1
|
Cavallari E, Lorenzi E, Di Gregorio E, Ferrauto G, Aime S, Vallortigara G, Bifone A. In vivo assessment of the influence of general anaesthetics on transmembrane water cycling in the brain. J Cereb Blood Flow Metab 2024:271678X241309783. [PMID: 39719068 DOI: 10.1177/0271678x241309783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
This study presents the first in vivo measurement of transcytolemmal water exchange in the brain using a novel Magnetic Resonance technique. We extend previous applications of Chemical Exchange Saturation Transfer (CEST) to examine water exchange across cellular membranes in late-stage chicken embryo brains. The immature blood-brain barrier at this stage allows Gadolinium-Based Contrast Agents (GBCAs) to penetrate the brain's interstitial space, sensitizing the CEST effect to water exchange between intra- and extracellular environments. Exchange rates were measured in the awake brain and under different anaesthetic regimens, including isoflurane and ketamine/xylazine. Results show that brain water exchange is dominated by activity-dependent mechanisms, with anaesthesia reducing exchange rates by over an order of magnitude. These findings suggest that anaesthetics may impact neuronal and glial function by interfering with active transport mechanisms, potentially altering brain water homeostasis. This study highlights the utility of CEST MRI for studying dynamic biological processes in vivo.
Collapse
Affiliation(s)
- Eleonora Cavallari
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Rovereto (TN), Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- IRCCS SDN SynLab, Napoli, Italy
| | | | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
2
|
Vrettou CS, Issaris V, Kokkoris S, Poupouzas G, Keskinidou C, Lotsios NS, Kotanidou A, Orfanos SE, Dimopoulou I, Vassiliou AG. Exploring Aquaporins in Human Studies: Mechanisms and Therapeutic Potential in Critical Illness. Life (Basel) 2024; 14:1688. [PMID: 39768394 PMCID: PMC11676363 DOI: 10.3390/life14121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Aquaporins (AQPs) are membrane proteins facilitating water and other small solutes to be transported across cell membranes. They are crucial in maintaining cellular homeostasis by regulating water permeability in various tissues. Moreover, they regulate cell migration, signaling pathways, inflammation, tumor growth, and metastasis. In critically ill patients, such as trauma, sepsis, and patients with acute respiratory distress syndrome (ARDS), which are frequently encountered in intensive care units (ICUs), water transport regulation is crucial for maintaining homeostasis, as dysregulation can lead to edema or dehydration, with the latter also implicating hemodynamic compromise. Indeed, AQPs are involved in fluid transport in various organs, including the lungs, kidneys, and brain, where their dysfunction can exacerbate conditions like ARDS, acute kidney injury (AKI), or cerebral edema. In this review, we discuss the implication of AQPs in the clinical entities frequently encountered in ICUs, such as systemic inflammation and sepsis, ARDS, AKI, and brain edema due to different types of primary brain injury from a clinical perspective. Current and possible future therapeutic implications are also considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (V.I.); (S.K.); (G.P.); (C.K.); (N.S.L.); (A.K.); (S.E.O.); (I.D.)
| |
Collapse
|
3
|
Mannan A, Mohan M, Gulati A, Dhiman S, Singh TG. Aquaporin proteins: A promising frontier for therapeutic intervention in cerebral ischemic injury. Cell Signal 2024; 124:111452. [PMID: 39369758 DOI: 10.1016/j.cellsig.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Cerebral ischemic injury is characterized by reduced blood flow to the brain, remains a significant cause of morbidity and mortality worldwide. Despite improvements in therapeutic approaches, there is an urgent need to identify new targets to lessen the effects of ischemic stroke. Aquaporins, a family of water channel proteins, have recently come to light as promising candidates for therapeutic intervention in cerebral ischemic injury. There are 13 aquaporins identified, and AQP4 has been thoroughly involved with cerebral ischemia as it has been reported that modulation of AQP4 activity can offers a possible pathway for therapeutic intervention along with their role in pH, osmosis, ions, and the blood-brain barrier (BBB) as possible therapeutic targets for cerebral ischemia injury. The molecular pathways which can interacts with particular cellular pathways, participation in neuroinflammation, and possible interaction with additional proteins thought to be involved in the etiology of a stroke. Understanding these pathways offers crucial information on the diverse role of AQPs in cerebral ischemia, paving the door for the development of focused/targeted therapeutics.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anshika Gulati
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
4
|
Bretová K, Svobodová V, Dubový P. Changes in Cx43 and AQP4 Proteins, and the Capture of 3 kDa Dextran in Subpial Astrocytes of the Rat Medial Prefrontal Cortex after Both Sham Surgery and Sciatic Nerve Injury. Int J Mol Sci 2024; 25:10989. [PMID: 39456773 PMCID: PMC11507206 DOI: 10.3390/ijms252010989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
A subpopulation of astrocytes on the brain's surface, known as subpial astrocytes, constitutes the "glia limitans superficialis" (GLS), which is an interface between the brain parenchyma and the cerebrospinal fluid (CSF) in the subpial space. Changes in connexin-43 (Cx43) and aquaporin-4 (AQP4) proteins in subpial astrocytes were examined in the medial prefrontal cortex at postoperative day 1, 3, 7, 14, and 21 after sham operation and sciatic nerve compression (SNC). In addition, we tested the altered uptake of TRITC-conjugated 3 kDa dextran by reactive subpial astrocytes. Cellular immunofluorescence (IF) detection and image analysis were used to examine changes in Cx43 and AQP4 protein levels, as well as TRITC-conjugated 3 kDa dextran, in subpial astrocytes. The intensity of Cx43-IF was significantly increased, but AQP4-IF decreased in subpial astrocytes of sham- and SNC-operated rats during all survival periods compared to naïve controls. Similarly, the uptake of 3 kDa dextran in the GLS was reduced following both sham and SNC operations. The results suggest that both sciatic nerve injury and peripheral tissue injury alone can induce changes in subpial astrocytes related to the spread of their reactivity across the cortical surface mediated by increased amounts of gap junctions. At the same time, water transport and solute uptake were impaired in subpial astrocytes.
Collapse
Affiliation(s)
| | | | - Petr Dubový
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, CZ-62500 Brno, Czech Republic; (K.B.)
