1
|
Birari VS, Rabinowitch I. Asymmetry in synaptic connectivity balances redundancy and reachability in the Caenorhabditis elegans connectome. iScience 2024; 27:110713. [PMID: 39262801 PMCID: PMC11388161 DOI: 10.1016/j.isci.2024.110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
The brain is overall bilaterally symmetrical, but also exhibits considerable asymmetry. While symmetry may endow neural networks with robustness and resilience, asymmetry may enable parallel information processing and functional specialization. How is this tradeoff between symmetrical and asymmetrical brain architecture balanced? To address this, we focused on the Caenorhabditis elegans connectome, comprising 99 classes of bilaterally symmetrical neuron pairs. We found symmetry in the number of synaptic partners between neuron class members, but pronounced asymmetry in the identity of these synapses. We applied graph theoretical metrics for evaluating Redundancy, the selective reinforcement of specific neural paths by multiple alternative synaptic connections, and Reachability, the extent and diversity of synaptic connectivity of each neuron class. We found Redundancy and Reachability to be stochastically tunable by the level of network asymmetry, driving the C. elegans connectome to favor Redundancy over Reachability. These results elucidate fundamental relations between lateralized neural connectivity and function.
Collapse
Affiliation(s)
- Varun Sanjay Birari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| |
Collapse
|
2
|
Villar-Rodríguez E, Davydova T, Marin-Marin L, Avila C. Atypical lateralization of visuospatial attention can be associated with better or worse performance on line bisection. Brain Struct Funct 2024; 229:1577-1590. [PMID: 38907765 PMCID: PMC11374874 DOI: 10.1007/s00429-024-02822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
The causal and statistical hypotheses diverge in determining whether the lateralization of language function in one cerebral hemisphere entails the lateralization of visuospatial function in the opposite hemisphere. Additionally, it remains unclear if the atypical segregation of these functions could influence cognitive performance. This study addresses these questions by examining the hemispheric lateralization of visuospatial attention during a line bisection judgement (landmark) task in three groups of healthy non-right-handed individuals with different language production segregations: left (typical), ambilateral (atypical), and right (atypical). Consistent with the causal hypothesis, results indicate that the groups with left and right language lateralization primarily utilize the opposite hemisphere for visuospatial attention. The ambilateral group, however, displays a pattern compatible with an independent segregation, supporting the statistical hypothesis. Behavioral analyses reveal that atypical lateralization of visuospatial attention (non-right) can lead to either better or worse performance during the landmark task, depending on the specific pattern. Bilateral organization is associated with reduced overall accuracy, whereas the left segregation results in improved performance during the most challenging trials. These findings suggest the existence of diverse pathways to lateralization, akin to either the causal or statistical hypothesis, which can result in cognitive advantages or disadvantages.
Collapse
Affiliation(s)
- Esteban Villar-Rodríguez
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de La Plana, Spain.
| | - Tatiana Davydova
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de La Plana, Spain
| | - Lidón Marin-Marin
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de La Plana, Spain
- Department of Psychology, University of York, York, UK
| | - César Avila
- Neuropsychology and Functional Neuroimaging, Universitat Jaume I, Castelllón de La Plana, Spain
| |
Collapse
|
3
|
Ocklenburg S, Mundorf A, Gerrits R, Karlsson EM, Papadatou-Pastou M, Vingerhoets G. Clinical implications of brain asymmetries. Nat Rev Neurol 2024; 20:383-394. [PMID: 38783057 DOI: 10.1038/s41582-024-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
No two human brains are alike, and with the rise of precision medicine in neurology, we are seeing an increased emphasis on understanding the individual variability in brain structure and function that renders every brain unique. Functional and structural brain asymmetries are a fundamental principle of brain organization, and recent research suggests substantial individual variability in these asymmetries that needs to be considered in clinical practice. In this Review, we provide an overview of brain asymmetries, variations in such asymmetries and their relevance in the clinical context. We review recent findings on brain asymmetries in neuropsychiatric and neurodevelopmental disorders, as well as in specific learning disabilities, with an emphasis on large-scale database studies and meta-analyses. We also highlight the relevance of asymmetries for disease symptom onset in neurodegenerative diseases and their implications for lateralized treatments, including brain stimulation. We conclude that alterations in brain asymmetry are not sufficiently specific to act as diagnostic biomarkers but can serve as meaningful symptom or treatment response biomarkers in certain contexts. On the basis of these insights, we provide several recommendations for neurological clinical practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany.
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin Gerrits
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Emma M Karlsson
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Marietta Papadatou-Pastou
- National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Guy Vingerhoets
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
5
|
Gerrits R. Variability in Hemispheric Functional Segregation Phenotypes: A Review and General Mechanistic Model. Neuropsychol Rev 2024; 34:27-40. [PMID: 36576683 DOI: 10.1007/s11065-022-09575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022]
Abstract
Many functions of the human brain are organized asymmetrically and are subject to strong population biases. Some tasks, like speaking and making complex hand movements, exhibit left hemispheric dominance, whereas others, such as spatial processing and recognizing faces, favor the right hemisphere. While pattern of preference implies the existence of a stereotypical way of distributing functions between the hemispheres, an ever-increasing body of evidence indicates that not everyone follows this pattern of hemispheric functional segregation. On the contrary, the review conducted in this article shows that departures from the standard hemispheric division of labor are routinely observed and assume many distinct forms, each having a different prevalence rate. One of the key challenges in human neuroscience is to model this variability. By integrating well-established and recently emerged ideas about the mechanisms that underlie functional lateralization, the current article proposes a general mechanistic model that explains the observed distribution of segregation phenotypes and generates new testable hypotheses.
Collapse
Affiliation(s)
- Robin Gerrits
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Quin-Conroy JE, Bayliss DM, Daniell SG, Badcock NA. Patterns of language and visuospatial functional lateralization and cognitive ability: a systematic review. Laterality 2024; 29:63-96. [PMID: 37771079 DOI: 10.1080/1357650x.2023.2263199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
For most individuals, language is predominately localized to the left hemisphere of the brain and visuospatial processing to the right. This is the typical pattern of functional lateralization. Evolutionary theories of lateralization suggest that the typical pattern is most common as it delivers a cognitive advantage. In contrast, deviations from the typical pattern may lead to poorer cognitive abilities. The aim of this systematic review was to assess the evidence for an association between patterns of language and visuospatial lateralization and measures of cognitive ability. We screened 9,122 studies, retrieved from PsycINFO, EMBASE, MEDLINE, PubMed, and Web of Science. The 17 studies that met our selection criteria revealed little evidence for an advantage of typical compared to atypical patterns of lateralization, although atypical lateralization patterns were related to worse language comprehension, spatial ability, and reading, but further research is needed to confirm this. We conclude with recommendations that future researchers recruit larger samples of atypical participants, and consider strength of lateraliation and bilaterality when analysing functional lateralization patterns.
