1
|
Moore MJ, Mattingley JB, Demeyere N. Multivariate and network lesion mapping reveals distinct architectures of domain-specific post-stroke cognitive impairments. Neuropsychologia 2024; 204:109007. [PMID: 39362629 DOI: 10.1016/j.neuropsychologia.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The purpose of this study was to identify patterns of structural disconnection and multivariate lesion-behaviour relationships associated with post-stroke deficits across six commonly impacted cognitive domains: executive function, language, memory, numerical processing, praxis, and visuospatial attention. METHODS Stroke survivors (n = 593) completed a brief domain-specific cognitive assessment (the Oxford Cognitive Screen (OCS)) during acute hospitalisation. Network-level and multivariate (sparce canonical correlation) lesion mapping analyses were conducted to identify focal neural correlates and distributed patterns of structural disconnection associated with impairment on each of the 16 OCS measures. RESULTS Network-level and multivariate lesion mapping analyses identified significant correlates for 12/16 and 10/16 OCS measures, respectively which were largely consistent with correlates reported in past work. Language impairments were reliably localised to network- and voxel-level correlates centred in left fronto-temporal regions. Memory impairments were associated with disconnection in a large network of left hemisphere regions. Number processing deficits were associated with damage to voxels centred in the left insular/opercular cortex, as well as disconnection within the surrounding white matter tracts. Within the domain of attention, different subtypes of visuospatial neglect were linked to distinct but partially overlapping patterns of disconnection and voxel-level damage. Praxis impairment was not linked to any voxel-level regions but was significantly associated with disconnection within the left hemisphere dorsal attention network. CONCLUSION These results highlight the utility of routine, domain-specific cognitive assessment and imaging data for theoretically-driven lesion mapping analyses, while providing novel insight into the complex anatomical correlates of common and debilitating post-stroke cognitive impairments.
Collapse
Affiliation(s)
- Margaret Jane Moore
- Queensland Brain Institute & School of Psychology, The University of Queensland, St Lucia, 4072, Australia.
| | - Jason B Mattingley
- Queensland Brain Institute & School of Psychology, The University of Queensland, St Lucia, 4072, Australia; Canadian Institute for Advanced Research, Toronto, Canada
| | - Nele Demeyere
- Department of Experimental Psychology, University of Oxford, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
2
|
Lesourd M, Martin J, Hague S, Laroze M, Clément G, Comte A, Medeiros de Bustos E, Fargeix G, Magnin E, Moulin T. Organization of conceptual tool knowledge following left and right brain lesions: Evidence from neuropsychological dissociations and multivariate disconnectome symptom mapping. Brain Cogn 2024; 181:106210. [PMID: 39217817 DOI: 10.1016/j.bandc.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The aim of this work was to better understand the organization of conceptual tool knowledge following stroke. We explored specifically the link between manipulation kinematics and manipulation hand posture; and the link between manipulation kinematics and function relations in left brain-damaged (n = 30) and right brain-damaged (n = 30) patients. We examined the performance of brain-damaged patients in conceptual tool tasks using neuropsychological dissociations and disconnectome symptom mapping. Our results suggest that manipulation kinematics is more impaired than function relations, following left or right brain lesions. We also observed that manipulation kinematics and manipulation hand posture are dissociable dimensions but are still highly interrelated, particularly in left brain-damaged patients. We also found that the corpus callosum and bilateral superior longitudinal fasciculus are involved in action and semantic tool knowledge following left brain lesions. Our results provide evidence that the right hemisphere contains conceptual tool representations. Further studies are needed to better understand the mechanisms supporting the cognitive recovery of conceptual tool knowledge. An emerging hypothesis is that the right hemisphere may support functional recovery through interhemispheric transfer following a left hemisphere stroke.
Collapse
Affiliation(s)
- Mathieu Lesourd
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Université de Franche-Comté, CNRS, UAR 3124 MSHE, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France.
| | - Julie Martin
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Sébastien Hague
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Margolise Laroze
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Gautier Clément
- Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Alexandre Comte
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France
| | | | - Guillaume Fargeix
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Eloi Magnin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Thierry Moulin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| |
Collapse
|
3
|
Rounis E, Thompson E, Scandola M, Nozais V, Pizzamiglio G, de Schotten MT, Pacella V. A preliminary study of white matter disconnections underlying deficits in praxis in left hemisphere stroke patients. Brain Struct Funct 2024:10.1007/s00429-024-02814-3. [PMID: 39014269 DOI: 10.1007/s00429-024-02814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/31/2024] [Indexed: 07/18/2024]
Abstract
Limb apraxia is a higher-order motor disorder often occurring post-stroke, which affects skilled actions. It is assessed through tasks involving gesture production or pantomime, recognition, meaningless gesture imitation, complex figure drawing, single and multi-object use. A two-system model for the organisation of actions hypothesizes distinct pathways mediating praxis deficits via conceptual, 'indirect', and perceptual 'direct' routes to action. Traditional lesion- symptom mapping techniques have failed to identify these distinct routes. We assessed 29 left hemisphere stroke patients to investigate white matter disconnections on deficits of praxis tasks from the Birmingham Cognitive Screening. White matter disconnection maps derived from patients' structural T1 lesions were created using a diffusion-weighted healthy participant dataset acquired from the human connectome project (HCP). Initial group-level regression analyses revealed significant disconnection between occipital lobes via the splenium of the corpus callosum and involvement of the inferior longitudinal fasciculus in meaningless gesture imitation deficits. There was a trend of left fornix disconnection in gesture production deficits. Further, voxel-wise Bayesian Crawford single-case analyses performed on two patients with the most severe meaningless gesture imitation and meaningful gesture production deficits, respectively, confirmed distinct posterior interhemispheric disconnection, for the former, and disconnections between temporal and frontal areas via the fornix, rostrum of the corpus callosum and anterior cingulum, for the latter. Our results suggest distinct pathways associated with perceptual and conceptual deficits akin to 'direct' and 'indirect' action routes, with some patients displaying both. Larger studies are needed to validate and elaborate on these findings, advancing our understanding of limb apraxia.
Collapse
Affiliation(s)
- Elisabeth Rounis
- Chelsea and Westminster NHS Foundation Trust, London, UK.
- Department of Brain Sciences, Imperial College London, London, UK.
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Elinor Thompson
- Department of Computer Science, UCL Centre for Medical Image Computing, University College London, London, UK
| | - Michele Scandola
- Neuropsychology laboratory VR and Human Sciences Department, University of Verona, Verona, Italy
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionelle, Institut des Maladies Neurodegeneratives-UMR 5293, CNRS CEA University of Bordeaux, Bordeaux, 33076, France
| | - Gloria Pizzamiglio
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UL, UK
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionelle, Institut des Maladies Neurodegeneratives-UMR 5293, CNRS CEA University of Bordeaux, Bordeaux, 33076, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities Paris, Paris, 75006, France
| | - Valentina Pacella
- Groupe d'Imagerie Neurofonctionelle, Institut des Maladies Neurodegeneratives-UMR 5293, CNRS CEA University of Bordeaux, Bordeaux, 33076, France
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia, 27100, Italy
| |
Collapse
|
4
|
Besharati S, Jenkinson PM, Kopelman M, Solms M, Bulgarelli C, Pacella V, Moro V, Fotopoulou A. What I think she thinks about my paralysed body: Social inferences about disability-related content in anosognosia for hemiplegia. J Neuropsychol 2024. [PMID: 38899773 DOI: 10.1111/jnp.12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The neuropsychological disorder of anosognosia for hemiplegia (AHP) can offer unique insights into the neurocognitive processes of body consciousness and representation. Previous studies have found associations between selective social cognition deficits and anosognosia. In this study, we examined how such social cognition deficits may directly interact with representations of one's body as disabled in AHP. We used a modified set of previously validated Theory of Mind (ToM) stories to create disability-related content that was related to post-stroke paralysis and to investigate differences between right hemisphere damage patients with (n = 19) and without (n = 19) AHP. We expected AHP patients to perform worse than controls when trying to infer paralysis-related mental states in the paralysis-related ToM stories and explored whether such differences depended on the inference patients were asked to perform (e.g. self or other referent perspective-taking). Using an advanced structural neuroimaging technique, we expected selective social cognitive deficits to be associated with posterior parietal cortex lesions and deficits in self-referent perspective-taking in paralysis-related mentalising to be associated with frontoparietal disconnections. Group- and individual-level results revealed that AHP patients performed worse than HP controls when trying to infer paralysis-related mental states. Exploratory lesion analysis results revealed some of the hypothesised lesions, but also unexpected white matter disconnections in the posterior body and splenium of the corpus collosum associated with a self-referent perspective-taking in paralysis-related ToM stories. The study has implications for the multi-layered nature of body awareness, including abstract, social perspectives and beliefs about the body.
Collapse
Affiliation(s)
- Sahba Besharati
- Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul M Jenkinson
- Faculty of Psychology, Counselling and Psychotherapy, The Cairnmillar Institute, Melbourne, Australia
- Research Department of Clinical, Educational and Heath Psychology, University College London, London, UK
| | - Michael Kopelman
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark Solms
- Neuroscience Institute, University of Cape Town, Rondebosch, South Africa
| | | | | | - Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| | - Aikaterini Fotopoulou
- Research Department of Clinical, Educational and Heath Psychology, University College London, London, UK
| |
Collapse
|
5
|
Teghipco A, Newman-Norlund R, Fridriksson J, Rorden C, Bonilha L. Distinct brain morphometry patterns revealed by deep learning improve prediction of post-stroke aphasia severity. COMMUNICATIONS MEDICINE 2024; 4:115. [PMID: 38866977 PMCID: PMC11169346 DOI: 10.1038/s43856-024-00541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Emerging evidence suggests that post-stroke aphasia severity depends on the integrity of the brain beyond the lesion. While measures of lesion anatomy and brain integrity combine synergistically to explain aphasic symptoms, substantial interindividual variability remains unaccounted. One explanatory factor may be the spatial distribution of morphometry beyond the lesion (e.g., atrophy), including not just specific brain areas, but distinct three-dimensional patterns. METHODS Here, we test whether deep learning with Convolutional Neural Networks (CNNs) on whole brain morphometry (i.e., segmented tissue volumes) and lesion anatomy better predicts chronic stroke individuals with severe aphasia (N = 231) than classical machine learning (Support Vector Machines; SVMs), evaluating whether encoding spatial dependencies identifies uniquely predictive patterns. RESULTS CNNs achieve higher balanced accuracy and F1 scores, even when SVMs are nonlinear or integrate linear or nonlinear dimensionality reduction. Parity only occurs when SVMs access features learned by CNNs. Saliency maps demonstrate that CNNs leverage distributed morphometry patterns, whereas SVMs focus on the area around the lesion. Ensemble clustering of CNN saliencies reveals distinct morphometry patterns unrelated to lesion size, consistent across individuals, and which implicate unique networks associated with different cognitive processes as measured by the wider neuroimaging literature. Individualized predictions depend on both ipsilateral and contralateral features outside the lesion. CONCLUSIONS Three-dimensional network distributions of morphometry are directly associated with aphasia severity, underscoring the potential for CNNs to improve outcome prognostication from neuroimaging data, and highlighting the prospective benefits of interrogating spatial dependence at different scales in multivariate feature space.
Collapse
Affiliation(s)
- Alex Teghipco
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| | - Roger Newman-Norlund
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Christopher Rorden
- Department of Psychology, College of Arts and Sciences, University of South Carolina, Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
6
|
Rangus I, Rios AS, Horn A, Fritsch M, Khalil A, Villringer K, Udke B, Ihrke M, Grittner U, Galinovic I, Al-Fatly B, Endres M, Kufner A, Nolte CH. Fronto-thalamic networks and the left ventral thalamic nuclei play a key role in aphasia after thalamic stroke. Commun Biol 2024; 7:700. [PMID: 38849518 PMCID: PMC11161613 DOI: 10.1038/s42003-024-06399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Thalamic aphasia results from focal thalamic lesions that cause dysfunction of remote but functionally connected cortical areas due to language network perturbation. However, specific local and network-level neural substrates of thalamic aphasia remain incompletely understood. Using lesion symptom mapping, we demonstrate that lesions in the left ventrolateral and ventral anterior thalamic nucleus are most strongly associated with aphasia in general and with impaired semantic and phonemic fluency and complex comprehension in particular. Lesion network mapping (using a normative connectome based on fMRI data from 1000 healthy individuals) reveals a Thalamic aphasia network encompassing widespread left-hemispheric cerebral connections, with Broca's area showing the strongest associations, followed by the superior and middle frontal gyri, precentral and paracingulate gyri, and globus pallidus. Our results imply the critical involvement of the left ventrolateral and left ventral anterior thalamic nuclei in engaging left frontal cortical areas, especially Broca's area, during language processing.