| |
Collapse
|
5
|
Sorby-Adams AJ, Marian OC, Bilecki IM, Elms LE, Yassi N, Hood RJ, Coller JK, Stuckey SM, Kimberly WT, Farr TD, Leonard AV, Thornton E, Vink R, Turner RJ. NK1 tachykinin receptor antagonist treatment reduces cerebral edema and intracranial pressure in an ovine model of ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1759-1773. [PMID: 38546535 PMCID: PMC11494854 DOI: 10.1177/0271678x241241907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/10/2024] [Accepted: 03/05/2024] [Indexed: 10/18/2024]
Abstract
Following ischemic stroke, substance P (SP)-mediated neurogenic inflammation is associated with profound blood-brain barrier (BBB) dysfunction, cerebral edema, and elevated intracranial pressure (ICP). SP elicits its effects by binding the neurokinin 1 tachykinin receptor (NK1-R), with administration of an NK1-R antagonist shown to ameliorate BBB dysfunction and cerebral edema in rodent and permanent ovine stroke models. Given the importance of reperfusion in clinical stroke, this study examined the efficacy of NK1-R antagonist treatment in reducing cerebral edema and ICP in an ovine model of transient middle cerebral artery occlusion (tMCAo). Anesthetized sheep (n = 24) were subject to 2-hours tMCAo and randomized (n = 6/group) to receive early NK1-R treatment (days 1-3 post-stroke), delayed NK1-R treatment (day 5 post-stroke), or saline vehicle. At 6-days post-stroke animals were re-anaesthetized and ICP measured, followed by MRI to evaluate infarction, edema and BBB dysfunction. Following both early and delayed NK1-R antagonist administration, ICP was significantly reduced on day 6 compared to vehicle animals (p < 0.05), accompanied by a reduction in cerebral edema, midline shift and BBB dysfunction (p < 0.05). This study demonstrates that NK1-R antagonist treatment is an effective novel therapy for cerebral edema and elevated ICP following stroke in an ovine model, warranting future clinical evaluation.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Oana C Marian
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Isabella M Bilecki
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Levi E Elms
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Rebecca J Hood
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Janet K Coller
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon M Stuckey
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - W Taylor Kimberly
- Department of Neurology and the Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tracy D Farr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anna V Leonard
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Emma Thornton
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Renée J Turner
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Machida A, Banshoya K, Miyamaru A, Eto T, Maehara S, Hieda Y, Hata T, Ohnishi M. A Glycyrrhizin Derivative with a More Potent Inhibitory Activity against High-Mobility Group Box 1 Efficiently Discovered by Chemical Synthesis Inspired by the Bioconversion Products of an Endophytic Fungus Isolated from Licorice. J Med Chem 2024; 67:16328-16337. [PMID: 39231005 DOI: 10.1021/acs.jmedchem.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Glycyrrhizin (GL) from licorice alleviates intracerebral hemorrhage (ICH) injuries by interacting with high-mobility group box (HMGB) 1, an inflammatory factor. We found that GL is bioconverted by endophyte coexisting with licorice and succeeded in isolating two derivatives. The aim of this study was to identify the compound with more potent HMGB1 inhibitory activity inspired by these GL derivatives. We took advantage of a ketone introduced by an endophyte at the C-3 position and attempted methyl esterification at the C-30 position because it was suggested that the water or lipid solubility of the molecule plays an important role. Among three derivatives synthesized, the product that is both ketonized and esterified showed more potent HMGB1 inhibitory activity than GL in macrophages and significantly improved adverse events occurred in ICH in vivo. These results suggest that modification of the hydrophilicity of GL, particularly at the C-3 and C-30 positions, enhances the HMGB1 inhibitory activity.
Collapse
Affiliation(s)
- Aoi Machida
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Kengo Banshoya
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Akiho Miyamaru
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tamaki Eto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Shoji Maehara
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yuhzo Hieda
- Common Resources Center, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Toshiyuki Hata
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
7
|
Critzer SS, Bosch TJ, Fercho KA, Scholl JL, Baugh LA. Water and brain function: effects of hydration status on neurostimulation with transcranial magnetic stimulation. J Neurophysiol 2024; 132:791-807. [PMID: 39081213 PMCID: PMC11427052 DOI: 10.1152/jn.00143.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
Neurostimulation/neurorecording are tools to study, diagnose, and treat neurological/psychiatric conditions. Both techniques depend on volume conduction between scalp and excitable brain tissue. Here, we examine how neurostimulation with transcranial magnetic stimulation (TMS) is affected by hydration status, a physiological variable that can influence the volume of fluid spaces/cells, excitability, and cellular/global brain functioning. Normal healthy adult participants (32, 9 males) had common motor TMS measures taken in a repeated-measures design from dehydrated (12-h overnight fast/thirst) and rehydrated (identical dehydration protocol followed by rehydration with 1 L water in 1 h) testing days. The target region was left primary motor cortex hand area. Response at the target muscle was recorded with electromyography. Urinalysis confirmed hydration status. Motor hotspot shifted in half of participants. Motor threshold decreased in rehydration, indicating increased excitability. Even after redosing/relocalizing TMS to the new threshold/hotspot, rehydration still showed evidence of increased excitability: recruitment curve measures generally shifted upward and the glutamate-dependent paired-pulse protocol, short intracortical facilitation (SICF), was increased. Short intracortical inhibition (SICI), long intracortical inhibition (LICI), long intracortical facilitation (LICF), and cortical silent period (CSP) were relatively unaffected. The hydration perturbations were mild/subclinical based on the magnitude/speed and urinalysis. Motor TMS measures showed evidence of expected physiological changes of osmotic challenges. Rehydration showed signs of macroscopic and microscopic volume changes including decreased scalp-cortex distance (brain closer to stimulator) and astrocyte swelling-induced glutamate release. Hydration may be a source of variability affecting any techniques dependent on brain volumes/volume conduction. These concepts are important for researchers/clinicians using such techniques or dealing with the wide variety of disease processes involving water balance.NEW & NOTEWORTHY Hydration status can affect brain volumes and excitability, which should affect techniques dependent on electrical volume conduction, including neurostimulation/recording. We test the previously unknown effects of hydration on neurostimulation with TMS and briefly review relevant physiology of hydration. Rehydration showed lower motor threshold, shifted motor hotspot, and generally larger responses even after compensating for threshold/hotspot changes. This is important for clinical and research applications of neurostimulation/neurorecording and the many clinical disorders related to water balance.
Collapse
Affiliation(s)
- Sam S Critzer
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
- Department of Psychiatry, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, United States
| | - Taylor J Bosch
- Department of Psychology, University of South Dakota, Vermillion, South Dakota, United States
| | - Kelene A Fercho
- FAA Civil Aerospace Medical Institute, Oklahoma City, Oklahoma, United States
| | - Jamie L Scholl
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
| | - Lee A Baugh
- Basic Biomedical Sciences & Center for Brain and Behavior Research, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States
| |
Collapse
|
8
|
Chen K, Xu B, Qiu S, Long L, Zhao Q, Xu J, Wang H. Inhibition of phosphodiesterase 4 attenuates aquaporin 4 expression and astrocyte swelling following cerebral ischemia/reperfusion injury. Glia 2024; 72:1629-1645. [PMID: 38785370 DOI: 10.1002/glia.24572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1β (IL-1β). Astrocytes treated with IL-1β showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.
