1
|
Nassisi M, Mainetti C, Sperti A, Galmozzi G, Aretti A, Leone G, Nicotra V, Grilli F, Rinaldi B, Natacci F, Bedeschi MF, Viola F. Optical coherence tomography angiography findings in Williams-Beuren syndrome. Graefes Arch Clin Exp Ophthalmol 2024; 262:1131-1140. [PMID: 38032380 DOI: 10.1007/s00417-023-06323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Williams-Beuren syndrome (WBS) is a rare genetic disease characterized by psychomotor delay, cardiovascular, musculoskeletal, and endocrine problems. Retinal involvement, which is not well characterized, has also been described. The purpose of this cross-sectional study is to describe the characteristics in optical coherence tomography (OCT) and OCT-angiography (OCTA) of patients with WBS. METHODS We included patients with WBS confirmed by genetic analysis. The patients underwent OCT (30° × 25°, 61 B-scans) and OCTA (10° × 10° and 20° × 20°) examinations, all centered on the. Data on retinal thickness (total, inner and outer layers) and foveal morphology on OCT and vessel and perfusion density in OCTA (VD and PD, respectively) were collected. These data were compared with an age-matched control group. RESULTS 22 eyes of 22 patients with WBS (10 females, mean age 31.5 years) were included. Retinal thickness (and specifically inner retinal layers) in OCT was significantly reduced in all sectors (central, parafoveal, and perifoveal) compared to the control group (p < 0.001 in all sectors). Fovea in WBS eyes was broader and shallower than controls. The PD and VD in both 10 and 20 degrees of fields in OCTA was significantly reduced in patients with WBS, in all vascular plexa (all p < 0.001). CONCLUSIONS This study is the first to quantify and demonstrate retinal structural and microvascular alterations in patients with WBS. Further studies with longitudinal data will reveal the potential clinical relevance of these alterations.
Collapse
Affiliation(s)
- Marco Nassisi
- Ophthalmology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, Via F. Sforza 35, 20100, Milan, Italy.
| | - Claudia Mainetti
- Ophthalmology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Sperti
- Department of Clinical Sciences and Community Health, University of Milan, Via F. Sforza 35, 20100, Milan, Italy
| | - Guido Galmozzi
- Department of Clinical Sciences and Community Health, University of Milan, Via F. Sforza 35, 20100, Milan, Italy
| | - Andrea Aretti
- Department of Clinical Sciences and Community Health, University of Milan, Via F. Sforza 35, 20100, Milan, Italy
| | - Gaia Leone
- Ophthalmology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Nicotra
- Medical Genetics Unit, Department Woman Child Newborn, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Grilli
- Medical Genetics Unit, Department Woman Child Newborn, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Berardo Rinaldi
- Medical Genetics Unit, Department Woman Child Newborn, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Department Woman Child Newborn, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Francesca Bedeschi
- Medical Genetics Unit, Department Woman Child Newborn, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Viola
- Ophthalmology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Via F. Sforza 35, 20100, Milan, Italy
| |
Collapse
|
2
|
Serrano-Juárez CA, Prieto-Corona B, Rodríguez-Camacho M, Sandoval-Lira L, Villalva-Sánchez ÁF, Yáñez-Téllez MG, López MFR. Neuropsychological Genotype-Phenotype in Patients with Williams Syndrome with Atypical Deletions: A Systematic Review. Neuropsychol Rev 2023; 33:891-911. [PMID: 36520254 DOI: 10.1007/s11065-022-09571-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/04/2022] [Indexed: 12/16/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a microdeletion in the q11.23 region of chromosome 7. Recent case series reports and clinical case studies have suggested that the cognitive, behavioral, emotional, and social profile in WS could depend on the genes involved in the deletion. The objective of this systematic review was to analyze and synthesize the variability of the cognitive and behavioral profile of WS with atypical deletion and its probable relationship with the affected genes. The medical subject headings searched were "Williams syndrome," "genotype," "phenotype," "cognitive profile," and "atypical deletion." The studies included were in English or Spanish, with children and adults, and published between January 2000 and October 2022. Twenty-three studies are reported. The characteristics of the participants, the genes involved, the neuropsychological domains and instruments, and the prevalence of the WS cognitive profile criteria were used for the genotype-phenotype analysis. The genes with a major impact on the cognitive profile of WS were (a) LIMK1 and those belonging to the GTF2I family, the former with a greater influence on visuospatial abilities; (b) GTF2IRD1 and GTF2I, which have an impact on intellectual capacity as well as on visuospatial and social skills; (c) FZD9, BAZ1B, STX1A, and CLIP2, which influence the cognitive profile if other genes are also effected; and (d) GTF2IRD2, which is related to the severity of the effect on visuospatial and social skills, producing a behavioral phenotype like that of the autism spectrum. The review revealed four neuropsychological phenotypes, depending on the genes involved, and established the need for more comprehensive study of the neuropsychological profile of these patients. Based on the results found, we propose a model for the investigation of and clinical approach to the WS neuropsychological phenotype.
Collapse
Affiliation(s)
- Carlos Alberto Serrano-Juárez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Belén Prieto-Corona
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México.
| | - Mario Rodríguez-Camacho
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Lucero Sandoval-Lira
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ángel Fernando Villalva-Sánchez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ma Guillermina Yáñez-Téllez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | | |
Collapse
|
3
|
Kippenhan JS, Gregory MD, Nash T, Kohn P, Mervis CB, Eisenberg DP, Garvey MH, Roe K, Morris CA, Kolachana B, Pani AM, Sorcher L, Berman KF. Dorsal visual stream and LIMK1: hemideletion, haplotype, and enduring effects in children with Williams syndrome. J Neurodev Disord 2023; 15:29. [PMID: 37633900 PMCID: PMC10464045 DOI: 10.1186/s11689-023-09493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/04/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Williams syndrome (WS), a rare neurodevelopmental disorder caused by hemizygous deletion of ~ 25 genes from chromosomal band 7q11.23, affords an exceptional opportunity to study associations between a well-delineated genetic abnormality and a well-characterized neurobehavioral profile. Clinically, WS is typified by increased social drive (often termed "hypersociability") and severe visuospatial construction deficits. Previous studies have linked visuospatial problems in WS with alterations in the dorsal visual processing stream. We investigated the impacts of hemideletion and haplotype variation of LIMK1, a gene hemideleted in WS and linked to neuronal maturation and migration, on the structure and function of the dorsal stream, specifically the intraparietal sulcus (IPS), a region known to be altered in adults with WS. METHODS We tested for IPS structural and functional changes using longitudinal MRI in a developing cohort of children with WS (76 visits from 33 participants, compared to 280 visits from 94 typically developing age- and sex-matched participants) over the age range of 5-22. We also performed MRI studies of 12 individuals with rare, shorter hemideletions at 7q11.23, all of which included LIMK1. Finally, we tested for effects of LIMK1 variation on IPS structure and imputed LIMK1 expression in two independent cohorts of healthy individuals from the general population. RESULTS IPS structural (p < 10-4 FDR corrected) and functional (p < .05 FDR corrected) anomalies previously reported in adults were confirmed in children with WS, and, consistent with an enduring genetic mechanism, were stable from early childhood into adulthood. In the short hemideletion cohort, IPS deficits similar to those in WS were found, although effect sizes were smaller than those found in WS for both structural and functional findings. Finally, in each of the two general population cohorts stratified by LIMK1 haplotype, IPS gray matter volume (pdiscovery < 0.05 SVC, preplication = 0.0015) and imputed LIMK1 expression (pdiscovery = 10-15, preplication = 10-23) varied according to LIMK1 haplotype. CONCLUSIONS This work offers insight into neurobiological and genetic mechanisms responsible for the WS phenotype and also more generally provides a striking example of the mechanisms by which genetic variation, acting by means of molecular effects on a neural intermediary, can influence human cognition and, in some cases, lead to neurocognitive disorders.
