1
|
Qu L, Xu S, Lan Z, Fang S, Xu Y, Zhu X. Apolipoprotein E in Alzheimer's Disease: Focus on Synaptic Function and Therapeutic Strategy. Mol Neurobiol 2025; 62:3040-3052. [PMID: 39214953 DOI: 10.1007/s12035-024-04449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Synaptic dysfunction is a critical pathological feature in the early phase of Alzheimer's disease (AD) that precedes typical hallmarks of AD, including beta-amyloid (Aβ) plaques and neurofibrillary tangles. However, the underlying mechanism of synaptic dysfunction remains incompletely defined. Apolipoprotein E (APOE) has been shown to play a key role in the pathogenesis of AD, and the ε4 allele of APOE remains the strongest genetic risk factor for sporadic AD. It is widely recognized that APOE4 accelerates the development of Aβ and tau pathology in AD. Recent studies have indicated that APOE affects synaptic function through a variety of pathways. Here, we summarize the mechanism of modulating synapses by various APOE isoforms and demonstrate the therapeutic potential by targeting APOE4 for AD treatment.
Collapse
Affiliation(s)
- Longjie Qu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuai Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shuang Fang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, 210008, China.
| |
Collapse
|
2
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
3
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
4
|
Watanabe H, Murakami R, Tsumagari K, Morimoto S, Hashimoto T, Imaizumi K, Sonn I, Yamada K, Saito Y, Murayama S, Iwatsubo T, Okano H. Astrocytic APOE4 genotype-mediated negative impacts on synaptic architecture in human pluripotent stem cell model. Stem Cell Reports 2023; 18:1854-1869. [PMID: 37657448 PMCID: PMC10545487 DOI: 10.1016/j.stemcr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.
Collapse
Affiliation(s)
- Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
5
|
Piccarducci R, Giacomelli C, Bertilacchi MS, Benito-Martinez A, Di Giorgi N, Daniele S, Signore G, Rocchiccioli S, Vilar M, Marchetti L, Martini C. Apolipoprotein E ε4 triggers neurotoxicity via cholesterol accumulation, acetylcholine dyshomeostasis, and PKCε mislocalization in cholinergic neuronal cells. Biochim Biophys Acta Mol Basis Dis 2023:166793. [PMID: 37336366 DOI: 10.1016/j.bbadis.2023.166793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
The Apolipoprotein E (ApoE) has been known to regulate cholesterol and β-amyloid (Aβ) production, redistribution, and elimination, in the central nervous system (CNS). The ApoE ε4 polymorphic variant leads to impaired brain cholesterol homeostasis and amyloidogenic pathway, thus representing the major risk factor for Alzheimer's Disease (AD). Currently, less is known about the molecular mechanisms connecting ApoE ε4-related cholesterol metabolism and cholinergic system degeneration, one of the main AD pathological features. Herein, in vitro cholinergic neuron models were developed in order to study ApoE neuronal expression and investigate the possible interplay between cholesterol metabolism and cholinergic pathway impairment prompted by ε4 isoform. Particularly, alterations specifically occurring in ApoE ε4-carrying neurons (i.e. increased intracellular ApoE, amyloid precursor protein (APP), and Aβ levels, elevated apoptosis, and reduced cell survival) were recapitulated. ApoE ε4 expression was found to increase intracellular cholesterol accumulation, by regulating the related gene expression, while reducing cholesterol precursor acetyl-CoA, which in turn fuels the acetylcholine (ACh) synthesis route. In parallel, although the ACh intracellular signalling was activated, as demonstrated by the boosted extracellular ACh as well as increased IP3 and Ca2+, the PKCε activation via membrane translocation was surprisingly suppressed, probably explained by the cholesterol overload in ApoE ε4 neuron-like cells. Consequently, the PKC-dependent anti-apoptotic and neuroprotective roles results impaired, reliably adding to other causes of cell death prompted by ApoE ε4. Overall, the obtained data open the way to further critical considerations of ApoE ε4-dependent cholesterol metabolism dysregulation in the alteration of cholinergic pathway, neurotoxicity, and neuronal death.
Collapse
Affiliation(s)
| | | | | | - Andrea Benito-Martinez
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, 46010 Valencia, Spain
| | | | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC Spanish National Research Council, 46010 Valencia, Spain
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
6
|
Hua J, Garcia de Paco E, Linck N, Maurice T, Desrumaux C, Manoury B, Rassendren F, Ulmann L. Microglial P2X4 receptors promote ApoE degradation and contribute to memory deficits in Alzheimer's disease. Cell Mol Life Sci 2023; 80:138. [PMID: 37145189 PMCID: PMC10163120 DOI: 10.1007/s00018-023-04784-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Numerous evidences support that microglia contributes to the progression of Alzheimer's disease. P2X4 receptors are ATP-gated channels with high calcium permeability, which are de novo expressed in a subset of reactive microglia associated with various pathological contexts, contributing to microglial functions. P2X4 receptors are mainly localized in lysosomes and trafficking to the plasma membrane is tightly regulated. Here, we investigated the role of P2X4 in the context of Alzheimer's disease (AD). Using proteomics, we identified Apolipoprotein E (ApoE) as a specific P2X4 interacting protein. We found that P2X4 regulates lysosomal cathepsin B (CatB) activity promoting ApoE degradation; P2rX4 deletion results in higher amounts of intracellular and secreted ApoE in both bone-marrow-derived macrophage (BMDM) and microglia from APPswe/PSEN1dE9 brain. In both human AD brain and APP/PS1 mice, P2X4 and ApoE are almost exclusively expressed in plaque-associated microglia. In 12-month-old APP/PS1 mice, genetic deletion of P2rX4 reverses topographical and spatial memory impairment and reduces amount of soluble small aggregates of Aß1-42 peptide, while no obvious alteration of plaque-associated microglia characteristics is observed. Our results support that microglial P2X4 promotes lysosomal ApoE degradation, indirectly altering Aß peptide clearance, which in turn might promotes synaptic dysfunctions and cognitive deficits. Our findings uncover a specific interplay between purinergic signaling, microglial ApoE, soluble Aß (sAß) species and cognitive deficits associated with AD.
Collapse
Affiliation(s)
- Jennifer Hua
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Elvira Garcia de Paco
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Nathalie Linck
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM, CNRS, Université de Paris, Paris, France
| | - François Rassendren
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Montpellier, France
| | - Lauriane Ulmann
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.
- LabEx Ion Channel Science and Therapeutics, Montpellier, France.
| |
Collapse
|
7
|
Mhatre-Winters I, Eid A, Han Y, Tieu K, Richardson JR. Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Astrocytes from Humanized Targeted Replacement Mice. ASN Neuro 2023; 15:17590914221144549. [PMID: 36604975 PMCID: PMC9982390 DOI: 10.1177/17590914221144549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein E4 (APOE4) genotype and sex are significant risk factors for Alzheimer's disease (AD), with females demonstrating increased risk modulated by APOE genotype. APOE is predominantly expressed in astrocytes, however, there is a lack of comprehensive assessments of sex differences in astrocytes stratified by APOE genotype. Here, we examined the response of mixed-sex and sex-specific neonatal APOE3 and APOE4 primary mouse astrocytes (PMA) to a cytokine mix of IL1b, TNFa, and IFNg. Pro-inflammatory and anti-inflammatory cytokine profiles were assessed by qRT-PCR and Meso Scale Discovery multiplex assay. Mixed-sex APOE4 PMA were found to have higher basal messenger RNA expression of several pro-inflammatory cytokines including Il6, Tnfa, Il1b, Mcp1, Mip1a, and Nos2 compared to APOE3 PMA, which was accompanied by increased levels of these secreted cytokines. In sex-specific cultures, basal expression of Il1b, Il6, and Nos2 was 1.5 to 2.5 fold higher in APOE4 female PMA compared to APOE4 males, with both being higher than APOE3 PMA. Similar results were found for secreted levels of these cytokines. Together, these findings indicate that APOE4 genotype and female sex, contribute to a greater inflammatory response in primary astrocytes and these data may provide a framework for investigating the mechanisms contributing to genotype and sex differences in AD-related neuroinflammation.