Collapse
Affiliation(s)
- Kechun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| |
Collapse
|
9
|
Czyżewski W, Litak J, Sobstyl J, Mandat T, Torres K, Staśkiewicz G. Aquaporins: Gatekeepers of Fluid Dynamics in Traumatic Brain Injury. Int J Mol Sci 2024; 25:6553. [PMID: 38928258 PMCID: PMC11204105 DOI: 10.3390/ijms25126553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jan Sobstyl
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. Roentgena 5, 02-781 Warsaw, Poland;
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Grzegorz Staśkiewicz
- Department of Human, Clinical and Radiological Anatomy, Medical University, 20-954 Lublin, Poland;
| |
Collapse
|
10
|
Hermanova Z, Valihrach L, Kriska J, Maheta M, Tureckova J, Kubista M, Anderova M. The deletion of AQP4 and TRPV4 affects astrocyte swelling/volume recovery in response to ischemia-mimicking pathologies. Front Cell Neurosci 2024; 18:1393751. [PMID: 38818517 PMCID: PMC11138210 DOI: 10.3389/fncel.2024.1393751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Astrocytic Transient receptor potential vanilloid 4 (TRPV4) channels, together with Aquaporin 4 (AQP4), are suspected to be the key players in cellular volume regulation, and therefore may affect the development and severity of cerebral edema during ischemia. In this study, we examined astrocytic swelling/volume recovery in mice with TRPV4 and/or AQP4 deletion in response to in vitro ischemic conditions, to determine how the deletion of these channels can affect the development of cerebral edema. Methods We used three models of ischemia-related pathological conditions: hypoosmotic stress, hyperkalemia, and oxygenglucose deprivation (OGD), and observed their effect on astrocyte volume changes in acute brain slices of Aqp4-/-, Trpv4-/- and double knockouts. In addition, we employed single-cell RT-qPCR to assess the effect of TRPV4 and AQP4 deletion on the expression of other ion channels and transporters involved in the homeostatic functioning of astrocytes. Results Quantification of astrocyte volume changes during OGD revealed that the deletion of AQP4 reduces astrocyte swelling, while simultaneous deletion of both AQP4 and TRPV4 leads to a disruption of astrocyte volume recovery during the subsequent washout. Of note, astrocyte exposure to hypoosmotic stress or hyperkalemia revealed no differences in astrocyte swelling in the absence of AQP4, TRPV4, or both channels. Moreover, under ischemia-mimicking conditions, we identified two distinct subpopulations of astrocytes with low and high volumetric responses (LRA and HRA), and their analyses revealed that mainly HRA are affected by the deletion of AQP4, TRPV4, or both channels. Furthermore, gene expression analysis revealed reduced expression of the ion transporters KCC1 and ClC2 as well as the receptors GABAB and NMDA in Trpv4-/- mice. The deletion of AQP4 instead caused reduced expression of the serine/cysteine peptidase inhibitor Serpina3n. Discussion Thus, we showed that in AQP4 or TRPV4 knockouts, not only the specific function of these channels is affected, but also the expression of other proteins, which may modulate the ischemic cascade and thus influence the final impact of ischemia.
Collapse
Affiliation(s)
- Zuzana Hermanova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Valihrach
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mansi Maheta
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, Vestec, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine CAS, Prague, Czechia
| |
Collapse
|
11
|
Moëlo C, Quillévéré A, Le Roy L, Timsit S. (S)-roscovitine, a CDK inhibitor, decreases cerebral edema and modulates AQP4 and α1-syntrophin interaction on a pre-clinical model of acute ischemic stroke. Glia 2024; 72:322-337. [PMID: 37828900 DOI: 10.1002/glia.24477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Cerebral edema is one of the deadliest complications of ischemic stroke for which there is currently no pharmaceutical treatment. Aquaporin-4 (AQP4), a water-channel polarized at the astrocyte endfoot, is known to be highly implicated in cerebral edema. We previously showed in randomized studies that (S)-roscovitine, a cyclin-dependent kinase inhibitor, reduced cerebral edema 48 h after induction of focal transient ischemia, but its mechanisms of action were unclear. In our recent blind randomized study, we confirmed that (S)-roscovitine was able to reduce cerebral edema by 65% at 24 h post-stroke (t test, p = .006). Immunofluorescence analysis of AQP4 distribution in astrocytes revealed that (S)-roscovitine decreased the non-perivascular pool of AQP4 by 53% and drastically increased AQP4 clusters in astrocyte perivascular end-feet (671%, t test p = .005) compared to vehicle. Non-perivascular and clustered AQP4 compartments were negatively correlated (R = -0.78; p < .0001), suggesting a communicating vessels effect between the two compartments. α1-syntrophin, AQP4 anchoring protein, was colocalized with AQP4 in astrocyte endfeet, and this colocalization was maintained in ischemic area as observed on confocal microscopy. Moreover, (S)-roscovitine increased AQP4/α1-syntrophin interaction (40%, MW p = .0083) as quantified by proximity ligation assay. The quantified interaction was negatively correlated with brain edema in both treated and placebo groups (R = -.57; p = .0074). We showed for the first time, that a kinase inhibitor modulated AQP4/α1-syntrophin interaction, and was implicated in the reduction of cerebral edema. These findings suggest that (S)-roscovitine may hold promise as a potential treatment for cerebral edema in ischemic stroke and as modulator of AQP4 function in other neurological diseases.
Collapse
Affiliation(s)
- Cloé Moëlo
- EFS, Université de Bretagne Occidentale, Inserm UMR 1078, GGB, Brest, France
| | - Alicia Quillévéré
- EFS, Université de Bretagne Occidentale, Inserm UMR 1078, GGB, Brest, France
| | - Lucas Le Roy
- EFS, Université de Bretagne Occidentale, Inserm UMR 1078, GGB, Brest, France
| | - Serge Timsit
- EFS, Université de Bretagne Occidentale, Inserm UMR 1078, GGB, Brest, France
- Neurology and Stroke Unit Department, CHRU de Brest, Inserm1078, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
12
|
Thormann M, Traube N, Yehia N, Koestler R, Galabova G, MacAulay N, Toft-Bertelsen TL. Toward New AQP4 Inhibitors: ORI-TRN-002. Int J Mol Sci 2024; 25:924. [PMID: 38255997 PMCID: PMC10815436 DOI: 10.3390/ijms25020924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Cerebral edema is a life-threatening condition that can cause permanent brain damage or death if left untreated. Existing therapies aim at mitigating the associated elevated intracranial pressure, yet they primarily alleviate pressure rather than prevent edema formation. Prophylactic anti-edema therapy necessitates novel drugs targeting edema formation. Aquaporin 4 (AQP4), an abundantly expressed water pore in mammalian glia and ependymal cells, has been proposed to be involved in cerebral edema formation. A series of novel compounds have been tested for their potential inhibitory effects on AQP4. However, selectivity, toxicity, functional inhibition, sustained therapeutic concentration, and delivery into the central nervous system are major challenges. Employing extensive density-functional theory (DFT) calculations, we identified a previously unreported thermodynamically stable tautomer of the recently identified AQP4-specific inhibitor TGN-020 (2-(nicotinamide)-1,3,4-thiadiazol). This novel form, featuring a distinct hydrogen-bonding pattern, served as a template for a COSMOsim-3D-based virtual screen of proprietary compounds from Origenis™. The screening identified ORI-TRN-002, an electronic homologue of TGN-020, demonstrating high solubility and low protein binding. Evaluating ORI-TRN-002 on AQP4-expressing Xenopus laevis oocytes using a high-resolution volume recording system revealed an IC50 of 2.9 ± 0.6 µM, establishing it as a novel AQP4 inhibitor. ORI-TRN-002 exhibits superior solubility and overcomes free fraction limitations compared to other reported AQP4 inhibitors, suggesting its potential as a promising anti-edema therapy for treating cerebral edema in the future.