Collapse
Affiliation(s)
- Ida Rangus
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany.
| | - Ana Sofia Rios
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit experimenteller Neurologie, Movement Disorder and Neuromodulation Unit, Berlin, Germany
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Merve Fritsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Psychiatrie und Psychotherapie, Berlin, Germany
| | - Ahmed Khalil
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Kersten Villringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Birgit Udke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Audiologie und Phoniatrie, Berlin, Germany
| | - Manuela Ihrke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Audiologie und Phoniatrie, Berlin, Germany
| | - Ulrike Grittner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Biometrie und klinische Epidemiologie, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Galinovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Bassam Al-Fatly
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit experimenteller Neurologie, Movement Disorder and Neuromodulation Unit, Berlin, Germany
| | - Matthias Endres
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz Kreislauferkrankungen, DZHK), Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, NeuroCure Clinical Research Center (NCRC), Berlin, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Partner Site Berlin, Berlin, Germany
| | - Anna Kufner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
| | - Christian H Nolte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Stroke Research Berlin (CSB), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (Deutsches Zentrum für Herz Kreislauferkrankungen, DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
7
|
Sperber C, Wiesen D, Karnath H, de Haan B. The neuroanatomy of visual extinction following right hemisphere brain damage: Insights from multivariate and Bayesian lesion analyses in acute stroke. Hum Brain Mapp 2024; 45:e26639. [PMID: 38433712 PMCID: PMC10910281 DOI: 10.1002/hbm.26639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Multi-target attention, that is, the ability to attend and respond to multiple visual targets presented simultaneously on the horizontal meridian across both visual fields, is essential for everyday real-world behaviour. Given the close link between the neuropsychological deficit of extinction and attentional limits in healthy subjects, investigating the anatomy that underlies extinction is uniquely capable of providing important insights concerning the anatomy critical for normal multi-target attention. Previous studies into the brain areas critical for multi-target attention and its failure in extinction patients have, however, produced heterogeneous results. In the current study, we used multivariate and Bayesian lesion analysis approaches to investigate the anatomical substrate of visual extinction in a large sample of 108 acute right hemisphere stroke patients. The use of acute stroke patient data and multivariate/Bayesian lesion analysis approaches allowed us to address limitations associated with previous studies and so obtain a more complete picture of the functional network associated with visual extinction. Our results demonstrate that the right temporo-parietal junction (TPJ) is critically associated with visual extinction. The Bayesian lesion analysis additionally implicated the right intraparietal sulcus (IPS), in line with the results of studies in neurologically healthy participants that highlighted the IPS as the area critical for multi-target attention. Our findings resolve the seemingly conflicting previous findings, and emphasise the urgent need for further research to clarify the precise cognitive role of the right TPJ in multi-target attention and its failure in extinction patients.
Collapse
Affiliation(s)
- Christoph Sperber
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of NeurologyInselspital, University Hospital BernBernSwitzerland
| | - Daniel Wiesen
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Hans‐Otto Karnath
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of PsychologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Bianca de Haan
- Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University LondonUxbridgeUK
| |
Collapse
|
8
|
Florean I, Vergobbi P, Tomasino B, Nilo A, Guarracino I, Skrap M, Verriello L, Valente M, Ius T, Pauletto G. An "epileptic scent": Olfactory auras in tumor-related epilepsy. Epilepsy Behav 2024; 151:109642. [PMID: 38242066 DOI: 10.1016/j.yebeh.2024.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
OBJECTIVES To characterize a profile for patients with tumor-related epilepsy presenting olfactory auras. MATERIALS AND METHODS We conducted a monocentric, retrospective study on patients who underwent surgery in the Neurosurgery Unit of Udine University Hospital (Udine, Italy), between the 1st of January 2010 and the 1st of January 2019, for primary brain tumors (PBTs) involving the temporal lobe and the insula. All patients were affected by tumor-related epilepsy; the study group presented olfactory auras as well. We collected neuroradiological, neuropsychological and neurophysiological data from patients' medical charts. RESULTS The subtraction analysis of MRI data shows maximum lesion overlay in left olfactory cortex, left and right hippocampus, left amygdala, right rolandic operculum, right inferior frontal gyrus and right middle temporal gyrus. The presence of olfactory auras did not influence seizure outcome (p = 0.500) or tumor recurrence after surgery (p = 0.185). The type of auras (elementary vs. complex), also, did not influence seizure control (p = 0.222). DISCUSSION In presence of olfactory auras, anterior and mesial temporal regions are mainly involved, such as olfactory cortex, amygdala, and anterior hippocampus, together with right rolandic operculum, right inferior frontal gyrus and right middle temporal gyrus, suggesting their possible role in the genesis of olfactory auras. Post-surgical seizure outcome and disease relapse are not influenced by neither the presence nor the type of olfactory auras. CONCLUSIONS Olfactory auras are rare event, however they may be often underestimated by the patients and under-investigated by the clinicians, even when their occurrence can represent a useful localizing tool.
Collapse
Affiliation(s)
- Irene Florean
- Department of Medical Area, University of Udine, Udine, Italy.
| | - Pietro Vergobbi
- Department of Medical Area, University of Udine, Udine, Italy.
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Department/Unit Pasian di Prato, Udine, Italy.
| | - Annacarmen Nilo
- Department of Medical Area, University of Udine, Udine, Italy; Clinical Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, Udine, Italy.
| | - Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Department/Unit Pasian di Prato, Udine, Italy.
| | - Miran Skrap
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Lorenzo Verriello
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, Udine, Italy.
| | - Mariarosaria Valente
- Department of Medical Area, University of Udine, Udine, Italy; Clinical Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, Udine, Italy.
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, Udine, Italy.
| | - Giada Pauletto
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, Udine, Italy.
| |
Collapse
|
9
|
Silva AH, Alves PN, Fonseca AC, Pinho‐e‐Melo T, Martins IP. Neglect scoring modifications in the National Institutes of Health Stroke Scale improve right hemisphere stroke lesion volume prediction. Eur J Neurol 2024; 31:e16133. [PMID: 37975791 PMCID: PMC11235761 DOI: 10.1111/ene.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The National Institutes of Health Stroke Scale (NIHSS) does not equitably assess stroke severity in the two cerebral hemispheres. By attributing a maximum of two points for neglect and seven for language, it undervalues right hemisphere deficits. We aimed to investigate if NIHSS equally predicts right hemisphere lesion volumes in patients with and without neglect, and if a modification of the neglect scoring rules could increase its predictive capacity. METHODS We analyzed a prospective cohort of acute right middle cerebral artery ischemic stroke patients. First, we calculated the correlation between NIHSS scores and lesion volume and analyzed the partial correlation of neglect. Then, we applied different modifications in the neglect scoring rules and investigated how they interfered with lesion volume predictive capacity. RESULTS A total of 162 ischemic stroke patients were included, 108 with neglect and 54 without. The correlation between lesion volume and NIHSS was lower in patients with neglect (r = 0.540 vs. r = 0.219, p = 0.004) and neglect was a statistically significant covariate in the partial correlation analysis between NIHSS and lesion volume (p = 0.017). With the neglect score tripled and with the duplication or triplication of all neglect modalities, the correlation was significantly higher than with the standard NIHSS (p = 0.043, p = 0.005, p = 0.001, respectively). With these modifications, neglect was no longer a significant covariable in the partial correlation between lesion volume and NIHSS. CONCLUSION A modification of NIHSS neglect scoring might improve the scale's capacity to predict lesion volume.
Collapse
Affiliation(s)
- Adriana Henriques Silva
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Pedro Nascimento Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Unidade de Acidentes Vasculares Cerebrais, Serviço de NeurologiaHospital de Santa Maria, CHULNLisboaPortugal
| | - Ana Catarina Fonseca
- Unidade de Acidentes Vasculares Cerebrais, Serviço de NeurologiaHospital de Santa Maria, CHULNLisboaPortugal
- Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Teresa Pinho‐e‐Melo
- Unidade de Acidentes Vasculares Cerebrais, Serviço de NeurologiaHospital de Santa Maria, CHULNLisboaPortugal
- Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Isabel Pavão Martins
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
- Serviço de NeurologiaHospital de Santa Maria, CHULNLisboaPortugal
| |
Collapse
|
10
|
Thomasson M, Perez-Marcos D, Crottaz-Herbette S, Brenet F, Saj A, Bernati T, Serino A, Tadi T, Blanke O, Ronchi R. An immersive virtual reality tool for assessing left and right unilateral spatial neglect. J Neuropsychol 2024. [PMID: 38225801 DOI: 10.1111/jnp.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024]
Abstract
The reported rate of the occurrence of unilateral spatial neglect (USN) is highly variable likely due to the lack of validity and low sensitivity of classical tools used to assess it. Virtual reality (VR) assessments try to overcome these limitations by proposing immersive and complex environments. Nevertheless, existing VR-based tasks are mostly focused only on near space and lack analysis of psychometric properties and/or clinical validation. The present study evaluates the clinical validity and sensitivity of a new immersive VR-based task to assess USN in the extra-personal space and examines the neuronal correlates of deficits of far space exploration. The task was administrated to two groups of patients with right (N = 28) or left (N = 11) hemispheric brain lesions, also undergoing classical paper-and-pencil assessment, as well as a group of healthy participants. Our VR-based task detected 44% of neglect cases compared to 31% by paper-and-pencil tests in the total sample. Importantly, 30% of the patients (with right or left brain lesions) with no clear sign of USN on the paper-and-pencil tests performed outside the normal range in the VR-based task. Voxel lesion-symptom mapping revealed that deficits detected in VR were associated with lesions in insular and temporal cortex, part of the neural network involved in spatial processing. These results show that our immersive VR-based task is efficient and sensitive in detecting mild to strong manifestations of USN affecting the extra-personal space, which may be undetected using standard tools.
Collapse
Affiliation(s)
- Marine Thomasson
- Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
- Neuropsychology Unit, Neurology Department, University Hospital of Geneva, Geneva, Switzerland
- Cognitive and Experimental Neuropsychology Laboratory, University of Geneva, Geneva, Switzerland
| | | | - Sonia Crottaz-Herbette
- MindMaze SA, Lausanne, Switzerland
- Neuropsychology and Neurorehabilitation Service, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Arnaud Saj
- Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
- Department of Psychology, University of Montréal, Montréal, Quebec, Canada
- CRIR/Institut Nazareth et Louis-Braille du CISSS de la Montérégie-Centre, Longueuil, Quebec, Canada
- Spectre Biotech, Paris, France
| | - Thérèse Bernati
- Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
| | - Andrea Serino
- MindMaze SA, Lausanne, Switzerland
- MySpace Lab, Department of Clinical Neurosciences, Lausanne, University of Lausanne, Lausanne, Switzerland
- Laboratory of Cognitive Neuroscience, Neuro-X Institute and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Tej Tadi
- MindMaze SA, Lausanne, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Neurosurgery, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Roberta Ronchi
- Laboratory for Behavioral Neurology and Imaging of Cognition, University of Geneva, Geneva, Switzerland
- Neuropsychology Unit, Neurology Department, University Hospital of Geneva, Geneva, Switzerland
- Laboratory of Cognitive Neuroscience, Neuro-X Institute and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
11
|
Moore MJ, Demeyere N, Rorden C, Mattingley JB. Lesion mapping in neuropsychological research: A practical and conceptual guide. Cortex 2024; 170:38-52. [PMID: 37940465 PMCID: PMC11474248 DOI: 10.1016/j.cortex.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Margaret J Moore
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia.
