the α5-expressing IPN GABAergic neurons in AUDs and related behavioral traits was verified using neurospecific lentiviral (LV)-induced reexpression of the α5 subunit in α5KOxGAD-Cre mice. Both α5SNP and α5KO mice showed over-consumption of EtOH, but displayed opposite vulnerability profiles consistent with Cloninger's subtypes of human AUDs. α5SNP mice showed Type I-like characteristics, i.e., high anxiety, novelty avoidance, whereas α5KOs exhibited Type II-like features such as low anxiety and high impulsivity. LV re-expression of the α5 subunit in IPN GABAergic neurons restored the control of EtOH intake and improved the impulsive phenotype. We demonstrate that the SNP (rs16969968) or null mutation of Chrna5 result in increased volitional EtOH consumption but opposite effects on anxiety, novelty-seeking and impulsive-like behaviors that match Cloninger type I and II of AUDs, including sex-related variations. IPN GABAergic neurons expressing α5*nAChRs play a key role in limiting both EtOH drinking and motor impulsivity.
Collapse
Affiliation(s)
- Léa Tochon
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.
| | - Nadia Henkous
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Morgane Besson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Vincent David
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
3
|
Tseilikman VE, Tseilikman OB, Karpenko MN, Traktirov DS, Obukhova DA, Shatilov VA, Zhukov MS, Manuilov GV, Yegorov ON, Aristov MR, Lipatov IA, Buksha IA, Epitashvili AE, Pashkov AA, Novak J. Unraveling the Serotonergic Mechanism of Stress-Related Anxiety: Focus on Co-Treatment with Resveratrol and Selective Serotonin Reuptake Inhibitors. Biomedicines 2024; 12:2455. [PMID: 39595020 PMCID: PMC11591826 DOI: 10.3390/biomedicines12112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: In post-traumatic stress disorder (PTSD), anxiety-like symptoms are often associated with elevated noradrenaline levels and decreased serotonin. Selective serotonin reuptake inhibitors (SSRIs) are frequently used to treat anxiety, but elevated serotonin has been observed in some anxiety disorders. This study investigates stress-induced anxiety as an immediate effect of chronic stress exposure using the predator stress paradigm. Methods: We examined serotonin levels, serotonin transporter (SERT), and 5-HT3A receptor gene expression in response to stress. The effects of SSRIs (paroxetine, sertraline) and resveratrol on these parameters were also analyzed, alongside co-treatment with resveratrol and sertraline. Results: Chronic stress exposure led to a significant increase in serotonin levels and upregulation of SERT and 5-HT3A receptor expression. SSRIs failed to prevent anxiety or reduce serotonin levels, partly due to suppressed SERT expression. Resveratrol downregulated SERT and 5-HT3A expression less than SSRIs but effectively reduced anxiety and restored serotonin, likely by upregulating MAO-A expression. Co-treatment with resveratrol and sertraline produced the strongest anxiolytic effect. Conclusions: Elevated serotonin and increased expression of SERT and 5-HT3A receptor genes are key factors in stress-related anxiety. Resveratrol and SSRIs target these mechanisms, suggesting potential therapeutic strategies for anxiety disorders. Future research will focus on further elucidating the serotonergic mechanisms involved and identifying new anxiolytic drug targets.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga B. Tseilikman
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Dmitrii S. Traktirov
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Daria A. Obukhova
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Vladislav A. Shatilov
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Maxim S. Zhukov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Gennady V. Manuilov
- Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Oleg N. Yegorov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Maxim R. Aristov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Ilya A. Lipatov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Irina A. Buksha
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | | | - Anton A. Pashkov
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, 630048 Novosibirsk, Russia
| | - Jurica Novak
- Centre for Informatics and Computing, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Tao C, Zhang GW, Sun WJ, Huang JJ, Zhang LI, Tao HW. Excitation-inhibition imbalance in medial preoptic area circuits underlies chronic stress-induced depression-like states. Nat Commun 2024; 15:8575. [PMID: 39362860 PMCID: PMC11452203 DOI: 10.1038/s41467-024-52727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Dysregulation of brain homeostasis is associated with neuropsychiatric conditions such as major depressive disorder. However, underlying neural-circuit mechanisms remain not well-understood. We show in mice that chronic restraint stress (CRS) and social defeat stress (SDS) are both associated with disruption of excitation (E)-inhibition (I) balance, with increased E/I ratios, in medial preoptic area (MPOA) circuits, but through affecting different neuronal types. CRS results in elevated activity in glutamatergic neurons, and their suppression mitigates CRS-induced depressive-like behaviors. Paraventricular hypothalamic input to these neurons contributes to induction but not expression of depressive-like behaviors. Their projections to ventral tegmental area and periaqueductal gray/dorsal raphe suppress midbrain dopaminergic and serotonergic activity, respectively, and mediate expression of divergent depressive-like symptoms. By contrast, SDS results in reduced activity of GABAergic neurons, and their activation alleviates SDS-induced depressive-like behaviors. Thus, E/I imbalance with relatively increased excitation in MPOA circuits may be a general mechanism underlying depression caused by different etiological factors.
Collapse
Affiliation(s)
- Can Tao
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wen-Jian Sun
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Biological and Biomedical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute and Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2024:10.1038/s41386-024-01993-1. [PMID: 39300273 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
6
|
Ricci A, Rubino E, Serra GP, Wallén-Mackenzie Å. Concerning neuromodulation as treatment of neurological and neuropsychiatric disorder: Insights gained from selective targeting of the subthalamic nucleus, para-subthalamic nucleus and zona incerta in rodents. Neuropharmacology 2024; 256:110003. [PMID: 38789078 DOI: 10.1016/j.neuropharm.2024.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Neuromodulation such as deep brain stimulation (DBS) is advancing as a clinical intervention in several neurological and neuropsychiatric disorders, including Parkinson's disease, dystonia, tremor, and obsessive-compulsive disorder (OCD) for which DBS is already applied to alleviate severely afflicted individuals of symptoms. Tourette syndrome and drug addiction are two additional disorders for which DBS is in trial or proposed as treatment. However, some major remaining obstacles prevent this intervention from reaching its full therapeutic potential. Side-effects have been reported, and not all DBS-treated individuals are relieved of their symptoms. One major target area for DBS electrodes is the subthalamic nucleus (STN) which plays important roles in motor, affective and associative functions, with impact on for example movement, motivation, impulsivity, compulsivity, as well as both reward and aversion. The multifunctionality of the STN is complex. Decoding the anatomical-functional organization of the STN could enhance strategic targeting in human patients. The STN is located in close proximity to zona incerta (ZI) and the para-subthalamic nucleus (pSTN). Together, the STN, pSTN and ZI form a highly heterogeneous and clinically important brain area. Rodent-based experimental studies, including opto- and chemogenetics as well as viral-genetic tract tracings, provide unique insight into complex neuronal circuitries and their impact on behavior with high spatial and temporal precision. This research field has advanced tremendously over the past few years. Here, we provide an inclusive review of current literature in the pre-clinical research fields centered around STN, pSTN and ZI in laboratory mice and rats; the three highly heterogeneous and enigmatic structures brought together in the context of relevance for treatment strategies. Specific emphasis is placed on methods of manipulation and behavioral impact.
Collapse
Affiliation(s)
- Alessia Ricci
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Eleonora Rubino
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Gian Pietro Serra
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Åsa Wallén-Mackenzie
- Uppsala University, Department of Organism Biology, 756 32 Uppsala, Sweden; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Collins HM, Gullino LS, Ozdemir D, Lazarenco C, Sudarikova Y, Daly E, Pilar Cuéllar F, Pinacho R, Bannerman DM, Sharp T. Rebound activation of 5-HT neurons following SSRI discontinuation. Neuropsychopharmacology 2024; 49:1580-1589. [PMID: 38609530 PMCID: PMC11319583 DOI: 10.1038/s41386-024-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Cessation of therapy with a selective serotonin (5-HT) reuptake inhibitor (SSRI) is often associated with an early onset and disabling discontinuation syndrome, the mechanism of which is surprisingly little investigated. Here we determined the effect on 5-HT neurochemistry of discontinuation from the SSRI paroxetine. Paroxetine was administered repeatedly to mice (once daily, 12 days versus saline controls) and then either continued or discontinued for up to 5 days. Whereas brain tissue levels of 5-HT and/or its metabolite 5-HIAA tended to decrease during continuous paroxetine, levels increased above controls after discontinuation, notably in hippocampus. In microdialysis experiments continuous paroxetine elevated hippocampal extracellular 5-HT and this effect fell to saline control levels on discontinuation. However, depolarisation (high potassium)-evoked 5-HT release was reduced by continuous paroxetine but increased above controls post-discontinuation. Extracellular hippocampal 5-HIAA also decreased during continuous paroxetine and increased above controls post-discontinuation. Next, immunohistochemistry experiments found that paroxetine discontinuation increased c-Fos expression in midbrain 5-HT (TPH2 positive) neurons, adding further evidence for a hyperexcitable 5-HT system. The latter effect was recapitulated by 5-HT1A receptor antagonist administration although gene expression analysis could not confirm altered expression of 5-HT1A autoreceptors following paroxetine discontinuation. Finally, in behavioural experiments paroxetine discontinuation increased anxiety-like behaviour, which partially correlated in time with the measures of increased 5-HT function. In summary, this study reports evidence that, across a range of experiments, SSRI discontinuation triggers a rebound activation of 5-HT neurons. This effect is reminiscent of neural changes associated with various psychotropic drug withdrawal states, suggesting a common unifying mechanism.