Collapse
Affiliation(s)
| | - Nadine Traube
- Origenis GmbH, Am Klopferspitz 19A, 82152 Martinsried, Germany
| | - Nasser Yehia
- Origenis GmbH, Am Klopferspitz 19A, 82152 Martinsried, Germany
| | - Roland Koestler
- Origenis GmbH, Am Klopferspitz 19A, 82152 Martinsried, Germany
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Trine L. Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Eidahl JML, Rognum TO, Stray-Pedersen A, Opdal SH. Brain water content in sudden unexpected infant death. Forensic Sci Med Pathol 2023; 19:507-516. [PMID: 36735187 PMCID: PMC10752850 DOI: 10.1007/s12024-023-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
The extensive and rapid development of the human brain during the first years of life complicates the postmortem diagnosis of brain edema in infancy. The aim of this study was to describe brain water content, the brain weight/body weight ratio, and the brain weight/head circumference ratio throughout the first years of life. Furthermore, we examined the relationship between these parameters and rs2075575 in the AQP4 gene. Our hypothesis was that dysregulated water homeostasis might be a risk factor for sudden infant death syndrome (SIDS), which may be reflected by increased water content in the brain. The study included 90 subjects with sudden unexpected death < 4 years of age: 22 cases of sudden infant death syndrome, 11 cases of sudden unexplained death in childhood, 47 cases of death due to disease, and 10 cases of accident/violent death. Brain water content, brain weight/body weight ratio, and brain weight/head circumference ratio were investigated according to corrected age, diagnosis group, attempt to resuscitate, and presence of brain edema. We found that brain water content and brain weight/body weight ratio were significantly reduced with increasing age, while brain weight/head circumference were increased. Brain weight/head circumference was correlated with brain water content. Cases with brain edema had a significantly higher brain weight/head circumference than the non-edematous cases. No differences were found between the diagnosis groups for any of the investigated parameters. In summary, the findings contribute to the current body of knowledge regarding brain growth during the first months of life.
Collapse
Affiliation(s)
- Johanna Marie Lundesgaard Eidahl
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Arne Stray-Pedersen
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Siri Hauge Opdal
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Wu X, Li JR, Fu Y, Chen DY, Nie H, Tang ZP. From static to dynamic: live observation of the support system after ischemic stroke by two photon-excited fluorescence laser-scanning microscopy. Neural Regen Res 2023; 18:2093-2107. [PMID: 37056116 PMCID: PMC10328295 DOI: 10.4103/1673-5374.369099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is one of the most common causes of mortality and disability worldwide. However, treatment efficacy and the progress of research remain unsatisfactory. As the critical support system and essential components in neurovascular units, glial cells and blood vessels (including the blood-brain barrier) together maintain an optimal microenvironment for neuronal function. They provide nutrients, regulate neuronal excitability, and prevent harmful substances from entering brain tissue. The highly dynamic networks of this support system play an essential role in ischemic stroke through processes including brain homeostasis, supporting neuronal function, and reacting to injuries. However, most studies have focused on postmortem animals, which inevitably lack critical information about the dynamic changes that occur after ischemic stroke. Therefore, a high-precision technique for research in living animals is urgently needed. Two-photon fluorescence laser-scanning microscopy is a powerful imaging technique that can facilitate live imaging at high spatiotemporal resolutions. Two-photon fluorescence laser-scanning microscopy can provide images of the whole-cortex vascular 3D structure, information on multicellular component interactions, and provide images of structure and function in the cranial window. This technique shifts the existing research paradigm from static to dynamic, from flat to stereoscopic, and from single-cell function to multicellular intercommunication, thus providing direct and reliable evidence to identify the pathophysiological mechanisms following ischemic stroke in an intact brain. In this review, we discuss exciting findings from research on the support system after ischemic stroke using two-photon fluorescence laser-scanning microscopy, highlighting the importance of dynamic observations of cellular behavior and interactions in the networks of the brain's support systems. We show the excellent application prospects and advantages of two-photon fluorescence laser-scanning microscopy and predict future research developments and directions in the study of ischemic stroke.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jia-Rui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan-Yang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhou-Ping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Bonosi L, Benigno UE, Musso S, Giardina K, Gerardi RM, Brunasso L, Costanzo R, Paolini F, Buscemi F, Avallone C, Gulino V, Iacopino DG, Maugeri R. The Role of Aquaporins in Epileptogenesis-A Systematic Review. Int J Mol Sci 2023; 24:11923. [PMID: 37569297 PMCID: PMC10418736 DOI: 10.3390/ijms241511923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Aquaporins (AQPs) are a family of membrane proteins involved in the transport of water and ions across cell membranes. AQPs have been shown to be implicated in various physiological and pathological processes in the brain, including water homeostasis, cell migration, and inflammation, among others. Epileptogenesis is a complex and multifactorial process that involves alterations in the structure and function of neuronal networks. Recent evidence suggests that AQPs may also play a role in the pathogenesis of epilepsy. In animal models of epilepsy, AQPs have been shown to be upregulated in regions of the brain that are involved in seizure generation, suggesting that they may contribute to the hyperexcitability of neuronal networks. Moreover, genetic studies have identified mutations in AQP genes associated with an increased risk of developing epilepsy. Our review aims to investigate the role of AQPs in epilepsy and seizure onset from a pathophysiological point of view, pointing out the potential molecular mechanism and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (U.E.B.); (S.M.); (K.G.); (R.M.G.); (L.B.); (R.C.); (F.P.); (F.B.); (C.A.); (V.G.); (D.G.I.)
| |
Collapse
|
16
|
Sepehrinezhad A, Stolze Larsen F, Ashayeri Ahmadabad R, Shahbazi A, Sahab Negah S. The Glymphatic System May Play a Vital Role in the Pathogenesis of Hepatic Encephalopathy: A Narrative Review. Cells 2023; 12:cells12070979. [PMID: 37048052 PMCID: PMC10093707 DOI: 10.3390/cells12070979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neurological complication of liver disease resulting in cognitive, psychiatric, and motor symptoms. Although hyperammonemia is a key factor in the pathogenesis of HE, several other factors have recently been discovered. Among these, the impairment of a highly organized perivascular network known as the glymphatic pathway seems to be involved in the progression of some neurological complications due to the accumulation of misfolded proteins and waste substances in the brain interstitial fluids (ISF). The glymphatic system plays an important role in the clearance of brain metabolic derivatives and prevents aggregation of neurotoxic agents in the brain ISF. Impairment of it will result in aggravated accumulation of neurotoxic agents in the brain ISF. This could also be the case in patients with liver failure complicated by HE. Indeed, accumulation of some metabolic by-products and agents such as ammonia, glutamine, glutamate, and aromatic amino acids has been reported in the human brain ISF using microdialysis technique is attributed to worsening of HE and correlates with brain edema. Furthermore, it has been reported that the glymphatic system is impaired in the olfactory bulb, prefrontal cortex, and hippocampus in an experimental model of HE. In this review, we discuss different factors that may affect the function of the glymphatic pathways and how these changes may be involved in HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
| | - Fin Stolze Larsen
- Department of Gastroenterology and Hepatology, Rigshospitalet, Copenhagen University Hospital, 999017 Copenhagen, Denmark
| | | | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1449614535, Iran
| |
Collapse
|
17
|
Ochoa-de la Paz LD, Gulias-Cañizo R. Glia as a key factor in cell volume regulation processes of the central nervous system. Front Cell Neurosci 2022; 16:967496. [PMID: 36090789 PMCID: PMC9453262 DOI: 10.3389/fncel.2022.967496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Brain edema is a pathological condition with potentially fatal consequences, related to cerebral injuries such as ischemia, chronic renal failure, uremia, and diabetes, among others. Under these pathological states, the cell volume control processes are fully compromised, because brain cells are unable to regulate the movement of water, mainly regulated by osmotic gradients. The processes involved in cell volume regulation are homeostatic mechanisms that depend on the mobilization of osmolytes (ions, organic molecules, and polyols) in the necessary direction to counteract changes in osmolyte concentration in response to water movement. The expression and coordinated function of proteins related to the cell volume regulation process, such as water channels, ion channels, and other cotransport systems in the glial cells, and considering the glial cell proportion compared to neuronal cells, leads to consider the astroglial network the main regulatory unit for water homeostasis in the central nervous system (CNS). In the last decade, several studies highlighted the pivotal role of glia in the cell volume regulation process and water homeostasis in the brain, including the retina; any malfunction of this astroglial network generates a lack of the ability to regulate the osmotic changes and water movements and consequently exacerbates the pathological condition.