| | - Nele Demeyere
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Colombia, SC, USA
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia; School of Psychology, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
12
|
Scharf AC, Gronewold J, Eilers A, Todica O, Moenninghoff C, Doeppner TR, de Haan B, Bassetti CL, Hermann DM. Depression and anxiety in acute ischemic stroke involving the anterior but not paramedian or inferolateral thalamus. Front Psychol 2023; 14:1218526. [PMID: 37701875 PMCID: PMC10493383 DOI: 10.3389/fpsyg.2023.1218526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background and objectives Emotional and cognitive deficits are prevalent in strokes involving the thalamus. In contrast to cognitive deficits, emotional deficits have not been studied prospectively in isolated thalamic stroke. Methods In 37 ischemic thalamic stroke patients (57.0 [50.0; 69.5] years [median (Q1; Q3)], 21 males, 5 anterior, 12 paramedian, 20 inferolateral vascular territory), and 37 non-stroke control patients matched for age and sex, we prospectively examined depression, anxiety, activities of daily living, and quality of life at 1, 6, 12, and 24 months post-stroke using the Hospital-Anxiety-and-Depression Scale (HADS), Nürnberger-Alters-Alltagsaktivitäten scale (NAA), and Short Form-36 (SF36) questionnaire. Voxel-based lesion-symptom mapping (VLSM) and lesion-subtraction analyzes were performed to determine associations between questionnaire scores and thalamic stroke topography. Results At 1 month post-stroke, anterior thalamic stroke patients had higher depression scores [8.0 (7.5; 10.5)] than paramedian [4.5 (1.0; 5.8)] and inferolateral [4.0 (1.0; 7.0)] thalamic stroke patients. Furthermore, anterior thalamic stroke patients had higher anxiety scores [11.0 (8.0; 14.5)] than their matched controls [2.5 (2.0; 2.5)], paramedian [4.5 (1.0; 5.8)] and inferior [4.0 (1.0; 7.0)] thalamic stroke patients. Depression and anxiety scores in anterior thalamic stroke patients remained high across the follow-up [depression: 9.0 (3.5; 13,8); anxiety:10.05 (2.8, 14.5)].Physical health assessed by SF36 was intact in anterior [1 month post-stroke: T-score = 55.9 (37.0; 57.6)] but reduced in inferolateral [44.5(32.4; 53.1)] thalamic stroke, whereas mental health was reduced in anterior thalamic stroke [32.0 (29.8; 47.3)].VLSM confirmed that voxels in the anterior thalamus around Montreal Neurological Institute (MNI) coordinates X = -8, Y = -12, Z = 2 were more often affected by the stroke in depressed (HADS-score ≥ 8) than non-depressed (HADS-score < 8) patients and voxels around coordinates X = -10, Y = -12, Z = 2 were more often affected in anxious (HADS-score ≥ 8) than non-anxious (HADS-score < 8) patients. Conclusion Anterior, but not paramedian or inferolateral thalamic stroke was associated with depression and anxiety. Even though our results are mostly significant in the left thalamus, this observation on stroke laterality might be confounded by the fact that the right hemisphere was underrepresented in our study.
Collapse
Affiliation(s)
- Anne-Carina Scharf
- Department of Neurology, Institute of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janine Gronewold
- Department of Neurology, Institute of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andres Eilers
- Department of Neurology, Institute of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olga Todica
- Department of Neurology, Institute of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Moenninghoff
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Bianca de Haan
- Division of Psychology, Department of Life Sciences, Centre for Cognitive Neuroscience, Brunel University, London, United Kingdom
| | | | - Dirk M. Hermann
- Department of Neurology, Institute of Vascular Neurology, Dementia and Ageing Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Tani K, Iio S, Kamiya M, Yoshizawa K, Shigematsu T, Fujishima I, Tanaka S. Neuroanatomy of reduced distortion of body-centred spatial coding during body tilt in stroke patients. Sci Rep 2023; 13:11853. [PMID: 37481585 PMCID: PMC10363170 DOI: 10.1038/s41598-023-38751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Awareness of the direction of the body's (longitudinal) axis is fundamental for action and perception. The perceived body axis orientation is strongly biased during body tilt; however, the neural substrates underlying this phenomenon remain largely unknown. Here, we tackled this issue using a neuropsychological approach in patients with hemispheric stroke. Thirty-seven stroke patients and 20 age-matched healthy controls adjusted a visual line with the perceived body longitudinal axis when the body was upright or laterally tilted by 10 degrees. The bias of the perceived body axis caused by body tilt, termed tilt-dependent error (TDE), was compared between the groups. The TDE was significantly smaller (i.e., less affected performance by body tilt) in the stroke group (15.9 ± 15.9°) than in the control group (25.7 ± 17.1°). Lesion subtraction analysis and Bayesian lesion-symptom inference revealed that the abnormally reduced TDEs were associated with lesions in the right occipitotemporal cortex, such as the superior and middle temporal gyri. Our findings contribute to a better understanding of the neuroanatomy of body-centred spatial coding during whole-body tilt.
Collapse
Affiliation(s)
- Keisuke Tani
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan.
- Faculty of Psychology, Otemon Gakuin University, 2-1-15 Nishi-Ai, Ibaraki, Osaka, 567-8502, Japan.
| | - Shintaro Iio
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Masato Kamiya
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Kohei Yoshizawa
- Department of Rehabilitation, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Takashi Shigematsu
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Ichiro Fujishima
- Department of Rehabilitation Medicine, Hamamatsu City Rehabilitation Hospital, Hamamatsu, Shizuoka, 433-8511, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
14
|
Moore MJ, Jenkinson M, Griffanti L, Huygelier H, Gillebert CR, Demeyere N. A comparison of lesion mapping analyses based on CT versus MR imaging in stroke. Neuropsychologia 2023; 184:108564. [PMID: 37068585 PMCID: PMC10933788 DOI: 10.1016/j.neuropsychologia.2023.108564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
It is commonly asserted that MRI-derived lesion masks outperform CT-derived lesion masks in lesion-mapping analysis. However, no quantitative analysis has been conducted to support or refute this claim. This study reports an objective comparison of lesion-mapping analyses based on CT- and MRI-derived lesion masks to clarify how input imaging type may ultimately impact analysis results. Routine CT and MRI data were collected from 85 acute stroke survivors. These data were employed to create binarized lesion masks and conduct lesion-mapping analyses on simulated behavioral data. Following standard lesion-mapping analysis methodology, each voxel or region of interest (ROI) were considered as the underlying "target" within CT and MRI data independently. The resulting thresholded z-maps were compared between matched CT- and MRI-based analyses. Paired MRI- and CT-derived lesion masks were found to exhibit significant variance in location, overlap, and size. In ROI-level simulations, both CT and MRI-derived analyses yielded low Dice similarity coefficients, but CT analyses yielded a significantly higher proportion of results which overlapped with target ROIs. In single-voxel simulations, MRI-based lesion mapping was able to include more voxels than CT-based analyses, but CT-based analysis results were closer to the underlying target voxel. Simulated lesion-symptom mapping results yielded by paired CT and MRI lesion-symptom mapping analyses demonstrated moderate agreement in terms of Dice coefficient when systematic differences in cluster size and lesion overlay are considered. Overall, these results suggest that CT and MR-derived lesion-symptom mapping results do not reliably differ in accuracy. This finding is critically important as it suggests that future studies can employ CT-derived lesion masks if these scans are available within the appropriate time-window.
Collapse
Affiliation(s)
- Margaret J Moore
- Queensland Brain Institute, University of Queensland, Brisbane, Australia; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Australian Institute for Machine Learning, University of Adelaide, Adelaide, Australia
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | | | | | - Nele Demeyere
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Sperber C, Gallucci L, Umarova R. The low dimensionality of post-stroke cognitive deficits: it's the lesion anatomy! Brain 2023; 146:2443-2452. [PMID: 36408903 DOI: 10.1093/brain/awac443] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 10/06/2023] Open
Abstract
For years, dissociation studies on neurological single-case patients with brain lesions were the dominant method to infer fundamental cognitive functions in neuropsychology. In contrast, the association between deficits was considered to be of less epistemological value. Still, associational computational methods for dimensionality reduction-such as principal component analysis or factor analysis-became popular for the identification of fundamental cognitive functions and to understand human cognitive brain architecture from post-stroke neuropsychological profiles. In the present in silico study with lesion imaging of 300 stroke patients, we investigated the dimensionality of artificial simulated neuropsychological profiles that exclusively contained independent fundamental cognitive functions without any underlying low-dimensional cognitive architecture. Still, the anatomy of stroke lesions alone was sufficient to create a dependence between variables that allowed a low-dimensional description of the data with principal component analysis. All criteria that we used to estimate the dimensionality of data, including the Kaiser criterion, were strongly affected by lesion anatomy, while the Joliffe criterion provided the least affected estimates. The dimensionality of profiles was reduced by 62-70% for the Kaiser criterion, up to the degree that is commonly found in neuropsychological studies on actual cognitive measures. The interpretability of such low-dimensional factors as deficits of fundamental cognitive functions and their provided insights into human cognitive architecture thus seem to be severely limited, and the heavy focus of current cognitive neuroscience on group studies and associations calls for improvements. We suggest that qualitative criteria and dissociation patterns could be used to refine estimates for the dimensionality of the cognitive architecture behind post-stroke deficits. Further, given the strong impact of lesion anatomy on the associational structure of data, we see the need for further optimization of interpretation strategies of computational factors in post-stroke lesion studies of cognitive deficits.
Collapse
Affiliation(s)
- Christoph Sperber
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Laura Gallucci
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roza Umarova
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Thielen H, Tuts N, Lafosse C, Gillebert CR. The Neuroanatomy of Poststroke Subjective Sensory Hypersensitivity. Cogn Behav Neurol 2023; 36:68-84. [PMID: 37026772 DOI: 10.1097/wnn.0000000000000341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/09/2022] [Indexed: 04/08/2023]
Abstract
BACKGROUND Although subjective sensory hypersensitivity is prevalent after stroke, it is rarely recognized by health care providers, and its neural mechanisms are largely unknown. OBJECTIVE To investigate the neuroanatomy of poststroke subjective sensory hypersensitivity as well as the sensory modalities in which subjective sensory hypersensitivity can occur by conducting both a systematic literature review and a multiple case study of patients with subjective sensory hypersensitivity. METHOD For the systematic review, we searched three databases (Web of Science, PubMed, and Scopus) for empirical articles discussing the neuroanatomy of poststroke subjective sensory hypersensitivity in humans. We assessed the methodological quality of the included studies using the case reports critical appraisal tool and summarized the results using a qualitative synthesis. For the multiple case study, we administered a patient-friendly sensory sensitivity questionnaire to three individuals with a subacute right-hemispheric stroke and a matched control group and delineated brain lesions on a clinical brain scan. RESULTS Our systematic literature search resulted in four studies (describing eight stroke patients), all of which linked poststroke subjective sensory hypersensitivity to insular lesions. The results of our multiple case study indicated that all three stroke patients reported an atypically high sensitivity to different sensory modalities. These patients' lesions overlapped with the right anterior insula, the claustrum, and the Rolandic operculum. CONCLUSION Both our systematic literature review and our multiple case study provide preliminary evidence for a role of the insula in poststroke subjective sensory hypersensitivity and suggest that poststroke subjective sensory hypersensitivity can occur in different sensory modalities.
Collapse
Affiliation(s)
- Hella Thielen
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nora Tuts
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Céline Raymond Gillebert
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational Psychological Research, KU Leuven-Hospital East-Limbourgh, Genk, Belgium
| |
Collapse
|
17
|
Weaver NA, Mamdani MH, Lim JS, Biesbroek JM, Biessels GJ, Huenges Wajer IMC, Kang Y, Kim BJ, Lee BC, Lee KJ, Yu KH, Bae HJ, Bzdok D, Kuijf HJ. Disentangling poststroke cognitive deficits and their neuroanatomical correlates through combined multivariable and multioutcome lesion-symptom mapping. Hum Brain Mapp 2023; 44:2266-2278. [PMID: 36661231 PMCID: PMC10028652 DOI: 10.1002/hbm.26208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Studies in patients with brain lesions play a fundamental role in unraveling the brain's functional anatomy. Lesion-symptom mapping (LSM) techniques can relate lesion location to cognitive performance. However, a limitation of current LSM approaches is that they can only evaluate one cognitive outcome at a time, without considering interdependencies between different cognitive tests. To overcome this challenge, we implemented canonical correlation analysis (CCA) as combined multivariable and multioutcome LSM approach. We performed a proof-of-concept study on 1075 patients with acute ischemic stroke to explore whether addition of CCA to a multivariable single-outcome LSM approach (support vector regression) could identify infarct locations associated with deficits in three well-defined verbal memory functions (encoding, consolidation, retrieval) based on four verbal memory subscores derived from the Seoul Verbal Learning Test (immediate recall, delayed recall, recognition, learning ability). We evaluated whether CCA could extract cognitive score patterns that matched prior knowledge of these verbal memory functions, and if these patterns could be linked to more specific infarct locations than through single-outcome LSM alone. Two of the canonical modes identified with CCA showed distinct cognitive patterns that matched prior knowledge on encoding and consolidation. In addition, CCA revealed that each canonical mode was linked to a distinct infarct pattern, while with multivariable single-outcome LSM individual verbal memory subscores were associated with largely overlapping patterns. In conclusion, our findings demonstrate that CCA can complement single-outcome LSM techniques to help disentangle cognitive functions and their neuroanatomical correlates.