Collapse
Affiliation(s)
- Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA,Department of Neurosciences, School of Biomedical Sciences, Kent
State University, Kent, OH, USA
| | - Aseel Eid
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College
of Public Health and Social Work, Florida International
University, Miami, FL, USA,Jason R. Richardson, Department of
Environmental Health Sciences, Robert Stempel College of Public Health and
Social Work, Florida International University, Miami, FL 33199-2156, USA.
| |
Collapse
|
8
|
Wee AS, Nhu TD, Khaw KY, San Tang K, Yeong KY. Linking Diabetes to Alzheimer's Disease: Potential Roles of Glucose Metabolism and Alpha-Glucosidase. Curr Neuropharmacol 2023; 21:2036-2048. [PMID: 36372924 PMCID: PMC10556372 DOI: 10.2174/1570159x21999221111102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (DM) are more prevalent with ageing and cause a substantial global socio-economic burden. The biology of these two conditions is well elaborated, but whether AD and type 2 DM arise from coincidental roots in ageing or are linked by pathophysiological mechanisms remains unclear. Research findings involving animal models have identified mechanisms shared by both AD and type 2 DM. Deposition of β-amyloid peptides and formation of intracellular neurofibrillary tangles are pathological hallmarks of AD. Type 2 DM, on the other hand, is a metabolic disorder characterised by hyperglycaemia and insulin resistance. Several studies show that improving type 2 DM can delay or prevent the development of AD, and hence, prevention and control of type 2 DM may reduce the risk of AD later in life. Alpha-glucosidase is an enzyme that is commonly associated with hyperglycaemia in type 2 DM. However, it is uncertain if this enzyme may play a role in the progression of AD. This review explores the experimental evidence that depicts the relationship between dysregulation of glucose metabolism and AD. We also delineate the links between alpha-glucosidase and AD and the potential role of alpha-glucosidase inhibitors in treating AD.
Collapse
Affiliation(s)
- Ai Sze Wee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
- Faculty of Medicine, SEGi University, Kota Damansara, 47810 Selangor, Malaysia
| | - Thao Dinh Nhu
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Kim San Tang
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 , Selangor, Malaysia
- Tropical Medicine and Biology (TMB) Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500 Selangor, Malaysia
| |
Collapse
|
9
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
10
|
Steele OG, Stuart AC, Minkley L, Shaw K, Bonnar O, Anderle S, Penn AC, Rusted J, Serpell L, Hall C, King S. A multi-hit hypothesis for an APOE4-dependent pathophysiological state. Eur J Neurosci 2022; 56:5476-5515. [PMID: 35510513 PMCID: PMC9796338 DOI: 10.1111/ejn.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 01/01/2023]
Abstract
The APOE gene encoding the Apolipoprotein E protein is the single most significant genetic risk factor for late-onset Alzheimer's disease. The APOE4 genotype confers a significantly increased risk relative to the other two common genotypes APOE3 and APOE2. Intriguingly, APOE4 has been associated with neuropathological and cognitive deficits in the absence of Alzheimer's disease-related amyloid or tau pathology. Here, we review the extensive literature surrounding the impact of APOE genotype on central nervous system dysfunction, focussing on preclinical model systems and comparison of APOE3 and APOE4, given the low global prevalence of APOE2. A multi-hit hypothesis is proposed to explain how APOE4 shifts cerebral physiology towards pathophysiology through interconnected hits. These hits include the following: neurodegeneration, neurovascular dysfunction, neuroinflammation, oxidative stress, endosomal trafficking impairments, lipid and cellular metabolism disruption, impaired calcium homeostasis and altered transcriptional regulation. The hits, individually and in combination, leave the APOE4 brain in a vulnerable state where further cumulative insults will exacerbate degeneration and lead to cognitive deficits in the absence of Alzheimer's disease pathology and also a state in which such pathology may more easily take hold. We conclude that current evidence supports an APOE4 multi-hit hypothesis, which contributes to an APOE4 pathophysiological state. We highlight key areas where further study is required to elucidate the complex interplay between these individual mechanisms and downstream consequences, helping to frame the current landscape of existing APOE-centric literature.
Collapse
Affiliation(s)
| | | | - Lucy Minkley
- School of Life SciencesUniversity of SussexBrightonUK
| | - Kira Shaw
- School of Life SciencesUniversity of SussexBrightonUK
| | - Orla Bonnar
- School of Life SciencesUniversity of SussexBrightonUK
| | | | | | | | | | | | - Sarah King
- School of PsychologyUniversity of SussexBrightonUK
| |
Collapse
|
11
|
Taxier LR, Philippi SM, Fleischer AW, York JM, LaDu MJ, Frick KM. APOE4 homozygote females are resistant to the beneficial effects of 17β-estradiol on memory and CA1 dendritic spine density in the EFAD mouse model of Alzheimer's disease. Neurobiol Aging 2022; 118:13-24. [PMID: 35843109 PMCID: PMC10756028 DOI: 10.1016/j.neurobiolaging.2022.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Female APOE4 carriers are at greatest risk of Alzheimer's disease (AD). The potent estrogen 17β-estradiol (E2) may mediate AD risk, as the onset of memory decline coincides with the menopausal transition. Whether APOE genotype mediates E2's effects on memory and neuronal morphology is poorly understood. We used the APOE+/+/5xFAD+/- (EFAD) mouse model to examine how APOE3 homozygote (E3FAD), APOE3/4 heterozygote (E3/4FAD), and APOE4 homozygote (E4FAD) genotypes modulate effects of E2 on object and spatial memory consolidation, dendritic spine density, and dorsal hippocampal estrogen receptor expression in 6-month-old ovariectomized EFAD mice. Dorsal hippocampal E2 infusion enhanced memory consolidation and increased CA1 apical spine density in E3FAD and E3/4FAD, but not E4FAD, mice. CA1 basal mushroom spines were also increased by E2 in E3FADs. E4FAD mice exhibited reduced CA1 and mPFC basal spine density, and increased dorsal hippocampal ERα protein, independent of E2. Overall, E2 benefitted hippocampal memory and structural plasticity in females bearing one or no APOE4 allele, whereas two APOE4 alleles impeded the memory-enhancing and spinogenic effects of E2.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Sarah M Philippi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA; Current affiliation: Department of Neuroscience and Neuroscience Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron W Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA.
| |
Collapse
|
12
|
Chen B, Marquez-Nostra B, Belitzky E, Toyonaga T, Tong J, Huang Y, Cai Z. PET Imaging in Animal Models of Alzheimer’s Disease. Front Neurosci 2022; 16:872509. [PMID: 35685772 PMCID: PMC9171374 DOI: 10.3389/fnins.2022.872509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The successful development and translation of PET imaging agents targeting β-amyloid plaques and hyperphosphorylated tau tangles have allowed for in vivo detection of these hallmarks of Alzheimer’s disease (AD) antemortem. Amyloid and tau PET have been incorporated into the A/T/N scheme for AD characterization and have become an integral part of ongoing clinical trials to screen patients for enrollment, prove drug action mechanisms, and monitor therapeutic effects. Meanwhile, preclinical PET imaging in animal models of AD can provide supportive information for mechanistic studies. With the recent advancement of gene editing technologies and AD animal model development, preclinical PET imaging in AD models will further facilitate our understanding of AD pathogenesis/progression and the development of novel treatments. In this study, we review the current state-of-the-art in preclinical PET imaging using animal models of AD and suggest future research directions.