Collapse
Affiliation(s)
| | - Donna M Bayliss
- School of Psychological Science, University of Western Australia, Crawley, Australia
| | - Sabrina G Daniell
- School of Psychological Science, University of Western Australia, Crawley, Australia
| | - Nicholas A Badcock
- School of Psychological Science, University of Western Australia, Crawley, Australia
| |
Collapse
|
7
|
Gerlach C. Interdependency in lateralization of written word and face processing in right-handed individuals. Cortex 2023; 169:146-160. [PMID: 37913672 DOI: 10.1016/j.cortex.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 11/03/2023]
Abstract
It has been suggested that the right hemisphere lateralization typically observed for face processing may depend on lateralization of written word processing to the left hemisphere; a pattern referred to as the causal complementary principle of lateralization. According to a strong version of this principle, a correlation should be found between the degree of left and right hemisphere lateralization for word and face processing respectively. This has been observed in two studies, but only for left-handed individuals. The present study tested whether a similar lateralization pattern could be found in a relatively large sample of right-handed individuals (N = 210) using behavioral measures (divided visual field paradigms). It was also tested whether the degree of right hemisphere lateralization for face and global shape processing would correlate positively, as predicted by a strong version of the input asymmetry principle of lateralization. This was tested in a subsample (n = 189). Bayesian analyses found no evidence for lateralization interdependency as the observed data were 4-17 times more likely under the null hypothesis. Unfortunately, the reliabilities of the lateralization measures were found to be poor. While this dampens the firmness of the conclusions that can be drawn, it is argued that at present there is no positive evidence for strong interdependency between written word and face processing in right-handed individuals.
Collapse
|
8
|
Ding K, Wang H, Wang Q, Li H, Li C. Inhibitory control associated with the neural mechanism of joint attention in preschoolers: An fNIRS evidence. Int J Psychophysiol 2023; 192:53-61. [PMID: 37597695 DOI: 10.1016/j.ijpsycho.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
Joint attention (JA) is fundamental to the development of children's social functioning; both its response and initiation are closely related to executive function (EF), but the relationship between JA and EF has been relatively rarely studied. The present study aimed to investigate the between-condition differences in brain activation and synchronization of JA under four conditions: (1) stranger-Initiating Joint Attention (Stranger-IJA); (2) teacher-Initiating Joint Attention (Teacher-IJA); (3) stranger-Responding to Joint Attention (Stranger-RJA); and (4) teacher-Responding to Joint Attention (Teacher-RJA). It also aimed to explore the relationships between neuroimaging data and children's inhibitory control levels. To address these two goals, the present study employed 41 (aged 58.61 ± 8.64 months, 24 boys) preschool children through behavioral and functional Near-Infrared Spectroscopy (fNIRS) brain imaging assessment to measure children's EF and brain function under JA, respectively. The results revealed that: (1) a significantly higher prefrontal cortex (PFC) activation was triggered in IJA than RJA; (2) a significantly higher brain activation was triggered in JA with a stranger than with a teacher; (3) a significantly higher index of synchronization asymmetry was evoked in the left and right PFC during interaction with the teacher than with the stranger; and (4) preschoolers' brain activation and synchronization were correlated with their inhibitory control level. The findings advance our understanding of preschoolers' social cognitive development with a biological aspect, offer an opportunity to understand the potential risk of the neural disorder in preschoolers, and provide a basis and insight for preventing neural developmental disorders.
Collapse
Affiliation(s)
- Keya Ding
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China
| | - Hongan Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qian Wang
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China
| | - Hui Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai, China; Faculty of Education and Human Development, The Education University of Hong Kong, Hong Kong
| | - Chuanjiang Li
- College of Child Development and Education, Zhejiang Normal University, Hangzhou, China.
| |
Collapse
|
9
|
Yeh C, Chen MH, Chen PH, Lee CL. Lateralization as a symphony: Joint influence of interhemispheric inhibition and transmission on brain asymmetry and syntactic processing. BRAIN AND LANGUAGE 2022; 228:105095. [PMID: 35248863 DOI: 10.1016/j.bandl.2022.105095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the roles of cross-hemispheric communications in promoting left-lateralized syntactic processing in the brain. Fifty-six young right-handers without familial sinistrality background underwent a divided visual field ERP grammaticality judgment experiment to assess syntactic processing in each hemisphere. Two behavioral tasks -the bilateral flanker task and bilateral word matching task, were used to assess cross-hemispheric inhibition and transmission. Grand average ERP data showed a significant P600 grammaticality effect in the left hemisphere (LH) only; however, individual variations in the P600 responses were observed in both hemispheres. Results of correlational analyses showed that larger LH P600 effects were associated with slower inter-hemispheric transmissions; smaller right hemisphere (RH) P600 effects were associated with more effective RH inhibition. These results yielded support for both the callosal distance hypothesis and the inhibition hypothesis for language lateralization and demonstrated that different aspects of cross-hemispheric communications jointly influence the degree of syntactic lateralization.
Collapse
Affiliation(s)
- Chih Yeh
- Max Planck School of Cognition, Germany; Graduate Institute of Linguistics, National Taiwan University, Taiwan
| | - Min-Hsin Chen
- Graduate Institute of Linguistics, National Taiwan University, Taiwan
| | - Po-Heng Chen
- Graduate Institute of Linguistics, National Taiwan University, Taiwan
| | - Chia-Lin Lee
- Graduate Institute of Linguistics, National Taiwan University, Taiwan; Department of Psychology, National Taiwan University, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taiwan; Neurobiology and Cognitive Neuroscience Center, National Taiwan University, Taiwan.
| |
Collapse
|
10
|
Jia G, Liu G, Niu H. Hemispheric Lateralization of Visuospatial Attention Is Independent of Language Production on Right-Handers: Evidence From Functional Near-Infrared Spectroscopy. Front Neurol 2022; 12:784821. [PMID: 35095729 PMCID: PMC8795708 DOI: 10.3389/fneur.2021.784821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
It is well-established that visuospatial attention is mainly lateralized to the right hemisphere, whereas language production is mainly left-lateralized. However, there is a significant controversy regarding how these two kinds of lateralization interact with each other. The present research used functional near-infrared spectroscopy (fNIRS) to examine whether visuospatial attention is indeed right-lateralized, whereas language production is left-lateralized, and more importantly, whether the extent of lateralization in the visuospatial task is correlated with that in the task involving language. Specifically, fifty-two healthy right-handed participants participated in this study. Multiple-channel fNIRS technique was utilized to record the cerebral hemodynamic changes when participants were engaged in naming objects depicted in pictures (the picture naming task) or judging whether a presented line was bisected correctly (the landmark task). The degree of hemispheric lateralization was quantified according to the activation difference between the left and right hemispheres. We found that the picture-naming task predominantly activated the inferior frontal gyrus (IFG) of the left hemisphere. In contrast, the landmark task predominantly activated the inferior parietal sulcus (IPS) and superior parietal lobule (SPL) of the right hemisphere. The quantitative calculation of the laterality index also showed a left-lateralized distribution for the picture-naming task and a right-lateralized distribution for the landmark task. Intriguingly, the correlation analysis revealed no significant correlation between the laterality indices of these two tasks. Our findings support the independent hypothesis, suggesting that different cognitive tasks may engender lateralized processing in the brain, but these lateralized activities may be independent of each other. Meanwhile, we stress the importance of handedness in understanding the relationship between functional asymmetries. Methodologically, we demonstrated the effectiveness of using the multichannel fNIRS technique to investigate the hemispheric specialization of different cognitive tasks and their lateralization relations between different tasks. Our findings and methods may have important implications for future research to explore lateralization-related issues in individuals with neural pathologies.