Collapse
Affiliation(s)
- J Shane Kippenhan
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Michael D Gregory
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany Nash
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip Kohn
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, 40202, USA
| | - Daniel P Eisenberg
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Madeline H Garvey
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katherine Roe
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Colleen A Morris
- Department of Pediatrics, Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, 89102, USA
| | - Bhaskar Kolachana
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ariel M Pani
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Leah Sorcher
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Moll H, Pueschel E, Ni Q, Little A. Sharing Experiences in Infancy: From Primary Intersubjectivity to Shared Intentionality. Front Psychol 2021; 12:667679. [PMID: 34335379 PMCID: PMC8316826 DOI: 10.3389/fpsyg.2021.667679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
We contrast two theses that make different assumptions about the developmental onset of human-unique sociality. The primary intersubjectivity thesis (PIT) argues that humans relate to each other in distinct ways from the beginning of life, as is shown by newborns' participation in face-to-face encounters or "primary intersubjectivity." According to this thesis, humans' innate relational capacity is the seedbed from which all subsequent social-emotional and social-cognitive developments continuously emerge. The shared intentionality thesis (SIT) states that human-unique forms of interaction develop at 9-12 months of age, when infants put their heads together with others in acts of object-focused joint attention and simple collaborative activities. According to this thesis, human-unique cognition emerges rapidly with the advent of mind-reading capacities that evolved specifically for the purpose of coordination. In this paper, we first contrast the two theses and then sketch the outlines of an account that unifies their strengths. This unified account endorses the PIT's recognition of the fundamental importance of primary intersubjectivity. Any act of sharing experiences is founded on the communicative capacity that is already displayed by young infants in primary intersubjectivity. At the same time, we question the PIT's interpretation that dyadic encounters have the triadic structure of joint attention. Lastly, we draw on empirical work on the development of joint attention, imitation, and social referencing that serves as evidence that primary intersubjectivity continuously unfolds into the capacity for triadic joint attention.
Collapse
Affiliation(s)
- Henrike Moll
- Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | | | | | | |
Collapse
|
5
|
Gory-Fauré S, Powell R, Jonckheere J, Lanté F, Denarier E, Peris L, Nguyen CH, Buisson A, Lafanechère L, Andrieux A. Pyr1-Mediated Pharmacological Inhibition of LIM Kinase Restores Synaptic Plasticity and Normal Behavior in a Mouse Model of Schizophrenia. Front Pharmacol 2021; 12:627995. [PMID: 33790791 PMCID: PMC8006432 DOI: 10.3389/fphar.2021.627995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The search for effective treatments for neuropsychiatric disorders is ongoing, with progress being made as brain structure and neuronal function become clearer. The central roles played by microtubules (MT) and actin in synaptic transmission and plasticity suggest that the cytoskeleton and its modulators could be relevant targets for the development of new molecules to treat psychiatric diseases. In this context, LIM Kinase - which regulates both the actin and MT cytoskeleton especially in dendritic spines, the post-synaptic compartment of the synapse - might be a good target. In this study, we analyzed the consequences of blocking LIMK1 pharmacologically using Pyr1. We investigated synaptic plasticity defects and behavioral disorders in MAP6 KO mice, an animal model useful for the study of psychiatric disorders, particularly schizophrenia. Our results show that Pyr1 can modulate MT dynamics in neurons. In MAP6 KO mice, chronic LIMK inhibition by long-term treatment with Pyr1 can restore normal dendritic spine density and also improves long-term potentiation, both of which are altered in these mice. Pyr1 treatment improved synaptic plasticity, and also reduced social withdrawal and depressive/anxiety-like behavior in MAP6 KO mice. Overall, the results of this study validate the hypothesis that modulation of LIMK activity could represent a new therapeutic strategy for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sylvie Gory-Fauré
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Rebecca Powell
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Julie Jonckheere
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Fabien Lanté
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France.,Health Department, Interdisciplinary Research Institute of Grenoble, CEA, Grenoble, France
| | - Leticia Peris
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Chi Hung Nguyen
- Chimie et Modélisation pour la Biologie du Cancer, Institut Curie, PSL Research University, CNRS UMR9187, Inserm U1196, Orsay, France
| | - Alain Buisson
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Université Grenoble Alpes, Grenoble, France.,Microenvironment, Cell Plasticity and Signaling Department, Institute for Advanced Biosciences, CNRS UMR5309, Inserm U1209, Grenoble, France
| | - Annie Andrieux
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France.,Health Department, Interdisciplinary Research Institute of Grenoble, CEA, Grenoble, France
| |
Collapse
|
6
|
Gregory MD, Mervis CB, Elliott ML, Kippenhan JS, Nash T, B Czarapata J, Prabhakaran R, Roe K, Eisenberg DP, Kohn PD, Berman KF. Williams syndrome hemideletion and LIMK1 variation both affect dorsal stream functional connectivity. Brain 2020; 142:3963-3974. [PMID: 31687737 DOI: 10.1093/brain/awz323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/08/2019] [Accepted: 08/28/2019] [Indexed: 01/29/2023] Open
Abstract
Williams syndrome is a rare genetic disorder caused by hemizygous deletion of ∼1.6 Mb affecting 26 genes on chromosome 7 (7q11.23) and is clinically typified by two cognitive/behavioural hallmarks: marked visuospatial deficits relative to verbal and non-verbal reasoning abilities and hypersocial personality. Clear knowledge of the circumscribed set of genes that are affected in Williams syndrome, along with the well-characterized neurobehavioural phenotype, offers the potential to elucidate neurogenetic principles that may apply in genetically and clinically more complex settings. The intraparietal sulcus, in the dorsal visual processing stream, has been shown to be structurally and functionally altered in Williams syndrome, providing a target for investigating resting-state functional connectivity and effects of specific genes hemideleted in Williams syndrome. Here, we tested for effects of the LIMK1 gene, deleted in Williams syndrome and important for neuronal maturation and migration, on intraparietal sulcus functional connectivity. We first defined a target brain phenotype by comparing intraparietal sulcus resting functional connectivity in individuals with Williams syndrome, in whom LIMK1 is hemideleted, with typically developing children. Then in two separate cohorts from the general population, we asked whether intraparietal sulcus functional connectivity patterns similar to those found in Williams syndrome were associated with sequence variation of the LIMK1 gene. Four independent between-group comparisons of resting-state functional MRI data (total n = 510) were performed: (i) 20 children with Williams syndrome compared to 20 age- and sex-matched typically developing children; (ii) a discovery cohort of 99 healthy adults stratified by LIMK1 haplotype; (iii) a replication cohort of 32 healthy adults also stratified by LIMK1 haplotype; and (iv) 339 healthy adolescent children stratified by LIMK1 haplotype. For between-group analyses, differences in intraparietal sulcus resting-state functional connectivity were calculated comparing children with Williams syndrome to matched typically developing children and comparing LIMK1 haplotype groups in each of the three general population cohorts separately. Consistent with the visuospatial construction impairment and hypersocial personality that typify Williams syndrome, the Williams syndrome cohort exhibited opposite patterns of intraparietal sulcus functional connectivity with visual processing regions and social processing regions: decreased circuit function in the former and increased circuit function in the latter. All three general population groups also showed LIMK1 haplotype-related differences in intraparietal sulcus functional connectivity localized to the fusiform gyrus, a visual processing region also identified in the Williams syndrome-typically developing comparison. These results suggest a neurogenetic mechanism, in part involving LIMK1, that may bias neural circuit function in both the general population and individuals with Williams syndrome.