Collapse
|
13
|
Taxier LR, Philippi SM, York JM, LaDu MJ, Frick KM. The detrimental effects of APOE4 on risk for Alzheimer's disease may result from altered dendritic spine density, synaptic proteins, and estrogen receptor alpha. Neurobiol Aging 2022; 112:74-86. [PMID: 35051676 PMCID: PMC8976726 DOI: 10.1016/j.neurobiolaging.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Women carriers of APOE4, the greatest genetic risk factor for late-onset Alzheimer's disease (AD), are at highest risk of developing AD, yet factors underlying interactions between APOE4 and sex are not well characterized. Here, we examined how sex and APOE3 or APOE4 genotypes modulate object and spatial memory, dendritic spine density and branching, and protein expression in 6-month-old male and female E3FAD and E4FAD mice (APOE+/+/5xFAD+/-). APOE4 negatively impacted object recognition and spatial memory, with male E3FADs exhibiting the best memory across 2 object-based tasks. In both sexes, APOE4 reduced basal dendritic spine density in the medial prefrontal cortex and dorsal hippocampus. APOE4 reduced dorsal hippocampal levels of PDS-95, synaptophysin, and phospho-CREB, yet increased levels of ERα. E4FAD females exhibited strikingly increased GFAP levels, in addition to the lowest levels of PSD-95 and pCREB. Overall, our results suggest that APOE4 negatively impacts object memory, dendritic spine density, and levels of hippocampal synaptic proteins and ERα. However, the general lack of sex differences or sex by genotype interactions suggests that the sex-specific effects of APOE4 on AD risk may be related to factors unexplored in the present study.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Sarah M Philippi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA
| | - Jason M York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee WI, USA.
| |
Collapse
|
14
|
Gao T, Deng B, Wang J, Wang J, Yi G. The passive properties of dendrites modulate the propagation of slowly-varying firing rate in feedforward networks. Neural Netw 2022; 150:377-391. [DOI: 10.1016/j.neunet.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
15
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
16
|
Staurenghi E, Giannelli S, Testa G, Sottero B, Leonarduzzi G, Gamba P. Cholesterol Dysmetabolism in Alzheimer's Disease: A Starring Role for Astrocytes? Antioxidants (Basel) 2021; 10:antiox10121890. [PMID: 34943002 PMCID: PMC8750262 DOI: 10.3390/antiox10121890] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
In recent decades, the impairment of cholesterol metabolism in the pathogenesis of Alzheimer’s disease (AD) has been intensively investigated, and it has been recognized to affect amyloid β (Aβ) production and clearance, tau phosphorylation, neuroinflammation and degeneration. In particular, the key role of cholesterol oxidation products, named oxysterols, has emerged. Brain cholesterol metabolism is independent from that of peripheral tissues and it must be preserved in order to guarantee cerebral functions. Among the cells that help maintain brain cholesterol homeostasis, astrocytes play a starring role since they deliver de novo synthesized cholesterol to neurons. In addition, other physiological roles of astrocytes are to modulate synaptic transmission and plasticity and support neurons providing energy. In the AD brain, astrocytes undergo significant morphological and functional changes that contribute to AD onset and development. However, the extent of this contribution and the role played by oxysterols are still unclear. Here we review the current understanding of the physiological role exerted by astrocytes in the brain and their contribution to AD pathogenesis. In particular, we focus on the impact of cholesterol dysmetabolism on astrocyte functions suggesting new potential approaches to develop therapeutic strategies aimed at counteracting AD development.
Collapse
|
17
|
Verkerke M, Hol EM, Middeldorp J. Physiological and Pathological Ageing of Astrocytes in the Human Brain. Neurochem Res 2021; 46:2662-2675. [PMID: 33559106 PMCID: PMC8437874 DOI: 10.1007/s11064-021-03256-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Ageing is the greatest risk factor for dementia, although physiological ageing by itself does not lead to cognitive decline. In addition to ageing, APOE ε4 is genetically the strongest risk factor for Alzheimer's disease and is highly expressed in astrocytes. There are indications that human astrocytes change with age and upon expression of APOE4. As these glial cells maintain water and ion homeostasis in the brain and regulate neuronal transmission, it is likely that age- and APOE4-related changes in astrocytes have a major impact on brain functioning and play a role in age-related diseases. In this review, we will discuss the molecular and morphological changes of human astrocytes in ageing and the contribution of APOE4. We conclude this review with a discussion on technical issues, innovations, and future perspectives on how to gain more knowledge on astrocytes in the human ageing brain.
Collapse
Affiliation(s)
- Marloes Verkerke
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
18
|
Walker CK, Herskowitz JH. Dendritic Spines: Mediators of Cognitive Resilience in Aging and Alzheimer's Disease. Neuroscientist 2021; 27:487-505. [PMID: 32812494 PMCID: PMC8130863 DOI: 10.1177/1073858420945964] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cognitive resilience is often defined as the ability to remain cognitively normal in the face of insults to the brain. These insults can include disease pathology, such as plaques and tangles associated with Alzheimer's disease, stroke, traumatic brain injury, or other lesions. Factors such as physical or mental activity and genetics may contribute to cognitive resilience, but the neurobiological underpinnings remain ill-defined. Emerging evidence suggests that dendritic spine structural plasticity is one plausible mechanism. In this review, we highlight the basic structure and function of dendritic spines and discuss how spine density and morphology change in aging and Alzheimer's disease. We note evidence that spine plasticity mediates resilience to stress, and we tackle dendritic spines in the context of cognitive resilience to Alzheimer's disease. Finally, we examine how lifestyle and genetic factors may influence dendritic spine plasticity to promote cognitive resilience before discussing evidence for actin regulatory kinases as therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Courtney K. Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jeremy H. Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| |
Collapse
|
19
|
Cioffi F, Adam RHI, Bansal R, Broersen K. A Review of Oxidative Stress Products and Related Genes in Early Alzheimer's Disease. J Alzheimers Dis 2021; 83:977-1001. [PMID: 34420962 PMCID: PMC8543250 DOI: 10.3233/jad-210497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is associated with the progression of Alzheimer’s disease (AD). Reactive oxygen species can modify lipids, DNA, RNA, and proteins in the brain. The products of their peroxidation and oxidation are readily detectable at incipient stages of disease. Based on these oxidation products, various biomarker-based strategies have been developed to identify oxidative stress levels in AD. Known oxidative stress-related biomarkers include lipid peroxidation products F2-isoprostanes, as well as malondialdehyde and 4-hydroxynonenal which both conjugate to specific amino acids to modify proteins, and DNA or RNA oxidation products 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG), respectively. The inducible enzyme heme oxygenase type 1 (HO-1) is found to be upregulated in response to oxidative stress-related events in the AD brain. While these global biomarkers for oxidative stress are associated with early-stage AD, they generally poorly differentiate from other neurodegenerative disorders that also coincide with oxidative stress. Redox proteomics approaches provided specificity of oxidative stress-associated biomarkers to AD pathology by the identification of oxidatively damaged pathology-specific proteins. In this review, we discuss the potential combined diagnostic value of these reported biomarkers in the context of AD and discuss eight oxidative stress-related mRNA biomarkers in AD that we newly identified using a transcriptomics approach. We review these genes in the context of their reported involvement in oxidative stress regulation and specificity for AD. Further research is warranted to establish the protein levels and their functionalities as well as the molecular mechanisms by which these potential biomarkers are involved in regulation of oxidative stress levels and their potential for determination of oxidative stress and disease status of AD patients.
Collapse
Affiliation(s)
- Federica Cioffi
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Department of Nanobiophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
20
|
Zhang H, Chiu PW, Ip I, Liu T, Wong GHY, Song YQ, Wong SWH, Herrup K, Mak HKF. Asymmetric left-right hippocampal glutamatergic modulation of cognitive control in ApoE-isoform subjects is unrelated to neuroinflammation. Eur J Neurosci 2021; 54:5310-5326. [PMID: 34309092 PMCID: PMC9290961 DOI: 10.1111/ejn.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
The glutamatergic cycle is essential in modulating memory processing by the hippocampal circuitry. Our combined proton magnetic resonance spectroscopy (1H‐MRS) and task‐based functional magnetic resonance imaging (fMRI) study (using face‐name paired‐associates encoding and retrieval task) of a cognitively normal cohort of 67 healthy adults (18 ApoE4 carriers and 49 non‐ApoE4 carriers) found altered patterns of relationships between glutamatergic‐modulated synaptic signalling and neuronal activity or functional hyperaemia in the ApoE4 isoforms. Our study highlighted the asymmetric left–right hippocampal glutamatergic system in modulating neuronal activities in ApoE4 carriers versus non‐carriers. Such brain differentiation might be developmental cognitive advantages or compensatory due to impaired synaptic integrity and plasticity in ApoE4 carriers. As there was no difference in myoinositol levels measured by MRS between the ApoE4 and non‐ApoE4 subgroups, the mechanism is unlikely to be a response to neuroinflammation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong
| | - Pui Wai Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Isaac Ip
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Tianyin Liu
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - Gloria Hoi Yan Wong
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Savio Wai Ho Wong
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Karl Herrup
- Alzheimer Disease Research Centre, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Henry Ka Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
21
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
22
|
Connecting the Neurobiology of Developmental Brain Injury: Neuronal Arborisation as a Regulator of Dysfunction and Potential Therapeutic Target. Int J Mol Sci 2021; 22:ijms22158220. [PMID: 34360985 PMCID: PMC8348801 DOI: 10.3390/ijms22158220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodevelopmental disorders can derive from a complex combination of genetic variation and environmental pressures on key developmental processes. Despite this complex aetiology, and the equally complex array of syndromes and conditions diagnosed under the heading of neurodevelopmental disorder, there are parallels in the neuropathology of these conditions that suggest overlapping mechanisms of cellular injury and dysfunction. Neuronal arborisation is a process of dendrite and axon extension that is essential for the connectivity between neurons that underlies normal brain function. Disrupted arborisation and synapse formation are commonly reported in neurodevelopmental disorders. Here, we summarise the evidence for disrupted neuronal arborisation in these conditions, focusing primarily on the cortex and hippocampus. In addition, we explore the developmentally specific mechanisms by which neuronal arborisation is regulated. Finally, we discuss key regulators of neuronal arborisation that could link to neurodevelopmental disease and the potential for pharmacological modification of arborisation and the formation of synaptic connections that may provide therapeutic benefit in the future.