Collapse
Affiliation(s)
| | | | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Ferrara K, Seydell-Greenwald A, Chambers CE, Newport EL, Landau B. Developmental changes in neural lateralization for visual-spatial function: Evidence from a line-bisection task. Dev Sci 2021; 25:e13217. [PMID: 34913543 DOI: 10.1111/desc.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
Studies of hemispheric specialization have traditionally cast the left hemisphere as specialized for language and the right hemisphere for spatial function. Much of the supporting evidence for this separation of function comes from studies of healthy adults and those who have sustained lesions to the right or left hemisphere. However, we know little about the developmental origins of lateralization. Recent evidence suggests that the young brain represents language bilaterally, with 4-6-year-olds activating the left-hemisphere regions known to support language in adults as well as homotopic regions in the right hemisphere. This bilateral pattern changes over development, converging on left-hemispheric activation in late childhood. In the present study, we ask whether this same developmental trajectory is observed in a spatial task that is strongly right-lateralized in adults-the line bisection (or "Landmark") task. We examined fMRI activation among children ages 5-11 years as they were asked to judge which end of a bisected vertical line was longer. We found that young children showed bilateral activation, with activation in the same areas of the right hemisphere as has been shown among adults, as well as in the left hemisphere homotopic regions. By age 10, activation was right-lateralized. This strongly resembles the developmental trajectory for language, moving from bilateral to lateralized activation. We discuss potential underlying mechanisms and suggest that understanding the development of lateralization for a range of cognitive functions can play a crucial role in understanding general principles of how and why the brain comes to lateralize certain functions.
Collapse
Affiliation(s)
- Katrina Ferrara
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA.,Intellectual and Developmental Disabilities Research Center, Children's National Health System, Washington, District of Columbia, USA
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA
| | - Catherine E Chambers
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA
| | - Elissa L Newport
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA
| | - Barbara Landau
- Center for Brain Plasticity and Recovery, Georgetown University, Washington, District of Columbia, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Feizabadi M, Albonico A, Starrfelt R, Barton JJS. Whole-object effects in visual word processing: Parallels with and differences from face recognition. Cogn Neuropsychol 2021; 38:231-257. [PMID: 34529548 DOI: 10.1080/02643294.2021.1974369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Visual words and faces differ in their structural properties, but both are objects of high expertise. Holistic processing is said to characterize expert face recognition, but the extent to which whole-word processes contribute to word recognition is unclear, particularly as word recognition is thought to proceed by a component-based process. We review the evidence for experimental effects in word recognition that parallel those used to support holistic face processing, namely inversion effects, the part-whole task, and composite effects, as well as the status of whole-word processing in pure alexia and developmental dyslexia, contrasts between familiar and unfamiliar languages, and the differences between handwriting and typeset font. The observations support some parallels in whole-object influences between face and visual word recognition, but do not necessarily imply similar expert mechanisms. It remains to be determined whether and how the relative balance between part-based and whole-object processing differs for visual words and faces.
Collapse
Affiliation(s)
- Monireh Feizabadi
- Department of Medicine (Neurology), Ophthalmology and Visual Science, University of British Columbia, Vancouver, Canada
| | - Andrea Albonico
- Department of Medicine (Neurology), Ophthalmology and Visual Science, University of British Columbia, Vancouver, Canada
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Jason J S Barton
- Department of Medicine (Neurology), Ophthalmology and Visual Science, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defining cognition? Neuron 2021; 109:2075-2090. [PMID: 34004139 PMCID: PMC8273110 DOI: 10.1016/j.neuron.2021.04.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Uniquely human cognitive faculties arise from flexible interplay between specific local neural modules, with hemispheric asymmetries in functional specialization. Here, we discuss how these computational design principles provide a scaffold that enables some of the most advanced cognitive operations, such as semantic understanding of world structure, logical reasoning, and communication via language. We draw parallels to dual-processing theories of cognition by placing a focus on Kahneman's System 1 and System 2. We propose integration of these ideas with the global workspace theory to explain dynamic relay of information products between both systems. Deepening the current understanding of how neurocognitive asymmetry makes humans special can ignite the next wave of neuroscience-inspired artificial intelligence.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany.
| | - Yoshua Bengio
- Mila, Montreal, QC, Canada; University of Montreal, Montreal, QC, Canada
| | - Danilo Bzdok
- Mila, Montreal, QC, Canada; Montreal Neurological Institute, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, and School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The author presents his perspective on the character of science, development, and handedness and relates these to his investigations of the early development of handedness. After presenting some ideas on what hemispheric specialization of function might mean for neural processing and how handedness should be assessed, the neuroscience of control of the arms/hands and interhemispheric communication and coordination are examined for how developmental processes can affect these mechanisms. The author’s work on the development of early handedness is reviewed and placed within a context of cascading events in which different forms of handedness emerge from earlier forms but not in a deterministic manner. This approach supports a continuous rather than categorical distribution of handedness and accounts for the predominance of right-handedness while maintaining a minority of left-handedness. Finally, the relation of the development of handedness to the development of several language and cognitive skills is examined.
Collapse
|
15
|
Viruega H, Gaviria M. Functional Weight of Somatic and Cognitive Networks and Asymmetry of Compensatory Mechanisms: Collaboration or Divergency among Hemispheres after Cerebrovascular Accident? Life (Basel) 2021; 11:life11060495. [PMID: 34071611 PMCID: PMC8226640 DOI: 10.3390/life11060495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The human brain holds highly sophisticated compensatory mechanisms relying on neuroplasticity. Neuronal degeneracy, redundancy, and brain network organization make the human nervous system more robust and evolvable to continuously guarantee an optimal environmental-related homeostasis. Nevertheless, after injury, restitution processes appear dissimilar, depending on the pathology. Following a cerebrovascular accident, asymmetry, within- and across-network compensation and interhemispheric inhibition are key features to functional recovery. In moderate-to-severe stroke, neurological outcome is often poor, and little is known about the paths that enable either an efficient collaboration among hemispheres or, on the contrary, an antagonism of adaptative responses. In this review, we aim to decipher key issues of ipsilesional and contralesional hemispheric functioning allowing the foundations of effective neurorehabilitation strategies.