Collapse
Affiliation(s)
- Helen M Collins
- Dept. of Pharmacology, University of Oxford, Oxford, UK
- Dept. of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Dersu Ozdemir
- Dept. of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | - Fuencisla Pilar Cuéllar
- Dept. of Pharmacology, University of Oxford, Oxford, UK
- Departamento de Señalización Molecular y Celular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Santander, Spain
| | - Raquel Pinacho
- Dept. of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Trevor Sharp
- Dept. of Pharmacology, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
9
|
Rui Y, Tang Q, Chen L, Pu J, Wang W, Ding SN. Rapid electrochemical detection of L-lactate in Baijiu affecting serotonin and dopamine secretion in mice. Analyst 2024. [PMID: 39143937 DOI: 10.1039/d4an00880d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Baijiu, a traditional Chinese alcoholic beverage, carries China's rich historical and cultural heritage. Consumers experience varying levels of relaxation and pleasure after consuming different types of Baijiu, with the biological basis of delectation influenced by serotonin and dopamine. In this study, we prepared carbon fiber electrodes modified with surface decorated gold nanoparticles to directly measure the electrochemical response signals in the serum of mice before and after gavage with different types of Baijiu. It was observed that the serum signal change in mice after consuming Baijiu sample 1 (J1) was higher than that of the other two types of Baijiu. Consequently, trace flavor compounds in the Baijiu samples were detected using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), revealing the highest content of L-lactic acid in J1. Mice were intraperitoneally injected with 200 mg kg-1 of L-lactic acid. The changes in dopamine and serotonin in the serum of the injected mice were monitored using a biosensor, and the results were compared with the results of high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-MS). The findings confirmed that L-lactic acid could indeed stimulate the secretion of both neurotransmitters in mice, suggesting that the trace components in J1 may even exhibit synergistic effects. This study contributes to a deeper understanding of the effects of Baijiu on the body and provides a scientific basis for the production and consumption of Baijiu.
Collapse
Affiliation(s)
- Yating Rui
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Qunyong Tang
- Jiangsu King's Lucky Brewery Joint-Stock Co., Ltd, Lian shui 223411, China
| | - Liyi Chen
- Jiangsu King's Lucky Brewery Joint-Stock Co., Ltd, Lian shui 223411, China
| | - Juan Pu
- Lian shui Peoples Hospital, Huaian, 223400, China
| | - Wanpeng Wang
- Lian shui Peoples Hospital, Huaian, 223400, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
10
|
Chen M, Wang C, Lin Y, Chen Y, Xie W, Huang X, Zhang F, Fu C, Zhuang K, Zou T, Can D, Li H, Wu S, Luo C, Zhang J. Dorsal raphe nucleus-hippocampus serotonergic circuit underlies the depressive and cognitive impairments in 5×FAD male mice. Transl Neurodegener 2024; 13:34. [PMID: 39044270 PMCID: PMC11267773 DOI: 10.1186/s40035-024-00425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Depressive symptoms often occur in patients with Alzheimer's disease (AD) and exacerbate the pathogenesis of AD. However, the neural circuit mechanisms underlying the AD-associated depression remain unclear. The serotonergic system plays crucial roles in both AD and depression. METHODS We used a combination of in vivo trans-synaptic circuit-dissecting anatomical approaches, chemogenetic manipulations, optogenetic manipulations, pharmacological methods, behavioral testing, and electrophysiological recording to investigate dorsal raphe nucleus serotonergic circuit in AD-associated depression in AD mouse model. RESULTS We found that the activity of dorsal raphe nucleus serotonin neurons (DRN5-HT) and their projections to the dorsal hippocampal CA1 (dCA1) terminals (DRN5-HT-dCA1CaMKII) both decreased in brains of early 5×FAD mice. Chemogenetic or optogenetic activation of the DRN5-HT-dCA1CaMKII neural circuit attenuated the depressive symptoms and cognitive impairments in 5×FAD mice through serotonin receptor 1B (5-HT1BR) and 4 (5-HT4R). Pharmacological activation of 5-HT1BR or 5-HT4R attenuated the depressive symptoms and cognitive impairments in 5×FAD mice by regulating the DRN5-HT-dCA1CaMKII neural circuit to improve synaptic plasticity. CONCLUSIONS These findings provide a new mechanistic connection between depression and AD and provide potential pharmaceutical prevention targets for AD.
Collapse
Affiliation(s)
- Meiqin Chen
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Chenlu Wang
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, 361000, China
| | - Yinan Lin
- Department of Anesthesiology, First Affiliated Hospital of Xiamen University, Xiamen, 361000, China
| | - Yanbing Chen
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wenting Xie
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xiaoting Huang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Congrui Fu
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kai Zhuang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tingting Zou
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Dan Can
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Huifang Li
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China.
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Institute of Neuroscience, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
11
|
Shafiq A, Andrade M, Matthews R, Umbarger A, Petrunich-Rutherford ML. Acute clomipramine exposure elicits dose-dependent surfacing behavior in adult zebrafish ( Danio rerio). PeerJ 2024; 12:e17803. [PMID: 39040938 PMCID: PMC11262300 DOI: 10.7717/peerj.17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Chronic treatment with clomipramine, a tricyclic antidepressant drug, reduces symptoms of obsessive-compulsive disorder (OCD) and can influence the activity of the hypothalamic-pituitary-adrenal axis. However, little is known regarding the effects of acute clomipramine on the immediate expression of stress responses. Serotonergic drugs can elicit surfacing, a behavioral profile potentially related to toxicity in fish, although surfacing has not yet been observed after clomipramine exposure. The present study investigated the impact of acute exposure to clomipramine on basal and stress-induced behaviors in the novel tank test and cortisol levels in mixed-sex, wild-type, adult zebrafish (Danio rerio). The findings show clomipramine-exposed groups (regardless of stress exposure) spent much more time in the top of the novel tank and had significantly less overall motor activity in the behavioral task compared to the fish not exposed to the drug. Then, the dose-dependent effects of acute clomipramine on activity in the surface of the novel tank (top third of the top half) were investigated further. Clomipramine dose-dependently increased surface-dwelling and elicited a dose-dependent hypoactivity in overall motor behavior. There were no statistically significant differences in whole-body cortisol levels in either experiment. Like other serotonin-acting drugs, clomipramine strongly elicited surface-dwelling and depressed motor behavior in adult zebrafish. Additional testing is needed to elucidate whether surfacing represents a toxic state and how serotonin regulates surfacing.
Collapse
Affiliation(s)
- Adeel Shafiq
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | - Mercedes Andrade
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | - Richanne Matthews
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | - Alexandria Umbarger
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | | |
Collapse
|
12
|
Cheng J, Chen L, Zheng YN, Liu J, Zhang L, Zhang XM, Huang L, Yuan QL. Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice. Acta Pharmacol Sin 2024; 45:1393-1405. [PMID: 38528118 PMCID: PMC11192762 DOI: 10.1038/s41401-024-01252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ling Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juan Liu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Lei Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xiao-Ming Zhang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Zhou J, Wu JW, Song BL, Jiang Y, Niu QH, Li LF, Liu YJ. 5-HT1A receptors within the intermediate lateral septum modulate stress vulnerability in male mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110966. [PMID: 38354893 DOI: 10.1016/j.pnpbp.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders. However, certain individuals may be at higher risk due to greater stress susceptibility. Elucidating the neurobiology of stress resilience and susceptibility may facilitate the development of novel strategies to prevent and treat stress-related disorders such as depression. Mounting evidence suggests that the serotonin (5-HT) system is a major regulator of stress sensitivity. In this study, we assessed the functions of 5-HT1A and 5-HT2A receptors within the lateral septum (LS) in regulating stress vulnerability. Among a group of male mice exposed to chronic social defeat stress (CSDS), 47.2% were classified as stress-susceptible, and these mice employed more passive coping strategies during the defeat and exhibited more severe anxiety- and depression-like behaviors during the following behavioral tests. These stress-susceptible mice also exhibited elevated neuronal activity in the LS as evidenced by greater c-Fos expression, greater activity of 5-HT neurons in both the dorsal and median raphe nucleus, and downregulated expression of the 5-HT1A receptor in the intermediate LS (LSi). Finally, we found the stress-induced social withdrawal symptoms could be rapidly relieved by LSi administration of 8-OH-DPAT, a 5-HT1A receptor agonist. These results indicate that 5-HT1A receptors within the LSi play an important role in stress vulnerability in mice. Therefore, modulation of stress vulnerable via 5-HT1A receptor activation in the LSi is a potential strategy to treat stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Jiao-Wen Wu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Qiu-Hong Niu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| |
Collapse
|
14
|
Kikuchi S, Iwasaki Y, Yoshioka M, Hino K, Morita SY, Tada R, Uchimura Y, Kubo Y, Kobayashi T, Kinoshita Y, Hayashi M, Furusho Y, Tamiaki H, Ishiyama H, Kuroda M, Udagawa J. Solitary and Synergistic Effects of Different Hydrophilic and Hydrophobic Phospholipid Moieties on Rat Behaviors. Pharmaceutics 2024; 16:762. [PMID: 38931883 PMCID: PMC11207216 DOI: 10.3390/pharmaceutics16060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Glycerophospholipids have hydrophobic and hydrophilic moieties. Previous studies suggest that phospholipids with different moieties have different effects on rodent behavior; however, the relationship between chemical structures and behavioral effects remains unclear. To clarify the functions of phospholipid moieties, we injected male rats with phospholipids with different moieties and conducted behavioral tests. Exploratory activity was reduced by phosphatidylethanolamine (PE)(18:0/22:6) but not PE(18:0/18:0) or PE(18:0/20:4). Conversely, exploratory activity was increased by plasmanyl PE(16:0/22:6), which harbors an alkyl-ether linkage, but not by phosphatidylcholine (PC)(16:0/22:6) or plasmanyl PC(16:0/22:6). Docosahexaenoic acid (DHA)(22:6) and an alkyl-ether linkage in PE were thus postulated to be involved in exploratory activity. Anxiety-like behavior was reduced by plasmenyl PC(18:0/20:4), which harbors a vinyl-ether linkage, but not by PC(18:0/20:4) or plasmanyl PC(18:0/20:4), suggesting the anxiolytic effects of vinyl-ether linkage. The activation of social interaction was suppressed by PE(18:0/18:0), PE(18:0/22:6), PC(16:0/22:6), plasmanyl PE(16:0/22:6), and plasmanyl PC(16:0/22:6) but not by PE(18:0/20:4), plasmenyl PE(18:0/20:4), or plasmanyl PC(18:0/22:6). DHA may suppress social interaction, whereas arachidonic acid(20:4) or a combination of alkyl-ether linkage and stearic acid(18:0) may restore social deficits. Our findings indicate the characteristic effects of different phospholipid moieties on rat behavior, and may help to elucidate patterns between chemical structures and their effects.