Collapse
|
23
|
Fiani B, Covarrubias C, Jarrah R. Bench to Bedside: Proteomic Biomarker Analysis of Cerebrospinal Fluid in Patients With Spondylomyelopathy. Cureus 2021; 13:e16003. [PMID: 34336494 PMCID: PMC8319193 DOI: 10.7759/cureus.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 11/05/2022] Open
Abstract
Establishing proteomic biomarkers is critical for characterizing disease pathophysiology, identifying genetic risk factors, and predicting clinical outcomes. However, diseases like cervical spondylomyelopathy have not been actively characterized for molecular significance, leading to questions regarding the pathology's molecular mechanisms. Namely, spondylomyelopathy is a degenerative spinal disease that leads to compression and neurologic deficits in the spinal cord. Analyzing a patient's cerebrospinal fluid (CSF) has been well-known for revealing biomarkers that are associated with diseases of the central nervous system. Therefore, in this review, we will formulate a proteomic profile of spondylomyelopathy through a molecular analysis of the CSF. The proteins found to be upregulated in the CSF include vitamin D-binding protein (VDBP), gelsolin, creatine kinase B-type (CK-BB), and angiotensinogen. Meanwhile, the proteins that were downregulated include pigment epithelium-derived factor (PEDF), prostaglandin-H2 D-isomerase (PGH2), apolipoprotein E (APOE), and clusterin. The cellular functions of these proteins are discussed, along with their relevance in manifesting spondylomyelopathy. However, further studies are warranted, as a lack of human studies is a major limiting factor. Nevertheless, based on the continued progression of the proteomic profile of spondylomyelopathy, new targets can be assessed as candidates for future therapeutic intervention.
Collapse
Affiliation(s)
- Brian Fiani
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | - Claudia Covarrubias
- School of Medicine, Universidad Anáhuac Querétaro, Santiago de Querétaro, MEX
| | - Ryan Jarrah
- Neurological Surgery, University of Michigan - Flint, Flint, USA
| |
Collapse
|
24
|
Khavinson V, Ilina A, Kraskovskaya N, Linkova N, Kolchina N, Mironova E, Erofeev A, Petukhov M. Neuroprotective Effects of Tripeptides-Epigenetic Regulators in Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:515. [PMID: 34071923 PMCID: PMC8227791 DOI: 10.3390/ph14060515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/06/2023] Open
Abstract
KED and EDR peptides prevent dendritic spines loss in amyloid synaptotoxicity in in vitro model of Alzheimer's disease (AD). The objective of this paper was to study epigenetic mechanisms of EDR and KED peptides' neuroprotective effects on neuroplasticity and dendritic spine morphology in an AD mouse model. Daily intraperitoneal administration of the KED peptide in 5xFAD mice from 2 to 4 months of age at a concentration of 400 μg/kg tended to increase neuroplasticity. KED and EDR peptides prevented dendritic spine loss in 5xFAD-M mice. Their action's possible molecular mechanisms were investigated by molecular modeling and docking of peptides in dsDNA, containing all possible combinations of hexanucleotide sequences. Similar DNA sequences were found in the lowest-energy complexes of the studied peptides with DNA in the classical B-form. EDR peptide has binding sites in the promoter region of CASP3, NES, GAP43, APOE, SOD2, PPARA, PPARG, GDX1 genes. Protein products of these genes are involved in AD pathogenesis. The neuroprotective effect of EDR and KED peptides in AD can be defined by their ability to prevent dendritic spine elimination and neuroplasticity impairments at the molecular epigenetic level.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
- Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Anastasiia Ilina
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
| | - Nina Kraskovskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg State Polytechnic University, 195251 Saint Petersburg, Russia; (N.K.); (A.E.)
| | - Natalia Linkova
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
| | - Nina Kolchina
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (N.K.); (M.P.)
- Russian Scientific Center of Radiology and Surgical Technologies Named after A.M. Granov, 197758 Saint Petersburg, Russia
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (N.L.); (E.M.)
| | - Alexander Erofeev
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg State Polytechnic University, 195251 Saint Petersburg, Russia; (N.K.); (A.E.)
| | - Michael Petukhov
- Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia; (N.K.); (M.P.)
- Russian Scientific Center of Radiology and Surgical Technologies Named after A.M. Granov, 197758 Saint Petersburg, Russia
| |
Collapse
|
25
|
Richens JL, Bramble JP, Spencer HL, Cantlay F, Butler M, O'Shea P. Towards defining the Mechanisms of Alzheimer's disease based on a contextual analysis of molecular pathways. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.1.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractAlzheimer's disease (AD) is posing an increasingly profound problem to society. Our genuine understanding of the pathogenesis of AD is inadequate and as a consequence, diagnostic and therapeutic strategies are currently insufficient. The understandable focus of many studies is the identification of molecules with high diagnostic utility however the opportunity to obtain a further understanding of the mechanistic origins of the disease from such putative biomarkers is often overlooked. This study examines the involvement of biomarkers in AD to shed light on potential mechanisms and pathways through which they are implicated in the pathology of this devastating neurodegenerative disorder. The computational tools required to analyse ever-growing datasets in the context of AD are also discussed.