Collapse
Affiliation(s)
- Michael D Gregory
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, KY, USA
| | - Maxwell L Elliott
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - J Shane Kippenhan
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany Nash
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Jasmin B Czarapata
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Ranjani Prabhakaran
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Roe
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Daniel P Eisenberg
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Philip D Kohn
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Karen F Berman
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA.,Psychosis and Cognitive Studies Section, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Genes dysregulated in the blood of people with Williams syndrome are enriched in protein-coding genes positively selected in humans. Eur J Med Genet 2020; 63:103828. [DOI: 10.1016/j.ejmg.2019.103828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/09/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
|
8
|
The Impact of Brain Lateralization and Anxiety-Like Behaviour in an Extensive Operant Conditioning Task in Zebrafish (Danio rerio). Symmetry (Basel) 2019. [DOI: 10.3390/sym11111395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies in mammals, birds, and fish have documented better cognitive abilities associated with an asymmetrical distribution of cognitive functions in the two halves of the brain, also known as ‘functional brain lateralization’. However, the role of brain lateralization in learning abilities is still unclear. In addition, although recent studies suggest a link between some personality traits and accuracy in cognitive tasks, the relation between anxiety and learning skills in Skinner boxes needs to be clarified. In the present study, we tested the impact of brain lateralization and anxiety-like behaviour in the performance of an extensive operant conditioning task. Zebrafish tested in a Skinner box underwent 500 trials in a colour discrimination task (red vs. yellow and green vs. blue). To assess the degree of lateralization, fish were observed in a detour test in the presence of a dummy predator, and anxiety-like behaviour was studied by observing scototaxis response in an experimental tank divided into light and dark compartments. Although the low performance in the colour discrimination task did not permit the drawing of firm conclusions, no correlation was found between the accuracy in the colour discrimination task and the behaviour in the detour and scototaxis tests. This suggests that neither different degrees of asymmetries in brain lateralization nor anxiety may significantly impact the learning skills of zebrafish.
Collapse
|
9
|
Benítez-Burraco A, Kimura R. Robust Candidates for Language Development and Evolution Are Significantly Dysregulated in the Blood of People With Williams Syndrome. Front Neurosci 2019; 13:258. [PMID: 30971880 PMCID: PMC6444191 DOI: 10.3389/fnins.2019.00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023] Open
Abstract
Williams syndrome (WS) is a clinical condition, involving cognitive deficits and an uneven language profile, which has been the object of intense inquiry over the last decades. Although WS results from the hemideletion of around two dozen genes in chromosome 7, no gene has yet been probed to account for, or contribute significantly to, the language problems exhibited by the affected people. In this paper we have relied on gene expression profiles in the peripheral blood of WS patients obtained by microarray analysis and show that several robust candidates for language disorders and/or for language evolution in the species, all of them located outside the hemideleted region, are up- or downregulated in the blood of subjects with WS. Most of these genes play a role in the development and function of brain areas involved in language processing, which exhibit structural and functional anomalies in people with this condition. Overall, these genes emerge as robust candidates for language dysfunction in WS.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
11
|
Cognitive, Behavioral, and Adaptive Profiles in Williams Syndrome With and Without Loss of GTF2IRD2. J Int Neuropsychol Soc 2018; 24:896-904. [PMID: 30375319 DOI: 10.1017/s1355617718000711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
UNLABELLED Williams syndrome (WS) is a neurodevelopmental disorder that results from a heterozygous microdeletion on chromosome 7q11.23. Most of the time, the affected region contains ~1.5 Mb of sequence encoding approximately 24 genes. Some 5-8% of patients with WS have a deletion exceeding 1.8 Mb, thereby affecting two additional genes, including GTF2IRD2. Currently, there is no consensus regarding the implications of GTF2IRD2 loss for the neuropsychological phenotype of WS patients. OBJECTIVES The present study aimed to identify the role of GTF2IRD2 in the cognitive, behavioral, and adaptive profile of WS patients. METHODS Twelve patients diagnosed with WS participated, four with GTF2IRD2 deletion (atypical WS group), and eight without this deletion (typical WS group). The age range of both groups was 7-18 years old. Each patient's 7q11.23 deletion scope was determined by chromosomal microarray analysis. Cognitive, behavioral, and adaptive abilities were assessed with a battery of neuropsychological tests. RESULTS Compared with the typical WS group, the atypical WS patients with GTF2IRD2 deletion had more impaired visuospatial abilities and more significant behavioral problems, mainly related to the construct of social cognition. CONCLUSIONS These findings provide new evidence regarding the influence of the GTF2IRD2 gene on the severity of behavioral symptoms of WS related to social cognition and certain visuospatial abilities. (JINS, 2018, 24, 896-904).
Collapse
|
12
|
Keire PA, Bressler SL, Mulvihill ER, Starcher BC, Kang I, Wight TN. Inhibition of versican expression by siRNA facilitates tropoelastin synthesis and elastic fiber formation by human SK-LMS-1 leiomyosarcoma smooth muscle cells in vitro and in vivo. Matrix Biol 2015; 50:67-81. [PMID: 26723257 DOI: 10.1016/j.matbio.2015.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 12/23/2022]
Abstract
Versican is an extracellular matrix (ECM) molecule that interacts with other ECM components to influence ECM organization, stability, composition, and cell behavior. Versican is known to increase in a number of cancers, but little is known about how versican influences the amount and organization of the ECM components in the tumor microenvironment. In the present study, we modulated versican expression using siRNAs in the human leiomyosarcoma (LMS) smooth muscle cell line SK-LMS-1, and observed the formation of elastin and elastic fibers in vitro and also in vivo in a nude mouse tumor model. Constitutive siRNA-directed knockdown of versican in LMS cells resulted in increased levels of elastin, as shown by immunohistochemical staining of the cells in vitro, and by mRNA and protein analyses. Moreover, versican siRNA LMS cells, when injected into nude mice, generated smaller tumors that had significantly greater immunohistochemical and histochemical staining for elastin when compared to control tumors. Additionally, microarray analyses were used to determine the influence of versican isoform modulation on gene expression profiles, and to identify genes that influence and relate to the process of elastogenesis. cDNA microarray analysis and TaqMan low density array validation identified previously unreported genes associated with downregulation of versican and increased elastogenesis. These results highlight an important role for the proteoglycan versican in regulating the expression and assembly of elastin and the phenotype of LMS cells.
Collapse
Affiliation(s)
- Paul A Keire
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Steven L Bressler
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Eileen R Mulvihill
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Barry C Starcher
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
13
|
Cuberos H, Vallée B, Vourc'h P, Tastet J, Andres CR, Bénédetti H. Roles of LIM kinases in central nervous system function and dysfunction. FEBS Lett 2015; 589:3795-806. [PMID: 26545494 DOI: 10.1016/j.febslet.2015.10.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022]
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) regulate actin dynamics by phosphorylating cofilin. In this review, we outline studies that have shown an involvement of LIMKs in neuronal function and we detail some of the pathways and molecular mechanisms involving LIMKs in neurodevelopment and synaptic plasticity. We also review the involvement of LIMKs in neuronal diseases and emphasize the differences in the regulation of LIMKs expression and mode of action. We finally present the existence of a cofilin-independent pathway also involved in neuronal function. A better understanding of the differences between both LIMKs and of the precise molecular mechanisms involved in their mode of action and regulation is now required to improve our understanding of the physiopathology of the neuronal diseases associated with LIMKs.