Collapse
Affiliation(s)
- Shuhei Kikuchi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yugo Iwasaki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan;
| | - Mina Yoshioka
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Kodai Hino
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Shin-ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Ryu Tada
- Molecular Engineering Institute, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Yasuhiro Uchimura
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yoshinori Kubo
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Tomoya Kobayashi
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Masahiro Hayashi
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Miyazaki, Japan;
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan; (Y.K.); (H.T.)
| | - Hiroaki Ishiyama
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Minoru Kuroda
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan; (S.K.); (Y.U.); (M.K.)
| |
Collapse
|
15
|
Spreen A, Alkhoury D, Walter H, Müller S. Optogenetic behavioral studies in depression research: A systematic review. iScience 2024; 27:109776. [PMID: 38726370 PMCID: PMC11079475 DOI: 10.1016/j.isci.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Optogenetics has made substantial contributions to our understanding of the mechanistic underpinnings of depression. This systematic review employs quantitative analysis to investigate the impact of optogenetic stimulation in mice and rats on behavioral alterations in social interaction, sucrose consumption, and mobility. The review analyses optogenetic behavioral studies using standardized behavioral tests to detect behavioral changes induced via optogenetic stimulation in stressed or stress-naive mice and rats. Behavioral changes were evaluated as either positive, negative, or not effective. The analysis comprises the outcomes of 248 behavioral tests of 168 studies described in 37 articles, including negative and null results. Test outcomes were compared for each behavior, depending on the animal cohort, applied type of stimulation and the stimulated neuronal circuit and cell type. The presented synthesis contributes toward a comprehensive picture of optogenetic behavioral research in the context of depression.
Collapse
Affiliation(s)
- Anika Spreen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Sabine Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| |
Collapse
|
16
|
Lemini C, García-Albor E, Cruz-López B, Matamoros-Trejo G, Márquez-Baltazar S, Herrera-Pérez JJ, Martínez-Mota L. Prolame produces anxiolytic- and antidepressant-like effects in middle-aged female rats with less uterotrophic effects than 17β-estradiol. Eur J Pharmacol 2024; 969:176454. [PMID: 38417607 DOI: 10.1016/j.ejphar.2024.176454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Estrogen hormone replacement therapy (EHRT), improving women's life quality at menopause, reduces anxiety and depression symptoms associated with ovarian hormonal decline. However, its potential adverse effects, like thromboembolism and cancer risk, limit its use. Prolame is a synthetic 17β-amino estrogen with antithrombotic actions that exerts anxiolytic- and antidepressant-like effects on young adult ovariectomized female rats. It is unknown if prolame's effects may be observed in age and endocrine conditions emulating menopause. This study aimed to identify the antidepressant- and anxiolytic-like effects of prolame and E2 (used as a reference estrogen treatment) in middle-aged female rats coursing with irregular cycles, in two different conditions: ovariectomized or gonadally intact. Results were compared with those from young adult ovariectomized rats. Prolame (60 or 120 μg/kg), 17β-estradiol (E2, 40 or 80 μg/kg), or vehicle were chronically administered, and their effects were evaluated in the elevated plus-maze, defensive burying behavior test, open field test, and forced swimming test. Uterotrophic actions were estimated by uterine weight related to body weight. Prolame and E2 produced robust anxiolytic- and antidepressant-like effects in young adult ovariectomized rats, but these effects were absent in gonadally intact middle-aged rats. Interestingly, only prolame induced anxiolytic- and antidepressant-like effects in middle-aged ovariectomized rats. Uterotrophic effects of prolame were weaker than E2 effects, notably in middle-aged females. Altogether, present data support the notion that prolame has the potential to be considered an EHRT with relevant psychoactive actions and with apparently lower adverse-side effects, especially in middle-aged populations.
Collapse
Affiliation(s)
- C Lemini
- Departamento de Farmacología, Facultad de Medicina. Universidad Nacional Autónoma de México. Av. Universidad No. 3000, Ciudad Universitaria, Coyoacán, 04360, Ciudad de México, México
| | - E García-Albor
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México
| | - B Cruz-López
- Laboratorio Integrativo para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México
| | - G Matamoros-Trejo
- Laboratorio de Neurofisiología Molecular, Dirección de Investigaciones en Neurociencias. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México
| | - S Márquez-Baltazar
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México
| | - J J Herrera-Pérez
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México
| | - L Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, México.
| |
Collapse
|
17
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Tóth ZE, Dóra F, Dobolyi Á, Zelena D. The Dopaminergic Cells in the Median Raphe Region Regulate Social Behavior in Male Mice. Int J Mol Sci 2024; 25:4315. [PMID: 38673899 PMCID: PMC11050709 DOI: 10.3390/ijms25084315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.
Collapse
Affiliation(s)
- Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Dorottya Várkonyi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and in Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Fanni Dóra
- Human Brain Tissue Bank, Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, H1117 Budapest, Hungary;
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| |
Collapse
|
18
|
Lee KKY, Chattopadhyaya B, do Nascimento ASF, Moquin L, Rosa-Neto P, Amilhon B, Di Cristo G. Neonatal hypoxia impairs serotonin release and cognitive functions in adult mice. Neurobiol Dis 2024; 193:106465. [PMID: 38460800 DOI: 10.1016/j.nbd.2024.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Children who experienced moderate perinatal asphyxia (MPA) are at risk of developing long lasting subtle cognitive and behavioral deficits, including learning disabilities and emotional problems. The prefrontal cortex (PFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin (5-HT) project to the PFC, and compounds modulating 5-HT activity influence emotion and cognition. Whether 5-HT dysregulations contribute to MPA-induced cognitive problems is unknown. We established a MPA mouse model, which displays recognition and spatial memory impairments and dysfunctional cognitive flexibility. We found that 5-HT expression levels, quantified by immunohistochemistry, and 5-HT release, quantified by in vivo microdialysis in awake mice, are reduced in PFC of adult MPA mice. MPA mice also show impaired body temperature regulation following injection of the 5-HT1A receptor agonist 8-OH-DPAT, suggesting the presence of deficits in 5-HT auto-receptor function on raphe neurons. Finally, chronic treatment of adult MPA mice with fluoxetine, an inhibitor of 5-HT reuptake transporter, or the 5-HT1A receptor agonist tandospirone rescues cognitive flexibility and memory impairments. All together, these data demonstrate that the development of 5-HT system function is vulnerable to moderate perinatal asphyxia. 5-HT hypofunction might in turn contribute to long-term cognitive impairment in adulthood, indicating a potential target for pharmacological therapies.
Collapse
Affiliation(s)
- Karen Ka Yan Lee
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada
| | | | | | - Luc Moquin
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Pedro Rosa-Neto
- Department of Psychiatry, McGill University, Douglas Hospital Research Center, Canada
| | - Bénédicte Amilhon
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal, Montréal, Canada; CHU Sainte-Justine Azrieli Research Center, Montréal, Canada.
| |
Collapse
|
19
|
Gutierrez-Castellanos N, Sarra D, Godinho BS, Mainen ZF. Maturation of cortical input to dorsal raphe nucleus increases behavioral persistence in mice. eLife 2024; 13:e93485. [PMID: 38477558 PMCID: PMC10994666 DOI: 10.7554/elife.93485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The ability to persist toward a desired objective is a fundamental aspect of behavioral control whose impairment is implicated in several behavioral disorders. One of the prominent features of behavioral persistence is that its maturation occurs relatively late in development. This is presumed to echo the developmental time course of a corresponding circuit within late-maturing parts of the brain, such as the prefrontal cortex, but the specific identity of the responsible circuits is unknown. Here, we used a genetic approach to describe the maturation of the projection from layer 5 neurons of the neocortex to the dorsal raphe nucleus in mice. Using optogenetic-assisted circuit mapping, we show that this projection undergoes a dramatic increase in synaptic potency between postnatal weeks 3 and 8, corresponding to the transition from juvenile to adult. We then show that this period corresponds to an increase in the behavioral persistence that mice exhibit in a foraging task. Finally, we used a genetic targeting strategy that primarily affected neurons in the medial prefrontal cortex, to selectively ablate this pathway in adulthood and show that mice revert to a behavioral phenotype similar to juveniles. These results suggest that frontal cortical to dorsal raphe input is a critical anatomical and functional substrate of the development and manifestation of behavioral persistence.