Collapse
Affiliation(s)
- Nick A Weaver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Muhammad Hasnain Mamdani
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, School of Computer Science, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Irene M C Huenges Wajer
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Yeonwook Kang
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
- Department of Psychology, Hallym University, Chuncheon, Republic of Korea
| | - Beom Joon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Byung-Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Keon-Joo Lee
- Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, School of Computer Science, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Moore MJ, Demeyere N. Word-centred neglect dyslexia as an inhibitional deficit: A single case study. Neuropsychologia 2023; 184:108502. [PMID: 36906224 DOI: 10.1016/j.neuropsychologia.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 03/12/2023]
Abstract
Word-centred neglect dyslexia is most commonly characterised as consequence of visuospatial neglect rather than an independent condition. However, recent research has suggested that this deficit may be dissociable from spatial attentional biases. This study aims to provide preliminary evidence investigating alternative mechanisms which could account for cases of word-centred neglect dyslexia which cannot be explained by visuospatial neglect. Patient EF is a chronic stroke survivor who presented with clear right-lateralised word-centred neglect dyslexia in conjunction with severe left egocentric neglect and left hemianopia following a right PCA stroke. The severity of EF's neglect dyslexia was not found to be affected by factors which modulate the severity of visuospatial neglect. EF demonstrated an intact ability to identify all letters in words, but reliably committed neglect dyslexia errors when subsequently reading the same words as a whole. EF did not exhibit neglect dyslexic impairment in standardised spelling, word-meaning matching, and word-picture matching tasks. Critically, EF exhibited marked cognitive inhibition impairment and committed neglect dyslexia errors which were characterised by misreading less familiar target words as more familiar responses. This behavioural pattern cannot be clearly accounted for by theories which characterize word-centred neglect dyslexia as a consequence of neglect. Instead, this data suggests that this case of word-centred neglect dyslexia may be related to a deficit of cognitive inhibition. Overall, these novel findings call for reevaluation of the dominant model of word-centred neglect dyslexia.
Collapse
Affiliation(s)
- Margaret Jane Moore
- Queensland Brain Institute, University of Queensland, Brisbane, Australia; Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Nele Demeyere
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Moore MJ, Milosevich E, Mattingley JB, Demeyere N. The neuroanatomy of visuospatial neglect: A systematic review and analysis of lesion-mapping methodology. Neuropsychologia 2023; 180:108470. [PMID: 36621594 DOI: 10.1016/j.neuropsychologia.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
While visuospatial neglect is commonly associated with damage to the right posterior parietal cortex, neglect is an anatomically heterogenous syndrome. This project presents a systematic review of 34 lesion-mapping studies reporting on the anatomical correlates of neglect. Specifically, the reported correlates of egocentric versus allocentric, acute versus chronic, personal versus extra-personal, and left versus right hemisphere neglect are summarised. The quality of each included lesion-mapping analysis was then evaluated to identify methodological factors which may help account for the reported variance in correlates of neglect. Overall, the existing literature strongly suggests that egocentric and allocentric neglect represent anatomically dissociable conditions and that the anatomy of these conditions may not be entirely homologous across hemispheres. Studies which have compared the anatomy of acute versus chronic neglect have found that these conditions are associated with distinct lesion loci, while studies comparing the correlates of peripersonal/extrapersonal neglect are split as to whether these neglect subtypes are anatomically dissociable. The included studies employed a wide range of lesion-mapping analysis techniques, each producing results of varying quality and generalisability. This review concludes that the reported underlying anatomical correlates of heterogeneous visuospatial neglect vary considerably. Future, high quality studies are needed to investigate patterns of disconnection associated with clearly defined forms of visuospatial neglect in large and representative samples.
Collapse
Affiliation(s)
- Margaret Jane Moore
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia.
| | - Elise Milosevich
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, St Lucia, Australia; School of Psychology, The University of Queensland, St Lucia, Australia
| | - Nele Demeyere
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Kleineberg NN, Schmidt CC, Richter MK, Bolte K, Schloss N, Fink GR, Weiss PH. Gesture meaning modulates the neural correlates of effector-specific imitation deficits in left hemisphere stroke. Neuroimage Clin 2023; 37:103331. [PMID: 36716655 PMCID: PMC9900453 DOI: 10.1016/j.nicl.2023.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
BACKGROUND Previous studies on left hemisphere (LH) stroke patients reported effector-specific (hand, fingers, bucco-facial) differences in imitation performance. Furthermore, imitation performance differed between meaningless (ML) and meaningful (MF) gestures. Recent work suggests that a gesture's meaning impacts the body-part specificity of gesture imitation. METHODS We tested the hypothesis that the gesture's meaning (ML vs MF) affects the lesion correlates of effector-specific imitation deficits (here: bucco-facial vs arm/hand gestures) using behavioural data and support vector regression-based lesion-symptom mapping (SVR-LSM) in a large sample of 194 sub-acute LH stroke patients. RESULTS Behavioural data revealed a significant interaction between the effector used for imitation and the meaning of the imitated gesture. SVR-LSM analyses revealed shared lesion correlates for impaired imitation independent of effector or gesture meaning in the left supramarginal (SMG) and superior temporal gyri (STG). Besides, within the territory of the left middle cerebral artery, impaired imitation of bucco-facial gestures was associated with more anterior lesions, while arm/hand imitation deficits were associated with more posterior lesions. MF gestures were specifically associated with lesions in the left inferior frontal gyrus and the left insular region. Notably, an interaction of effector-specificity and gesture meaning was also present at the lesion level: A more pronounced difference in imitation performance between the effectors for ML (versus MF) gestures was associated with left-hemispheric lesions in the STG, SMG, putamen, precentral gyrus and white matter tracts. CONCLUSION The current behavioural data show that ML gestures are particularly sensitive in assessing effector-specific imitation deficits in LH stroke patients. Moreover, a gesture's meaning modulated the effector-specific lesion correlates of bucco-facial and arm/hand gesture imitation. Hence, it is crucial to consider gesture meaning in apraxia assessments.
Collapse
Affiliation(s)
- Nina N Kleineberg
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany
| | - Monika K Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Katharina Bolte
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Natalie Schloss
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Leo-Brandt-Str. 5, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
21
|
Moro V, Pacella V, Scandola M, Besharati S, Rossato E, Jenkinson P, Fotopoulou A. A fronto-insular-parietal network for the sense of body ownership. Cereb Cortex 2023; 33:512-522. [PMID: 35235644 PMCID: PMC7614133 DOI: 10.1093/cercor/bhac081] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Neuropsychological disturbances in the sense of limb ownership provide unique opportunities to study the neurocognitive basis of body ownership. Previous small sample studies that showed discrete cortical lesions cannot explain why multisensory, affective, and cognitive manipulations alter disownership symptoms. We tested the novel hypothesis that disturbances in the sense of limb ownership would be associated not only with discrete cortical lesions but also with disconnections of white-matter tracts supporting specific functional networks. We drew on an advanced lesion-analysis and Bayesian statistics approach in 49 right-hemisphere patients (23 with and 26 without limb disownership). Our results reveal that disturbances in the sense of ownership are associated with lesions in the supramarginal gyrus and disconnections of a fronto-insular-parietal network, involving the frontal-insular and frontal inferior longitudinal tracts, confirming previous disconnection hypotheses. Together with previous behavioral and neuroanatomical results, these findings lead us to propose that the sense of body ownership involves the convergence of bottom-up, multisensory integration, and top-down monitoring of sensory salience based on contextual demands.
Collapse
Affiliation(s)
- V. Moro
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy
| | - V. Pacella
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy,Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, CS F-33076 Bordeaux
| | - M. Scandola
- NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy
| | - S. Besharati
- Department of Psychology, School of Human and Community Development, University of Witwatersrand, 2000 Johannesburg, South Africa,CIFAR Azrieli Global Scholars program, CIFAR, Toronto, ON M5G 1M1 Canada
| | - E. Rossato
- Department of Rehabilitation, IRCSS Sacro Cuore Don Calabria, 37024, Negrar, Verona, Italy
| | - P.M. Jenkinson
- Institute for Social Neuroscience, Ivanhoe, Melbourne, Victoria. Australia
| | - A Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College of London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Yang W, Li Y, Ying Z, Cai Y, Peng X, Sun H, Chen J, Zhu K, Hu G, Peng Y, Ge M. A presurgical voxel-wise predictive model for cerebellar mutism syndrome in children with posterior fossa tumors. Neuroimage Clin 2023; 37:103291. [PMID: 36527996 PMCID: PMC9791171 DOI: 10.1016/j.nicl.2022.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study aimed to investigate cerebellar mutism syndrome (CMS)-related voxels and build a voxel-wise predictive model for CMS. METHODS From July 2013 to January 2022, 188 pediatric patients diagnosed with posterior fossa tumor were included in this study, including 38 from a prospective cohort recruited between 2020 and January 2022, and the remaining from a retrospective cohort recruited in July 2013-Aug 2020. The retrospective cohort was divided into the training and validation sets; the prospective cohort served as a prospective validation set. Voxel-based lesion symptoms were assessed to identify voxels related to CMS, and a predictive model was constructed and tested in the validation and prospective validation sets. RESULTS No significant differences were detected among these three data sets in CMS rate, gender, age, tumor size, tumor consistency, presence of hydrocephalus and paraventricular edema. Voxels related to CMS were mainly located in bilateral superior and inferior cerebellar peduncles and the superior part of the cerebellum. The areas under the curves for the model in the training, validation and prospective validation sets were 0.889, 0.784 and 0.791, respectively. CONCLUSIONS Superior and inferior cerebellar peduncles and the superior part of the cerebellum were related to CMS, especially the right side, and voxel-based lesion-symptom analysis could provide valuable predictive information before surgery.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yiming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zesheng Ying
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yingjie Cai
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xiaojiao Peng
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - HaiLang Sun
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jiashu Chen
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Kaiyi Zhu
- Department of Cardiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 030032, China
| | - Geli Hu
- Department of Clinical and Technical Support, Philips Healthcare, Beijing 100600, China
| | - Yun Peng
- Department of Image Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
23
|
Alves PN, Fonseca AC, Pinho-E-Melo T, Martins IP. Clinical presentation and neural correlates of stroke-associated spatial delusions. Eur J Neurol 2023; 30:125-133. [PMID: 36086918 PMCID: PMC10086811 DOI: 10.1111/ene.15557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Incongruent beliefs about self-localization in space markedly disturb patients' behavior. Spatial delusions, or reduplicative paramnesias, are characterized by a firm conviction of place reduplication, transformation, or mislocation. Evidence suggests they are frequent after right hemisphere lesions, but comprehensive information about their clinical features is lacking. METHODS We prospectively screened 504 acute right-hemisphere stroke patients for the presence of spatial delusions. Their behavioral and clinical features were systematically assessed. Then, we analyzed the correlation of their duration with the magnitude of structural disruption of belief-associated functional networks. Finally, we described the syndrome subtypes and evaluated whether the clinical categorization would be predicted by the structural disruption of familiarity-associated functional networks using an unsupervised k-means clustering algorithm. RESULTS Sixty patients with spatial delusions were identified and fully characterized. Most (93%) localized the misidentified places closer to home than the hospital. The median time duration was 3 days (interquartile range = 1-7 days), and it was moderately correlated with the magnitude of structural-functional decoupling of belief-associated functional networks (r = 0.39, p = 0.02; beta coefficient regressing for lesion volume = 3.18, p = 0.04). Each clinical subtype had characteristic response patterns, which were reported, and representative examples were provided. Clustering based on structural disruption of familiarity- and unfamiliarity-associated functional networks poorly matched the clinical categorization (lesion: Rand index = 0.47; structural disconnection: Rand index = 0.51). CONCLUSIONS The systematic characterization of the peculiar clinical features of stroke-associated spatial delusions may improve the syndrome diagnosis and clinical approaches. The novel evidence about their neural correlates fosters the clarification of the pathophysiology of delusional misidentifications.