Collapse
Affiliation(s)
- Lenin David Ochoa-de la Paz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
- Asociación para Evitar la Ceguera en México (APEC), Unidad de Investigación APEC-UNAM, Mexico
- *Correspondence: Lenin David Ochoa-de la Paz
| | | |
Collapse
|
18
|
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins, which were initially characterized as a novel protein family that plays a vital role in transcellular and transepithelial water movement. AQP1, AQP2, AQP4, AQP5, and AQP8 are primarily water selective, whereas AQP3, AQP7, AQP9, and AQP10 (called “aqua-glyceroporins”) also transport glycerol and other small solutes. Recently, multiple reports have suggested that AQPs have important roles in cancer cell growth, migration, invasion, and angiogenesis, each of which is important in human carcinogenesis. Here, we review recent data concerning the involvement of AQPs in tumor growth, angiogenesis, and metastasis and explore the expression profiles from various resected cancer samples to further dissect the underlying molecular mechanisms. Moreover, we discuss the potential role of AQPs during the development of genomic instability and performed modeling to describe the integration of binding between AQPs with various SH3 domain binning adaptor molecules. Throughout review and discussion of numerous reports, we have tried to provide key evidence that AQPs play key roles in tumor biology, which may provide a unique opportunity in designing a novel class of anti-tumor agents.
Collapse
Affiliation(s)
- Chul So Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - David Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - Sung Koo Kang
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| |
Collapse
|
19
|
Qu D, Schürmann P, Rothämel T, Dörk T, Klintschar M. Variants in genes encoding the SUR1-TRPM4 non-selective cation channel and sudden infant death syndrome (SIDS): potentially increased risk for cerebral edema. Int J Legal Med 2022; 136:1113-1120. [PMID: 35474489 PMCID: PMC9170623 DOI: 10.1007/s00414-022-02819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Increasing evidence suggests that brain edema might play an important role in the pathogenesis of sudden infant death syndrome (SIDS) and that variants of genes for cerebral water channels might be associated with SIDS. The role of the sulfonylurea receptor 1 (SUR1)-transient receptor potential melastatin 4 (TRPM4) non-selective cation channel in cerebral edema was demonstrated by extensive studies. Therefore, we hypothesized that variants at genes of the SUR1-TRPM4 channel complex might be linked to SIDS. Twenty-four polymorphisms in candidate genes involved in the SUR1-TRPM4 non-selective cation channel were investigated in 185 SIDS cases and 339 controls. One (rs11667393 in TRPM4) of these analyzed SNPs reached nominal significance regarding an association with SIDS in the overall analysis (additive model: p = 0.015, OR = 1.438, 95% CI = 1.074-1.925; dominant model: p = 0.036; OR = 1.468, 95% CI = 1.024-2.106). In the stratified analysis, further 8 variants in ABCC8 (encoding SUR1) or TRPM4 showed pronounced associations. However, none of the results remained significant after correction for multiple testing. This preliminary study has provided the first evidence for a genetic role of the SUR1-TRPM4 complex in the etiology of SIDS, and we suggest that our initial results should be evaluated by further studies.
Collapse
Affiliation(s)
- Dong Qu
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Peter Schürmann
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Rothämel
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
20
|
Wu Y, Peng Z, Wang H, Xiang W. Identifying the Hub Genes of Glioma Peritumoral Brain Edema Using Bioinformatical Methods. Brain Sci 2022; 12:brainsci12060805. [PMID: 35741689 PMCID: PMC9221376 DOI: 10.3390/brainsci12060805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma peritumoral brain edema (GPTBE) is a frequent complication in patients with glioma. The severity of peritumoral edema endangers patients’ life and prognosis. However, there are still questions concerning the process of GPTBE formation and evolution. In this study, the patients were split into two groups based on edema scoring findings in the cancer imaging archive (TCIA) comprising 186 TCGA-LGG patients. Using mRNA sequencing data, differential gene (DEG) expression analysis was performed, comparing the two groups to find the key genes affecting GPTBE. A functional enrichment analysis of differentially expressed genes was performed. Then, a protein–protein interaction (PPI) network was established, and important genes were screened. Gene set variation analysis (GSVA) scores were calculated for major gene sets and comparatively correlated with immune cell infiltration. Overall survival (OS) was analyzed using the Kaplan–Meier curve. A total of 59 DEGs were found, with 10 of them appearing as important genes. DEGs were shown to be closely linked to inflammatory reactions. According to the network score, IL10 was in the middle of the network. The presence of the IL10 protein in glioma tissues was verified using the human protein atlas (HPA). Furthermore, the gene sets’ GSVA scores were favorably linked with immune infiltration, particularly, with macrophages. The high-edema group had higher GSVA scores than the low-edema group. Finally, Kaplan–Meier analysis revealed no differences in OS between the two groups, and eight genes were found to be related to prognosis, whereas two genes were not. GPTBE is linked to the expression of inflammatory genes.
Collapse
|
21
|
Terlecki P, Przywara S, Terlecki K, Janczak D, Antkiewicz M, Zubilewicz T. Effect of Reconstructive Procedures of the Extracranial Segment of the Carotid Arteries on Damage to the Blood-Brain Barrier. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106210. [PMID: 35627746 PMCID: PMC9140649 DOI: 10.3390/ijerph19106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Endarterectomy and angioplasty of the internal carotid artery are surgical measures for the prevention of ischemic stroke. Perioperative complications are caused by concomitant embolism and reperfusion syndrome leading to damage of the blood-brain barrier. METHODS The study included 88 patients divided into two groups, depending on the surgical technique used: internal carotid artery endarterectomy (CEA), 66 patients, and percutaneous carotid angioplasty and stenting (CAS), 22 patients. Blood was drawn 24 h before surgery, as well as 8, 24, and 48 h post-surgery. The assessment of damage to the blood-brain barrier was based on the evaluation of the concentration of claudin-1 and occludin, aquaporin-4, the measurements of the activity of metalloproteinase-2 (MMP-2) and -9 (MMP-9), and the assessment of central nervous system damage, measured by changes in the blood S100β protein concentration. RESULTS A significant increase in the concentration of the blood-brain barrier damage markers and increased MMP-2 and MMP-9 activity were found in patient blood. The degree of damage to the blood-brain barrier was higher in the CEA group. CONCLUSIONS The authors' own research has indicated that revascularization of the internal carotid artery may lead to damage to the central nervous system secondary to damage to the blood-brain barrier.