Collapse
Affiliation(s)
| | - Dario Sarra
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Beatriz S Godinho
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
20
|
Li X, Feng D, Ma S, Li M, Zhao S, Tang M. Ventral hippocampus is more sensitive to fluoxetine-induced changes in extracellular 5-HT concentration, membrane 5-HT transporter level and immobility times. Neuropharmacology 2024; 242:109766. [PMID: 37858884 DOI: 10.1016/j.neuropharm.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Hippocampal responses to selective 5-HT reuptake inhibitor (SSRI) have long been studied. However, its sub-regional involvements in mediating SSRI's pharmacological effects have not been fully addressed. The current study sought to investigate neurochemical, neurobiological and neurobehavioral changes in response to direct fluoxetine perfusion into the ventral and dorsal sub-regions of the hippocampus in C57BL/6 mice. Following fluoxetine perfusion, time courses of dialysate 5-HT, 5-HT transporter (5-HTT) protein (total, membrane and cytoplasmic fractions), locomotion, and immobility times in the forced swim test (FST) and tail suspension test (TST) were determined. At baseline, 5-HT uptake efficiency assessed by the no-net-flux microdialysis, and 5-HTT protein were measured as well. Results show that fluoxetine dose-dependently increased dialysate 5-HT, lowered membrane 5-HTT protein and increased cytoplasmic fraction without changing the total level, decreased immobility times in both the FST and TST, with greater responses all detected in the ventral sub-region compared to the dorsal sub-region. Fluoxetine didn't affect locomotor activity, ruling out the possibility that fluoxetine's effects on immobility maybe due to alteration in locomotion. Besides, lower 5-HT uptake efficiency and lower membrane 5-HTT protein level were found in the ventral sub-region at baseline. Together, the sub-regional differences at baseline and in responses to fluoxetine added powerful evidence to support the existence of two distinct 5-HT sub-systems in the hippocampus, with greater changes to fluoxetine detected in the ventral sub-system.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Dan Feng
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Man Tang
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
21
|
Sharp T, Collins H. Mechanisms of SSRI Therapy and Discontinuation. Curr Top Behav Neurosci 2024; 66:21-47. [PMID: 37955823 DOI: 10.1007/7854_2023_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
SSRIs are one of the most widely used drug therapies in primary care and psychiatry, and central to the management of the most common mental health problems in today's society. Despite this, SSRIs suffer from a slow onset of therapeutic effect and relatively poor efficacy as well as adverse effects, with recent concerns being focused on a disabling SSRI discontinuation syndrome. The mechanism underpinning their therapeutic effect has long shifted away from thinking that SSRIs act simply by increasing 5-HT in the synapse. Rather, a current popular view is that increased 5-HT is just the beginning of a series of complex downstream signalling events, which trigger changes in neural plasticity at the functional and structural level. These changes in plasticity are then thought to interact with neuropsychological processes to enhance re-learning of emotional experiences that ultimately brings about changes in mood. This compelling view of SSRI action is underpinning attempts to understand fast-acting antidepressants, such as ketamine and psychedelic drugs, and aid the development of future therapies. An important gap in the theory is evidence that changes in plasticity are causally linked to relevant behavioural effects. Also, predictions that the SSRI-induced neural plasticity might have applicability in other areas of medicine have not yet been borne out. In contrast to the sophisticated view of the antidepressant action of SSRIs, the mechanism underpinning SSRI discontinuation is little explored. Nevertheless, evidence of rebound increases in 5-HT neuron excitability immediately on cessation of SSRI treatment provide a starting point for future investigation. Indeed, this evidence allows formulation of a mechanistic explanation of SSRI discontinuation which draws on parallels with the withdrawal states of other psychotropic drugs.
Collapse
Affiliation(s)
- Trevor Sharp
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Cheng H, Lou Q, Lai N, Chen L, Zhang S, Fei F, Gao C, Wu S, Han F, Liu J, Guo Y, Chen Z, Xu C, Wang Y. Projection-defined median raphe Pet + subpopulations are diversely implicated in seizure. Neurobiol Dis 2023; 189:106358. [PMID: 37977434 DOI: 10.1016/j.nbd.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
The raphe nuclei, the primary resource of forebrain 5-HT, play an important but heterogeneous role in regulating subcortical excitabilities. Fundamental circuit organizations of different median raphe (MR) subsystems are far from completely understood. In the present study, using cell-specific viral tracing, Ca2+ fiber photometry and epilepsy model, we map out the forebrain efferent and afferent of different MR Pet+ subpopulations and their divergent roles in epilepsy. We found that PetMR neurons send both collateral and parallel innervations to different downstream regions through different subpopulations. Notably, CA3-projecting PetMR subpopulations are largely distinct from habenula (Hb)-projecting PetMR subpopulations in anatomical distribution and topological organization, while majority of the CA3-projecting PetMR subpopulations are overlapped with the medial septum (MS)-projecting PetMR subpopulations. Further, using Ca2+ fiber photometry, we monitor activities of PetMR neurons in hippocampal-kindling seizure, a classical epilepsy model with pathological mechanisms caused by excitation-inhibition imbalance. We found that soma activities of PetMR neurons are heterogeneous during different periods of generalized seizures. These divergent activities are contributed by different projection-defined PetMR subpopulations, manifesting as increased activities in CA3 but decreased activity in Hb resulting from their upstream differences. Together, our findings provide a novel framework of MR subsystems showing that projection-defined MR Pet+ subpopulations are topologically heterogenous with divergent circuit connections and are diversely implicated in seizures. This may help in the understanding of heterogeneous nature of MR 5-HTergic subsystems and the paradox roles of 5-HTergic systems in epilepsy.
Collapse
Affiliation(s)
- Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiuwen Lou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310003, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenshu Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuangshuang Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jinggen Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Guo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310061, China.
| |
Collapse
|
23
|
Shi HJ, Wang S, Wang XP, Zhang RX, Zhu LJ. Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety. Neurosci Bull 2023; 39:1009-1026. [PMID: 36680709 PMCID: PMC10264315 DOI: 10.1007/s12264-023-01020-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/13/2022] [Indexed: 01/22/2023] Open
Abstract
Anxiety disorders are currently a major psychiatric and social problem, the mechanisms of which have been only partially elucidated. The hippocampus serves as a major target of stress mediators and is closely related to anxiety modulation. Yet so far, its complex anatomy has been a challenge for research on the mechanisms of anxiety regulation. Recent advances in imaging, virus tracking, and optogenetics/chemogenetics have permitted elucidation of the activity, connectivity, and function of specific cell types within the hippocampus and its connected brain regions, providing mechanistic insights into the elaborate organization of the hippocampal circuitry underlying anxiety. Studies of hippocampal neurotransmitter systems, including glutamatergic, GABAergic, cholinergic, dopaminergic, and serotonergic systems, have contributed to the interpretation of the underlying neural mechanisms of anxiety. Neuropeptides and neuroinflammatory factors are also involved in anxiety modulation. This review comprehensively summarizes the hippocampal mechanisms associated with anxiety modulation, based on molecular, cellular, and circuit properties, to provide tailored targets for future anxiety treatment.
Collapse
Affiliation(s)
- Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shuang Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin-Ping Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Rui-Xin Zhang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China.
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| |
Collapse
|
24
|
Fortin-Houde J, Henderson F, Dumas S, Ducharme G, Amilhon B. Parallel streams of raphe VGLUT3-positive inputs target the dorsal and ventral hippocampus in each hemisphere. J Comp Neurol 2023; 531:702-719. [PMID: 36855269 DOI: 10.1002/cne.25452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 03/02/2023]
Abstract
The hippocampus (HP) receives neurochemically diverse inputs from the raphe nuclei, including glutamatergic axons characterized by the expression of the vesicular glutamate transporter type 3 (VGLUT3). These raphe-HP VGLUT3 projections have been suggested to play a critical role in HP functions, yet a complete anatomical overview of raphe VGLUT3 projections to the forebrain, and in particular to the HP, is lacking. Using anterograde viral tracing, we describe largely nonoverlapping VGLUT3-positive projections from the dorsal raphe (DR) and median raphe (MnR) to the forebrain, with the HP receiving inputs from the MnR. A limited subset of forebrain regions such as the amygdaloid complex, claustrum, and hypothalamus receives projections from both the DR and MnR that remain largely segregated. This highly complementary anatomical pattern suggests contrasting roles for DR and MnR VGLUT3 neurons. To further analyze the topography of VGLUT3 raphe projections to the HP, we used retrograde tracing and found that HP-projecting VGLUT3-positive neurons (VGLUT3HP ) distribute over several raphe subregions (including the MnR, paramedian raphe, and B9 cell group) and lack co-expression of serotonergic markers. Strikingly, double retrograde tracing experiments unraveled two parallel streams of VGLUT3-positive projections targeting the dorsal and ventral poles of the HP. These results demonstrate highly organized and segregated VGLUT3-positive projections to the HP, suggesting independent modulation of HP functions such as spatial memory and emotion-related behavior.