Collapse
Affiliation(s)
- H Cuberos
- CNRS UPR 4301, CBM, Orléans, France; UMR INSERM U930, Université François-Rabelais, Tours, France
| | - B Vallée
- CNRS UPR 4301, CBM, Orléans, France
| | - P Vourc'h
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | - J Tastet
- University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, Netherlands
| | - C R Andres
- UMR INSERM U930, Université François-Rabelais, Tours, France; CHRU de Tours, Service de Biochimie et de Biologie Moléculaire, Tours, France
| | | |
Collapse
|
14
|
Abstract
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease.
Collapse
Affiliation(s)
| | - Scott H Soderling
- From the Departments of Cell Biology and Neurobiology, Duke University, School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
15
|
Karmiloff-Smith A. Ontogeny, Genetics, and Evolution: A Perspective from Developmental Cognitive Neuroscience. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot.2006.1.1.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
LIMK1 regulates long-term memory and synaptic plasticity via the transcriptional factor CREB. Mol Cell Biol 2015; 35:1316-28. [PMID: 25645926 DOI: 10.1128/mcb.01263-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Deletion of the LIMK1 gene is associated with Williams syndrome, a unique neurodevelopmental disorder characterized by severe defects in visuospatial cognition and long-term memory (LTM). However, whether LIMK1 contributes to these deficits remains elusive. Here, we show that LIMK1-knockout (LIMK1(-/-)) mice are drastically impaired in LTM but not short-term memory (STM). In addition, LIMK1(-/-) mice are selectively defective in late-phase long-term potentiation (L-LTP), a form of long-lasting synaptic plasticity specifically required for the formation of LTM. Furthermore, we show that LIMK1 interacts and regulates the activity of cyclic AMP response element-binding protein (CREB), an extensively studied transcriptional factor critical for LTM. Importantly, both L-LTP and LTM deficits in LIMK1(-/-) mice are rescued by increasing the activity of CREB. These results provide strong evidence that LIMK1 deletion is sufficient to lead to an LTM deficit and that this deficit is attributable to CREB hypofunction. Our study has identified a direct gene-phenotype link in mice and provides a potential strategy to restore LTM in patients with Williams syndrome through the enhancement of CREB activity in the adult brain.
Collapse
|
17
|
Li M, Armelloni S, Zennaro C, Wei C, Corbelli A, Ikehata M, Berra S, Giardino L, Mattinzoli D, Watanabe S, Agostoni C, Edefonti A, Reiser J, Messa P, Rastaldi MP. BDNF repairs podocyte damage by microRNA-mediated increase of actin polymerization. J Pathol 2015; 235:731-44. [PMID: 25408545 DOI: 10.1002/path.4484] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/17/2014] [Accepted: 11/11/2014] [Indexed: 12/24/2022]
Abstract
Idiopathic focal segmental glomerulosclerosis (FSGS) is a progressive and proteinuric kidney disease that starts with podocyte injury. Podocytes cover the external side of the glomerular capillary by a complex web of primary and secondary ramifications. Similar to dendritic spines of neuronal cells, podocyte processes rely on a dynamic actin-based cytoskeletal architecture to maintain shape and function. Brain-derived neurotrophic factor (BDNF) is a pleiotropic neurotrophin that binds to the tropomyosin-related kinase B receptor (TrkB) and has crucial roles in neuron maturation, survival, and activity. In neuronal cultures, exogenously added BDNF increases the number and size of dendritic spines. In animal models, BDNF administration is beneficial in both central and peripheral nervous system disorders. Here we show that BDNF has a TrkB-dependent trophic activity on podocyte cell processes; by affecting microRNA-134 and microRNA-132 signalling, BDNF up-regulates Limk1 translation and phosphorylation, and increases cofilin phosphorylation, which results in actin polymerization. Importantly, BDNF effectively repairs podocyte damage in vitro, and contrasts proteinuria and glomerular lesions in in vivo models of FSGS, opening a potential new perspective to the treatment of podocyte disorders.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione D'Amico per la Ricerca sulle Malattie Renali & Fondazione IRCCS Ca', Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Purser HRM, Farran EK, Courbois Y, Lemahieu A, Sockeel P, Mellier D, Blades M. The development of route learning in Down syndrome, Williams syndrome and typical development: investigations with virtual environments. Dev Sci 2014; 18:599-613. [PMID: 25284087 DOI: 10.1111/desc.12236] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/15/2014] [Indexed: 12/23/2022]
Abstract
The ability to navigate new environments has a significant impact on the daily life and independence of people with learning difficulties. The aims of this study were to investigate the development of route learning in Down syndrome (N = 50), Williams syndrome (N = 19), and typically developing children between 5 and 11 years old (N = 108); to investigate use of landmarks; and to relate cognitive functions to route-learning ability in these groups. Overall, measures of attention and long-term memory were strongly associated with route learning, even once non-verbal ability was controlled for. All of the groups, including 5- to 6-year-old TD children, demonstrated the ability to make use of all landmark types to aid route learning; those near junctions, those further from junctions, and also distant landmarks (e.g. church spire, radio mast). Individuals with WS performed better than a matched subset of TD children on more difficult routes; we suggest that this is supported by relatively strong visual feature recognition in the disorder. Participants with DS who had relatively high levels of non-verbal ability performed at a similar level to TD participants.
Collapse
Affiliation(s)
| | - Emily K Farran
- Department of Psychology and Human Development, Institute of Education, University of London, UK
| | - Yannick Courbois
- Laboratoire PSITEC (EA 4072), UDL3, Université Lille Nord de France, France
| | - Axelle Lemahieu
- Laboratoire PSITEC (EA 4072), UDL3, Université Lille Nord de France, France
| | - Pascal Sockeel
- Laboratoire PSITEC (EA 4072), UDL3, Université Lille Nord de France, France
| | - Daniel Mellier
- Laboratoire PSY-NCA (EA 4306), Université de Rouen, France
| | - Mark Blades
- Department of Psychology, University of Sheffield, UK
| |
Collapse
|
19
|
Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome. PLoS One 2014; 9:e104088. [PMID: 25105779 PMCID: PMC4126723 DOI: 10.1371/journal.pone.0104088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/10/2014] [Indexed: 01/09/2023] Open
Abstract
In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.
Collapse
|
20
|
Broadbent H, Farran EK, Chin E, Metcalfe K, Tassabehji M, Turnpenny P, Sansbury F, Meaburn E, Karmiloff-Smith A. Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients. J Neurodev Disord 2014; 6:18. [PMID: 25057328 PMCID: PMC4107613 DOI: 10.1186/1866-1955-6-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. Methods We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. Results Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB’s atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. Conclusions Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed.