Collapse
Affiliation(s)
- Joanna L. Richens
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Jonathan P. Bramble
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Hannah L. Spencer
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Fiona Cantlay
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Molly Butler
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Paul O'Shea
- Cell Biophysics Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
- Address as of 1st July 2016: Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Ettcheto M, Busquets O, Cano A, Sánchez-Lopez E, Manzine PR, Espinosa-Jimenez T, Verdaguer E, Sureda FX, Olloquequi J, Castro-Torres RD, Auladell C, Folch J, Casadesús G, Camins A. Pharmacological Strategies to Improve Dendritic Spines in Alzheimer's Disease. J Alzheimers Dis 2021; 82:S91-S107. [PMID: 33325386 PMCID: PMC9853464 DOI: 10.3233/jad-201106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To deeply understand late onset Alzheimer's disease (LOAD), it may be necessary to change the concept that it is a disease exclusively driven by aging processes. The onset of LOAD could be associated with a previous peripheral stress at the level of the gut (changes in the gut microbiota), obesity (metabolic stress), and infections, among other systemic/environmental stressors. The onset of LOAD, then, may result from the generation of mild peripheral inflammatory processes involving cytokine production associated with peripheral stressors that in a second step enter the brain and spread out the process causing a neuroinflammatory brain disease. This hypothesis could explain the potential efficacy of Sodium Oligomannate (GV-971), a mixture of acidic linear oligosaccharides that have shown to remodel gut microbiota and slowdown LOAD. However, regardless of the origin of the disease, the end goal of LOAD-related preventative or disease modifying therapies is to preserve dendritic spines and synaptic plasticity that underlay and support healthy cognition. Here we discuss how systemic/environmental stressors impact pathways associated with the regulation of spine morphogenesis and synaptic maintenance, including insulin receptor and the brain derived neurotrophic factor signaling. Spine structure remodeling is a plausible mechanism to maintain synapses and provide cognitive resilience in LOAD patients. Importantly, we also propose a combination of drugs targeting such stressors that may be able to modify the course of LOAD by acting on preventing dendritic spines and synapsis loss.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Patricia R. Manzine
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Triana Espinosa-Jimenez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Departamento de Biología Celular y Molecular, Laboratorio de Neurobiología de laneurotransmisión, C.U.C.B.A, Universidad de Guadalajara, Jalisco, México
| | - Francesc X. Sureda
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Ruben D. Castro-Torres
- Departamento de Biología Celular y Molecular, Laboratorio de Neurobiología de laneurotransmisión, C.U.C.B.A, Universidad de Guadalajara, Jalisco, México
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gemma Casadesús
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
27
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
28
|
Roda AR, Montoliu-Gaya L, Villegas S. The Role of Apolipoprotein E Isoforms in Alzheimer's Disease. J Alzheimers Dis 2020; 68:459-471. [PMID: 30775980 DOI: 10.3233/jad-180740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia worldwide, is characterized by high levels of amyloid-β (Aβ) peptide and hyperphosphorylated tau protein. Genetically, the ɛ4 allele of apolipoprotein E (ApoE) has been established as the major risk factor for developing late-onset AD (LOAD), the most common form of the disease. Although the role ApoE plays in AD is still not completely understood, a differential role of its isoforms has long been known. The current review compiles the involvement of ApoE isoforms in amyloid-β protein precursor transcription, Aβ aggregation and clearance, synaptic plasticity, neuroinflammation, lipid metabolism, mitochondrial function, and tau hyperphosphorylation. Due to the complexity of LOAD, an accurate description of the interdependence among all the related molecular mechanisms involved in the disease is needed for developing successful therapies.
Collapse
Affiliation(s)
- Alejandro R Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laia Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
29
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
Larramona-Arcas R, González-Arias C, Perea G, Gutiérrez A, Vitorica J, García-Barrera T, Gómez-Ariza JL, Pascua-Maestro R, Ganfornina MD, Kara E, Hudry E, Martinez-Vicente M, Vila M, Galea E, Masgrau R. Sex-dependent calcium hyperactivity due to lysosomal-related dysfunction in astrocytes from APOE4 versus APOE3 gene targeted replacement mice. Mol Neurodegener 2020; 15:35. [PMID: 32517777 PMCID: PMC7285605 DOI: 10.1186/s13024-020-00382-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The apolipoprotein E (APOE) gene exists in three isoforms in humans: APOE2, APOE3 and APOE4. APOE4 causes structural and functional alterations in normal brains, and is the strongest genetic risk factor of the sporadic form of Alzheimer's disease (LOAD). Research on APOE4 has mainly focused on the neuronal damage caused by defective cholesterol transport and exacerbated amyloid-β and Tau pathology. The impact of APOE4 on non-neuronal cell functions has been overlooked. Astrocytes, the main producers of ApoE in the healthy brain, are building blocks of neural circuits, and Ca2+ signaling is the basis of their excitability. Because APOE4 modifies membrane-lipid composition, and lipids regulate Ca2+ channels, we determined whether APOE4 dysregulates Ca2+signaling in astrocytes. METHODS Ca2+ signals were recorded in astrocytes in hippocampal slices from APOE3 and APOE4 gene targeted replacement male and female mice using Ca2+ imaging. Mechanistic analyses were performed in immortalized astrocytes. Ca2+ fluxes were examined with pharmacological tools and Ca2+ probes. APOE3 and APOE4 expression was manipulated with GFP-APOE vectors and APOE siRNA. Lipidomics of lysosomal and whole-membranes were also performed. RESULTS We found potentiation of ATP-elicited Ca2+responses in APOE4 versus APOE3 astrocytes in male, but not female, mice. The immortalized astrocytes modeled the male response, and showed that Ca2+ hyperactivity associated with APOE4 is caused by dysregulation of Ca2+ handling in lysosomal-enriched acidic stores, and is reversed by the expression of APOE3, but not of APOE4, pointing to loss of function due to APOE4 malfunction. Moreover, immortalized APOE4 astrocytes are refractory to control of Ca2+ fluxes by extracellular lipids, and present distinct lipid composition in lysosomal and plasma membranes. CONCLUSIONS Immortalized APOE4 versus APOE3 astrocytes present: increased Ca2+ excitability due to lysosome dysregulation, altered membrane lipidomes and intracellular cholesterol distribution, and impaired modulation of Ca2+ responses upon changes in extracellular lipids. Ca2+ hyperactivity associated with APOE4 is found in astrocytes from male, but not female, targeted replacement mice. The study suggests that, independently of Aβ and Tau pathologies, altered astrocyte excitability might contribute to neural-circuit hyperactivity depending on APOE allele, sex and lipids, and supports lysosome-targeted therapies to rescue APOE4 phenotypes in LOAD.
Collapse
Affiliation(s)
- Raquel Larramona-Arcas
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
| | - Candela González-Arias
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Gertrudis Perea
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | - Antonia Gutiérrez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigación Biomedica de Málaga (IBIMA), Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - Tamara García-Barrera
- Departamento de Química, Facultad de Ciencias Experimentales, Campus de El Carmen, Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21007 Huelva, Spain
| | - José Luis Gómez-Ariza
- Departamento de Química, Facultad de Ciencias Experimentales, Campus de El Carmen, Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, 21007 Huelva, Spain
| | - Raquel Pascua-Maestro
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 43007 Valladolid, Spain
| | - María Dolores Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, 43007 Valladolid, Spain
| | - Eleanna Kara
- Alzheimer’s Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
- Present Address: Institute of Neuropathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Eloise Hudry
- Alzheimer’s Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 USA
| | - Marta Martinez-Vicente
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
| | - Miquel Vila
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia Spain
| | - Elena Galea
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia Spain
| | - Roser Masgrau
- Unitat de Bioquímica de Medicina, Departament de Bioquímica i Biologia Molecular, and, Institut de Neurociències (INc), Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalonia Spain
| |
Collapse
|
31
|
Iacono D, Feltis GC. Impact of Apolipoprotein E gene polymorphism during normal and pathological conditions of the brain across the lifespan. Aging (Albany NY) 2020; 11:787-816. [PMID: 30677746 PMCID: PMC6366964 DOI: 10.18632/aging.101757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer's disease (AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - during both normal and pathological conditions of the brain.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA.,MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA.,Atlantic Neuroscience Institute, Atlantic Health System (AHS), Overlook Medical Center, Summit, NJ 07901, USA
| | - Gloria C Feltis
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA
| |
Collapse
|
32
|
Lewandowski CT, Maldonado Weng J, LaDu MJ. Alzheimer's disease pathology in APOE transgenic mouse models: The Who, What, When, Where, Why, and How. Neurobiol Dis 2020; 139:104811. [PMID: 32087290 DOI: 10.1016/j.nbd.2020.104811] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
The focus on amyloid plaques and neurofibrillary tangles has yielded no Alzheimer's disease (AD) modifying treatments in the past several decades, despite successful studies in preclinical mouse models. This inconsistency has caused a renewed focus on improving the fidelity and reliability of AD mouse models, with disparate views on how this improvement can be accomplished. However, the interactive effects of the universal biological variables of AD, which include age, APOE genotype, and sex, are often overlooked. Age is the greatest risk factor for AD, while the ε4 allele of the human APOE gene, encoding apolipoprotein E, is the greatest genetic risk factor. Sex is the final universal biological variable of AD, as females develop AD at almost twice the rate of males and, importantly, female sex exacerbates the effects of APOE4 on AD risk and rate of cognitive decline. Therefore, this review evaluates the importance of context for understanding the role of APOE in preclinical mouse models. Specifically, we detail how human AD pathology is mirrored in current transgenic mouse models ("What") and describe the critical need for introducing human APOE into these mouse models ("Who"). We next outline different methods for introducing human APOE into mice ("How") and highlight efforts to develop temporally defined and location-specific human apoE expression models ("When" and "Where"). We conclude with the importance of choosing the human APOE mouse model relevant to the question being addressed, using the selection of transgenic models for testing apoE-targeted therapeutics as an example ("Why").