Collapse
Affiliation(s)
- Piotr Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
| | - Stanisław Przywara
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
| | - Karol Terlecki
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
- Correspondence:
| | - Dariusz Janczak
- Department of Vascular Surgery, General and Transplant Surgery, Medical University in Wroclaw, 50-355 Wroclaw, Poland; (D.J.); (M.A.)
| | - Maciej Antkiewicz
- Department of Vascular Surgery, General and Transplant Surgery, Medical University in Wroclaw, 50-355 Wroclaw, Poland; (D.J.); (M.A.)
| | - Tomasz Zubilewicz
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 20-078 Lublin, Poland; (P.T.); (S.P.); (T.Z.)
| |
Collapse
|
22
|
Olesen JL, Østergaard L, Shemesh N, Jespersen SN. Diffusion time dependence, power-law scaling, and exchange in gray matter. Neuroimage 2022; 251:118976. [PMID: 35168088 PMCID: PMC8961002 DOI: 10.1016/j.neuroimage.2022.118976] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
23
|
Glioma facilitates the epileptic and tumor-suppressive gene expressions in the surrounding region. Sci Rep 2022; 12:6805. [PMID: 35474103 PMCID: PMC9042955 DOI: 10.1038/s41598-022-10753-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Patients with glioma often demonstrate epilepsy. We previously found burst discharges in the peritumoral area in patients with malignant brain tumors during biopsy. Therefore, we hypothesized that the peritumoral area may possess an epileptic focus and that biological alterations in the peritumoral area may cause epileptic symptoms in patients with glioma. To test our hypothesis, we developed a rat model of glioma and characterized it at the cellular and molecular levels. We first labeled rat C6 glioma cells with tdTomato, a red fluorescent protein (C6-tdTomato), and implanted them into the somatosensory cortex of VGAT-Venus rats, which specifically expressed Venus, a yellow fluorescent protein in GABAergic neurons. We observed that the density of GABAergic neurons was significantly decreased in the peritumoral area of rats with glioma compared with the contralateral healthy side. By using a combination technique of laser capture microdissection and RNA sequencing (LCM-seq) of paraformaldehyde-fixed brain sections, we demonstrated that 19 genes were differentially expressed in the peritumoral area and that five of them were associated with epilepsy and neurodevelopmental disorders. In addition, the canonical pathways actively altered in the peritumoral area were predicted to cause a reduction in GABAergic neurons. These results suggest that biological alterations in the peritumoral area may be a cause of glioma-related epilepsy.
Collapse
|
24
|
Salman MM, Kitchen P, Halsey A, Wang MX, Törnroth-Horsefield S, Conner AC, Badaut J, Iliff JJ, Bill RM. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain 2022; 145:64-75. [PMID: 34499128 PMCID: PMC9088512 DOI: 10.1093/brain/awab311] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/28/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain barriers (BSCB/BBB), and controls cell volume, extracellular space volume, and astrocyte migration. Perivascular enrichment of AQP4 at the BSCB/BBB suggests a role in glymphatic function. Recently, we have demonstrated that AQP4 localization is also dynamically regulated at the subcellular level, affecting membrane water permeability. Ageing, cerebrovascular disease, traumatic CNS injury, and sleep disruption are established and emerging risk factors in developing neurodegeneration, and in animal models of each, impairment of glymphatic function is associated with changes in perivascular AQP4 localization. CNS oedema is caused by passive water influx through AQP4 in response to osmotic imbalances. We have demonstrated that reducing dynamic relocalization of AQP4 to the BSCB/BBB reduces CNS oedema and accelerates functional recovery in rodent models. Given the difficulties in developing pore-blocking AQP4 inhibitors, targeting AQP4 subcellular localization opens up new treatment avenues for CNS oedema, neurovascular and neurodegenerative diseases, and provides a framework to address fundamental questions about water homeostasis in health and disease.
Collapse
Affiliation(s)
- Mootaz M Salman
- Department of Physiology, Anatomy and Genetics,
University of Oxford, Oxford OX1 3PT, UK
| | - Philip Kitchen
- School of Biosciences, College of Health and Life
Sciences, Aston University, Aston Triangle,
Birmingham B4 7ET, UK
| | - Andrea Halsey
- Institute of Clinical Sciences, College of Medical
and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Marie Xun Wang
- Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine, Seattle, WA, USA
| | | | - Alex C Conner
- Institute of Clinical Sciences, College of Medical
and Dental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
| | - Jerome Badaut
- CNRS-UMR 5536-Centre de Résonance
Magnétique des systèmes Biologiques, Université de
Bordeaux, 33076 Bordeaux, France
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences,
University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington
School of Medicine, Seattle, WA, USA
- VISN 20 Mental Illness Research, Education and
Clinical Center, VA Puget Sound Health Care System, Seattle, WA,
USA
| | - Roslyn M Bill
- School of Biosciences, College of Health and Life
Sciences, Aston University, Aston Triangle,
Birmingham B4 7ET, UK
| |
Collapse
|
25
|
Wei T, Zhou M, Gu L, Yang H, Zhou Y, Li M. A Novel Gating Mechanism of Aquaporin-4 Water Channel Mediated by Blast Shockwaves for Brain Edema. J Phys Chem Lett 2022; 13:2486-2492. [PMID: 35271290 DOI: 10.1021/acs.jpclett.2c00321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the principal water channel in the brain, aquaporin-4 (AQP4) plays a vital role in brain edema, but its role in blast brain edema is unclear. On the basis of molecular simulations, we reveal the atomically detailed picture of AQP4 in response to blast shockwaves. The results show that the shockwave alone closes the AQP4 channel; however, shock-induced bubble collapse opens it. The jet from bubble collapse forcefully increases the distance between helices and the tilt angles of six helices relative to the membrane vertical direction in a very short time. The average channel size increases about 2.6 times, and the water flux rate is nearly 20 times higher than for normal states. It is responsible for abnormal water transport and a potential cause of acute blast brain edema. Additionally, the open AQP4 channel quickly returns to its normal state, which is in turn helpful for edema absorption. Thus, a novel gating mechanism for AQP4 related to the secondary structure change has been provided, which is different from the previous residue-mediated gating mechanism.
Collapse
Affiliation(s)
- Tong Wei
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Mi Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Lingzhi Gu
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Hong Yang
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| | - Ming Li
- Institute of Chemical Materials, China Academy of Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
26
|
Clarke-Bland CE, Bill RM, Devitt A. Emerging roles for AQP in mammalian extracellular vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183826. [PMID: 34843700 PMCID: PMC8755917 DOI: 10.1016/j.bbamem.2021.183826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Recent research in the aquaporin (AQP) field has identified a role for diverse AQPs in extracellular vesicles (EV). Though still in its infancy, there is a growing body of knowledge in the area; AQPs in EV have been suggested as biomarkers for disease, as drug targets and show potential as therapeutics. To advance further in this field, AQPs in EV must be better understood. Here we summarize current knowledge of the presence and function of AQPs in EV and hypothesise their roles in health and disease.