Collapse
Affiliation(s)
| | - Emily K Farran
- Institute of Education, University of London, London, UK
| | - Esther Chin
- Birkbeck Centre for Brain and Cognitive Development, University of London, London, UK
| | - Kay Metcalfe
- Genetic Medicine, St. Mary's Hospital, Manchester, UK
| | | | - Peter Turnpenny
- Royal Devon and Exeter Foundation Trust, Exeter, UK ; Penninsula College of Medicine and Dentistry, Universities of Exeter and Plymouth, Exeter, UK
| | - Francis Sansbury
- Royal Devon and Exeter Foundation Trust, Exeter, UK ; Penninsula College of Medicine and Dentistry, Universities of Exeter and Plymouth, Exeter, UK
| | - Emma Meaburn
- Birkbeck Centre for Brain and Cognitive Development, University of London, London, UK
| | | |
Collapse
|
21
|
Audiological follow-up of 24 patients affected by Williams syndrome. Eur J Med Genet 2013; 56:490-6. [DOI: 10.1016/j.ejmg.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/11/2013] [Indexed: 01/18/2023]
|
22
|
Deng GF, Liu SJ, Sun XS, Sun WW, Zhao QH, Liao WP, Yi YH, Long YS. A conserved region in the 3' untranslated region of the human LIMK1 gene is critical for proper expression of LIMK1 at the post-transcriptional level. Neurosci Bull 2013; 29:348-54. [PMID: 23700283 DOI: 10.1007/s12264-013-1341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022] Open
Abstract
LIM kinase 1 (LIMK1), a cytosolic serine/threonine kinase, regulates actin filament dynamics and reorganization and is involved in neuronal development and brain function. Abnormal expression of LIMK1 is associated with several neurological disorders. In this study, we performed a conservation analysis using Vector NTI (8.0) software. The dualluciferase reporter assay and real-time quantitative RT-PCR were used to assess the protein and mRNA levels of the reporter gene, respectively. We found that a region ranging from nt +884 to +966 in the human LIMK1 3' untranslated region (UTR) was highly conserved in the mouse Limk1 3' UTR and formed a structure containing several loops and stems. Luciferase assay showed that the relative luciferase activity of the mutated construct with the conserved region deleted, pGL4-hLIMK1-3U-M, in SH-SY5Y and HEK-293 cells was only ~60% of that of the wild-type construct pGL4-hLIMK1-3U, indicating that the conserved region is critical for the reporter gene expression. Real-time quantitative RT-PCR analysis demonstrated that the relative Luc2 mRNA levels in SH-SY5Y and HEK293 cells transfected with pGL4-hLIMK1-3U-M decreased to ~50% of that in cells transfected with pGL4-hLIMK1-3U, suggesting an important role of the conserved region in maintaining Luc2 mRNA stability. Our study suggests that the conserved region in the LIMK1 3' UTR is involved in regulating LIMK1 expression at the post-transcriptional level, which may help reveal the mechanism underlying the regulation of LIMK1 expression in the central nervous system and explore the relationship between the 3'-UTR mutant and neurological disorders.
Collapse
Affiliation(s)
- Guang-Fei Deng
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, Guangzhou, 510260, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Rácz B, Weinberg RJ. Microdomains in forebrain spines: an ultrastructural perspective. Mol Neurobiol 2013; 47:77-89. [PMID: 22983912 PMCID: PMC3538892 DOI: 10.1007/s12035-012-8345-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
Glutamatergic axons in the mammalian forebrain terminate predominantly onto dendritic spines. Long-term changes in the efficacy of these excitatory synapses are tightly coupled to changes in spine morphology. The reorganization of the actin cytoskeleton underlying this spine "morphing" involves numerous proteins that provide the machinery needed for adaptive cytoskeletal remodeling. Here, we review recent literature addressing the chemical architecture of the spine, focusing mainly on actin-binding proteins (ABPs). Accumulating evidence suggests that ABPs are organized into functionally distinct microdomains within the spine cytoplasm. This functional compartmentalization provides a structural basis for regulation of the spinoskeleton, offering a novel window into mechanisms underlying synaptic plasticity.
Collapse
Affiliation(s)
- Bence Rácz
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, 1078, Budapest, Hungary.
| | | |
Collapse
|
24
|
Karmiloff-Smith A. Challenging the use of adult neuropsychological models for explaining neurodevelopmental disorders: developed versus developing brains. Q J Exp Psychol (Hove) 2012; 66:1-14. [PMID: 23173948 DOI: 10.1080/17470218.2012.744424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this paper, I contrast approaches from adult neuropsychology that seek selective, domain-specific deficits with approaches aimed at understanding the dynamics of developmental trajectories in children with genetic disorders. I stress the crucial difference between developed brains damaged in their mature state, and atypically developing brains. I also challenge the search for single genes to explain selective cognitive-level outcomes. Throughout, the paper argues that it is critical to trace cognitive-level deficits back to their basic-level processes in infancy, where genes are likely to exert their early influences, if we are to understand both the impairments and proficiencies displayed in children with neurodevelopmental disorders.
Collapse
|
25
|
A role for hippocampal actin rearrangement in object placement memory in female rats. Neurobiol Learn Mem 2012; 98:284-90. [PMID: 23010136 DOI: 10.1016/j.nlm.2012.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/10/2012] [Accepted: 09/13/2012] [Indexed: 01/12/2023]
Abstract
Actin rearrangement, the polymerization of globular actin (G-actin) to filamentous actin, causes morphological changes in dendritic spines and is hypothesized to be a substrate of learning and memory. The ovarian hormone estradiol promotes hippocampal actin rearrangement and enhances performance on hippocampus-dependent tasks, including object placement memory. The goals of the current study were to determine a role for actin rearrangement and its regulatory pathway in object placement memory in female rats and to determine if estradiol impacts actin rearrangement in ovariectomized rats during the performance of the task. In an initial experiment, young adult Long-Evans rats were ovariectomized and implanted with capsules containing either cholesterol vehicle or estradiol. Bilateral intrahippocampal infusions of aCSF vehicle or the actin rearrangement inhibitor, latrunculin A, were administered 15 min prior to initiation of the object placement task. Latrunculin A dose-dependently impaired object placement memory. Estradiol had no impact on the ability of latrunculin A to affect performance. In a second experiment, rats were ovariectomized and received implants containing cholesterol or estradiol. Half of each hormone treatment group was exposed to the object placement memory task and half underwent control procedures. Immediately following completion of behavior, rats were euthanized and hippocampi removed. Western blotting was used to measure hippocampal levels of phosphorylated and total levels of a regulator of actin polymerization, the actin depolymerization factor cofilin. Exposure to the object placement memory task resulted in significant increases in phosphorylated levels of cofilin. Estradiol treatment had no impact on protein levels. These data support a role for hippocampal actin rearrangement and its regulatory proteins in object placement memory in female rats and suggest that chronic estradiol treatment does not impact hippocampal actin arrangement.
Collapse
|
26
|
Karmiloff-Smith A, Broadbent H, Farran EK, Longhi E, D’Souza D, Metcalfe K, Tassabehji M, Wu R, Senju A, Happé F, Turnpenny P, Sansbury F. Social cognition in williams syndrome: genotype/phenotype insights from partial deletion patients. Front Psychol 2012; 3:168. [PMID: 22661963 PMCID: PMC3362742 DOI: 10.3389/fpsyg.2012.00168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/10/2012] [Indexed: 11/13/2022] Open
Abstract
Identifying genotype/phenotype relations in human social cognition has been enhanced by the study of Williams syndrome (WS). Indeed, individuals with WS present with a particularly strong social drive, and researchers have sought to link deleted genes in the WS critical region (WSCR) of chromosome 7q11.23 to this unusual social profile. In this paper, we provide details of two case studies of children with partial genetic deletions in the WSCR: an 11-year-old female with a deletion of 24 of the 28 WS genes, and a 14-year-old male who presents with the opposite profile, i.e., the deletion of only four genes at the telomeric end of the WSCR. We tested these two children on a large battery of standardized and experimental social perception and social cognition tasks - both implicit and explicit - as well as standardized social questionnaires and general psychometric measures. Our findings reveal a partial WS socio-cognitive profile in the female, contrasted with a more autistic-like profile in the male. We discuss the implications of these findings for genotype/phenotype relations, as well as the advantages and limitations of animal models and of case study approaches.