Collapse
Affiliation(s)
- Cutler T Lewandowski
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA.
| | - Juan Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S. Wood St., Chicago, IL 60612, USA.
| |
Collapse
|
33
|
Williams T, Borchelt DR, Chakrabarty P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Mol Neurodegener 2020; 15:8. [PMID: 32005122 PMCID: PMC6995170 DOI: 10.1186/s13024-020-0358-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
One of the primary genetic risk factors for Alzheimer’s disease (AD) is the presence of the Ɛ4 allele of apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism. Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has been devoted towards developing cellular and animal models. Data from these models indicate that APOE4 exacerbates amyloid β plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are distinct from modulation of Aβ or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions. This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4 towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.
Collapse
Affiliation(s)
- Tosha Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
34
|
Har-Paz I, Roisman N, Michaelson DM, Moran A. Extra-Hippocampal Learning Deficits in Young Apolipoprotein E4 Mice and Their Synaptic Underpinning. J Alzheimers Dis 2019; 72:71-82. [PMID: 31561365 DOI: 10.3233/jad-190564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The E4 allele of apolipoprotein (apoE4) is the primary genetic risk factor for late onset Alzheimer's disease (AD), yet the exact manner in which apoE4 leads to the development of AD is undetermined. Human and animal studies report that apoE4-related memory deficits appear earlier than the AD clinical manifestation, thus suggesting the existence of early, pre-pathological, apoE4 impairments that may later lead to AD onset. While current research regards the hippocampus as the initial and primary effected locus by apoE4, we presently investigate the possibility that apoE4 innately impairs any brain area that requires synaptic plasticity. To test this hypothesis, we trained young (3-4-month-old) target-replacement apoE3 and apoE4 mice in conditioned taste aversion (CTA) acquisition and extinction learnings- hippocampus-independent learnings that are easily performed at a young age. Synaptic vesicular markers analysis was conducted in the gustatory cortex (GC), basolateral amygdala (BLA), medial prefrontal cortex (mPFC), and hippocampal CA3 to reveal underlying apoE4-related impairments. We have found that young apoE4 mice are severely impaired in CTA acquisition and extinction learning. CTA acquisition impairments were correlated with reduced vGat and vGlut levels in the BLA and GC, but not in the CA3. CTA extinction was correlated with lower synaptophysin and vGlut levels in the mPFC, a central region in CTA extinction. Our results support apoE4-related early-life plasticity impairments that precede the AD clinical manifestations and affect any brain area that depends on extensive plasticity; early impairments that may promote the development of AD pathologies later in life.
Collapse
Affiliation(s)
- Ilona Har-Paz
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nicole Roisman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anan Moran
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Bales KR, Paul SM. Targeting apolipoprotein E for treating Alzheimer's disease. Neurosci Lett 2019; 709:134366. [PMID: 31336138 DOI: 10.1016/j.neulet.2019.134366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023]
Abstract
The ε4 allele of the apolipoprotein E gene represents the most widely reproduced and robust susceptibility loci for the most common late onset and sporadic forms of Alzheimer's disease. While the discovery of this now widely replicated association was reported more than 25 years ago, few therapeutic interventions that specifically target the apolipoprotein pathway in brain have emerged. Here we discuss our current understanding of apolipoprotein E biology in brain, its relationship to the pathogenesis of Alzheimer's disease and present potential future avenues for exploration that may be amenable to drug development.
Collapse
Affiliation(s)
- Kelly R Bales
- Neuroscience Discovery, Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland.
| | - Steven M Paul
- Karuna Therapeutics, Inc., Boston, MA, United States
| |
Collapse
|
36
|
Ben-Moshe H, Luz I, Liraz O, Boehm-Cagan A, Salomon-Zimri S, Michaelson D. ApoE4 Exacerbates Hippocampal Pathology Following Acute Brain Penetration Injury in Female Mice. J Mol Neurosci 2019; 70:32-44. [DOI: 10.1007/s12031-019-01397-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
|
37
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 766] [Impact Index Per Article: 127.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
38
|
Shen S, Zhou W, Chen X, Zhang J. Sex differences in the association of
APOE
ε4
genotype with longitudinal hippocampal atrophy in cognitively normal older people. Eur J Neurol 2019; 26:1362-1369. [PMID: 31102429 DOI: 10.1111/ene.13987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- S. Shen
- Department of Geriatrics Zhejiang Hospital Hangzhou China
| | - W. Zhou
- Department of Pathology Hangzhou Normal University Hangzhou China
| | - X. Chen
- Department of Geriatrics Zhejiang Hospital Hangzhou China
| | - J. Zhang
- Independent researcher Hangzhou China
| | | |
Collapse
|
39
|
Tzioras M, Davies C, Newman A, Jackson R, Spires‐Jones T. Invited Review: APOE at the interface of inflammation, neurodegeneration and pathological protein spread in Alzheimer's disease. Neuropathol Appl Neurobiol 2019; 45:327-346. [PMID: 30394574 PMCID: PMC6563457 DOI: 10.1111/nan.12529] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022]
Abstract
Despite more than a century of research, the aetiology of sporadic Alzheimer's disease (AD) remains unclear and finding disease modifying treatments for AD presents one of the biggest medical challenges of our time. AD pathology is characterized by deposits of aggregated amyloid beta (Aβ) in amyloid plaques and aggregated tau in neurofibrillary tangles. These aggregates begin in distinct brain regions and spread throughout the brain in stereotypical patterns. Neurodegeneration, comprising loss of synapses and neurons, occurs in brain regions with high tangle pathology, and an inflammatory response of glial cells appears in brain regions with pathological aggregates. Inheriting an apolipoprotein E ε4 (APOE4) allele strongly increases the risk of developing AD for reasons that are not yet entirely clear. Substantial amounts of evidence support a role for APOE in modulating the aggregation and clearance of Aβ, and data have been accumulating recently implicating APOE4 in exacerbating neurodegeneration, tau pathology and inflammation. We hypothesize that APOE4 influences all the pathological hallmarks of AD and may sit at the interface between neurodegeneration, inflammation and the spread of pathologies through the brain. Here, we conducted a systematic search of the literature and review evidence supporting a role for APOE4 in neurodegeneration and inflammation. While there is no direct evidence yet for APOE4 influencing the spread of pathology, we postulate that this may be found in future based on the literature reviewed here. In conclusion, this review highlights the importance of understanding the role of APOE in multiple important pathological mechanisms in AD.