Collapse
Affiliation(s)
- Pedro N Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana C Fonseca
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Pinho-E-Melo
- Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel P Martins
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
van Grinsven EE, Smits AR, van Kessel E, Raemaekers MAH, de Haan EHF, Huenges Wajer IMC, Ruijters VJ, Philippens MEP, Verhoeff JJC, Ramsey NF, Robe PAJT, Snijders TJ, van Zandvoort MJE. The impact of etiology in lesion-symptom mapping - A direct comparison between tumor and stroke. Neuroimage Clin 2022; 37:103305. [PMID: 36610310 PMCID: PMC9850191 DOI: 10.1016/j.nicl.2022.103305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Lesion-symptom mapping is a key tool in understanding the relationship between brain structures and behavior. However, the behavioral consequences of lesions from different etiologies may vary because of how they affect brain tissue and how they are distributed. The inclusion of different etiologies would increase the statistical power but has been critically debated. Meanwhile, findings from lesion studies are a valuable resource for clinicians and used across different etiologies. Therefore, the main objective of the present study was to directly compare lesion-symptom maps for memory and language functions from two populations, a tumor versus a stroke population. METHODS Data from two different studies were combined. Both the brain tumor (N = 196) and stroke (N = 147) patient populations underwent neuropsychological testing and an MRI, pre-operatively for the tumor population and within three months after stroke. For this study, we selected two internationally widely used standardized cognitive tasks, the Rey Auditory Verbal Learning Test and the Verbal Fluency Test. We used a state-of-the-art machine learning-based, multivariate voxel-wise approach to produce lesion-symptom maps for these cognitive tasks for both populations separately and combined. RESULTS Our lesion-symptom mapping results for the separate patient populations largely followed the expected neuroanatomical pattern based on previous literature. Substantial differences in lesion distribution hindered direct comparison. Still, in brain areas with adequate coverage in both groups, considerable LSM differences between the two populations were present for both memory and fluency tasks. Post-hoc analyses of these locations confirmed that the cognitive consequences of focal brain damage varied between etiologies. CONCLUSION The differences in the lesion-symptom maps between the stroke and tumor population could partly be explained by differences in lesion volume and topography. Despite these methodological limitations, both the lesion-symptom mapping results and the post-hoc analyses confirmed that etiology matters when investigating the cognitive consequences of lesions with lesion-symptom mapping. Therefore, caution is advised with generalizing lesion-symptom results across etiologies.
Collapse
Affiliation(s)
- E E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - A R Smits
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - E van Kessel
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M A H Raemaekers
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - E H F de Haan
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; St. Hugh's College, Oxford University, UK
| | - I M C Huenges Wajer
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| | - V J Ruijters
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M E P Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - N F Ramsey
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - P A J T Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - T J Snijders
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M J E van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| |
Collapse
|
25
|
Cheng B, Chen J, Königsberg A, Mayer C, Rimmele L, Patil KR, Gerloff C, Thomalla G, Eickhoff SB. Mapping the deficit dimension structure of the National Institutes of Health Stroke Scale. EBioMedicine 2022; 87:104425. [PMID: 36563488 PMCID: PMC9800288 DOI: 10.1016/j.ebiom.2022.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The National Institutes of Health Stroke Scale (NIHSS) is the most frequently applied clinical rating scale for standardized assessment of neurological deficits in acute stroke in both clinical and research settings. Notwithstanding this prominent role, important questions regarding its validity remain insufficiently addressed: Investigations of the underlying dimensional structure of the NIHSS yielded inconsistent results that are largely not generalizable across studies. Neurobiological validations by linking measured deficit dimensions to brain anatomy and function are missing. METHODS We, therefore, employ advanced machine learning to identify an optimal representation of the dimensional structure of the NIHSS across two independent and heterogeneous stroke datasets (N = 503 and N = 690). Associated lesion locations are identified by multivariate lesion-deficit mapping (LDM) and their functional relevance is profiled based on a-priori task activation meta-data analysis, to provide an independent link to the behavioural level. FINDINGS A five-factor structure of the NIHSS was identified as the most robust and generalizable representation of stroke deficit dimensions across study populations, settings, and clinical phenotypes. Specifically, the identified dimensions comprised NIHSS items for (F1) left motor deficits, (F2) right motor deficits, (F3) dysarthria and facial palsy, (F4) language, and (F5) deficits in spatial attention and gaze. LDM linked four of these factors to differentially localized, eloquent neuroanatomical areas. Functional characterization of LDM results aligned with detected deficit dimensions, revealing associations with motor functions, language processing, and various functions in the perception domain. INTERPRETATION By cross-validating machine learning in heterogeneous multi-site stroke cohorts, we report evidence on the validity of the NIHSS: We identified an overarching structure of the NISHS containing a five-dimensional representation of stroke deficits. We provide an anatomical map of the NIHSS that is of value for future applications of individualized stroke treatment and rehabilitation. FUNDING This research was supported by the National Key R&D Program of China (Grant No. 2021YFC2502200), the National Human Brain Project of China (Grant No. 2022ZD0214000)", the German Research Foundation (Deutsche Forschungsgemeinschaft), Project 178316478 (A1, C1, C2), and Project 454012190 of the SPP 2041, the Helmholtz Portfolio Theme "Supercomputing and Modelling for the Human Brain" and Helmholtz Imaging Platform grant NimRLS (ZT-I-PF-4-010).
Collapse
Affiliation(s)
- Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Corresponding author.
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Corresponding author.
| | - Alina Königsberg
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Mayer
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leander Rimmele
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kaustubh R. Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
27
|
Moore MJ, Driscoll R, Colwell M, Hewitt O, Demeyere N. Aligning formal and functional assessments of Visuospatial Neglect: A mixed-methods study. Neuropsychol Rehabil 2022; 32:2560-2579. [PMID: 34392812 DOI: 10.1080/09602011.2021.1967172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACTThe occurrence of visuospatial neglect acts as a key predictor of recovery outcome following stroke. However, the specific behavioural profiles associated with various neglect subtypes are not well understood. This study aims to identify real-world functional impairments associated with neglect, to determine whether functional impairment profiles differ across patients with egocentric and allocentric neglect, and to investigate how neglect severity predicts functional impairments.Notes from 290 stroke patients' occupational therapy functional assessments were qualitatively and quantitatively analysed in the context of neglect type and severity as reported by the OCS Cancellation Task. Overall, neglect patients had more references to having difficulty initiating tasks, finding items, exhibiting spatial inattention, and having difficulty using both arms than patients without neglect. The proportion of theme references did not differ significantly across patients with egocentric and allocentric neglect. The quantitative severity of egocentric neglect was acted as a significant predictor of reference occurrence over and above stroke severity within difficulty finding items, spatial inattention, body inattention, and upper limb use.This study expands on previous findings by identifying real-world functional impairments differentiating patients with and without neglect. This data provides novel insight into the impact of neglect on functional abilities.
Collapse
Affiliation(s)
- Margaret Jane Moore
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Rebecca Driscoll
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Michael Colwell
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| | - Olivia Hewitt
- Oxford Institute of Clinical Psychology Training and Research, Isis Education Centre, Warneford Hospital, Oxford, UK
| | - Nele Demeyere
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Jiang B, Mackay MT, Stence N, Domi T, Dlamini N, Lo W, Wintermark M. Neuroimaging in Pediatric Stroke. Semin Pediatr Neurol 2022; 43:100989. [PMID: 36344022 DOI: 10.1016/j.spen.2022.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Pediatric stroke is unfortunately not a rare condition. It is associated with severe disability and mortality because of the complexity of potential clinical manifestations, and the resulting delay in seeking care and in diagnosis. Neuroimaging plays an important role in the multidisciplinary response for pediatric stroke patients. The rapid development of adult endovascular thrombectomy has created a new momentum in health professionals caring for pediatric stroke patients. Neuroimaging is critical to make decisions of identifying appropriate candidates for thrombectomy. This review article will review current neuroimaging techniques, imaging work-up strategies and special considerations in pediatric stroke. For resources limited areas, recommendation of substitute imaging approaches will be provided. Finally, promising new techniques and hypothesis-driven research protocols will be discussed.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Radiology, Neuroradiology Section, Stanford University, Stanford, CA.
| | - Mark T Mackay
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Victoria, Australia.
| | - Nicholas Stence
- Department of Radiology, pediatric Neuroradiology Section, University of Colorado School of Medicine, Aurora, CO
| | - Trish Domi
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Nomazulu Dlamini
- Department of Neurology, Hospital for Sick Children, Toronto, Canada.
| | - Warren Lo
- Department of Pediatrics and Neurology, The Ohio State University & Nationwide Children's Hospital, Columbus, OH.
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Center, Houston, TX.
| |
Collapse
|
29
|
Sperber C, Griffis J, Kasties V. Indirect structural disconnection-symptom mapping. Brain Struct Funct 2022; 227:3129-3144. [PMID: 36048282 DOI: 10.1007/s00429-022-02559-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 01/01/2023]
Abstract
In vivo tracking of white matter fibres catalysed a modern perspective on the pivotal role of brain connectome disruption in neuropsychological deficits. However, the examination of white matter integrity in neurological patients by diffusion-weighted magnetic resonance imaging bears conceptual limitations and is not widely applicable, as it requires imaging-compatible patients and resources beyond the capabilities of many researchers. The indirect estimation of structural disconnection offers an elegant and economical alternative. For this approach, a patient's structural lesion information and normative connectome data are combined to estimate different measures of lesion-induced structural disconnection. Using one of several toolboxes, this method is relatively easy to implement and is even available to scientists without expertise in fibre tracking analyses. Nevertheless, the anatomo-behavioural statistical mapping of structural brain disconnection requires analysis steps that are not covered by these toolboxes. In this paper, we first review the current state of indirect lesion disconnection estimation, the different existing measures, and the available software. Second, we aim to fill the remaining methodological gap in statistical disconnection-symptom mapping by providing an overview and guide to disconnection data and the statistical mapping of their relationship to behavioural measurements using either univariate or multivariate statistical modelling. To assist in the practical implementation of statistical analyses, we have included software tutorials and analysis scripts.
Collapse
Affiliation(s)
- Christoph Sperber
- University of Tubingen: Eberhard Karls Universitat Tubingen, Tubingen, Germany.
| | - Joseph Griffis
- University of Tubingen: Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Vanessa Kasties
- Centre of Neurology, Hertie-Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
- Child Development Center, University Childrens Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Schneider HR, Wawrzyniak M, Stockert A, Klingbeil J, Saur D. fMRI informed voxel-based lesion analysis to identify lesions associated with right-hemispheric activation in aphasia recovery. Neuroimage Clin 2022; 36:103169. [PMID: 36037659 PMCID: PMC9440420 DOI: 10.1016/j.nicl.2022.103169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Several mechanisms have been attributed to post-stroke loss and recovery of language functions. However, the significance and timing of domain-general and homotopic right-hemispheric activation is controversial. We aimed to examine the effect of left-hemispheric lesion location and time post-stroke on right-hemispheric activation. Voxel-based lesion analyses were informed by auditory language-related fMRI activation of 71 patients with left middle cerebral artery stroke examined longitudinally in the acute, subacute and early chronic phase. Language activation was determined in several right-hemispheric regions of interest and served as regressor of interest for voxel-based lesion analyses. We found that an acute to chronic increase of language activation in the right supplementary motor area was associated with lesions to the left extreme capsule as part of the ventral language pathway. Importantly, this activation increase correlated significantly with improvement of out-of-scanner comprehension abilities. We interpret our findings in terms of successful domain-general compensation in patients with critical left frontotemporal disconnection due to damage to the ventral language pathway but relatively spared cortical language areas.