Collapse
Affiliation(s)
- Hélène Viruega
- Institut Equiphoria, Combo Besso-Rouges Parets, 48500 La Canourgue, France;
- Alliance Equiphoria, 4, Résidence Le Sabot, 48500 La Canourgue, France
| | - Manuel Gaviria
- Alliance Equiphoria, 4, Résidence Le Sabot, 48500 La Canourgue, France
- Correspondence:
| |
Collapse
|
16
|
Abstract
Humans belong to the vast clade of species known as the bilateria, with a bilaterally symmetrical body plan. Over the course of evolution, exceptions to symmetry have arisen. Among chordates, the internal organs have been arranged asymmetrically in order to create more efficient functioning and packaging. The brain has also assumed asymmetries, although these generally trade off against the pressure toward symmetry, itself a reflection of the symmetry of limbs and sense organs. In humans, at least, brain asymmetries occur in independent networks, including those involved in language and manual manipulation biased to the left hemisphere, and emotion and face perception biased to the right. Similar asymmetries occur in other species, notably the great apes. A number of asymmetries are correlated with conditions such as dyslexia, autism, and schizophrenia, and have largely independent genetic associations. The origin of asymmetry itself, though, appears to be unitary, and in the case of the internal organs, at least, may depend ultimately on asymmetry at the molecular level.
Collapse
|
17
|
Kroliczak G, Buchwald M, Kleka P, Klichowski M, Potok W, Nowik AM, Randerath J, Piper BJ. Manual praxis and language-production networks, and their links to handedness. Cortex 2021; 140:110-127. [PMID: 33975084 DOI: 10.1016/j.cortex.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
While Liepmann was one of the first researchers to consider a relationship between skilled manual actions (praxis) and language for tasks performed "freely from memory", his primary focus was on the relations between the organization of praxis and left-hemisphere dominance. Subsequent attempts to apply his apraxia model to all cases he studied - including his first patient, a "non-pure right-hander" treated as an exception - left the praxis-handedness issue unresolved. Modern neuropsychological and recent neuroimaging evidence either showed closer associations of praxis and language, than between handedness and any of these two functions, or focused on their dissociations. Yet, present-day developments in neuroimaging and statistics allow us to overcome the limitations of the earlier work on praxis-language-handedness links, and to better quantify their interrelationships. Using functional magnetic resonance imaging (fMRI), we studied tool use pantomimes and subvocal word generation in 125 participants, including righthanders (NRH = 52), ambidextrous individuals (mixedhanders; NMH = 31), and lefthanders (NLH = 42). Laterality indices were calculated both in two critical cytoarchitectonic maps, and 180 multi-modal parcellations of the human cerebral cortex, using voxel count and signal intensity, and the most relevant regions of interest and their networks were further analyzed. We found that atypical organization of praxis was present in all handedness groups (RH = 25.0%, MH = 22.6%; LH = 45.2%), and was about two and a half times as common as atypical organization of language (RH = 3.8%; MH = 6.5%; LH = 26.2%), contingent on ROI selection/LI-calculation method. Despite strong associations of praxis and language, regardless of handedness and typicality, dissociations of atypically represented praxis from typical left-lateralized language were common (~20% of cases), whereas the inverse dissociations of atypically represented language from typical left-lateralized praxis were very rare (in ~2.5% of all cases). The consequences of the existence of such different phenotypes for theoretical accounts of manual praxis, and its links to language and handedness are modeled and discussed.
Collapse
Affiliation(s)
- Gregory Kroliczak
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland.
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland
| | - Pawel Kleka
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Weronika Potok
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Agnieszka M Nowik
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Jennifer Randerath
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Brian J Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
18
|
Ruck L, Schoenemann PT. Handedness measures for the Human Connectome Project: Implications for data analysis. Laterality 2020; 26:584-606. [PMID: 33373549 DOI: 10.1080/1357650x.2020.1866001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Open data initiatives such as the UK Biobank and Human Connectome Project provide researchers with access to neuroimaging, genetic, and other data for large samples of left-and right-handed participants, allowing for more robust investigations of handedness than ever before. Handedness inventories are universal tools for assessing participant handedness in these large-scale neuroimaging contexts. These self-report measures are typically used to screen and recruit subjects, but they are also widely used as variables in statistical analyses of fMRI and other data. Recent investigations into the validity of handedness inventories, however, suggest that self-report data from these inventories might not reflect hand preference/performance as faithfully as previously thought. Using data from the Human Connectome Project, we assessed correspondence between three handedness measures - the Edinburgh Handedness Inventory (EHI), the Rolyan 9-hole pegboard, and grip strength - in 1179 healthy subjects. We show poor association between the different handedness measures, with roughly 10% of the sample having at least one behavioural measure which indicates hand-performance bias opposite to the EHI score, and over 65% of left-handers having one or more mismatched handedness scores. We discuss implications for future work, urging researchers to critically consider direction, degree, and consistency of handedness in their data.
Collapse
Affiliation(s)
- Lana Ruck
- Cognitive Science Program, Indiana University, Bloomington IN, USA.,Department of Anthropology, Indiana University, Bloomington IN, USA.,Stone Age Institute, Center for Research into the Anthropological Foundations of Technology (CRAFT), Indiana University, Bloomington, IN, USA
| | - P Thomas Schoenemann
- Cognitive Science Program, Indiana University, Bloomington IN, USA.,Department of Anthropology, Indiana University, Bloomington IN, USA.,Stone Age Institute, Center for Research into the Anthropological Foundations of Technology (CRAFT), Indiana University, Bloomington, IN, USA
| |
Collapse
|
19
|
Towards a unified understanding of lateralized vision: A large-scale study investigating principles governing patterns of lateralization using a heterogeneous sample. Cortex 2020; 133:201-214. [DOI: 10.1016/j.cortex.2020.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/14/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022]
|
20
|
Abstract
It is commonly assumed that cerebral asymmetry is unidimensional, but evidence increasingly suggests that different brain circuits are independently lateralized. This might explain why the search for a laterality gene has provided multiple candidates, each with weak linkage. An alternative possibility is that there is a single genetically invariant source of lateralization, perhaps cytoplasmic, and subject to many influences, some genetic, some epigenetic, and some random. This could further explain why laterality is associated with a variety of disorders, such as dyslexia, schizophrenia, stress disorders, and depression.