Collapse
Affiliation(s)
- Justine Fortin-Houde
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Fiona Henderson
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| | | | | | - Bénédicte Amilhon
- Département de Neuroscience, Université de Montréal, Montréal, Québec, Canada
- CHU Sainte-Justine Research Center, Montréal, Québec, Canada
| |
Collapse
|
25
|
Natsubori A, Hirai S, Kwon S, Ono D, Deng F, Wan J, Miyazawa M, Kojima T, Okado H, Karashima A, Li Y, Tanaka KF, Honda M. Serotonergic neurons control cortical neuronal intracellular energy dynamics by modulating astrocyte-neuron lactate shuttle. iScience 2023; 26:105830. [PMID: 36713262 PMCID: PMC9881222 DOI: 10.1016/j.isci.2022.105830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The central serotonergic system has multiple roles in animal physiology and behavior, including sleep-wake control. However, its function in controlling brain energy metabolism according to the state of animals remains undetermined. Through in vivo monitoring of energy metabolites and signaling, we demonstrated that optogenetic activation of raphe serotonergic neurons increased cortical neuronal intracellular concentration of ATP, an indispensable cellular energy molecule, which was suppressed by inhibiting neuronal uptake of lactate derived from astrocytes. Raphe serotonergic neuronal activation induced cortical astrocytic Ca2+ and cAMP surges and increased extracellular lactate concentrations, suggesting the facilitation of lactate release from astrocytes. Furthermore, chemogenetic inhibition of raphe serotonergic neurons partly attenuated the increase in cortical neuronal intracellular ATP levels as arousal increased in mice. Serotonergic neuronal activation promoted an increase in cortical neuronal intracellular ATP levels, partly mediated by the facilitation of the astrocyte-neuron lactate shuttle, contributing to state-dependent optimization of neuronal intracellular energy levels.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan,Corresponding author
| | - Shinobu Hirai
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Daisuke Ono
- Department of Neuroscience Ⅱ, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Momoka Miyazawa
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan,Faculty of Science Division Ⅱ, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Haruo Okado
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai 982-8577, Japan
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China,PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
26
|
Kędziora M, Boccella S, Marabese I, Mlost J, Infantino R, Maione S, Starowicz K. Inhibition of anandamide breakdown reduces pain and restores LTP and monoamine levels in the rat hippocampus via the CB 1 receptor following osteoarthritis. Neuropharmacology 2023; 222:109304. [PMID: 36341807 DOI: 10.1016/j.neuropharm.2022.109304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/15/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Chronic pain is a persistent, complex condition that contributes to impaired mood, anxiety and emotional problems. Osteoarthritis (OA) is one of the major causes of chronic pain in adults and elderly people. A substantial body of evidence demonstrate that hippocampal neural circuits, especially monoamine dopamine and serotonin levels, contributes to negative affect and avoidance motivation experienced during pain. Current pharmacological strategies for OA patients are unsatisfying and the endocannabinoid system modulation might represent an alternative for the treatment of OA-related pain. In the present study, we used a rat model of osteoarthritis induced by intra-articular injection of sodium monoiodoacetate to assess, 28 days post-induction, the contribution of endocannabinoid system on the possible alteration in pain perception and affective behavior, in LTP and monoamine levels in the lateral entorhinal cortex-dentate gyrus pathway. The results show that OA-related chronic pain induces working memory impairment and depressive-like behavior appearance, diminishes LTP, decreases dopamine levels and increases serotonin levels in the rat dentate gyrus. URB597 administration (i.p., 1 mg/kg) reduces hyperalgesia and mechanical allodynia, improves recognition memory and depressive-live behavior, restores LTP and normalizes monoamine levels in the hippocampus. The effect was observed 60-120 min post-treatment and was blocked by AM251, which proves the action of URB597 via the CB1 receptor. Therefore, our study confirms the role of anandamide in OA-related chronic pain management at the behavioral and hippocampal levels. This article is part of the Special Issue on 'Advances in mechanisms and therapeutic targets relevant to pain'.
Collapse
Affiliation(s)
- Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli (IS), 86077, Italy; ERG, Endocannabinoid Research Group, CNR, Pozzuoli, Italy
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
27
|
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion. Nat Commun 2022; 13:7708. [PMID: 36550097 PMCID: PMC9780347 DOI: 10.1038/s41467-022-35346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.
Collapse
|
28
|
Zheng Q, Liu J, Ji Y, Zhang Y, Chen X, Liu B. Elevated levels of monocyte-lymphocyte ratio and platelet-lymphocyte ratio in adolescents with non-suicidal self-injury. BMC Psychiatry 2022; 22:618. [PMID: 36123674 PMCID: PMC9483869 DOI: 10.1186/s12888-022-04260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), and platelet-lymphocyte ratio (PLR) are blood indicators of systemic inflammation. This study aims to compare the levels of inflammatory indicators derived from blood routine tests between adolescents with non-suicidal self-injury (NSSI) and those with non-NSSI. METHODS A total of 201 adolescents with mood or emotional disorders were enrolled in this study, among which 106 had engaged in NSSI and 95 had never engaged in NSSI. NLR, MLR, and PLR were calculated based on the complete blood cell count. RESULTS There was no significant difference in demographic data between the two groups. The NSSI group exhibited significantly higher MLR (P = 0.001) and PLR (P = 0.007) than the non-NSSI group. Multivariate logistic regression analysis revealed that MLR (OR 1.545, 95%CI [1.087-2.281], P = 0.021) and PLR (OR 1.327, 95%CI [1.215-1.450], P < 0.001) were independently associated with NSSI. Receiver operating characteristic (ROC) curve analyses demonstrated that for differentiating NSSI from non-NSSI, the optimal cut-off value of MLR was 0.135 and the area under curve was 0.638 ([0.561- 0.715], P < 0.001), with a sensitivity of 90.60% and a specificity of 33.70%; the optimal cut-off value of PLR was 127.505 and the area under curve was of 0.611 ([0.533-0.689], P < 0.001), with a sensitivity of 39.60% and a specificity of 81.10%. CONCLUSIONS Systemic inflammation, as indicated by elevated MLR and PLR, was found to be strongly associated with NSSI among adolescents.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, 361000 Fujian China
| | - Jin Liu
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - YaJuan Ji
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, 361000 Fujian China
| | - Yan Zhang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan China
| | - XinChao Chen
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, 361000, Fujian, China.
| | - BangShan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Maternal stress induced anxiety-like behavior exacerbated by electromagnetic fields radiation in female rats offspring. PLoS One 2022; 17:e0273206. [PMID: 35998127 PMCID: PMC9397925 DOI: 10.1371/journal.pone.0273206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
There is a disagreement on whether extremely low frequency electromagnetic fields (ELF-EMF) have a beneficial or harmful effect on anxiety-like behavior. Prenatal stress induces frequent disturbances in offspring physiology such as anxiety-like behavior extending to adulthood. This study was designed to evaluate the effects of prenatal stress and ELF-EMF exposure before and during pregnancy on anxiety-like behavior and some anxiety-related pathways in the hippocampus of female rat offspring. A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, Stress (rats whose mothers underwent chronic stress), EMF (rats whose mothers were exposed to electromagnetic fields) and EMF/S (rats whose mothers were simultaneously exposed to chronic stress and ELF-EMF). The rats were given elevated plus-maze and open field tests and then their brains were dissected and their hippocampus were subjected to analysis. ELISA was used to measure 24(S)-hydroxy cholesterol, corticosterone, and serotonin levels. Cryptochrome2, steroidogenic acute regulatory protein, 3B-Hydroxy steroid dehydrogenase, N-methyl-D-aspartate receptor 2(NMDAr2) and phosphorylated N-methyl-D-aspartate receptor 2(PNMDAr2) were assayed by immunoblotting. Anxiety-like behavior increased in all treatment groups at the same time EMF increased anxiety induced by maternal stress in the EMF/S group. The stress group showed decreased serotonin and increased corticosterone levels. ELF-EMF elevated the PNMDAr2/NMDAr2 ratio and 24(S)-hydroxy cholesterol compared to the control group but did not change corticosterone. EMF did not restore changes induced by stress in behavioral and molecular tests. The results of the current study, clarified that ELF-EMF can induce anxiety-like behavior which may be attributed to an increase in the PNMDAr2/NMDAr2 ratio and 24(S)-OHC in the hippocampus, and prenatal stress may contribute to anxiety via a decrease in serotonin and an increase in corticosterone in the hippocampus. We also found that anxiety-like behavior induced by maternal stress exposure, is exacerbated by electromagnetic fields radiation.