Collapse
Affiliation(s)
| | - Max Wawrzyniak
- Corresponding author at: Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig AöR, Liebigstraße 20, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
31
|
Bassolino M, Franza M, Guanziroli E, Sorrentino G, Canzoneri E, Colombo M, Crema A, Bertoni T, Mastria G, Vissani M, Sokolov AA, Micera S, Molteni F, Blanke O, Serino A. Body and peripersonal space representations in chronic stroke patients with upper limb motor deficits. Brain Commun 2022; 4:fcac179. [PMID: 35950092 PMCID: PMC9356734 DOI: 10.1093/braincomms/fcac179] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/27/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The continuous stream of multisensory information between the brain and the body during body–environment interactions is crucial to maintain the updated representation of the perceived dimensions of body parts (metric body representation) and the space around the body (the peripersonal space). Such flow of multisensory signals is often limited by upper limb sensorimotor deficits after stroke. This would suggest the presence of systematic distortions of metric body representation and peripersonal space in chronic patients with persistent sensorimotor deficits. We assessed metric body representation and peripersonal space representation in 60 chronic stroke patients with unilateral upper limb motor deficits, in comparison with age-matched healthy controls. We also administered a questionnaire capturing explicit feelings towards the affected limb. These novel measures were analysed with respect to patients’ clinical profiles and brain lesions to investigate the neural and functional origin of putative deficits. Stroke patients showed distortions in metric body representation of the affected limb, characterized by an underestimation of the arm length and an alteration of the arm global shape. A descriptive lesion analysis (subtraction analysis) suggests that these distortions may be more frequently associated with lesions involving the superior corona radiata and the superior frontal gyrus. Peripersonal space representation was also altered, with reduced multisensory facilitation for stimuli presented around the affected limb. These deficits were more common in patients reporting pain during motion. Explorative lesion analyses (subtraction analysis, disconnection maps) suggest that the peripersonal space distortions would be more frequently associated with lesions involving the parietal operculum and white matter frontoparietal connections. Moreover, patients reported altered feelings towards the affected limb, which were associated with right brain damage, proprioceptive deficits and a lower cognitive profile. These results reveal implicit and explicit distortions involving metric body representation, peripersonal space representation and the perception of the affected limb in chronic stroke patients. These findings might have important clinical implications for the longitudinal monitoring and the treatments of often-neglected deficits in body perception and representation.
Collapse
Affiliation(s)
- Michela Bassolino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
- Institute of Health, School of Health Sciences, HES-SO Valais-Wallis , Sion 1950 , Switzerland
| | - Matteo Franza
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Giuliana Sorrentino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Elisa Canzoneri
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
| | - Maria Colombo
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Andrea Crema
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- AGO Neurotechnologies, Sàrl , Geneva 1201 , Switzerland
| | - Tommaso Bertoni
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| | - Giulio Mastria
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| | - Matteo Vissani
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pontedera, Pisa 56025 , Italy
| | - Arseny A Sokolov
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London , London WC1N 3BG , UK
- Service de Neurologie, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV) , Lausanne 1011 , Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna , Pontedera, Pisa 56025 , Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital Como , Costa Masnaga 23845 , Italy
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School , Geneva 1211 , Switzerland
| | - Andrea Serino
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, School of Life Science, Swiss Federal Institute of Technology (EPFL) , Geneva 1202 , Switzerland
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), MySpace Lab , Lausanne 1011 , Switzerland
| |
Collapse
|
32
|
Bowren M, Bruss J, Manzel K, Edwards D, Liu C, Corbetta M, Tranel D, Boes AD. Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping. Brain 2022; 145:1338-1353. [PMID: 35025994 PMCID: PMC9630711 DOI: 10.1093/brain/awac010] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/10/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Clinicians and scientists alike have long sought to predict the course and severity of chronic post-stroke cognitive and motor outcomes, as the ability to do so would inform treatment and rehabilitation strategies. However, it remains difficult to make accurate predictions about chronic post-stroke outcomes due, in large part, to high inter-individual variability in recovery and a reliance on clinical heuristics rather than empirical methods. The neuroanatomical location of a stroke is a key variable associated with long-term outcomes, and because lesion location can be derived from routinely collected clinical neuroimaging data there is an opportunity to use this information to make empirically based predictions about post-stroke deficits. For example, lesion location can be compared to statistically weighted multivariate lesion-behaviour maps of neuroanatomical regions that, when damaged, are associated with specific deficits based on aggregated outcome data from large cohorts. Here, our goal was to evaluate whether we can leverage lesion-behaviour maps based on data from two large cohorts of individuals with focal brain lesions to make predictions of 12-month cognitive and motor outcomes in an independent sample of stroke patients. Further, we evaluated whether we could augment these predictions by estimating the structural and functional networks disrupted in association with each lesion-behaviour map through the use of structural and functional lesion network mapping, which use normative structural and functional connectivity data from neurologically healthy individuals to elucidate lesion-associated networks. We derived these brain network maps using the anatomical regions with the strongest association with impairment for each cognitive and motor outcome based on lesion-behaviour map results. These peak regional findings became the 'seeds' to generate networks, an approach that offers potentially greater precision compared to previously used single-lesion approaches. Next, in an independent sample, we quantified the overlap of each lesion location with the lesion-behaviour maps and structural and functional lesion network mapping and evaluated how much variance each could explain in 12-month behavioural outcomes using a latent growth curve statistical model. We found that each lesion-deficit mapping modality was able to predict a statistically significant amount of variance in cognitive and motor outcomes. Both structural and functional lesion network maps were able to predict variance in 12-month outcomes beyond lesion-behaviour mapping. Functional lesion network mapping performed best for the prediction of language deficits, and structural lesion network mapping performed best for the prediction of motor deficits. Altogether, these results support the notion that lesion location and lesion network mapping can be combined to improve the prediction of post-stroke deficits at 12-months.
Collapse
Affiliation(s)
- Mark Bowren
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Joel Bruss
- Department of Neurology, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kenneth Manzel
- Department of Neurology, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dylan Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA
- Edith Cowan University, Joondalup, WA 6027, Australia
| | - Charles Liu
- Neurorestoration Center and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Maurizio Corbetta
- Department of Neuroscience, Venetian Institute of Molecular Medicine and Padova Neuroscience Center, University of Padua, Padova, PD 32122, Italy
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Aaron D Boes
- Departments of Neurology, Psychiatry, and Pediatrics, Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Mock N, Balzer C, Gutbrod K, De Haan B, Jäncke L, Ettlin T, Trost W. Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction. Cortex 2022; 153:178-193. [DOI: 10.1016/j.cortex.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
34
|
Scharf AC, Gronewold J, Todica O, Moenninghoff C, Doeppner TR, de Haan B, Bassetti CLA, Hermann DM. Evolution of Neuropsychological Deficits in First-Ever Isolated Ischemic Thalamic Stroke and Their Association With Stroke Topography: A Case-Control Study. Stroke 2022; 53:1904-1914. [PMID: 35259928 PMCID: PMC9126267 DOI: 10.1161/strokeaha.121.037750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The thalamus plays an essential role in cognition. Cognitive deficits have to date mostly been studied retrospectively in chronic thalamic stroke in small cohorts. Studies prospectively evaluating the evolution of cognitive deficits and their association with thalamic stroke topography are lacking. This knowledge is relevant for targeted patient diagnostics and rehabilitation.
Collapse
Affiliation(s)
- Anne-Carina Scharf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| | - Janine Gronewold
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| | - Olga Todica
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| | - Christoph Moenninghoff
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Germany. (C.M.)
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Germany (T.R.D.)
| | - Bianca de Haan
- Division of Psychology, Department of Life Sciences, Centre for Cognitive Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, United Kingdom (B.d.H.)
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany. (A.-C.S., J.G., O.T., D.M.H.)
| |
Collapse
|
35
|
Brain Dynamics of Action Monitoring in Higher-Order Motor Control Disorders: The Case of Apraxia. eNeuro 2022; 9:ENEURO.0334-20.2021. [PMID: 35105660 PMCID: PMC8896553 DOI: 10.1523/eneuro.0334-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Limb apraxia (LA) refers to a high-order motor disorder characterized by the inability to reproduce transitive actions on commands or after observation. Studies demonstrate that action observation and action execution activate the same networks in the human brain, and provides an onlooker’s motor system with appropriate cognitive, motor and sensory-motor cues to flexibly implementing action-sequences and gestures. Tellingly, the temporal dynamics of action monitoring has never been explored in people suffering from LA. To fill this gap, we studied the electro-cortical signatures of error observation in human participants suffering from acquired left-brain lesions with (LA+) and without (LA–) LA, and in a group of healthy controls (H). EEG was acquired while participants observed from a first-person perspective (1PP) an avatar performing correct or incorrect reach-to-grasp a glass action in an immersive-virtual environment. Alterations of typical EEG signatures of error observation in time (early error positivity; Pe) and time-frequency domain (theta band-power) were found reduced in LA+ compared with H. Connectivity analyses showed that LA+ exhibited a decreased theta phase synchronization of both the frontoparietal and frontofrontal network, compared with H and LA–. Moreover, linear regression analysis revealed that the severity of LA [test of upper LA (TULIA) scores] was predicted by mid-frontal error-related theta activity, suggesting a link between error monitoring capacity and apraxic phenotypes. These results provide novel neurophysiological evidence of altered neurophysiological dynamics of action monitoring in individuals with LA and shed light on the performance monitoring changes occurring in this disorder.
Collapse
|
36
|
Moore MJ, Demeyere N. Lesion symptom mapping of domain-specific cognitive impairments using routine imaging in stroke. Neuropsychologia 2022; 167:108159. [PMID: 35041840 DOI: 10.1016/j.neuropsychologia.2022.108159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION This large-scale lesion-symptom mapping study investigates the necessary neuro-anatomical substrates of 5 cognitive domains frequently affected post stroke: Language, Attention, Praxis, Number, and Memory. This study aims to demonstrate the validity of using routine clinical brain imaging and standard bedside cognitive screening data from a large, real-world patient cohort for lesion-symptom mapping. PATIENTS AND METHODS Behavioural cognitive screening data from the Oxford Cognitive Screen and routine clinical neuroimaging from 573 acute patients was used in voxel-based lesion-symptom mapping analyses. Patients were classed as impaired or not on each of the subtests within 5 cognitive domains. RESULTS Distinct patterns of lesion damage were associated with different domains. Language functions were associated with damage to left hemisphere fronto-temporal areas. Visuo-spatial functions were associated with damage to posterior occipital areas (Visual Field) and the right temporo-parietal region (Visual Neglect). Different memory impairments were linked to distinct voxel clusters within the left insular and opercular cortices. Deficits which were not associated with localised voxels (e.g. executive function, praxis) represent distributed, bilateral functions. DISCUSSION The standardised, brief Oxford Cognitive Screen was able to reliably differentiate distinct neural correlates critically involved in supporting domain-specific cognitive abilities. CONCLUSION By demonstrating and replicating known brain anatomy correlates within real-life clinical cohorts using routinely collected scans and standard bedside screens, we open up VLSM techniques to a wealth of clinically relevant studies which can capitalise on using existing clinical data.
Collapse
Affiliation(s)
- Margaret Jane Moore
- University of Oxford, Department of Experimental Psychology, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingdom
| | - Nele Demeyere
- University of Oxford, Department of Experimental Psychology, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
37
|
Piervincenzi C, Petsas N, Giannì C, Di Piero V, Pantano P. Alice in Wonderland syndrome: a lesion mapping study. Neurol Sci 2021; 43:3321-3332. [PMID: 34859331 DOI: 10.1007/s10072-021-05792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Alice in Wonderland syndrome (AIWS) is a rare neurological disorder, characterized by an erroneous perception of the body schema or surrounding space. It may be caused by a variety of neurological disorders, but to date, there is no agreement on which brain areas are affected. The aim of this study was to identify brain areas involved in AIWS. METHODS We conducted a literature search for AIWS cases following brain lesions. Patients were classified according to their symptoms as type A (somesthetic), type B (visual), or type C (somesthetic and visual). Using a lesion mapping approach, lesions were mapped onto a standard brain template and sites of overlap were identified. RESULTS Of 30 lesions, maximum spatial overlap was present in six cases. Local maxima were identified in the right occipital lobe, specifically in the extrastriate visual cortices and white matter tracts, including the ventral occipital fasciculus, optic tract, and inferior fronto-occipital fasciculus. Overlap was primarily due to type B patients (the most prevalent type, n = 22), who shared an occipital site of brain damage. Type A (n = 5) and C patients (n = 3) were rarer, with lesions disparately located in the right hemisphere (thalamus, insula, frontal lobe, hippocampal/parahippocampal cortex). CONCLUSIONS Lesion-associated AIWS in type B patients could be related to brain damage in visual pathways located preferentially, but not exclusively, in the right hemisphere. Conversely, the lesion location disparity in cases with somesthetic symptoms suggests underlying structural/functional disconnections requiring further evaluation.