Collapse
Affiliation(s)
| | - Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrew Devitt
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
27
|
Dadgostar E, Rahimi S, Nikmanzar S, Nazemi S, Naderi Taheri M, Alibolandi Z, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 in Traumatic Brain Injury: From Molecular Pathways to Therapeutic Target. Neurochem Res 2022; 47:860-871. [PMID: 35088218 DOI: 10.1007/s11064-021-03512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is known as an acute degenerative pathology of the central nervous system, and has been shown to increase brain aquaporin 4 (AQP4) expression. Various molecular mechanisms affect AQP4 expression, including neuronal high mobility group box 1, forkhead box O3a, vascular endothelial growth factor, hypoxia-inducible factor-1 α (HIF-1 α) sirtuin 2, NF-κB, Malat1, nerve growth factor and Angiotensin II receptor type 1. In addition, inhibition of AQP4 with FK-506, MK-801 (indirectly by targeting N-methyl-D-aspartate receptor), inactivation of adenosine A2A receptor, levetiracetam, adjudin, progesterone, estrogen, V1aR inhibitor, hypertonic saline, erythropoietin, poloxamer 188, brilliant blue G, HIF-1alpha inhibitor, normobaric oxygen therapy, astaxanthin, epigallocatechin-3-gallate, sesamin, thaliporphine, magnesium, prebiotic fiber, resveratrol and omega-3, as well as AQP4 gene silencing lead to reduced edema upon TBI. This review summarizes current knowledge and evidence on the relationship between AQP4 and TBI, and the potential mechanisms involved.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rahimi
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - Sina Nazemi
- Tracheal Disease Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Naderi Taheri
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alibolandi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Prangenberg J, Doberentz E, Madea B. Mini Review: Forensic Value of Aquaporines. Front Med (Lausanne) 2022; 8:793140. [PMID: 34977094 PMCID: PMC8718671 DOI: 10.3389/fmed.2021.793140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
Forensic pathologists are routinely confronted with unclear causes of death or findings. In some scenarios, it can be difficult to answer the specific questions posed by criminal investigators or prosecutors. Such scenarios may include questions about wound vitality or causes of death when typical or landmark findings are difficult to find. In addition to the usual subsequent examinations to clarify unclear causes of death or special questions, immunohistochemical analysis has become increasingly important since its establishment in the early 40s of the 20th century. Since then, numerous studies have been conducted to determine the usefulness and significance of immunohistochemical investigations on various structures and proteins. These proteins include, for example, aquaporins, which belong to the family of water channels. They enable the transport of water and of small molecules, such as glycerol, through biological channels and so far, 13 classes of aquaporins could have been identified in vertebrates. The classic aquaporin channels 1, 2, 4 and 5 are only permeable to water. The aquaporin channels 3, 7, 9, and 10 are also called aquaglycerolporins since they can also transport glycerol. This mini review discusses the immunohistochemical research on aquaporins, their range of applications, and respective forensic importance, their current limitations, and possible further implementations in the future.
Collapse
Affiliation(s)
| | - Elke Doberentz
- Institute of Legal Medicine, University Hospital Bonn, Bonn, Germany
| | - Burkhard Madea
- Institute of Legal Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
29
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
30
|
Dose-Dependent Neuroprotective Effects of Bovine Lactoferrin Following Neonatal Hypoxia-Ischemia in the Immature Rat Brain. Nutrients 2021; 13:nu13113880. [PMID: 34836132 PMCID: PMC8618330 DOI: 10.3390/nu13113880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
Injuries to the developing brain due to hypoxia–ischemia (HI) are common causes of neurological disabilities in preterm babies. HI, with oxygen deprivation to the brain or reduced cerebral blood perfusion due to birth asphyxia, often leads to severe brain damage and sequelae. Injury mechanisms include glutamate excitotoxicity, oxidative stress, blood–brain barrier dysfunction, and exacerbated inflammation. Nutritional intervention is emerging as a therapeutic alternative to prevent and rescue brain from HI injury. Lactoferrin (Lf) is an iron-binding protein present in saliva, tears, and breast milk, which has been shown to have antioxidant, anti-inflammatory and anti-apoptotic properties when administered to mothers as a dietary supplement during pregnancy and/or lactation in preclinical studies of developmental brain injuries. However, despite Lf’s promising neuroprotective effects, there is no established dose. Here, we tested three different doses of dietary maternal Lf supplementation using the postnatal day 3 HI model and evaluated the acute neurochemical damage profile using 1H Magnetic Resonance Spectroscopy (MRS) and long-term microstructure alterations using advanced diffusion imaging (DTI/NODDI) allied to protein expression and histological analysis. Pregnant Wistar rats were fed either control diet or bovine Lf supplemented chow at 0.1, 1, or 10 g/kg/body weight concentration from the last day of pregnancy (embryonic day 21–E21) to weaning. At postnatal day 3 (P3), pups from both sexes had their right common carotid artery permanently occluded and were exposed to 6% oxygen for 30 min. Sham rats had the incision but neither surgery nor hypoxia episode. At P4, MRS was performed on a 9.4 T scanner to obtain the neurochemical profile in the cortex. At P4 and P25, histological analysis and protein expression were assessed in the cortex and hippocampus. Brain volumes and ex vivo microstructural analysis using DTI/NODDI parameters were performed at P25. Acute metabolic disturbance induced in cortical tissue by HIP3 was reversed with all three doses of Lf. However, data obtained from MRS show that Lf neuroprotective effects were modulated by the dose. Through western blotting analysis, we observed that HI pups supplemented with Lf at 0.1 and 1 g/kg were able to counteract glutamatergic excitotoxicity and prevent metabolic failure. When 10 g/kg was administered, we observed reduced brain volumes, increased astrogliosis, and hypomyelination, pointing to detrimental effects of high Lf dose. In conclusion, Lf supplementation attenuates, in a dose-dependent manner, the acute and long-term cerebral injury caused by HI. Lf reached its optimal effects at a dose of 1 g/kg, which pinpoints the need to better understand effects of Lf, the pathways involved and possible harmful effects. These new data reinforce our knowledge regarding neuroprotection in developmental brain injury using Lf through lactation and provide new insights into lactoferrin’s neuroprotection capacities and limitation for immature brains.
Collapse
|
31
|
Arizono M, Nägerl UV. Deciphering the functional nano-anatomy of the tripartite synapse using stimulated emission depletion microscopy. Glia 2021; 70:607-618. [PMID: 34664734 DOI: 10.1002/glia.24103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022]
Abstract
A major challenge for studying neuron-astrocyte communication lies in visualizing the tripartite synapse, which is the physical site where astrocytic processes contact and interact with neuronal synapses. While conventional light microscopy cannot resolve the anatomical details of the tripartite synapse, electron microscopy only provides ultrastructural snapshots that tell us little about its living state and dynamics. Stimulated emission depletion (STED) microscopy is a super-resolution fluorescence imaging technique that can provide live images of tripartite synapses with nanoscale spatial resolution. It is compatible with physiology experiments and imaging in the intact brain in vivo, opening up new opportunities to link the nanoscale structure of the tripartite system with functional readouts of neurons and astrocytes or even behavior. In this review, we first summarize the findings and insights from previous studies addressing the structure-function relationship of the tripartite synapse using conventional imaging techniques. We then explain the basic principle of STED microscopy and the main challenges facing its application to live-tissue imaging of fine astrocytic processes. We summarize insights from our recent STED studies, which revealed new aspects of the structure and physiology of the tripartite synapse and the surrounding extracellular space. Finally, we discuss how the STED approach and other advanced optical techniques can illuminate the role of astrocytes for brain physiology and animal behavior.