Collapse
Affiliation(s)
| | | | | | - Elena Longhi
- Psychology Department, Milan-Bicocca University and Oxford UniversityMilan, Italy
| | - Dean D’Souza
- Birkbeck Centre for Brain and Cognitive Development, University of LondonLondon, UK
| | - Kay Metcalfe
- Genetic Medicine, St. Mary’s HospitalManchester, UK
| | | | - Rachel Wu
- Birkbeck Centre for Brain and Cognitive Development, University of LondonLondon, UK
| | - Atsushi Senju
- Birkbeck Centre for Brain and Cognitive Development, University of LondonLondon, UK
| | | | - Peter Turnpenny
- Royal Devon and Exeter Foundation TrustExeter, UK
- Peninsula College of Medicine and Dentistry, Universities of Exeter and PlymouthExeter, UK
| | - Francis Sansbury
- Royal Devon and Exeter Foundation TrustExeter, UK
- Peninsula College of Medicine and Dentistry, Universities of Exeter and PlymouthExeter, UK
| |
Collapse
|
27
|
Tordjman S, Anderson GM, Botbol M, Toutain A, Sarda P, Carlier M, Saugier-Veber P, Baumann C, Cohen D, Lagneaux C, Tabet AC, Verloes A. Autistic disorder in patients with Williams-Beuren syndrome: a reconsideration of the Williams-Beuren syndrome phenotype. PLoS One 2012; 7:e30778. [PMID: 22412832 PMCID: PMC3295800 DOI: 10.1371/journal.pone.0030778] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/28/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Williams-Beuren syndrome (WBS), a rare developmental disorder caused by deletion of contiguous genes at 7q11.23, has been characterized by strengths in socialization (overfriendliness) and communication (excessive talkativeness). WBS has been often considered as the polar opposite behavioral phenotype to autism. Our objective was to better understand the range of phenotypic expression in WBS and the relationship between WBS and autistic disorder. METHODOLOGY The study was conducted on 9 French individuals aged from 4 to 37 years old with autistic disorder associated with WBS. Behavioral assessments were performed using Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) scales. Molecular characterization of the WBS critical region was performed by FISH. FINDINGS FISH analysis indicated that all 9 patients displayed the common WBS deletion. All 9 patients met ADI-R and ADOS diagnostic criteria for autism, displaying stereotypies and severe impairments in social interaction and communication (including the absence of expressive language). Additionally, patients showed improvement in social communication over time. CONCLUSIONS The results indicate that comorbid autism and WBS is more frequent than expected and suggest that the common WBS deletion can result in a continuum of social communication impairment, ranging from excessive talkativeness and overfriendliness to absence of verbal language and poor social relationships. Appreciation of the possible co-occurrence of WBS and autism challenges the common view that WBS represents the opposite behavioral phenotype of autism, and might lead to improved recognition of WBS in individuals diagnosed with autism.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Department of Child and Adolescent Psychiatry, Guillaume Regnier Hospital, University of Rennes 1, Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Neurocognitive development of attention across genetic syndromes. PROGRESS IN BRAIN RESEARCH 2011; 189:285-301. [DOI: 10.1016/b978-0-444-53884-0.00030-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Harris JC. Advances in understanding behavioral phenotypes in neurogenetic syndromes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:389-99. [DOI: 10.1002/ajmg.c.30276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Eisenberg DP, Jabbi M, Berman KF. Bridging the gene-behavior divide through neuroimaging deletion syndromes: Velocardiofacial (22q11.2 Deletion) and Williams (7q11.23 Deletion) syndromes. Neuroimage 2010; 53:857-69. [PMID: 20206275 DOI: 10.1016/j.neuroimage.2010.02.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 12/20/2022] Open
Abstract
Investigating the relationship between genes and the neural substrates of complex human behavior promises to provide essential insight into the pathophysiology of mental disorders. One approach to this inquiry is through neuroimaging of individuals with microdeletion syndromes that manifest in specific neuropsychiatric phenotypes. Both Velocardiofacial syndrome (VCFS) and Williams syndrome (WS) involve haploinsufficiency of a relatively small set of identified genes on the one hand and association with distinct, clinically relevant behavioral and cognitive profiles on the other hand. In VCFS, there is a deletion in chromosomal region 22q11.2 and a resultant predilection toward psychosis, poor arithmetic proficiency, and low performance intelligence quotients. In WS, there is a deletion in chromosomal region 7q11.23 and a resultant predilection toward hypersociability, non-social anxiety, impaired visuospatial construction, and often intellectual impairment. Structural and functional neuroimaging studies have begun not only to map these well-defined genetic alterations to systems-level brain abnormalities, but also to identify relationships between neural phenotypes and particular genes within the critical deletion regions. Though neuroimaging of both VCFS and WS presents specific, formidable methodological challenges, including comparison subject selection and accounting for neuroanatomical and vascular anomalies in patients, and many questions remain, the literature to date on these syndromes, reviewed herein, constitutes a fruitful "bottom-up" approach to defining gene-brain relationships.
Collapse
Affiliation(s)
- Daniel Paul Eisenberg
- Section on Integrative Neuroimaging, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program National Institute of Mental Health, NIH, Intramural Research Program, DHHS, Bethesda, MD 20892-1365, USA
| | | | | |
Collapse
|
31
|
Li HH, Roy M, Kuscuoglu U, Spencer CM, Halm B, Harrison KC, Bayle JH, Splendore A, Ding F, Meltzer LA, Wright E, Paylor R, Deisseroth K, Francke U. Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice. EMBO Mol Med 2010; 1:50-65. [PMID: 20049703 PMCID: PMC3378107 DOI: 10.1002/emmm.200900003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The neurodevelopmental disorder Williams-Beuren syndrome is caused by spontaneous approximately 1.5 Mb deletions comprising 25 genes on human chromosome 7q11.23. To functionally dissect the deletion and identify dosage-sensitive genes, we created two half-deletions of the conserved syntenic region on mouse chromosome 5G2. Proximal deletion (PD) mice lack Gtf2i to Limk1, distal deletion (DD) mice lack Limk1 to Fkbp6, and the double heterozygotes (D/P) model the complete human deletion. Gene transcript levels in brain are generally consistent with gene dosage. Increased sociability and acoustic startle response are associated with PD, and cognitive defects with DD. Both PD and D/P males are growth-retarded, while skulls are shortened and brains are smaller in DD and D/P. Lateral ventricle (LV) volumes are reduced, and neuronal cell density in the somatosensory cortex is increased, in PD and D/P. Motor skills are most impaired in D/P. Together, these partial deletion mice replicate crucial aspects of the human disorder and serve to identify genes and gene networks contributing to the neural substrates of complex behaviours and behavioural disorders.
Collapse
Affiliation(s)
- Hong Hua Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Thornton-Wells TA, Cannistraci CJ, Anderson AW, Kim CY, Eapen M, Gore JC, Blake R, Dykens EM. Auditory attraction: activation of visual cortex by music and sound in Williams syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2010; 115:172-89. [PMID: 20440382 PMCID: PMC2862007 DOI: 10.1352/1944-7588-115.172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Williams syndrome is a genetic neurodevelopmental disorder with a distinctive phenotype, including cognitive-linguistic features, nonsocial anxiety, and a strong attraction to music. we preformed functional MRI studies examining brain responses to musical and other types of stimuli in young adults with Williams syndrome and typically developing controls. In Study 1, the Williams syndrome group exhibited unforeseen activations of the visual cortex to musical stimuli, and it was this novel finding that became the focus of two subsequent studies. Using retinotopy, color localizers, and additional sound conditions, we identified specific visual areas in subjects with Williams syndrome that were activated by both musical and nonmusical auditory stimuli. The results, similar to synthetic-like experiences, have implications for cross-modal sensory processing in typical and atypical neurodevelopment.