Collapse
|
21
|
Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Prog Neurobiol 2020; 192:101823. [DOI: 10.1016/j.pneurobio.2020.101823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
|
22
|
Mirrored brain organization: Statistical anomaly or reversal of hemispheric functional segregation bias? Proc Natl Acad Sci U S A 2020; 117:14057-14065. [PMID: 32513702 DOI: 10.1073/pnas.2002981117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Humans demonstrate a prototypical hemispheric functional segregation pattern, with language and praxis lateralizing to the left hemisphere and spatial attention, face recognition, and emotional prosody to the right hemisphere. In this study, we used fMRI to determine laterality for all five functions in each participant. Crucially, we recruited a sample of left-handers preselected for atypical (right) language dominance (n = 24), which allowed us to characterize hemispheric asymmetry of the other functions and compare their functional segregation pattern with that of left-handers showing typical language dominance (n = 39). Our results revealed that most participants with left language dominance display the prototypical pattern of functional hemispheric segregation (44%) or deviate from this pattern in only one function (35%). Similarly, the vast majority of right language dominant participants demonstrated a completely mirrored brain organization (50%) or a reversal for all but one cognitive function (32%). Participants deviating by more than one function from the standard segregation pattern showed poorer cognitive performance, in line with an oft-presumed biological advantage of hemispheric functional segregation.
Collapse
|
23
|
Petit S, Badcock NA, Woolgar A. Finding hidden treasures: A child-friendly neural test of task-following in individuals using functional Transcranial Doppler ultrasound. Neuropsychologia 2020; 146:107515. [PMID: 32504634 DOI: 10.1016/j.neuropsychologia.2020.107515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/25/2022]
Abstract
Despite growing interest in the mental life of individuals who cannot communicate verbally, objective and non-invasive tests of covert cognition are still sparse. In this study, we assessed the ability of neurotypical children to understand and follow task instructions by measuring neural responses through functional transcranial Doppler ultrasound (fTCD). We recorded blood flow velocity for the two brain hemispheres of twenty children (aged 9 to 12) while they performed either a language task or a visuospatial memory task, on identical visual stimuli. We extracted measures of neural lateralisation for the two tasks separately to investigate lateralisation, and we compared the left-minus-right pattern of activation across tasks to assess task-following. At the group level, we found that neural responses were left-lateralised when children performed the language task, and not when they performed the visuospatial task. However, with statistically robust analyses and controlled paradigms, significant lateralisation in individual children was less frequent than expected from the literature. Nonetheless, the pattern of hemispheric activation for the two tasks allowed us to confirm task-following in the group of participants, as well as in over half of the individuals. This provides a promising avenue for a covert and inexpensive test of children's ability to follow task instructions and perform different mental tasks on identical stimuli.
Collapse
Affiliation(s)
- Selene Petit
- Perception in Action Research Centre, Macquarie University, Australia; Department of Cognitive Science, Macquarie University, Australia; ARC Centre of Excellence in Cognition and its Disorders (CCD), Australia.
| | - Nicholas A Badcock
- Perception in Action Research Centre, Macquarie University, Australia; Department of Cognitive Science, Macquarie University, Australia; ARC Centre of Excellence in Cognition and its Disorders (CCD), Australia; School of Psychological Science, University of Western Australia, Crawley, Australia
| | - Alexandra Woolgar
- Perception in Action Research Centre, Macquarie University, Australia; Department of Cognitive Science, Macquarie University, Australia; ARC Centre of Excellence in Cognition and its Disorders (CCD), Australia; Medical Research Council (UK), Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Abstract
By examining the development of lateralization in the sensory and motor systems of the human fetus and chick embryo, this paper debates which lateralized functions develop first and what interactions may occur between the different sensory and motor systems during development. It also discusses some known influences of inputs from the environment on the development of lateralization, particularly the effects of light exposure on the development of visual and motor lateralization in chicks. The effects of light on the human fetus are related in this context. Using the chick embryo as a model to elucidate the genetic and environmental factors involved in development of lateralization, some understanding has been gained about how these lateralized functions emerge. At the same time, the value of carrying out much more research on the development of the various types of lateralization has become apparent.
Collapse
|
25
|
Abstract
We belong to a clade of species known as the bilateria, with a body plan that is essentially symmetrical with respect to left and right, an adaptation to the indifference of the natural world to mirror-reflection. Limbs and sense organs are in bilaterally symmetrical pairs, dictating a high degree of symmetry in the brain itself. Bilateral symmetry can be maladaptive, though, especially in the human world where it is important to distinguish between left and right sides, and between left-right mirror images, as in reading directional scripts. The brains of many animals have evolved asymmetries, often but not exclusively in functions not dependent on sensory input or immediate reaction to the environment. Brain asymmetries in humans have led to exaggerate notions of a duality between the sides of the brain. The tradeoff between symmetry and asymmetry results in individual differences in brain asymmetries and handedness, contributing to a diversity of aptitude and divisions of labor. Asymmetries may have their origin in fundamental molecular asymmetries going far back in biological evolution.
Collapse
|
26
|
Johnstone LT, Karlsson EM, Carey DP. The validity and reliability of quantifying hemispheric specialisation using fMRI: Evidence from left and right handers on three different cerebral asymmetries. Neuropsychologia 2020; 138:107331. [DOI: 10.1016/j.neuropsychologia.2020.107331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
|
27
|
Functional lateralization of tool-sound and action-word processing in a bilingual brain. HEALTH PSYCHOLOGY REPORT 2020. [DOI: 10.5114/hpr.2020.92718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Patterns of individual differences in fiber tract integrity of the face processing brain network support neurofunctional models. Neuroimage 2020; 204:116229. [DOI: 10.1016/j.neuroimage.2019.116229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
|
29
|
Paszulewicz J, Wolski P, Gajdek M. Is laterality adaptive? Pitfalls in disentangling the laterality-performance relationship. Cortex 2019; 125:175-189. [PMID: 31999962 DOI: 10.1016/j.cortex.2019.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/13/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Unlike non-human animal studies that have progressively demonstrated the advantages of being asymmetrical at an individual, group and population level, human studies show a quite inconsistent picture. Specifically, it is hardly clear if and how the strength of lateralization that an individual is equipped with relates to their cognitive performance. While some of these inconsistencies can be attributed to procedural and conceptual differences, the issue is aggravated by the fact that the intrinsic mathematical interdependence of the measures of laterality and performance produces spurious correlations that can be mistaken for evidence of an adaptive advantage of asymmetry. Leask and Crow [Leask, S. J., & Crow, T. J. (1997), How far does the brain lateralize?: an unbiased method for determining the optimum degree of hemispheric specialization. Neuropsychologia, 35(10), 1381-1387] devised a method of overcoming this problem that has been subsequently used in several large-sample studies investigating the asymmetry-performance relationship. In our paper we show that the original Leask and Crow method and its later variants fall victim to inherent nonlinear dependencies and produce artifacts. By applying the Leask and Crow method to random data and with mathematical analysis, we demonstrate that what has been believed to describe the true asymmetry-performance relation in fact only reflects the idiosyncrasies of the method itself. We think that the approach taken by Leask in his later paper [Leask, S. (2003), Principal curve analysis avoids assumptions of dependence between measures of hand skill. Laterality, 8(4), 307-316. doi:10.1080/13576500342000004] might be preferable.