Collapse
|
30
|
Souza R, Bueno D, Lima LB, Muchon MJ, Gonçalves L, Donato J, Shammah-Lagnado SJ, Metzger M. Top-down projections of the prefrontal cortex to the ventral tegmental area, laterodorsal tegmental nucleus, and median raphe nucleus. Brain Struct Funct 2022; 227:2465-2487. [DOI: 10.1007/s00429-022-02538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
|
31
|
Russo AM, Payet JM, Kent S, Lesku JA, Lowry CA, Hale MW. Acute treatment with 5-hydroxytryptophan increases social approach behaviour but does not activate serotonergic neurons in the dorsal raphe nucleus in juvenile male BALB/c mice: A model of human disorders with deficits of sociability. J Psychopharmacol 2022; 36:806-818. [PMID: 35475390 DOI: 10.1177/02698811221089039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The BALB/c mouse has been proposed as a model of human psychiatric disorders characterised by elevated anxiety and altered sociability. Juvenile BALB/c mice show decreased social exploratory behaviour, increased anxiety, and reduced brain serotonin synthesis compared to other strains including C57BL/6J mice. AIM To determine whether supplementation of brain serotonin synthesis alters social behaviour and activation of serotonergic neurons across subregions of the dorsal raphe nucleus (DR) in BALB/c mice. METHODS Juvenile male BALB/c mice were assigned to one of four treatment conditions: vehicle/vehicle, carbidopa (25 mg/kg)/vehicle, vehicle/5-HTP (10 mg/kg), carbidopa (25 mg/kg)/5-HTP (10 mg/kg). Social behaviour was measured using the three-chamber social approach test, followed by immunohistochemical staining for TPH2 and c-Fos to measure activation of serotonergic neurons across subregions of the DR. RESULTS Mice treated with carbidopa/5-HTP spent more time in the social cage zone and covered more distance in the social approach test compared to other treatment groups. There was no difference between treatment groups in the activation of serotonergic neurons across subregions of the DR. However, the DRD was associated with increased social approach behaviour in carbidopa/5-HTP treated animals. CONCLUSIONS Supplementation of serotonin synthesis can increase social approach behaviour in juvenile BALB/c mice. An increase in locomotor behaviour was also observed suggesting that increasing central serotonin synthesis may have led to a reduction in state anxiety, manifesting in increased exploratory behaviour. As no effect on serotonergic activation within the DR was found, alternative mechanisms are likely important for the effects of 5-HTP on social behaviour.
Collapse
Affiliation(s)
- Adrian M Russo
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Centre for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Collins HM, Pinacho R, Ozdemir D, Bannerman DM, Sharp T. Effect of selective serotonin reuptake inhibitor discontinuation on anxiety-like behaviours in mice. J Psychopharmacol 2022; 36:794-805. [PMID: 35607713 PMCID: PMC9247435 DOI: 10.1177/02698811221093032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Abrupt cessation of therapy with a selective serotonin reuptake inhibitor (SSRI) is associated with a discontinuation syndrome, typified by numerous disabling symptoms, including anxiety. Surprisingly, little is known of the behavioural effect of SSRI discontinuation in animals. AIM Here, the effect of SSRI discontinuation on anxiety-like behaviour was systematically investigated in mice. METHODS Experiments were based on a three-arm experimental design comprising saline, continued SSRI and discontinued SSRI. Mice were assessed 2 days after SSRI discontinuation over a 5-day period using the elevated plus maze (EPM) and other anxiety tests. RESULTS An exploratory experiment found cessation of paroxetine (12 days) was associated with decreased open-arm exploration and reduced total distance travelled, in male but not female mice. Follow-up studies confirmed a discontinuation effect on the EPM in male mice after paroxetine (12 days) and also citalopram (12 days). Mice receiving continued paroxetine (but not citalopram) also showed decreased open-arm exploration but this was dissociable from the effects of discontinuation. The discontinuation response to paroxetine did not strengthen after 28 days of treatment but was absent after 7 days of treatment. A discontinuation response was not discernible in other anxiety and fear-learning tests applied 3-5 days after treatment cessation. Finally, discontinuation effects on the EPM were typically associated with decreased locomotion on the test. However, separate locomotor testing implicated anxiety-provoked behavioural inhibition rather than a general reduction in motor activity. CONCLUSION Overall, this study provides evidence for a short-lasting behavioural discontinuation response to cessation of SSRI treatment in mice.
Collapse
Affiliation(s)
- Helen M Collins
- Department of Pharmacology,
University of Oxford, Oxford, UK,Department of Experimental
Psychology, University of Oxford, Oxford, UK
| | - Raquel Pinacho
- Department of Pharmacology,
University of Oxford, Oxford, UK,Department of Experimental
Psychology, University of Oxford, Oxford, UK
| | - Dersu Ozdemir
- Department of Pharmacology,
University of Oxford, Oxford, UK
| | - David M Bannerman
- Department of Experimental
Psychology, University of Oxford, Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology,
University of Oxford, Oxford, UK,Trevor Sharp, Department of
Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT,
UK.
| |
Collapse
|
33
|
Ono T, Hino K, Kimura T, Uchimura Y, Ashihara T, Higa T, Kojima H, Murakami T, Udagawa J. Excessive folic acid intake combined with undernutrition during gestation alters offspring behavior and brain monoamine profiles. Congenit Anom (Kyoto) 2022; 62:169-180. [PMID: 35531602 DOI: 10.1111/cga.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
Dietary folic acid augmentation during gestation reduces neurodevelopmental disorder risk in offspring; however, it is still unclear if excessive maternal folic acid intake can impair brain function in offspring. We examined if excessive folic acid intake throughout gestation altered the behavior of male offspring under poor nutrition during early gestation (E5.5-E11.5). Dams were divided into four groups: control (CON, 2 mg folic acid/kg of food), excessive folic acid fortification (FF, 10 mg folic acid/kg of food), undernutrition (UN, 40% food reduction from E5.5-E11.5), and excessive folic acid fortification plus undernutrition (UN-FF). Excess maternal folic acid fortification induced hyperactivity in the open-field and lower anxiety-like behavior in the elevated plus maze at 9 weeks of age. These behavioral changes were accompanied by reduced dopamine in the prefrontal cortex (PFC), norepinephrine in the amygdala, and 5-hydroxytryptamine (5-HT) in the dorsal midbrain (DM), PFC, and amygdala where 5-HT neurons project from the DM. Furthermore, canonical discriminant analysis, including dopamine and DOPAC concentrations in the PFC, norepinephrine concentrations in the PFC, amygdala, and pons, and 5-HT and 5-HIAA concentrations in the amygdala and DM, correctly classified 73.5% of the offspring in CON, FF, UN, and UN-FF groups. The first discriminant function mainly classified groups based on nutritional status, whereas the second function mainly classified groups based on folic acid intake. Our study suggests that combined transformations of brain monoamine profiles by maternal undernutrition and excess folic acid intake is involved in the behavioral alteration of offsprings.
Collapse
Affiliation(s)
- Tetsuo Ono
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan.,Omihachiman Community Medical Center, Omihachiman, Shiga, Japan
| | - Kodai Hino
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoko Kimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Physical Therapy, Kyoto Tachibana University, Yamashina-ku, Kyoto, Japan
| | - Yasuhiro Uchimura
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Ashihara
- Department of Medical Informatics and Biomedical Engineering, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takako Higa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
34
|
Wang J, Wang Y, Du X, Zhang H. Potassium Channel Conductance Is Involved in Phenylephrine-Induced Spontaneous Firing of Serotonergic Neurons in the Dorsal Raphe Nucleus. Front Cell Neurosci 2022; 16:891912. [PMID: 35734219 PMCID: PMC9207280 DOI: 10.3389/fncel.2022.891912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The serotonergic (5-HT) network from the dorsal raphe nucleus (DRN) of the brain has been demonstrated to regulate cognition, emotion, and behaviors, including learning and the sleep-wake cycle. Dysregulation of the activity of 5-HT neurons in the DRN is thought to play an important role in emotional disorders. The activity of 5-HT neurons is regulated by norepinephrine (NE) released from the projection terminals of noradrenergic input from the locus coeruleus (LC) via activation of the α1-adrenoceptor. However, insight into the molecular mechanism underlying this NE-induced regulation of 5-HT neuron activity is not clear. In this study, using the agonist of α1-adrenoceptor phenylephrine (PE), brain slices, and patch clamp, we found that A-type, Kv7/KCNQ, and calcium-activated low-conductance K+ channels (SK) underlie PE-induced spontaneous firing in DRN 5-HT neurons. Using single-cell PCR and immunofluorescence, we also identified the isoforms of these K+ channel families that might contribute to the NE/PE-induced spontaneous firing of DRN 5-HT neurons.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, China
- Department of Pharmacochemistry, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yingzi Wang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Hailin Zhang,
| |
Collapse
|
35
|
Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022; 14:862098. [PMID: 35592695 PMCID: PMC9110804 DOI: 10.3389/fnagi.2022.862098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
FOS proteins are early-responding gene products that contribute to the formation of activator protein-1. Several acute and chronic stimuli lead to Fos gene expression, accompanied by an increase of nuclear FOS, which appears to decline with aging. FOSB is another marker to detect acute cellular response, while ΔFOSB mirrors long-lasting changes in neuronal activity upon chronic stress. The notion that the occurrence of stress-related mood disorders shows some age dependence suggests that the brain's stress sensitivity is also a function of age. To study age-dependent stress vulnerability at the immediate-early gene level, we aimed to describe how the course of aging affects the neural responses of FOSB/ΔFOSB in the acute restraint stress (ARS), and chronic variable mild stress (CVMS) in male rats. Fourteen brain areas [central, medial, basolateral (BLA) amygdala; dorsolateral- (BNSTdl), oval- (BNSTov), dorsomedial-, ventral- (BNSTv), and fusiform- (BNSTfu) divisions of the bed nucleus of the stria terminalis; medial and lateral habenula, hypothalamic paraventricular nucleus (PVN), centrally-projecting Edinger-Westphal nucleus, dorsal raphe nucleus, barrel field of somatosensory cortex (S1)] were examined in the course of aging. Eight age groups [1-month-old (M), 1.5 M, 2 M, 3 M, 6 M, 12 M, 18 M, and 24 M] of rats were exposed to a single ARS vs. controls. In addition, rats in six age groups (2, 3, 6, 12, 18, and 24 M) were subjected to CVMS. The FOSB/ΔFOSB immunoreactivity (IR) was a function of age in both controls, ARS- and CVMS-exposed rats. ARS increased the FOSB/ΔFOSB in all nuclei (except in BLA), but only BNSTfu, BNSTv, and PVN reacted throughout the examined lifespan. The CVMS did not increase the FOSB/ΔFOSB in BLA, BNSTov, BNSTdl, and S1. PVN showed a constantly maintained FOSB/ΔFOSB IR during the examined life period. The maximum stress-evoked FOSB/ΔFOSB signal was detected at 2-3 M periods in the ARS- and at 6 M, 18 M in CVMS- model. Corresponding to our previous observations on FOS, the FOSB/ΔFOSB response to stress decreased with age in most of the examined nuclei. Only the PVN exerted a sustained age-independent FOSB/ΔFOSB, which may reflect the long-lasting adaptation response and plasticity of neurons that maintain the hypothalamus-pituitary-adrenal axis response throughout the lifespan.