Collapse
Affiliation(s)
| | | | | | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS NEUROMED, Pozzilli, IS, Italy
| |
Collapse
|
38
|
Alves PN, Silva DP, Fonseca AC, Martins IP. Mapping delusions of space onto a structural disconnectome that decouples familiarity and place networks. Cortex 2021; 146:250-260. [PMID: 34923302 DOI: 10.1016/j.cortex.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 11/03/2022]
Abstract
Interpretation of space is an important determinant of human behaviour. Delusions of space, or reduplicative paramnesias, are a particularly disturbing form of spatial disorientation characterized by the patients' strong belief of place reduplication, transformation or mislocation. Their occurrence following focal brain damage provides a unique opportunity to unveil the structural-functional basis of space misinterpretations. First, we identified reports of lesion-associated reduplicative paramnesias with brain images available through a systematic review of the literature (n = 24). Each lesion was matched with 4 stroke controls and the sample was randomly split in an exploratory (n = 60) and in a validation (n = 60) dataset. Second, we used 178 7T tractographies to compute structural disconnectome maps and analysed lesion topography and disconnection patterns. Delusions of space were significantly associated with structural disconnection of right ventrolateral prefrontal and right temporal regions, and this finding was replicated in the validation sample. Third, we performed a functional meta-analysis of syndrome-related terms. We demonstrated that the structural disconnectomes of delusions of space were spatially correlated with the functional meta-analytic maps of familiarity and place, and replicated the previous evidence that the lesion topography maps are spatially correlated with belief-related functional networks. No association was found with control terms. These results reveal that structural disconnection putatively mediates functional changes associated with reduplicative paramnesias and provide a possible neural basis for the content specificity for places that characterizes these delusional beliefs.
Collapse
Affiliation(s)
- Pedro N Alves
- Language Research Laboratory, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal.
| | - Daniela P Silva
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal
| | - Ana C Fonseca
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel P Martins
- Language Research Laboratory, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal; Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
39
|
Schmidt CC, Achilles EIS, Fink GR, Weiss PH. Distinct cognitive components and their neural substrates underlying praxis and language deficits following left hemisphere stroke. Cortex 2021; 146:200-215. [PMID: 34896806 DOI: 10.1016/j.cortex.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Apraxia is characterised by multiple deficits of higher motor functions, primarily caused by left hemisphere (LH) lesions to parietal-frontal praxis networks. While previous neuropsychological and lesion studies tried to relate the various apraxic deficits to specific lesion sites, a comprehensive analysis of the different apraxia profiles and the related (impaired) motor-cognitive processes as well as their differential neural substrates in LH stroke is lacking. To reveal the cognitive mechanisms that underlie the different patterns of praxis and (related) language deficits, we applied principal component analysis (PCA) to the scores of sub-acute LH stroke patients (n = 91) in several tests of apraxia and aphasia. Voxel-based lesion-symptom mapping (VLSM) analyses were then used to investigate the neural substrates of the identified components. The PCA yielded a first component related to language functions and three components related to praxis functions, with each component associated with specific lesion patterns. Regarding praxis functions, performance in imitating arm/hand gestures was accounted for by a second component related to the left precentral gyrus and the inferior parietal lobule. Imitating finger configurations, pantomiming the use of objects related to the face, and actually using objects loaded on component 3, related to the left anterior intraparietal sulcus and angular gyrus. The last component represented the imitation of bucco-facial gestures and was linked to the basal ganglia and LH white matter tracts. The results further revealed that pantomime of (limb-related) object use depended on both the component 2 and 3, which were shared with gesture imitation and actual object use. Data support and extend the notion that apraxia represents a multi-componential syndrome comprising different (impaired) motor-cognitive processes, which dissociate - at least partially - from language processes. The distinct components might be disturbed to a varying degree following LH stroke since they are associated with specific lesion patterns within the LH.
Collapse
Affiliation(s)
- Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Elisabeth I S Achilles
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
40
|
Moore MJ, Gillebert CR, Demeyere N. Right and left neglect are not anatomically homologous: A voxel-lesion symptom mapping study. Neuropsychologia 2021; 162:108024. [PMID: 34537205 PMCID: PMC8589961 DOI: 10.1016/j.neuropsychologia.2021.108024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
Visuospatial neglect is a heterogenous syndrome which can occur following damage to either right or left hemisphere areas. This study employs voxel-lesion symptom mapping to identify the neural correlates of left and right egocentric and allocentric neglect in a large acute stroke cohort. A cohort of 446 acute stroke survivors (age = 26-95, 44% female) completed neuropsychological neglect assessment and routine clinical imaging. Similar to previous investigations, left egocentric and left allocentric neglect were associated with damage to distinct clusters of voxels within the posterior parietal and temporo-parietal junction areas. Unlike previous investigations, right egocentric neglect was found to most strongly associated with damage to more posterior voxels within left occipital cortical areas. Right allocentric neglect was found to be most strongly associated with damage to the anterior limb of the left internal capsule. Interestingly, the right hemisphere homologues of the areas implicated in right-lateralised neglect were not overlapping with those associated with left neglect impairment. This dissociation was present across both egocentric and allocentric neglect impairment. The results of this investigation suggest that right egocentric/allocentric neglect should not be characterised as a consequence of damage to left-hemisphere homologues of the right hemisphere attentional systems. These findings support the characterisation of visuospatial neglect as a heterogenous cluster of impairments rather than a unitary syndrome and provide novel insight into the neural correlates of spatial attention.
Collapse
Affiliation(s)
- Margaret Jane Moore
- University of Oxford, Department of Experimental Psychology, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingdom
| | - Celine R Gillebert
- University of Oxford, Department of Experimental Psychology, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingdom; Department of Brain and Cognition, KU Leuven, Tiensestraat 102 Box 3711, 3000, Leuven, Belgium
| | - Nele Demeyere
- University of Oxford, Department of Experimental Psychology, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingdom.
| |
Collapse
|
41
|
Meier EL, Sheppard SM, Goldberg EB, Kelly CR, Walker A, Ubellacker DM, Vitti E, Ruch K, Hillis AE. Dysfunctional Tissue Correlates of Unrelated Naming Errors in Acute Left Hemisphere Stroke. LANGUAGE, COGNITION AND NEUROSCIENCE 2021; 37:330-347. [PMID: 35665076 PMCID: PMC9159539 DOI: 10.1080/23273798.2021.1980593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/31/2021] [Indexed: 06/15/2023]
Abstract
Most naming error lesion-symptom mapping (LSM) studies have focused on semantic and/or phonological errors. Anomic individuals also produce unrelated word errors, which may be linked to semantic or modality-independent lexical deficits. To investigate the neural underpinnings of rarely-studied unrelated errors, we conducted LSM analyses in 100 individuals hospitalized with a left hemisphere stroke who completed imaging protocols and language assessments. We used least absolute shrinkage and selection operator regression to capture relationships between naming errors and dysfunctional brain tissue metrics (regional damage or hypoperfusion in vascular territories) in two groups: participants with and without impaired single-word auditory comprehension. Hypoperfusion-particularly within the parietal lobe-was an important error predictor, especially for the unimpaired group. In both groups, higher unrelated error proportions were associated with primarily ventral stream damage, the language route critical for processing meaning. Nonetheless, brain metrics implicated in unrelated errors were distinct from semantic error correlates.
Collapse
Affiliation(s)
- Erin L. Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shannon M. Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Communication Sciences and Disorders, Chapman University, Irvine, CA
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine R. Kelly
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Emilia Vitti
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kristina Ruch
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
42
|
van den Berg NS, de Haan EHF, Huitema RB, Spikman JM. The neural underpinnings of facial emotion recognition in ischemic stroke patients. J Neuropsychol 2021; 15:516-532. [PMID: 33554463 PMCID: PMC8518120 DOI: 10.1111/jnp.12240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/16/2020] [Indexed: 01/19/2023]
Abstract
Deficits in facial emotion recognition occur frequently after stroke, with adverse social and behavioural consequences. The aim of this study was to investigate the neural underpinnings of the recognition of emotional expressions, in particular of the distinct basic emotions (anger, disgust, fear, happiness, sadness and surprise). A group of 110 ischaemic stroke patients with lesions in (sub)cortical areas of the cerebrum was included. Emotion recognition was assessed with the Ekman 60 Faces Test of the FEEST. Patient data were compared to data of 162 matched healthy controls (HC's). For the patients, whole brain voxel-based lesion-symptom mapping (VLSM) on 3-Tesla MRI images was performed. Results showed that patients performed significantly worse than HC's on both overall recognition of emotions, and specifically of disgust, fear, sadness and surprise. VLSM showed significant lesion-symptom associations for FEEST total in the right fronto-temporal region. Additionally, VLSM for the distinct emotions showed, apart from overlapping brain regions (insula, putamen and Rolandic operculum), also regions related to specific emotions. These were: middle and superior temporal gyrus (anger); caudate nucleus (disgust); superior corona radiate white matter tract, superior longitudinal fasciculus and middle frontal gyrus (happiness) and inferior frontal gyrus (sadness). Our findings help in understanding how lesions in specific brain regions can selectively affect the recognition of the basic emotions.
Collapse
Affiliation(s)
- Nils S. van den Berg
- Department of PsychologyUniversity of AmsterdamThe Netherlands
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| | | | - Rients B. Huitema
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| | - Jacoba M. Spikman
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| |
Collapse
|
43
|
Biesbroek JM, Lim JS, Weaver NA, Arikan G, Kang Y, Kim BJ, Kuijf HJ, Postma A, Lee BC, Lee KJ, Yu KH, Bae HJ, Biessels GJ. Anatomy of phonemic and semantic fluency: A lesion and disconnectome study in 1231 stroke patients. Cortex 2021; 143:148-163. [PMID: 34450565 DOI: 10.1016/j.cortex.2021.06.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023]
Abstract
Disturbances of semantic and phonemic fluency are common after brain damage, as a manifestation of language, executive, or memory dysfunction. Lesion-symptom mapping (LSM) studies can provide fundamental insights in shared and distinct anatomical correlates of these cognitive functions and help to understand which patients suffer from these deficits. We performed a multivariate support vector regression-based lesion-symptom mapping and structural disconnection study on semantic and phonemic fluency in 1231 patients with acute ischemic stroke. With the largest-ever LSM study on verbal fluency we achieved almost complete brain lesion coverage. Lower performance on both fluency types was related to left hemispheric frontotemporal and parietal cortical regions, and subcortical regions centering on the left thalamus. Distinct correlates for phonemic fluency were the anterior divisions of middle and inferior frontal gyri. Distinct correlates for semantic fluency were the posterior regions of the middle and inferior temporal gyri, parahippocampal and fusiform gyri and triangular part of the inferior frontal gyrus. The disconnectome-based analyses additionally revealed phonemic fluency was associated with a more extensive frontoparietal white matter network, whereas semantic fluency was associated with disconnection of the fornix, mesiotemporal white matter, splenium of the corpus callosum. These results provide the most detailed outline of the anatomical correlates of phonemic and semantic fluency to date, stress the crucial role of subcortical regions and reveal a novel dissociation in the left temporal lobe.
Collapse
Affiliation(s)
- J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands.
| | - Jae-Sung Lim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Gozdem Arikan
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Yeonwook Kang
- Department of Psychology, Hallym University, Chuncheon, Republic of Korea
| | - Beom Joon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert Postma
- Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands
| | - Byung-Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Keon-Joo Lee
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
44
|
Kasties V, Karnath H, Sperber C. Strategies for feature extraction from structural brain imaging in lesion-deficit modelling. Hum Brain Mapp 2021; 42:5409-5422. [PMID: 34415093 PMCID: PMC8519857 DOI: 10.1002/hbm.25629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/30/2021] [Accepted: 08/07/2021] [Indexed: 12/25/2022] Open
Abstract
High‐dimensional modelling of post‐stroke deficits from structural brain imaging is highly relevant to basic cognitive neuroscience and bears the potential to be translationally used to guide individual rehabilitation measures. One strategy to optimise model performance is well‐informed feature selection and representation. However, different feature representation strategies were so far used, and it is not known what strategy is best for modelling purposes. The present study compared the three common main strategies: voxel‐wise representation, lesion‐anatomical componential feature reduction and region‐wise atlas‐based feature representation. We used multivariate, machine‐learning‐based lesion‐deficit models to predict post‐stroke deficits based on structural lesion data. Support vector regression was tuned by nested cross‐validation techniques and tested on held‐out validation data to estimate model performance. While we consistently found the numerically best models for lower‐dimensional, featurised data and almost always for principal components extracted from lesion maps, our results indicate only minor, non‐significant differences between different feature representation styles. Hence, our findings demonstrate the general suitability of all three commonly applied feature representations in lesion‐deficit modelling. Likewise, model performance between qualitatively different popular brain atlases was not significantly different. Our findings also highlight potential minor benefits in individual fine‐tuning of feature representations and the challenge posed by the high, multifaceted complexity of lesion data, where lesion‐anatomical and functional criteria might suggest opposing solutions to feature reduction.