Collapse
Affiliation(s)
| | - Piotr Wolski
- Institute of Psychology, Jagiellonian University, Kraków, Poland.
| | - Marek Gajdek
- Emeritus Associate Professor of Kielce University of Technology, Kielce, Poland
| |
Collapse
|
30
|
Vingerhoets G. Phenotypes in hemispheric functional segregation? Perspectives and challenges. Phys Life Rev 2019; 30:1-18. [DOI: 10.1016/j.plrev.2019.06.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
|
31
|
Karlsson EM, Johnstone LT, Carey DP. The depth and breadth of multiple perceptual asymmetries in right handers and non-right handers. Laterality 2019; 24:707-739. [PMID: 31399020 DOI: 10.1080/1357650x.2019.1652308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several non-verbal perceptual and attentional processes have been linked with specialization of the right cerebral hemisphere. Given that most people have a left hemispheric specialization for language, it is tempting to assume that functions of these two classes of dominance are related. Unfortunately, such models of complementarity are notoriously hard to test. Here we suggest a method which compares frequency of a particular perceptual asymmetry with known frequencies of left hemispheric language dominance in right-handed and non-right handed groups. We illustrate this idea using the greyscales and colourscales tasks, chimeric faces, emotional dichotic listening, and a consonant-vowel dichotic listening task. Results show a substantial "breadth" of leftward bias on the right hemispheric tasks and rightward bias on verbal dichotic listening. Right handers and non-right handers did not differ in terms of proportions of people who were left biased for greyscales/colourscales. Support for reduced typical biases in non-right handers was found for chimeric faces and for CV dichotic listening. Results are discussed in terms of complementary theories of cerebral asymmetries, and how this type of method could be used to create a taxonomy of lateralized functions, each categorized as related to speech and language dominance, or not.
Collapse
Affiliation(s)
- Emma M Karlsson
- Perception, Action and Memory Research Group, School of Psychology, Bangor University , Bangor , UK
| | | | - David P Carey
- Perception, Action and Memory Research Group, School of Psychology, Bangor University , Bangor , UK
| |
Collapse
|
32
|
Abstract
The human brain is often characterized in terms of a duality, with the left and right brains serving complementary functions, and even individuals are sometimes classified as either "left-brained" or "right-brained." Recent evidence from brain imaging shows that hemispheric asymmetry is multidimensional, comprised of independent lateralized circuits. Cerebral asymmetries, which include handedness, probably arise in phylogenesis through the fissioning of ancestral systems that divided and lateralized with increasing demand for specialization. They also vary between individuals, with some showing absent or reversed asymmetries. It is unlikely that this variation is controlled by a single gene, as sometimes assumed, but depends rather on complex interplay among several, perhaps many, genes. Hemispheric asymmetry has often been regarded as a unique mark of being human, but it has also become evident that behavioral and cerebral asymmetries are not confined to humans, and are widespread among animal species. They nevertheless exist against a fundamental background of bilateral symmetry, suggesting a tradeoff between the two. Individual differences in asymmetry, moreover, are themselves adaptive, contributing to the cognitive and behavioral specializations necessary for societies to operate efficiently.
Collapse
|
33
|
Seydell-Greenwald A, Pu SF, Ferrara K, Chambers CE, Newport EL, Landau B. Revisiting the Landmark Task as a tool for studying hemispheric specialization: What's really right? Neuropsychologia 2019; 127:57-65. [PMID: 30802463 PMCID: PMC6440843 DOI: 10.1016/j.neuropsychologia.2019.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 01/29/2023]
Abstract
The "Landmark Task" (LT) is a line bisection judgment task that predominantly activates right parietal cortex. The typical version requires observers to judge bisections for horizontal lines that cross their egocentric midline and therefore may depend on spatial attention as well as spatial representation of the line segments. To ask whether the LT is indeed right-lateralized regardless of spatial attention (for which the right hemisphere is known to be important), we examined LT activation in 26 neurologically healthy young adults using vertical (instead of horizontal) stimuli, as compared with a luminance control task that made similar demands on spatial attention. We also varied task difficulty, which is known to affect lateralization in both spatial and language tasks. Despite these changes to the task, we observed right-lateralized parietal activations similar to those reported in other LT studies, both at group level and in individual lateralization indices. We conclude that LT activation is robustly right-lateralized, perhaps uniquely so among commonly-studied spatial tasks. We speculate that the unique properties of the LT reside in its requirement to judge relative magnitudes of the two line segments, rather than in the more general aspects of spatial attention or visual-spatial representation.
Collapse
Affiliation(s)
- Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA.
| | - Serena F Pu
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA
| | - Katrina Ferrara
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA; Intellectual and Developmental Disabilities Research Center, Children's National Health System, 111 Michigan Avenue NW, Washington, D.C. 20010, USA
| | - Catherine E Chambers
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA
| | - Elissa L Newport
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA
| | - Barbara Landau
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA; Department of Cognitive Science, Johns Hopkins University, Krieger Hall, 2400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
34
|
Woodhead ZVJ, Bradshaw AR, Wilson AC, Thompson PA, Bishop DVM. Testing the unitary theory of language lateralization using functional transcranial Doppler sonography in adults. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181801. [PMID: 31032035 PMCID: PMC6458414 DOI: 10.1098/rsos.181801] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Hemispheric dominance for language can vary from task to task, but it is unclear if this reflects error of measurement or independent lateralization of different language systems. We used functional transcranial Doppler sonography to assess language lateralization within the middle cerebral artery territory in 37 adults (seven left-handers) on six tasks, each given on two occasions. Tasks taxed different aspects of language function. A pre-registered structural equation analysis was used to compare models of means and covariances. For most people, a single lateralized factor explained most of the covariance between tasks. A minority, however, showed dissociation of asymmetry, giving a second factor. This was mostly derived from a receptive task, which was highly reliable but not lateralized. The results suggest that variation in the strength of language lateralization reflects true individual differences and not just error of measurement. The inclusion of several tasks in a laterality battery makes it easier to detect cases of atypical asymmetry.