Collapse
Affiliation(s)
- László Ákos Kovács
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Abolfazl Golgol
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Medical School, University of Pécs, Pécs, Hungary
- Center for Neuroscience & Szentagothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
36
|
Infantino R, Schiano C, Luongo L, Paino S, Mansueto G, Boccella S, Guida F, Ricciardi F, Iannotta M, Belardo C, Marabese I, Pieretti G, Serra N, Napoli C, Maione S. MED1/BDNF/TrkB pathway is involved in thalamic hemorrhage-induced pain and depression by regulating microglia. Neurobiol Dis 2022; 164:105611. [PMID: 34995755 DOI: 10.1016/j.nbd.2022.105611] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Central post-stroke pain (CPSP) and associated depression remain poorly understood and pharmacological treatments are unsatisfactory. Recently, microglia activation was suggested to be involved in CPSP pathophysiology. The goal of this study was to investigate the effectiveness of a co-ultramicronized combination of N-palmitoylethanolamide and luteolin (PEALut) in a mouse model of thalamic hemorrhage (TH)-induced CPSP. TH was established through the collagenase-IV injection in thalamic ventral-posterolateral-nucleus. PEALut effects in CPSP-associated behaviors were evaluated during a 28-days observation period. We found that repeated administrations of co-ultra PEALut significantly reduced mechanical hypersensitivity after TH, as compared to vehicle, by reducing the early microglial activation in the perilesional site. Moreover, PEALut prevented the development of depressive-like behavior (21 days post-TH). These effects were associated with the restoration of synaptic plasticity in LEC-DG pathway and monoamines levels found impaired in TH mice. Hippocampal MED1 and TrkB expressions were significantly increased in TH compared to sham mice 21 days post-TH, whereas BDNF levels were decreased. PEALut restored MED1/TrkB/BDNF expression in mice. Remarkably, we found significant overexpression of MED1 in the human autoptic brain specimens after stroke, indicating a translational potential of our findings. These results pave the way for better-investigating depression in TH- induced CPSP, together with the involvement of MED1/TrkB/BDNF pathway, proposing PEALut as an adjuvant treatment.
Collapse
Affiliation(s)
- Rosmara Infantino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli, Italy
| | - Salvatore Paino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy; Legal Medicine Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Surgical and Dental Specialities, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Serra
- Department of Public Health, University Federico II, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli, Italy.
| |
Collapse
|
37
|
Shah T, Dunning JL, Contet C. At the heart of the interoception network: Influence of the parasubthalamic nucleus on autonomic functions and motivated behaviors. Neuropharmacology 2022; 204:108906. [PMID: 34856204 PMCID: PMC8688299 DOI: 10.1016/j.neuropharm.2021.108906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
The parasubthalamic nucleus (PSTN), a small nucleus located on the lateral edge of the posterior hypothalamus, has emerged in recent years as a highly interconnected node within the network of brain regions sensing and regulating autonomic function and homeostatic needs. Furthermore, the strong integration of the PSTN with extended amygdala circuits makes it ideally positioned to serve as an interface between interoception and emotions. While PSTN neurons are mostly glutamatergic, some of them also express neuropeptides that have been associated with stress-related affective and motivational dysfunction, including substance P, corticotropin-releasing factor, and pituitary adenylate-cyclase activating polypeptide. PSTN neurons respond to food ingestion and anorectic signals, as well as to arousing and distressing stimuli. Functional manipulation of defined pathways demonstrated that the PSTN serves as a central hub in multiple physiologically relevant networks and is notably implicated in appetite suppression, conditioned taste aversion, place avoidance, impulsive action, and fear-induced thermoregulation. We also discuss the putative role of the PSTN in interoceptive dysfunction and negative urgency. This review aims to synthesize the burgeoning preclinical literature dedicated to the PSTN and to stimulate interest in further investigating its influence on physiology and behavior.
Collapse
Affiliation(s)
- Tanvi Shah
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Jeffery L Dunning
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
38
|
Neural serotonergic circuits for controlling long-term voluntary alcohol consumption in mice. Mol Psychiatry 2022; 27:4599-4610. [PMID: 36195637 PMCID: PMC9531213 DOI: 10.1038/s41380-022-01789-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Alcohol-use-disorders are chronic relapsing illnesses, often co-morbid with anxiety. We have previously shown using the "drinking-in-the-dark" model in mice that the stimulation of the serotonin receptor 1A (5-HT1A) reduces ethanol binge-drinking behaviour and withdrawal-induced anxiety. The 5-HT1A receptor is located either on Raphe neurons as autoreceptors, or on target neurons as heteroreceptors. By combining a pharmacological approach with biased agonists targeting the 5-HT1A auto- or heteroreceptor and a chemogenetic approach (DREADDs), here we identified that ethanol-binge drinking behaviour is dependent on 5-HT1A autoreceptors and 5-HT neuronal function, with a transition from DRN-dependent regulation of short-term (6 weeks) ethanol intake, to MRN-dependent regulation after longer ethanol exposure (12 weeks). We further identified a serotonergic microcircuit (5-HTMRN→DG) originating from the MRN and projecting to the dentate gyrus (DG) of the hippocampus, that is specifically affected by, and modulates long-term ethanol consumption. The present study indicates that targeting Raphe nuclei 5-HT1A autoreceptors with agonists might represent an innovative pharmacotherapeutic strategy to combat alcohol abuse.
Collapse
|
39
|
Radulovic J, Ivkovic S, Adzic M. From chronic stress and anxiety to neurodegeneration: Focus on neuromodulation of the axon initial segment. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:481-495. [PMID: 35034756 DOI: 10.1016/b978-0-12-819410-2.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To adapt to the sustained demands of chronic stress, discrete brain circuits undergo structural and functional changes often resulting in anxiety disorders. In some individuals, anxiety disorders precede the development of motor symptoms of Parkinson's disease (PD) caused by degeneration of neurons in the substantia nigra (SN). Here, we present a circuit framework for probing a causal link between chronic stress, anxiety, and PD, which postulates a central role of abnormal neuromodulation of the SN's axon initial segment by brainstem inputs. It is grounded in findings demonstrating that the earliest PD pathologies occur in the stress-responsive, emotion regulation network of the brainstem, which provides the SN with dense aminergic and cholinergic innervation. SN's axon initial segment (AIS) has unique features that support the sustained and bidirectional propagation of activity in response to synaptic inputs. It is therefore, especially sensitive to circuit-mediated stress-induced imbalance of neuromodulation, and thus a plausible initiating site of neurodegeneration. This could explain why, although secondary to pathophysiologies in other brainstem nuclei, SN degeneration is the most extensive. Consequently, the cardinal symptom of PD, severe motor deficits, arise from degeneration of the nigrostriatal pathway rather than other brainstem nuclei. Understanding when and how circuit dysfunctions underlying anxiety can progress to neurodegeneration, raises the prospect of timed interventions for reversing, or at least impeding, the early pathophysiologies that lead to PD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Jelena Radulovic
- Department of Neuroscience, Albert Einstein Medical College, Bronx, NY, United States; Department of Psychiatry and Behavioral Sciences, Albert Einstein Medical College, Bronx, NY, United States.