Collapse
|
33
|
Ferrero GB, Howald C, Micale L, Biamino E, Augello B, Fusco C, Turturo MG, Forzano S, Reymond A, Merla G. An atypical 7q11.23 deletion in a normal IQ Williams-Beuren syndrome patient. Eur J Hum Genet 2010; 18:33-8. [PMID: 19568270 DOI: 10.1038/ejhg.2009.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Williams-Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion of 1.55 Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be linked to the specific cognitive profile and craniofacial features. These insights for genotype-phenotype correlations came from the molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS physical phenotype and normal IQ, who carries a shorter 1 Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients.
Collapse
|
34
|
Walter E, Mazaika PK, Reiss AL. Insights into brain development from neurogenetic syndromes: evidence from fragile X syndrome, Williams syndrome, Turner syndrome and velocardiofacial syndrome. Neuroscience 2009; 164:257-71. [PMID: 19376197 PMCID: PMC2795482 DOI: 10.1016/j.neuroscience.2009.04.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 04/01/2009] [Accepted: 04/11/2009] [Indexed: 11/15/2022]
Abstract
Over the past few decades, behavioral, neuroimaging and molecular studies of neurogenetic conditions, such as Williams, fragile X, Turner and velocardiofacial (22q11.2 deletion) syndromes, have led to important insights regarding brain development. These investigations allow researchers to examine "experiments of nature" in which the deletion or alteration of one gene or a contiguous set of genes can be linked to aberrant brain structure or function. Converging evidence across multiple imaging modalities has now begun to highlight the abnormal neural circuitry characterizing many individual neurogenetic syndromes. Furthermore, there has been renewed interest in combining analyses across neurogenetic conditions in order to search for common organizing principles in development. In this review, we highlight converging evidence across syndromes from multiple neuroimaging modalities, with a particular emphasis on functional imaging. In addition, we discuss the commonalities and differences pertaining to selective deficits in visuospatial processing that occur across four neurogenetic syndromes. We suggest avenues for future exploration, with the goal of achieving a deeper understanding of the neural abnormalities in these affected populations.
Collapse
Affiliation(s)
- E Walter
- Center for Interdisciplinary Brain Sciences Research, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
35
|
La Femina F, Senese VP, Grossi D, Venuti P. A Battery For The Assessment of Visuo-Spatial Abilities Involved in Drawing Tasks. Clin Neuropsychol 2009; 23:691-714. [DOI: 10.1080/13854040802572426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Crespi B, Summers K, Dorus S. Genomic sister-disorders of neurodevelopment: an evolutionary approach. Evol Appl 2009; 2:81-100. [PMID: 25567849 PMCID: PMC3352408 DOI: 10.1111/j.1752-4571.2008.00056.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/26/2008] [Indexed: 02/06/2023] Open
Abstract
Genomic sister-disorders are defined here as diseases mediated by duplications versus deletions of the same region. Such disorders can provide unique information concerning the genomic underpinnings of human neurodevelopment because effects of diametric variation in gene copy number on cognitive and behavioral phenotypes can be inferred. We describe evidence from the literature on deletions versus duplications for the regions underlying the best-known human neurogenetic sister-disorders, including Williams syndrome, Velocardiofacial syndrome, and Smith-Magenis syndrome, as well as the X-chromosomal conditions Klinefelter and Turner syndromes. These data suggest that diametric copy-number alterations can, like diametric alterations to imprinted genes, generate contrasting phenotypes associated with autistic-spectrum and psychotic-spectrum conditions. Genomically based perturbations to the development of the human social brain are thus apparently mediated to a notable degree by effects of variation in gene copy number. We also conducted the first analyses of positive selection for genes in the regions affected by these disorders. We found evidence consistent with adaptive evolution of protein-coding genes, or selective sweeps, for three of the four sets of sister-syndromes analyzed. These studies of selection facilitate identification of candidate genes for the phenotypes observed and lend a novel evolutionary dimension to the analysis of human cognitive architecture and neurogenetic disorders.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser University Burnaby, BC, Canada
| | - Kyle Summers
- Department of Biology, East Carolina University Greenville, NC, USA
| | - Steve Dorus
- Department of Biology and Biochemistry, University of Bath Bath, UK
| |
Collapse
|
37
|
Smith AD, Gilchrist ID, Hood B, Tassabehji M, Karmiloff-Smith A. Inefficient Search of Large-Scale Space in Williams Syndrome: Further Insights on the Role of LIMK1 Deletion in Deficits of Spatial Cognition. Perception 2009; 38:694-701. [DOI: 10.1068/p6050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Williams syndrome (WS) is a genetic disorder associated with impairments of spatial cognition. This has primarily been studied in small-scale space, and rarely in large-scale environments. In order to fully characterise the spatial deficits in WS, and also to address claims that the deletion of LIM-kinase 1 (LIMK1) on chromosome 7 is responsible for those deficits, we report an automated large-scale search task for humans that places the participant egocentrically within the search space. Search locations were defined as lights and switches embedded in the floor, and participants attempted to locate a hidden target by pressing the switch at potential locations. We compared individuals with WS to patients with smaller deletions (including LIMK1) in the critical region on chromosome 7. Whilst partial-deletion participants performed efficiently on the task, participants with WS demonstrated inefficient search profiles: their search slopes were steeper and they made significantly more erroneous revisits to previously inspected locations. Our findings indicate that spatial deficits associated with WS also affect large-scale spatial processing and suggest that hemizygous deletion of LIMK1 is not sufficient to account for any of the spatial deficits associated with WS.
Collapse
Affiliation(s)
- Alastair D Smith
- Department of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TN, UK
| | - Iain D Gilchrist
- Department of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TN, UK
| | - Bruce Hood
- Department of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TN, UK
| | - May Tassabehji
- Department of Genetics, University of Manchester, Manchester M13 9PL, UK
| | - Annette Karmiloff-Smith
- Developmental Neurocognition Laboratory, Centre for Brain & Cognitive Development, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
38
|
Abstract
AbstractThe commentaries on our target article, “Psychosis and Autism as Diametrical Disorders of the Social Brain,” reflect the multidisciplinary yet highly fragmented state of current studies of human social cognition. Progress in our understanding of the human social brain must come from studies that integrate across diverse analytic levels, using conceptual frameworks grounded in evolutionary biology.
Collapse
|
39
|
Defining the social phenotype in Williams syndrome: a model for linking gene, the brain, and behavior. Dev Psychopathol 2008; 20:1-35. [PMID: 18211726 DOI: 10.1017/s0954579408000011] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Research into phenotype-genotype correlations in neurodevelopmental disorders has greatly elucidated the contribution of genetic and neurobiological factors to variations in typical and atypical development. Etiologically relatively homogeneous disorders, such as Williams syndrome (WS), provide unique opportunities for elucidating gene-brain-behavior relationships. WS is a neurogenetic disorder caused by a hemizygous deletion of approximately 25 genes on chromosome 7q11.23. This results in a cascade of physical, cognitive-behavioral, affective, and neurobiological aberrations. WS is associated with a markedly uneven neurocognitive profile, and the mature state cognitive profile of WS is relatively well developed. Although anecdotally, individuals with WS have been frequently described as unusually friendly and sociable, personality remains a considerably less well studied area. This paper investigates genetic influences, cognitive-behavioral characteristics, aberrations in brain structure and function, and environmental and biological variables that influence the social outcomes of individuals with WS. We bring together a series of findings across multiple levels of scientific enquiry to examine the social phenotype in WS, reflecting the journey from gene to the brain to behavior. Understanding the complex multilevel scientific perspective in WS has implications for understanding typical social development by identifying important developmental events and markers, as well as helping to define the boundaries of psychopathology.