Collapse
Affiliation(s)
- Z V J Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - A R Bradshaw
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - A C Wilson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - P A Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - D V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Evidence of a Right Ear Advantage in the absence of auditory targets. Sci Rep 2018; 8:15569. [PMID: 30349021 PMCID: PMC6197268 DOI: 10.1038/s41598-018-34086-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
The Right Ear Advantage effect (REA) was explored in a white noise speech illusion paradigm: binaural white noise (WN) could be presented i) in isolation (WN condition), ii) overlapped to a voice pronouncing the vowel /a/ presented in the left ear (LE condition), iii) overlapped to a voice pronouncing the vowel /a/ presented in the right ear (RE condition). Participants were asked to report in which ear the voice has been perceived. The voice could be female or male, and it could be presented at 4 different intensities. Participants carried out the task correctly both in LE and in RE conditions. Importantly, in the WN condition the “right ear” responses were more frequent with respect to both the chance level and the “left ear” responses. A perceptual REA was confirmed both in LE and RE conditions. Moreover, when the voice was presented at low intensities (masked by WN), it was more frequently reported in the right than in the left ear (“illusory” REA). A positive correlation emerged between perceptual and illusory REA. Potential links of the REA effects with auditory hallucinations are discussed.
Collapse
|
36
|
Suzuki K, Kita Y, Oi Y, Okumura Y, Okuzumi H, Inagaki M. Right prefrontal cortex specialization for visuospatial working memory and developmental alterations in prefrontal cortex recruitment in school-age children. Clin Neurophysiol 2018; 129:759-765. [DOI: 10.1016/j.clinph.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 01/17/2018] [Indexed: 01/16/2023]
|
37
|
Uomini NT, Ruck L. Manual laterality and cognition through evolution: An archeological perspective. PROGRESS IN BRAIN RESEARCH 2018; 238:295-323. [DOI: 10.1016/bs.pbr.2018.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Seydell-Greenwald A, Ferrara K, Chambers CE, Newport EL, Landau B. Bilateral parietal activations for complex visual-spatial functions: Evidence from a visual-spatial construction task. Neuropsychologia 2017; 106:194-206. [PMID: 28987904 PMCID: PMC6408728 DOI: 10.1016/j.neuropsychologia.2017.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022]
Abstract
In this paper, we examine brain lateralization patterns for a complex visual-spatial task commonly used to assess general spatial abilities. Although spatial abilities have classically been ascribed to the right hemisphere, evidence suggests that at least some tasks may be strongly bilateral. For example, while functional neuroimaging studies show right-lateralized activations for some spatial tasks (e.g., line bisection), bilateral activations are often reported for others, including classic spatial tasks such as mental rotation. Moreover, constructive apraxia has been reported following left- as well as right-hemisphere damage in adults, suggesting a role for the left hemisphere in spatial function. Here, we use functional neuroimaging to probe lateralization while healthy adults carry out a simplified visual-spatial construction task, in which they judge whether two geometric puzzle pieces can be combined to form a square. The task evokes strong bilateral activations, predominantly in parietal and lateral occipital cortex. Bilaterality was observed at the single-subject as well as at the group level, and regardless of whether specific items required mental rotation. We speculate that complex visual-spatial tasks may generally engage more bilateral activation of the brain than previously thought, and we discuss implications for understanding hemispheric specialization for spatial functions.
Collapse
Affiliation(s)
- Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, DC 20057, USA.
| | - Katrina Ferrara
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, DC 20057, USA; Intellectual and Developmental Disabilities Research Center, Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine E Chambers
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, DC 20057, USA
| | - Elissa L Newport
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, DC 20057, USA
| | - Barbara Landau
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, DC 20057, USA; Department of Cognitive Science, Johns Hopkins University, Krieger Hall 2400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Biduła SP, Przybylski Ł, Pawlak MA, Króliczak G. Unique Neural Characteristics of Atypical Lateralization of Language in Healthy Individuals. Front Neurosci 2017; 11:525. [PMID: 28983238 PMCID: PMC5613132 DOI: 10.3389/fnins.2017.00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Using functional magnetic resonance imaging (fMRI) in 63 healthy participants, including left-handed and ambidextrous individuals, we tested how atypical lateralization of language—i. e., bilateral or right hemispheric language representation—differs from the typical left-hemisphere dominance. Although regardless of their handedness, all 11 participants from the atypical group engaged classical language centers, i.e., Broca's and Wernicke's areas, the right-hemisphere components of the default mode network (DMN), including the angular gyrus and middle temporal gyrus, were also critically involved during the verbal fluency task. Importantly, activity in these regions could not be explained in terms of mirroring the typical language pattern because left-hemisphere dominant individuals did not exhibit similar significant signal modulations. Moreover, when spatial extent of language-related activity across whole brain was considered, the bilateral language organization entailed more diffuse functional processing. Finally, we detected significant differences between the typical and atypical group in the resting-state connectivity at the global and local level. These findings suggest that the atypical lateralization of language has unique features, and is not a simple mirror image of the typical left hemispheric language representation.
Collapse
Affiliation(s)
- Szymon P Biduła
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Łukasz Przybylski
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| | - Mikołaj A Pawlak
- Department of Neurology and Cerebrovascular Disorders, Poznań University of Medical SciencesPoznan, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Institute of Psychology, Adam Mickiewicz University in PoznańPoznan, Poland
| |
Collapse
|
40
|
Sala G, Signorelli M, Barsuola G, Bolognese M, Gobet F. The Relationship between Handedness and Mathematics Is Non-linear and Is Moderated by Gender, Age, and Type of Task. Front Psychol 2017. [PMID: 28649210 PMCID: PMC5465301 DOI: 10.3389/fpsyg.2017.00948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationship between handedness and mathematical ability is still highly controversial. While some researchers have claimed that left-handers are gifted in mathematics and strong right-handers perform the worst in mathematical tasks, others have more recently proposed that mixed-handers are the most disadvantaged group. However, the studies in the field differ with regard to the ages and the gender of the participants, and the type of mathematical ability assessed. To disentangle these discrepancies, we conducted five studies in several Italian schools (total participants: N = 2,314), involving students of different ages (six to seventeen) and a range of mathematical tasks (e.g., arithmetic and reasoning). The results show that (a) linear and quadratic functions are insufficient for capturing the link between handedness and mathematical ability; (b) the percentage of variance in mathematics scores explained by handedness was larger than in previous studies (between 3 and 10% vs. 1%), and (c) the effect of handedness on mathematical ability depended on age, type of mathematical tasks, and gender. In accordance with previous research, handedness does represent a correlate of achievement in mathematics, but the shape of this relationship is more complicated than has been argued so far.