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
40
|
Lin S, Du Y, Xia Y, Xie Y, Xiao L, Wang G. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms. Front Psychiatry 2022; 13:950910. [PMID: 36159933 PMCID: PMC9492959 DOI: 10.3389/fpsyt.2022.950910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUNDS The neural circuit mechanisms underlying depression remain unclear. Recently optogenetics has gradually gained recognition as a novel technique to regulate the activity of neurons with light stimulation. Scientists are now transferring their focus to the function of brain regions and neural circuits in the pathogenic progress of depression. Deciphering the circuitry mechanism of depressive-like behaviors may help us better understand the symptomatology of depression. However, few studies have summarized current progress on optogenetic researches into the neural circuit mechanisms of depressive-like behaviors. AIMS This review aimed to introduce fundamental characteristics and methodologies of optogenetics, as well as how this technique achieves specific neuronal control with spatial and temporal accuracy. We mainly summarized recent progress in neural circuit discoveries in depressive-like behaviors using optogenetics and exhibited the potential of optogenetics as a tool to investigate the mechanism and possible optimization underlying antidepressant treatment such as ketamine and deep brain stimulation. METHODS A systematic review of the literature published in English mainly from 2010 to the present in databases was performed. The selected literature is then categorized and summarized according to their neural circuits and depressive-like behaviors. CONCLUSIONS Many important discoveries have been made utilizing optogenetics. These findings support optogenetics as a powerful and potential tool for studying depression. And our comprehension to the etiology of depression and other psychiatric disorders will also be more thorough with this rapidly developing technique in the near future.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiwei Du
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujie Xia
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yumeng Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Xu Z, Feng Z, Zhao M, Sun Q, Deng L, Jia X, Jiang T, Luo P, Chen W, Tudi A, Yuan J, Li X, Gong H, Luo Q, Li A. Whole-brain connectivity atlas of glutamatergic and GABAergic neurons in the mouse dorsal and median raphe nuclei. eLife 2021; 10:65502. [PMID: 34792021 PMCID: PMC8626088 DOI: 10.7554/elife.65502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.
Collapse
Affiliation(s)
- Zhengchao Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Mengting Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Qingtao Sun
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Lei Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Pan Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Ayizuohere Tudi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
42
|
Wichert N, Witt M, Blume C, Scheper T. Clinical applicability of optogenetic gene regulation. Biotechnol Bioeng 2021; 118:4168-4185. [PMID: 34287844 DOI: 10.1002/bit.27895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/27/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
The field of optogenetics is rapidly growing in relevance and number of developed tools. Among other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems, will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications.
Collapse
Affiliation(s)
- Nina Wichert
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Martin Witt
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Cornelia Blume
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| |
Collapse
|
43
|
Nishitani N, Ohmura Y, Kobayashi K, Murashita T, Yoshida T, Yoshioka M. Serotonin neurons in the median raphe nucleus bidirectionally regulate somatic signs of nicotine withdrawal in mice. Biochem Biophys Res Commun 2021; 562:62-68. [PMID: 34038754 DOI: 10.1016/j.bbrc.2021.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
In chronic smokers, nicotine withdrawal symptoms during tobacco cessation can lead to smoking relapse. In rodent models, chronic exposure to nicotine elicited physical dependence, whereas acute antagonism of nicotinic acetylcholine receptors (nAChRs) immediately precipitated withdrawal symptoms. Although the central serotonergic system plays an important role in nicotine withdrawal, the exact serotonergic raphe nuclei regulating these symptoms remain unknown. We used transgenic mice expressing archaerhodopsinTP009 or channelrhodopsin-2[C128S] exclusively in the central serotonergic neurons to selectively manipulate serotonergic neurons in each raphe nucleus. Nicotine withdrawal symptoms were precipitated by an acute injection of mecamylamine, a nonspecific nAChR antagonist, following chronic nicotine consumption. Somatic signs were used as measures of nicotine withdrawal symptoms. Acute mecamylamine administration significantly increased ptosis occurrence in nicotine-drinking mice compared with that in control-drinking mice. Optogenetic inhibition of the serotonergic neurons in the median raphe nucleus (MRN), but not of those in the dorsal raphe nucleus (DRN), mimicked the symptoms observed during mecamylamine-precipitated nicotine withdrawal even in nicotine-naïve mice following the administration of acute mecamylamine injection. Optogenetic activation of the serotonergic neurons in the MRN nearly abolished the occurrence of ptosis in nicotine-drinking mice. The serotonergic neurons in the MRN, but not those in the DRN, are necessary for the occurrence of somatic signs, a nicotine withdrawal symptom, and the activation of these neurons may act as a potential therapeutic strategy for preventing the somatic manifestations of nicotine withdrawal.
Collapse
Affiliation(s)
- Naoya Nishitani
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Yu Ohmura
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan.
| | - Keita Kobayashi
- Hokkaido University School of Medicine, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Taichi Murashita
- Hokkaido University School of Medicine, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Takayuki Yoshida
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
44
|
Cheng H, Qi Y, Lai N, Yang L, Xu C, Wang S, Guo Y, Chen Z, Wang Y. Inhibition of hyperactivity of the dorsal raphe 5-HTergic neurons ameliorates hippocampal seizure. CNS Neurosci Ther 2021; 27:963-972. [PMID: 33955651 PMCID: PMC8265946 DOI: 10.1111/cns.13648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/07/2023] Open
Abstract
Aims Epilepsy, frequently comorbid with depression, easily develops drug resistance. Here, we investigated how dorsal raphe (DR) and its 5‐HTergic neurons are implicated in epilepsy. Methods In mouse hippocampal kindling model, using immunochemistry, calcium fiber photometry, and optogenetics, we investigated the causal role of DR 5‐HTergic neurons in seizure of temporal lobe epilepsy (TLE). Further, deep brain stimulation (DBS) of the DR with different frequencies was applied to test its effect on hippocampal seizure and depressive‐like behavior. Results Number of c‐fos+ neurons in the DR and calcium activities of DR 5‐HTergic neurons were both increased during kindling‐induced hippocampal seizures. Optogenetic inhibition, but not activation, of DR 5‐HTergic neurons conspicuously retarded seizure acquisition specially during the late period. For clinical translation, 1‐Hz‐specific, but not 20‐Hz or 100‐Hz, DBS of the DR retarded the acquisition of hippocampal seizure. This therapeutic effect may be mediated by the inhibition of DR 5‐HTergic neurons, as optogenetic activation of DR 5‐HTergic neurons reversed the anti‐seizure effects of 1‐Hz DR DBS. However, DBS treatment had no effect on depressive‐like behavior. Conclusion Inhibition of hyperactivity of DR 5‐HTergic neuron may present promising anti‐seizure effect and the DR may be a potential DBS target for the therapy of TLE.
Collapse
Affiliation(s)
- Heming Cheng
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingbei Qi
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Guo
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
ZFPM1 Necessary for Development of Serotonergic Projections Related to Anxiety and Contextual Fear Learning. J Neurosci 2021; 41:3945-3947. [PMID: 33952623 DOI: 10.1523/jneurosci.3125-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
|
46
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
47
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
48
|
Fakhoury M. Optogenetics: A revolutionary approach for the study of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110094. [PMID: 32890694 DOI: 10.1016/j.pnpbp.2020.110094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 10/24/2022]
Abstract
Depression is a severe and chronic mental disorder that affects millions of individuals worldwide. Symptoms include depressed mood, loss of interest, reduced motivation and suicidal thoughts. Even though findings from genetic, molecular and imaging studies have helped provide some clues regarding the mechanisms underlying depression-like behaviors, there are still many unanswered questions that need to be addressed. Optogenetics, a technique developed in the early 2000s, has proved effective in the study and treatment of depression and depression-like behaviors and has revolutionized already known experimental techniques. This technique employs light and genetic tools to either inhibit or excite specific neurons or pathways within the brain. In this review paper, an up-to-date understanding of the use of optogenetics in the study of depression-like behaviors is provided, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, Lebanon.
| |
Collapse
|
49
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2021; 42:1671-1692. [PMID: 33651238 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Rinehart L, Spencer S. Which came first: Cannabis use or deficits in impulse control? Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110066. [PMID: 32795592 PMCID: PMC7750254 DOI: 10.1016/j.pnpbp.2020.110066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Impulse control deficits are often found to co-occur with substance use disorders (SUDs). On the one hand, it is well known that chronic intake of drugs of abuse remodels the brain with significant consequences for a range of cognitive behaviors. On the other hand, individual variation in impulse control may contribute to differences in susceptibility to SUDs. Both of these relationships have been described, thus leading to a "chicken or the egg" debate which remains to be fully resolved. Does impulsivity precede drug use or does it manifest as a function of problematic drug usage? The link between impulsivity and SUDs has been most strongly established for cocaine and alcohol use disorders using both preclinical models and clinical data. Much less is known about the potential link between impulsivity and cannabis use disorder (CUD) or the directionality of this relationship. The initiation of cannabis use occurs most often during adolescence prior to the brain's maturation, which is recognized as a critical period of development. The long-term effects of chronic cannabis use on the brain and behavior have started to be explored. In this review we will summarize these observations, especially as they pertain to the relationship between impulsivity and CUD, from both a psychological and biological perspective. We will discuss impulsivity as a multi-dimensional construct and attempt to reconcile the results obtained across modalities. Finally, we will discuss possible avenues for future research with emerging longitudinal data.
Collapse
Affiliation(s)
- Linda Rinehart
- University of Minnesota, Department of Psychiatry and Behavioral Sciences
| | - Sade Spencer
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, USA.
| |
Collapse
|