Collapse
Affiliation(s)
- M. Tzioras
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - C. Davies
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - A. Newman
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - R. Jackson
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Massachusetts General Hospital and Harvard Medical SchoolCharlestownMAUSA
| | - T. Spires‐Jones
- UK Dementia Research Institute and Centre for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| |
Collapse
|
40
|
Womersley JS, Spies G, Seedat S, Hemmings SMJ. Childhood trauma interacts with ApoE to influence neurocognitive function in women living with HIV. J Neurovirol 2019; 25:183-193. [PMID: 30478798 PMCID: PMC7010592 DOI: 10.1007/s13365-018-0700-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) describes a spectrum of behavioural, motor and cognitive disturbances that can occur secondary to HIV infection. Less severe forms of the disorder persist despite advances in antiretroviral medication efficacy and availability. Childhood trauma (CT) may predispose individuals to developing HAND. As genetic variation in human apolipoprotein E (ApoE) has been implicated in cognitive decline and may mediate the development of long-term health outcomes following CT, we investigated the influence of ApoE and CT on cognitive function in the context of HIV. One hundred twenty-eight HIV-positive Xhosa women completed the Childhood Trauma Questionnaire-Short Form (CTQ-SF) as well as the HIV Neurobehavioural Research Center neurocognitive test battery. rs7412 and rs429358 were genotyped using KASP assays, and this data was used to determine the ApoE isoform. Baseline differences in demographic and clinical variables according to CT exposure were calculated. Analysis of covariance was used to assess the contributions of CT and ApoE variants, as well as their interaction, to cognitive function. Eighty-eight participants reported experiencing CT. The rs7412 C allele protected against the harmful effect of CT on motor scores using an additive model. The interaction of ApoE ε4 and CT was associated with worse attention/working memory scores. ApoE ε4, alone and in combination with CT, is associated with poorer cognitive function. Further research into this gene-environment interaction may assist in identifying at-risk individuals for targeted interventions.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Georgina Spies
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| |
Collapse
|
41
|
Xie Z, Shapiro LP, Cahill ME, Russell TA, Lacor PN, Klein WL, Penzes P. Kalirin-7 prevents dendritic spine dysgenesis induced by amyloid beta-derived oligomers. Eur J Neurosci 2019; 49:1091-1101. [PMID: 30565792 DOI: 10.1111/ejn.14311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
Synapse degeneration and dendritic spine dysgenesis are believed to be crucial early steps in Alzheimer's disease (AD), and correlate with cognitive deficits in AD patients. Soluble amyloid beta (Aβ)-derived oligomers, also termed Aβ-derived diffusible ligands (ADDLs), accumulate in the brain of AD patients and play a crucial role in AD pathogenesis. ADDLs bind to mature hippocampal neurons, induce structural changes in dendritic spines and contribute to neuronal death. However, mechanisms underlying structural and toxic effects are not fully understood. Here, we report that ADDLs bind to cultured mature cortical pyramidal neurons and induce spine dysgenesis. ADDL treatment induced the rapid depletion of kalirin-7, a brain-specific guanine-nucleotide exchange factor for the small GTPase Rac1, from spines. Kalirin-7 is a key regulator of dendritic spine morphogenesis and maintenance in forebrain pyramidal neurons and here we show that overexpression of kalirin-7 prevents ADDL-induced spine degeneration. Taken together, our results suggest that kalirin-7 may play a role in the early events leading to synapse degeneration, and its pharmacological activation may prevent or delay synapse pathology in AD.
Collapse
Affiliation(s)
- Zhong Xie
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lauren P Shapiro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael E Cahill
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Theron A Russell
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pascale N Lacor
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - Peter Penzes
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
42
|
The Role of APOE and TREM2 in Alzheimer's Disease-Current Understanding and Perspectives. Int J Mol Sci 2018; 20:ijms20010081. [PMID: 30587772 PMCID: PMC6337314 DOI: 10.3390/ijms20010081] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. The extracellular deposits of Amyloid beta (Aβ) in the brain-called amyloid plaques, and neurofibrillary tangles-intracellular tau aggregates, are morphological hallmarks of the disease. The risk for AD is a complicated interplay between aging, genetic risk factors, and environmental influences. One of the Apolipoprotein E (APOE) alleles-APOEε4, is the major genetic risk factor for late-onset AD (LOAD). APOE is the primary cholesterol carrier in the brain, and plays an essential role in lipid trafficking, cholesterol homeostasis, and synaptic stability. Recent genome-wide association studies (GWAS) have identified other candidate LOAD risk loci, as well. One of those is the triggering receptor expressed on myeloid cells 2 (TREM2), which, in the brain, is expressed primarily by microglia. While the function of TREM2 is not fully understood, it promotes microglia survival, proliferation, and phagocytosis, making it important for cell viability and normal immune functions in the brain. Emerging evidence from protein binding assays suggests that APOE binds to TREM2 and APOE-containing lipoproteins in the brain as well as periphery, and are putative ligands for TREM2, thus raising the possibility of an APOE-TREM2 interaction modulating different aspects of AD pathology, potentially in an isoform-specific manner. This review is focusing on the interplay between APOE isoforms and TREM2 in association with AD pathology.
Collapse
|
43
|
Wang S, Zhang J, Pan T. APOE ε4 is associated with higher levels of CSF SNAP-25 in prodromal Alzheimer's disease. Neurosci Lett 2018; 685:109-113. [PMID: 30144541 DOI: 10.1016/j.neulet.2018.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023]
Abstract
The underlying mechanism of apolipoprotein E ε4 (APOE ε4) in the pathogenesis of Alzheimer's disease (AD) remains elusive. We hypothesize that synaptic function is differentially affected by APOE isoforms. Levels of CSF SNAP-25 were compared between APOE ε4 carriers and noncarriers in 55 participants with normal cognition, 75 patients with mild cognitive impairment (MCI), and 16 patients with mild AD dementia. We investigated relationships between SNAP-25 levels and age, gender, education, CSF Aβ42, and tau protein. We found that levels of SNAP-25 in CSF were substantially greater in APOE ε4 carriers compared to noncarriers with MCI. There was no significant difference in SNAP-25 levels between APOE ε4 carriers and noncarriers with normal cognition or AD. CSF SNAP-25 levels were associated with MMSE and CSF Aβ and tau levels. In summary, APOE ε4 may affect CSF SNAP levels in MCI patients, suggesting an important role of APOE ε4 in synaptic dysfunction leading to AD.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China
| | - Jie Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Tengwei Pan
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China.
| | | |
Collapse
|
44
|
Tensaouti Y, Stephanz EP, Yu TS, Kernie SG. ApoE Regulates the Development of Adult Newborn Hippocampal Neurons. eNeuro 2018; 5:ENEURO.0155-18.2018. [PMID: 30079373 PMCID: PMC6072333 DOI: 10.1523/eneuro.0155-18.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/11/2023] Open
Abstract
Adult hippocampal neurogenesis occurs throughout life and is believed to participate in cognitive functions such as learning and memory. A number of genes that regulate adult hippocampal neurogenesis have been identified, although most of these have been implicated in progenitor proliferation and survival, but not in the development into fully differentiated neurons. Among these genes, apolipoprotein E (ApoE) is particularly compelling because the human ApoE isoform E4 is a risk factor for the development of Alzheimer's disease, where hippocampal neurogenesis is reported to be dysfunctional. To investigate the effects of ApoE and its human isoforms on adult hippocampal neurogenesis and neuronal development, retroviruses carrying a GFP-expressing vector were injected into wild-type (WT), ApoE-deficient, and human targeted replacement (ApoE3 and ApoE4) mice to infect progenitors in the dentate gyrus and analyze the morphology of fully developed GFP-expressing neurons. Analysis of these adult-born neurons revealed significant decreases in the complexity of dendritic arborizations and spine density in ApoE-deficient mice compared with WT mice, as well as in ApoE4 mice compared with ApoE3. These findings demonstrate that ApoE deficiency and the ApoE4 human isoform both impair hippocampal neurogenesis and give insight into how ApoE may influence hippocampal-related neurological diseases.
Collapse
Affiliation(s)
- Yacine Tensaouti
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Elizabeth P. Stephanz
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Steven G. Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
45
|
Zhang A, Zhao Q, Xu D, Jiang S. Brain APOE expression quantitative trait loci-based association study identified one susceptibility locus for Alzheimer's disease by interacting with APOE ε4. Sci Rep 2018; 8:8068. [PMID: 29795290 PMCID: PMC5966425 DOI: 10.1038/s41598-018-26398-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
Some studies have demonstrated interactions of AD-risk single nucleotide polymorphisms (SNPs) in non-APOE regions with APOE genotype. Nevertheless, no study reported interactions of expression quantitative trait locus (eQTL) for APOE with APOE genotype. In present study, we included 9286 unrelated AD patients and 8479 normal controls from 12 cohorts of NIA Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) and Alzheimer’s Disease Neuroimaging Initiative (ADNI). 34 unrelated brain eQTLs for APOE were compiled from BRAINEAC and GTEx. We used multi-covariate logistic regression analysis to identify eQTLs interacted with APOE ε4. Adjusted for age and gender, substantia nigra eQTL rs438811 for APOE showed significantly strong interaction with APOE ε4 status (OR, 1.448; CI, 1.124–1.430; P-value = 7.94 × 10−6). APOE ε4-based sub-group analyses revealed that carrying one minor allele T of rs438811 can increase the opportunity of developing to AD by 26.75% in APOE ε4 carriers but not in non-carriers. We revealed substantia nigra eQTL rs438811 for APOE can interact with APOE ε4 and confers risk in APOE ε4 carriers only.