Collapse
Affiliation(s)
- Giovanni Sala
- Department of Psychological Sciences, University of LiverpoolLiverpool, United Kingdom
| | - Michela Signorelli
- Department of Oncology and Hemato-Oncology, University of MilanMilan, Italy
| | | | - Martina Bolognese
- Department of Oncology and Hemato-Oncology, University of MilanMilan, Italy
| | - Fernand Gobet
- Department of Psychological Sciences, University of LiverpoolLiverpool, United Kingdom
| |
Collapse
|
41
|
Corballis MC. The Evolution of Lateralized Brain Circuits. Front Psychol 2017; 8:1021. [PMID: 28670296 PMCID: PMC5472687 DOI: 10.3389/fpsyg.2017.01021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023] Open
Abstract
In the vast clade of animals known as the bilateria, cerebral and behavioral asymmetries emerge against the backdrop of bilateral symmetry, with a functional trade-off between the two. Asymmetries can lead to more efficient processing and packaging of internal structures, but at the expense of efficient adaptation to a natural world without systematic left-right bias. Asymmetries may arise through the fissioning of ancestral structures that are largely symmetrical, creating new circuits. In humans these may include asymmetrical adaptations to language and manufacture, and as one or other hemisphere gains dominance for functions that were previously represented bilaterally. This is best illustrated in the evolution of such functions as language and tool manufacture in humans, which may derive from the mirror-neuron system in primates, but similar principles probably apply to the many other asymmetries now evident in a wide range of animals. Asymmetries arise in largely independent manner with multi-genetic sources, rather than as a single over-riding principle.
Collapse
|
42
|
Nusbaum F, Hannoun S, Kocevar G, Stamile C, Fourneret P, Revol O, Sappey-Marinier D. Hemispheric Differences in White Matter Microstructure between Two Profiles of Children with High Intelligence Quotient vs. Controls: A Tract-Based Spatial Statistics Study. Front Neurosci 2017; 11:173. [PMID: 28420955 PMCID: PMC5376583 DOI: 10.3389/fnins.2017.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/15/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives: The main goal of this study was to investigate and compare the neural substrate of two children's profiles of high intelligence quotient (HIQ). Methods: Two groups of HIQ children were included with either a homogeneous (Hom-HIQ: n = 20) or a heterogeneous IQ profile (Het-HIQ: n = 24) as defined by a significant difference between verbal comprehension index and perceptual reasoning index. Diffusion tensor imaging was used to assess white matter (WM) microstructure while tract-based spatial statistics (TBSS) analysis was performed to detect and localize WM regional differences in fractional anisotropy (FA), mean diffusivity, axial (AD), and radial diffusivities. Quantitative measurements were performed on 48 regions and 21 fiber-bundles of WM. Results: Hom-HIQ children presented higher FA than Het-HIQ children in widespread WM regions including central structures, and associative intra-hemispheric WM fasciculi. AD was also greater in numerous WM regions of Total-HIQ, Hom-HIQ, and Het-HIQ groups when compared to the Control group. Hom-HIQ and Het-HIQ groups also differed by their hemispheric lateralization in AD differences compared to Controls. Het-HIQ and Hom-HIQ groups showed a lateralization ratio (left/right) of 1.38 and 0.78, respectively. Conclusions: These findings suggest that both inter- and intra-hemispheric WM integrity are enhanced in HIQ children and that neural substrate differs between Hom-HIQ and Het-HIQ. The left hemispheric lateralization of Het-HIQ children is concordant with their higher verbal index while the relative right hemispheric lateralization of Hom-HIQ children is concordant with their global brain processing and adaptation capacities as evidenced by their homogeneous IQ.
Collapse
Affiliation(s)
- Fanny Nusbaum
- Laboratoire Parcours Santé Systémique (EA4129), Université Claude Bernard-Lyon 1 & Centre PSYRENELyon, France
| | - Salem Hannoun
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France.,Faculty of Medicine, Abu-Haidar Neuroscience Institute, American University of BeirutBeirut, Lebanon
| | - Gabriel Kocevar
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France
| | - Claudio Stamile
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France
| | - Pierre Fourneret
- Service de Psychopathologie du Développement, Hôpital Femme-Mère-Enfant, Hospices Civils de LyonBron, France
| | - Olivier Revol
- Service de Psychopathologie de l'Enfant et de l'Adolescent, Hôpital Neurologique, Hospices Civils de LyonBron, France
| | - Dominique Sappey-Marinier
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France.,CERMEP-Imagerie du Vivant, Université de LyonBron, France
| |
Collapse
|
43
|
Güntürkün O, Ocklenburg S. Ontogenesis of Lateralization. Neuron 2017; 94:249-263. [DOI: 10.1016/j.neuron.2017.02.045] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
|
44
|
Bódizs R, Gombos F, Ujma PP, Szakadát S, Sándor P, Simor P, Pótári A, Konrad BN, Genzel L, Steiger A, Dresler M, Kovács I. The hemispheric lateralization of sleep spindles in humans. ACTA ACUST UNITED AC 2017. [DOI: 10.1556/2053.01.2017.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter P. Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Sára Szakadát
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Piroska Sándor
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter Simor
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
- Nyírő Gyula Hospital, National Institute of Psychiatry and Addictions, Budapest, Hungary
| | - Adrián Pótári
- Department of Cognitive Science, Budapest University of Technology and Economics, Budapest, Hungary
| | | | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Ilona Kovács
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
45
|
Prete G, Fabri M, Foschi N, Tommasi L. Face gender categorization and hemispheric asymmetries: Contrasting evidence from connected and disconnected brains. Neuroscience 2016; 339:210-218. [PMID: 27746345 DOI: 10.1016/j.neuroscience.2016.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022]
Abstract
We investigated hemispheric asymmetries in categorization of face gender by means of a divided visual field paradigm, in which female and male faces were presented unilaterally for 150ms each. A group of 60 healthy participants (30 males) and a male split-brain patient (D.D.C.) were asked to categorize the gender of the stimuli. Healthy participants categorized male faces presented in the right visual field (RVF) better and faster than when presented in the left visual field (LVF), and female faces presented in the LVF than in the RVF, independently of the participants' sex. Surprisingly, the recognition rates of D.D.C. were at chance levels - and significantly lower than those of the healthy participants - for both female and male faces presented in the RVF, as well as for female faces presented in the LVF. His performance was higher than expected by chance - and did not differ from controls - only for male faces presented in the LVF. The residual right-hemispheric ability of the split-brain patient in categorizing male faces reveals an own-gender bias lateralized in the right hemisphere, in line with the rightward own-identity and own-age bias previously shown in split-brain patients. The gender-contingent hemispheric dominance found in healthy participants confirms the previously shown right-hemispheric superiority in recognizing female faces, and also reveals a left-hemispheric superiority in recognizing male faces, adding an important evidence of hemispheric imbalance in the field of face and gender perception.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychological Science, Health and Territory, "G. d'Annunzio" University of Chieti-Pescara, Italy.
| | - Mara Fabri
- Department of Clinical and Experimental Medicine, Neuroscience and Cell Biology Section, Polytechnic University of Marche, Ancona, Italy
| | - Nicoletta Foschi
- Regional Epilepsy Center, Neurological Clinic, "Ospedali Riuniti", Ancona, Italy
| | - Luca Tommasi
- Department of Psychological Science, Health and Territory, "G. d'Annunzio" University of Chieti-Pescara, Italy
| |
Collapse
|