Collapse
Affiliation(s)
- Vanessa Kasties
- Centre of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Hans‐Otto Karnath
- Centre of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Christoph Sperber
- Centre of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
| |
Collapse
|
45
|
Left egocentric neglect in early subacute right-stroke patients is related to damage of the superior longitudinal fasciculus. Brain Imaging Behav 2021; 16:211-218. [PMID: 34328618 PMCID: PMC8825605 DOI: 10.1007/s11682-021-00493-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
A typical consequence of stroke in the right hemisphere is unilateral spatial neglect. Distinct forms of neglect have been described, such as space-based (egocentric) and object-based (allocentric) neglect. However, the relationship between these two forms of neglect is still far from being understood, as well as their neural substrates. Here, we further explore this issue by using voxel lesion symptoms mapping (VLSM) analyses on a large sample of early subacute right-stroke patients assessed with the Apples Cancellation Test. This is a sensitive test that simultaneously measures both egocentric and allocentric neglect. Behaviourally, we found no correlation between egocentric and allocentric performance, indicating independent mechanisms supporting the two forms of neglect. This was confirmed by the VLSM analysis that pointed out a link between a damage in the superior longitudinal fasciculus and left egocentric neglect. By contrast, no association was found between brain damage and left allocentric neglect. These results indicate a higher probability to observe egocentric neglect as a consequence of white matter damages in the superior longitudinal fasciculus, while allocentric neglect appears more “globally” related to the whole lesion map. Overall, these findings on early subacute right-stroke patients highlight the role played by white matter integrity in sustaining attention-related operations within an egocentric frame of reference.
Collapse
|
46
|
Rajashekar D, Hill MD, Demchuk AM, Goyal M, Fiehler J, Forkert ND. Prediction of Clinical Outcomes in Acute Ischaemic Stroke Patients: A Comparative Study. Front Neurol 2021; 12:663899. [PMID: 34025567 PMCID: PMC8134662 DOI: 10.3389/fneur.2021.663899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/09/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Clinical stroke rehabilitation decision making relies on multi-modal data, including imaging and other clinical assessments. However, most previously described methods for predicting long-term stroke outcomes do not make use of the full multi-modal data available. The aim of this work was to develop and evaluate the benefit of nested regression models that utilise clinical assessments as well as image-based biomarkers to model 30-day NIHSS. Method: 221 subjects were pooled from two prospective trials with follow-up MRI or CT scans, and NIHSS assessed at baseline, as well as 48-hours and 30 days after symptom onset. Three prediction models for 30-day NIHSS were developed using a support vector regression model: one clinical model based on modifiable and non-modifiable risk factors (MCLINICAL) and two nested regression models that aggregate clinical and image-based features that differed with respect to the method used for selection of important brain regions for the modelling task. The first model used the widely accepted RreliefF (MRELIEF) machine learning method for this purpose, while the second model employed a lesion-symptom mapping technique (MLSM) often used in neuroscience to investigate structure-function relationships and identify eloquent regions in the brain. Results: The two nested models achieved a similar performance while considerably outperforming the clinical model. However, MRELIEF required fewer brain regions and achieved a lower mean absolute error than MLSM while being less computationally expensive. Conclusion: Aggregating clinical and imaging information leads to considerably better outcome prediction models. While lesion-symptom mapping is a useful tool to investigate structure-function relationships of the brain, it does not lead to better outcome predictions compared to a simple data-driven feature selection approach, which is less computationally expensive and easier to implement.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michael D Hill
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew M Demchuk
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mayank Goyal
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Depertment of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
Alves PN, Fonseca AC, Silva DP, Andrade MR, Pinho-E-Melo T, Thiebaut de Schotten M, Martins IP. Unravelling the Neural Basis of Spatial Delusions After Stroke. Ann Neurol 2021; 89:1181-1194. [PMID: 33811370 DOI: 10.1002/ana.26079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Knowing explicitly where we are is an interpretation of our spatial representations. Reduplicative paramnesia is a disrupting syndrome in which patients present a firm belief of spatial mislocation. Here, we studied the largest sample of patients with delusional misidentifications of space (ie, reduplicative paramnesia) after stroke to shed light on their neurobiology. METHODS In a prospective, cumulative, case-control study, we screened 400 patients with acute right-hemispheric stroke. We included 64 cases and 233 controls. First, lesions were delimited and normalized. Then, we computed structural and functional disconnection maps using methods of lesion-track and network-mapping. The maps were compared, controlling for confounders. Second, we built a multivariate logistic model, including clinical, behavioral, and neuroimaging data. Finally, we performed a nested cross-validation of the model with a support-vector machine analysis. RESULTS The most frequent misidentification subtype was confabulatory mislocation (56%), followed by place reduplication (19%), and chimeric assimilation (13%). Our results indicate that structural disconnection is the strongest predictor of the syndrome and included 2 distinct streams, connecting right fronto-thalamic and right occipitotemporal structures. In the multivariate model, the independent predictors of reduplicative paramnesia were the structural disconnection map, lesion sparing of right dorsal fronto-parietal regions, age, and anosognosia. Good discrimination accuracy was demonstrated (area under the curve = 0.80 [0.75-0.85]). INTERPRETATION Our results localize the anatomic circuits that may have a role in the abnormal spatial-emotional binding and in the defective updating of spatial representations underlying reduplicative paramnesia. This novel data may contribute to better understand the pathophysiology of delusional syndromes after stroke. ANN NEUROL 2021;89:1181-1194.
Collapse
Affiliation(s)
- Pedro N Alves
- Language Research Laboratory, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Ana C Fonseca
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela P Silva
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal
| | - Matilde R Andrade
- Institute of Psychiatry, Psychology and Neuroscience, King's College of London, University of London, London, UK
| | - Teresa Pinho-E-Melo
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.,Groupe d'Imagerie Neurofonctionnelle, CEA, Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Isabel P Martins
- Language Research Laboratory, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal.,Department of Neurosciences and Mental Health, Neurology, Hospital de Santa Maria, CHULN, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
48
|
Consequence of stroke for feature recall and binding in visual working memory. Neurobiol Learn Mem 2021; 179:107387. [PMID: 33460791 DOI: 10.1016/j.nlm.2021.107387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022]
Abstract
Visual memory for objects involves the integration, or binding, of individual features into a coherent representation. We used a novel approach to assess feature binding, using a delayed-reproduction task in combination with computational modeling and lesion analysis. We assessed stroke patients and neurotypical controls on a visual working memory task in which spatial arrays of colored disks were presented. After a brief delay, participants either had to report the color of one disk cued by its location or the location of one disk cued by its color. Our results demonstrate that, in the controls, report imprecision and swap errors (non-target reports) can be explained by a single source of variability. Stroke patients showed an overall decrease in memory precision for both color and location, with only limited evidence for deviations from the predicted relationship between report precision and swap errors. These deviations were primarily deficits in reporting items rather than selecting items based on the cue. Atlas-based lesion-symptom mapping showed that selection and reporting deficits, precision in reporting color, and precision in reporting location were associated with different lesion profiles. Deficits in binding are associated with lesions in the left somatosensory cortex, deficits in the precision of reporting color with bilateral fronto-parietal regions, and no anatomical substrates were identified for precision in reporting location. Our results converge with previous reports that working memory representations are widely distributed in the brain and can be found across sensory, parietal, temporal, and prefrontal cortices. Stroke patients demonstrate mostly subtle impairments in visual working memory, perhaps because representations from different areas in the brain can partly compensate for impaired encoding in lesioned areas. These findings contribute to understanding of the relation between memorizing features and their bound representations.
Collapse
|
49
|
Tessari A, Mengotti P, Faccioli L, Tuozzi G, Boscarato S, Taricco M, Rumiati RI. Effect of body-part specificity and meaning in gesture imitation in left hemisphere stroke patients. Neuropsychologia 2020; 151:107720. [PMID: 33309676 DOI: 10.1016/j.neuropsychologia.2020.107720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Previous studies showed that imitation of finger and hand/arm gestures could be differentially impaired after brain damage. However, so far, the interaction between gesture meaning and body part in imitation deficits has not been fully assessed. In the present study, we aimed at filling this gap by testing 36 unilateral left brain-damaged patients with and without apraxia (20 apraxics), and 29 healthy controls on an imitation task of either finger or hand/arm meaningful (MF) gestures and meaningless (ML) movements, using a large sample of stimuli and controlling for the composition of the experimental list. Left-brain damaged patients imitated ML finger worse than hand/arm movements, whereas they did not show the same difference in MF gesture imitation. In addition, apraxic patients imitated finger movements worse than hand/arm movements. Furthermore, apraxic patients' imitation performance was equally affected irrespective of the action meaning, whereas non-apraxic patients showed better imitation performance on MF gestures. Results suggest that MF gestures are processed as a whole, as imitation of these gestures relies on the stored motor programs in long-term memory, independently of the body part involved. In contrast, ML movements seem to be processed through direct visuo-motor transformations, with left-brain damage specifically disrupting imitation performance of the more cognitive demanding finger movements.
Collapse
Affiliation(s)
- Alessia Tessari
- Department of Psychology,University of Bologna,Bologna,Italy.
| | - Paola Mengotti
- Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Luca Faccioli
- University Hospital Policlinico Sant'Orsola Malpighi, Bologna, Italy
| | - Giovanni Tuozzi
- Department of Psychology,University of Bologna,Bologna,Italy; Department for Life Quality Studies,University of Bologna,Bologna,Italy
| | - Silvia Boscarato
- University Hospital Policlinico Sant'Orsola Malpighi, Bologna, Italy
| | | | - Raffaella I Rumiati
- Area of Neuroscience, SISSA, Trieste, Italy; SSAS - La Sapienza, Rome, Italy
| |
Collapse
|
50
|
Ivanova MV, Herron TJ, Dronkers NF, Baldo JV. An empirical comparison of univariate versus multivariate methods for the analysis of brain-behavior mapping. Hum Brain Mapp 2020; 42:1070-1101. [PMID: 33216425 PMCID: PMC7856656 DOI: 10.1002/hbm.25278] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Lesion symptom mapping (LSM) tools are used on brain injury data to identify the neural structures critical for a given behavior or symptom. Univariate lesion symptom mapping (ULSM) methods provide statistical comparisons of behavioral test scores in patients with and without a lesion on a voxel by voxel basis. More recently, multivariate lesion symptom mapping (MLSM) methods have been developed that consider the effects of all lesioned voxels in one model simultaneously. In the current study, we provide a much-needed systematic comparison of several ULSM and MLSM methods, using both synthetic and real data to identify the potential strengths and weaknesses of both approaches. We tested the spatial precision of each LSM method for both single and dual (network type) anatomical target simulations across anatomical target location, sample size, noise level, and lesion smoothing. Additionally, we performed false positive simulations to identify the characteristics associated with each method's spurious findings. Simulations showed no clear superiority of either ULSM or MLSM methods overall, but rather highlighted specific advantages of different methods. No single method produced a thresholded LSM map that exclusively delineated brain regions associated with the target behavior. Thus, different LSM methods are indicated, depending on the particular study design, specific hypotheses, and sample size. Overall, we recommend the use of both ULSM and MLSM methods in tandem to enhance confidence in the results: Brain foci identified as significant across both types of methods are unlikely to be spurious and can be confidently reported as robust results.
Collapse
Affiliation(s)
- Maria V Ivanova
- University of California, Berkeley, California, USA.,VA Northern California Health Care System, Martinez, California, USA
| | - Timothy J Herron
- VA Northern California Health Care System, Martinez, California, USA
| | - Nina F Dronkers
- University of California, Berkeley, California, USA.,VA Northern California Health Care System, Martinez, California, USA.,University of California, Davis, California, USA
| | - Juliana V Baldo
- VA Northern California Health Care System, Martinez, California, USA
| |
Collapse
|