Collapse
Affiliation(s)
- Aiqian Zhang
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qingnan Zhao
- Department of Pediatrics, The University of Texas MD Anderson Cancer center, Houston, Texas, USA
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
46
|
Reduced cortical excitatory synapse number in APOE4 mice is associated with increased calcineurin activity. Neuroreport 2018; 28:618-624. [PMID: 28542068 DOI: 10.1097/wnr.0000000000000811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synaptic loss is a symptom of Alzheimer's disease (AD) that is associated with the onset of cognitive decline and the loss of executive function. The strongest genetic risk factor for AD is the APOE4 allele, which results in both a greater risk of developing AD as well as an earlier age of onset of AD. Dendritic spines, the anatomical substrate of the excitatory synapse, are reduced in the cortex of humanized APOE4 mice but the reason for this synaptic decline is unknown. Calcineurin, a calcium/calmodulin dependent phosphatase, is a mediator of dendritic spine retraction. We used humanized APOE mice to examine how APOE genotype altered calcineurin activity and found that APOE4 mice have 35% higher cortical calcineurin activity compared with APOE3 mice. This occurred in the absence of any increase in calcineurin protein levels or mRNA expression. The elevation in calcineurin was associated with 10% fewer dendritic spine number in layer II/III of the cortex. Treatment with the calcineurin inhibitor FK506 reduced calcineurin activity by 64% and resulted in normalization of dendritic spine numbers in APOE4 mice. In conclusion, we found that the APOE4 gene in mice was associated with elevated calcineurin activity and fewer dendritic spine numbers compared with APOE3 mice. Importantly, calcineurin in APOE4 remained sensitive to pharmacological inhibition and spine density can be rescued by treatment with FK506.
Collapse
|
47
|
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 2018; 83:347-357. [PMID: 28434655 PMCID: PMC5599322 DOI: 10.1016/j.biopsych.2017.03.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (apoE) is a lipid carrier in both the peripheral and the central nervous systems. Lipid-loaded apoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and injury repair in the brain. Considering prevalence and relative risk magnitude, the ε4 allele of the APOE gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE4 contributes to AD pathogenesis by modulating multiple pathways, including but not limited to the metabolism, aggregation, and toxicity of amyloid-β peptide, tauopathy, synaptic plasticity, lipid transport, glucose metabolism, mitochondrial function, vascular integrity, and neuroinflammation. Emerging knowledge on apoE-related pathways in the pathophysiology of AD presents new opportunities for AD therapy. We describe the biochemical and biological features of apoE and apoE receptors in the central nervous system. We also discuss the evidence and mechanisms addressing differential effects of apoE isoforms and the role of apoE receptors in AD pathogenesis, with a particular emphasis on the clinical and preclinical studies related to amyloid-β pathology. Finally, we summarize the current strategies of AD therapy targeting apoE, and postulate that effective strategies require an apoE isoform-specific approach.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
48
|
Di Battista AM, Heinsinger NM, Rebeck GW. Alzheimer's Disease Genetic Risk Factor APOE-ε4 Also Affects Normal Brain Function. Curr Alzheimer Res 2017; 13:1200-1207. [PMID: 27033053 DOI: 10.2174/1567205013666160401115127] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022]
Abstract
APOE-ε4 is the strongest genetic risk factor for Alzheimer's disease (AD), and is associated with an increase in the levels of amyloid deposition and an early age of onset. Recent data demonstrate that AD pathological changes occur decades before clinical symptoms, raising questions about the precise onset of the disease. Now a convergence of approaches in mice and humans has demonstrated that APOE-ε4 affects normal brain function even very early in life in the absence of gross AD pathological changes. Normal mice expressing APOE4 have task-specific spatial learning deficits, as well as reduced NMDAR-dependent signaling and structural changes to presynaptic and postsynaptic compartments in neurons, particularly in hippocampal regions. Young humans possessing APOE-ε4 are more adept than APOE-ε4 negative individuals at some behavioral tasks, and functional magnetic resonance imaging has shown that inheritance of APOE-ε4 has specific effects on medial temporal brain activities. These findings suggest that inheritance of APOE-ε4 causes life long changes to the brain that may be related to the late risk of AD. Several possible mechanisms of how APOE-ε4 could affect brain neurochemistry, structure, and function are reviewed.
Collapse
Affiliation(s)
| | | | - G William Rebeck
- New Research Building, WP- 13, 3970 Reservoir Rd, NW, Washington, DC 20007; USA
| |
Collapse
|
49
|
Chhibber A, Zhao L. ERβ and ApoE isoforms interact to regulate BDNF-5-HT 2A signaling and synaptic function in the female brain. ALZHEIMERS RESEARCH & THERAPY 2017; 9:79. [PMID: 28934977 PMCID: PMC5607839 DOI: 10.1186/s13195-017-0305-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/06/2017] [Indexed: 01/12/2023]
Abstract
Background Depression has been reported to be commonly manifested in patients with Alzheimer’s disease (AD) and is considered a risk factor for AD. The human apolipoprotein E (ApoE) gene exists in three major isoforms (coded by ε2, ε3, and ε4), and the ε4 allele has been associated with a greater incidence of both depression and AD. Although mounting evidence points to the potentially complex interaction between these two brain disorders in which ApoE might play a role, the underlying mechanisms are largely unknown. Methods Using human ApoE2, ApoE3, and ApoE4 gene-targeted replacement (hApoE-TR) mouse models, we investigated the role of ApoE isoforms and their potential interactions with estrogen receptor β (ERβ) signaling in modulating the brain mechanisms involved in depression. Results Our initial analyses in 6-month-old female hApoE-TR mice demonstrated that ApoE influenced the expression of brain-derived neurotrophic factor (BDNF) and the 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor in an isoform-dependent manner, with the ApoE4 brain exhibiting the lowest level of BDNF and the highest level of 5-HT2A. In addition, both presynaptic and postsynaptic proteins were downregulated, indicating a synaptic deficit in ApoE4 brains. Our subsequent analyses revealed that a 3-month chronic treatment with an ERβ-targeted (83-fold selectivity over ERα) phytoestrogenic diet induced several changes in ApoE2 and ApoE3 brains, including a significant decrease in the expression of 5-HT2A receptors and an increase in BDNF/tropomyosin receptor kinase B and synaptic proteins. In contrast, ApoE4 brains were largely unresponsive to the treatment, with an increase only in select synaptic proteins in the treated group. Conclusions Taken together, these results indicate that ApoE4 negatively impacts BDNF–5-HT2A signaling in the female brain, which could in part underlie the ApoE4-mediated increased risk for depression. In a larger context, this mechanism could serve as a molecular link between depression and AD associated with ApoE4. Enhancing ERβ activity could provide a greater therapeutic benefit to non-ApoE4 carriers than to ApoE4 carriers in interventions for these brain disorders.
Collapse
Affiliation(s)
- Anindit Chhibber
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall Room 2046, Lawrence, KS, 66045, USA
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall Room 2046, Lawrence, KS, 66045, USA. .,Neuroscience Graduate Program, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
50
|
Bar R, Boehm-Cagan A, Luz I, Kleper-Wall Y, Michaelson DM. The effects of apolipoprotein E genotype, α-synuclein deficiency, and sex on brain synaptic and Alzheimer's disease-related pathology. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 10:1-11. [PMID: 29159264 PMCID: PMC5678739 DOI: 10.1016/j.dadm.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction Alzheimer's disease (AD) and synucleinopathies share common pathological mechanisms. Apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, also increases the risk for dementia in pure synucleinopathies. We presently examined the effects of α-synuclein deficiency (α-syn−/−) and sex on apoE4-driven pathologies. Methods AD-related, synaptic, and vascular markers were analyzed in female and male α-syn−/− and α-syn+/+ apoE4, apoE3, and apoE3/E4 mice. Results ApoE4 was hypolipidated, and this effect was unchanged by α-syn−/− and sex. The levels of synaptic markers were lower, and the levels of AD-related parameters were higher in female α-syn−/− apoE4 mice compared with the corresponding apoE3 mice. By comparison, apoE4 had small effects on the AD parameters of male and female α-syn+/+ apoE4 mice. Discussion Although α-syn−/− does not affect the upstream lipidation impairment of apoE4, it acts as a “second hit” enhancer of the subsequent apoE4-driven pathologies.
Collapse
Affiliation(s)
- Roni Bar
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Boehm-Cagan
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ishai Luz
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yarden Kleper-Wall
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|