Collapse
|
40
|
Castelo-Branco M, Mendes M, Sebastião AR, Reis A, Soares M, Saraiva J, Bernardes R, Flores R, Pérez-Jurado L, Silva E. Visual phenotype in Williams-Beuren syndrome challenges magnocellular theories explaining human neurodevelopmental visual cortical disorders. J Clin Invest 2008; 117:3720-9. [PMID: 18037993 DOI: 10.1172/jci32556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 09/19/2007] [Indexed: 12/28/2022] Open
Abstract
Williams-Beuren syndrome (WBS), a neurodevelopmental genetic disorder whose manifestations include visuospatial impairment, provides a unique model to link genetically determined loss of neural cell populations at different levels of the nervous system with neural circuits and visual behavior. Given that several of the genes deleted in WBS are also involved in eye development and the differentiation of retinal layers, we examined the retinal phenotype in WBS patients and its functional relation to global motion perception. We discovered a low-level visual phenotype characterized by decreased retinal thickness, abnormal optic disk concavity, and impaired visual responses in WBS patients compared with age-matched controls by using electrophysiology, confocal and coherence in vivo imaging with cellular resolution, and psychophysics. These mechanisms of impairment are related to the magnocellular pathway, which is involved in the detection of temporal changes in the visual scene. Low-level magnocellular performance did not predict high-level deficits in the integration of motion and 3D information at higher levels, thereby demonstrating independent mechanisms of dysfunction in WBS that will require remediation strategies different from those used in other visuospatial disorders. These findings challenge neurodevelopmental theories that explain cortical deficits based on low-level magnocellular impairment, such as regarding dyslexia.
Collapse
|
41
|
Hocking DR, Bradshaw JL, Rinehart NJ. Fronto-parietal and cerebellar contributions to motor dysfunction in Williams syndrome: A review and future directions. Neurosci Biobehav Rev 2008; 32:497-507. [DOI: 10.1016/j.neubiorev.2007.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 09/12/2007] [Accepted: 09/30/2007] [Indexed: 12/29/2022]
|
42
|
|
43
|
Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 2007; 21:2347-57. [PMID: 17875668 PMCID: PMC1973148 DOI: 10.1101/gad.434307] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many neuronal disorders such as lissencephaly, epilepsy, and schizophrenia are caused by the abnormal migration of neurons in the developing brain. The role of the actin cytoskeleton in neuronal migration disorders has in large part remained elusive. Here we show that the F-actin depolymerizing factor n-cofilin controls cell migration and cell cycle progression in the cerebral cortex. Loss of n-cofilin impairs radial migration, resulting in the lack of intermediate cortical layers. Neuronal progenitors in the ventricular zone show increased cell cycle exit and exaggerated neuronal differentiation, leading to the depletion of the neuronal progenitor pool. These results demonstrate that mutations affecting regulators of the actin cytoskeleton contribute to the pathology of cortex development.
Collapse
Affiliation(s)
- Gian Carlo Bellenchi
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
- Department of Cell Biology and Neuroscience, Instituto Superiore di Sanità, 00161 Rome, Italy
| | - Christine B. Gurniak
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
| | - Emerald Perlas
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
| | - Silvia Middei
- Consiglio Nazionale delle Ricerche (CNR) Institute for Neuroscience, Santa Lucia Foundation, 00143 Rome, Italy
| | - Martine Ammassari-Teule
- Consiglio Nazionale delle Ricerche (CNR) Institute for Neuroscience, Santa Lucia Foundation, 00143 Rome, Italy
| | - Walter Witke
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
- Corresponding author.E-MAIL ; FAX 0039-06-90091-272
| |
Collapse
|
44
|
Abstract
Williams syndrome is a rare genetic disorder in which, it is claimed, language abilities are relatively strong despite mild to moderate mental retardation. Such claims have, in turn, been interpreted as evidence either for modular preservation of language or for atypical constraints on cognitive development. However, this review demonstrates that there is, in fact, little evidence that syntax, morphology, phonology, or pragmatics are any better than predicted by nonverbal ability, although performance on receptive vocabulary tests is relatively good. Similarly, claims of an imbalance between good phonology and impaired or atypical lexical semantics are without strong support. There is, nevertheless, consistent evidence for specific deficits in spatial language that mirror difficulties in nonverbal spatial cognition, as well as some tentative evidence that early language acquisition proceeds atypically. Implications for modular and neuroconstructivist accounts of language development are discussed.
Collapse
Affiliation(s)
- Jon Brock
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| |
Collapse
|
45
|
Abstract
Much existing research on Williams syndrome (WS) has focused on the individuals' unusual cognitive profile, with less emphasis placed on the developmental and neural underpinnings of the disorder. We review recent findings from brain imaging and begin to discuss links from these data to the behavioral phenotype. Overall brain size is significantly reduced in individuals with WS, as it is in many mental retardation syndromes. However, the specific profile of deficits in WS, particularly the visuospatial deficits, appears to be linked to parietal lobe abnormalities. Results from both genetic and brain imaging studies have provided useful insights into WS neurobiology. However, future work needs to remediate the lack of studies investigating developmental processes.
Collapse
|
46
|
Karmiloff-Smith A. The tortuous route from genes to behavior: A neuroconstructivist approach. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2006; 6:9-17. [PMID: 16869225 DOI: 10.3758/cabn.6.1.9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In their excitement at using the human genome project to uncover the functions of specific genes, researchers have often ignored one fundamental factor: the gradual process of ontogenetic development. The view that there might be a gene for spatial cognition or language has emanated from a focus on the structure of the adult brain in neuropsychological patients whose brains were fully and normally developed until their brain insult. The developing brain is very different. It starts out highly interconnected across regions and is neither localized nor specialized at birth, allowing interaction with the environment to play an important role in gene expression and the ultimate cognitive phenotype. This article takes a neuroconstructivist perspective, arguing that domain-specific end states can stem from more domain-general start states, that associations may turn out to be as informative as dissociations, and that genetic mutations that alter the trajectory of ontogenetic development can inform nature/nurture debates.
Collapse
|
47
|
Abstract
Williams syndrome is a genetic condition caused by a deletion on chromosome 7. Clinically it consists of multiple cardiovascular and craniofacial structural abnormalities as well as developmental delay, specific cognitive difficulties, and a characteristic personality. Although scoliosis is a noted manifestation of the disorder, syrinx in association with Williams syndrome has not been reported previously in the literature. Here we present the case of a child with Williams syndrome, scoliosis, and a thoracolumbar syrinx that was successfully treated surgically. We recommend that children with Williams syndrome and scoliosis undergo preoperative evaluation of the spinal cord, as well as the spinal column, so that correctable lesions such as a syrinx are not overlooked. Although syrinxes are often associated with scoliosis, the association in this case of syrinx and Williams syndrome could imply the existence of a genetic contribution to syrinx formation on chromosome 7.
Collapse
Affiliation(s)
- David B Cohen
- Department of Neurosurgery, Allegheny General Hospital, 420 E North Ave, Suite 302, Pittsburgh, Pennsylvania 15212, USA.
| | | |
Collapse
|