Collapse
Affiliation(s)
- Misa Arizono
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR, Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR, Bordeaux, France
| |
Collapse
|
32
|
Urushihata T, Takuwa H, Takahashi M, Kershaw J, Tachibana Y, Nitta N, Shibata S, Yasui M, Higuchi M, Obata T. Exploring cell membrane water exchange in aquaporin-4-deficient ischemic mouse brain using diffusion-weighted MRI. Eur Radiol Exp 2021; 5:44. [PMID: 34617156 PMCID: PMC8494869 DOI: 10.1186/s41747-021-00244-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aquaporin-4 is a membrane channel protein that is highly expressed in brain astrocytes and facilitates the transport of water molecules. It has been suggested that suppression of aquaporin-4 function may be an effective treatment for reducing cellular edema after cerebral infarction. It is therefore important to develop clinically applicable measurement systems to evaluate and better understand the effects of aquaporin-4 suppression on the living body. METHODS Animal models of focal cerebral ischemia were created by surgically occluding the middle cerebral artery of wild-type and aquaporin-4 knockout mice, after which multi-b-value multi-diffusion-time diffusion-weighted imaging measurements were performed. Data were analyzed with both the apparent diffusion coefficient (ADC) model and a compartmental water-exchange model. RESULTS ADCs were estimated for five different b value ranges. The ADC of aquaporin-4 knockout mice in the contralateral region was significantly higher than that of wild-type mice for each range. In contrast, aquaporin-4 knockout mice had significantly lower ADC than wild-type mice in ischemic tissue for each b-value range. Genotype-dependent differences in the ADC were particularly significant for the lowest ranges in normal tissue and for the highest ranges in ischemic tissue. The ADCs measured at different diffusion times were significantly different for both genotypes. Fitting of the water-exchange model to the ischemic region data found that the water-exchange time in aquaporin-4 knockout mice was approximately 2.5 times longer than that in wild-type mice. CONCLUSIONS Multi-b-value multi-diffusion-time diffusion-weighted imaging may be useful for in vivo research and clinical diagnosis of aquaporin-4-related diseases.
Collapse
Affiliation(s)
- Takuya Urushihata
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Jeff Kershaw
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Yasuhiko Tachibana
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Nobuhiro Nitta
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Sayaka Shibata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Masato Yasui
- Keio Advanced Research Center for Water Biology and Medicine, Keio University, Tokyo, 160-0016, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan
| | - Takayuki Obata
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, QST, Chiba, 263-8555, Japan.
| |
Collapse
|
33
|
Trillo-Contreras JL, Toledo-Aral JJ, Villadiego J, Echevarría M. Aquaporin-4 Mediates Permanent Brain Alterations in a Mouse Model of Hypoxia-Aged Hydrocephalus. Int J Mol Sci 2021; 22:ijms22189745. [PMID: 34575909 PMCID: PMC8471142 DOI: 10.3390/ijms22189745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Aquaporin-4 (AQP4) is the principal water channel in the brain being expressed in astrocytes and ependymal cells. AQP4 plays an important role in cerebrospinal fluid (CSF) homeostasis, and alterations in its expression have been associated with hydrocephalus. AQP4 contributes to the development of hydrocephalus by hypoxia in aged mice, reproducing such principal characteristics of the disease. Here, we explore whether these alterations associated with the hydrocephalic state are permanent or can be reverted by reexposure to normoxia. Alterations such as ventriculomegaly, elevated intracranial pressure, and cognitive deficits were reversed, whereas deficits in CSF outflow and ventricular distensibility were not recovered, remaining impaired even one month after reestablishment of normoxia. Interestingly, in AQP4−/− mice, the impairment in CSF drainage and ventricular distensibility was completely reverted by re-normoxia, indicating that AQP4 has a structural role in the chronification of those alterations. Finally, we show that aged mice subjected to two hypoxic episodes experience permanent ventriculomegaly. These data reveal that repetitive hypoxic events in aged cerebral tissue promote the permanent alterations involved in hydrocephalic pathophysiology, which are dependent on AQP4 expression.
Collapse
Affiliation(s)
- José Luis Trillo-Contreras
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
| | - Juan José Toledo-Aral
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Javier Villadiego
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Correspondence: (J.V.); (M.E.); Tel.: +34-955-920-034 (J.V.); +34-955-920-036 (M.E.)
| | - Miriam Echevarría
- Institute of Biomedicine of Seville-IBiS, University Hospital Virgen del Rocío, CSIC, University of Seville, 41013 Seville, Spain; (J.L.T.-C.); (J.J.T.-A.)
- Department of Medical Physiology and Biophysics, University of Seville, 41009 Seville, Spain
- Correspondence: (J.V.); (M.E.); Tel.: +34-955-920-034 (J.V.); +34-955-920-036 (M.E.)
| |
Collapse
|
34
|
Ding D, Wang X, Li Q, Li L, Wu J. Research on the Glial-Lymphatic System and Its Relationship With Alzheimer's Disease. Front Neurosci 2021; 15:605586. [PMID: 34220413 PMCID: PMC8242204 DOI: 10.3389/fnins.2021.605586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic waste clearance is essential to maintain body homeostasis, in which the lymphatic system plays a vital role. Conversely, in recent years, studies have identified the glial-lymphatic system in the brain, which primarily comprises the inflow of fluid along the para-arterial space. Aquaporin-4 mediates the convection of interstitial fluid in the brain and outflow along the paravenous space. β-Amyloid deposition is a characteristic pathological change in Alzheimer's disease, and some studies have found that the glial-lymphatic system plays an important role in its clearance. Thus, the glial-lymphatic system may influence Alzheimer's disease severity and outcome; therefore, this review summarizes the current and available research on the glial-lymphatic system and Alzheimer's disease.
Collapse
Affiliation(s)
- Danhua Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Wang
- Department of Rheumatology, Peking University Third Hospital, Beijing, China
| | - Qianqian Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Lu DC, Zador Z, Yao J, Fazlollahi F, Manley GT. Aquaporin-4 Reduces Post-Traumatic Seizure Susceptibility by Promoting Astrocytic Glial Scar Formation in Mice. J Neurotrauma 2021; 38:1193-1201. [PMID: 21939392 DOI: 10.1089/neu.2011.2114] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seizures are important neurological complications after traumatic brain injury (TBI) and are reported for up to 50% of patients with TBI. Despite several studies, no drug strategy has been able to alter the biological events leading to epileptogenesis. The glial water channel, aquaporin-4 (AQP4), was shown to facilitate cytotoxic cell swelling in ischemia and glial scar formation after stab wound injury. In this study, we examined post-traumatic seizure susceptibility of AQP4-deficient mice (AQP4-/-) after injection of pentylenetetrazole (PTZ) 1 month after controlled cortical impact (CCI) and compared them to wild-type sham injury controls. After PTZ injection, AQP4-/- mice demonstrated dramatically shortened seizure latency (120 ± 40 vs. 300 ± 70 sec; p < 0.001) and increased seizure severity (grade 7.5 ± 0.4 vs. 5.8 ± 0.4; p < 0.001) compared to their wild-type counterparts. Morphometric analysis demonstrated a significant 2-fold reduction in astrocytosis, with a concomitant increase in microgliosis in injured AQP4-null mice compared to their injured wild-type counterparts (44 ± 2 vs. 24 ± 3 cells per high power field [cells/hpf], respectively; p < 0.0001). Minocycline, an inhibitor of microglia, reversed the post-TBI epilepsy phenotype of AQP4-null mice. After minocycline treatment, AQP4-/- mice demonstrated similar latency of seizures evoked by PTZ (723 ± 35 vs. 696 ± 38 sec; p > 0.05) and severity of seizures evoked by PTZ (grade 4.0 ± 0.5 vs. 3.81 ± 0.30; p > 0.05) compared to wild-type counterparts. Immunohistochemical analysis demonstrated decreased immunostaining of microglia to levels comparable to wild-type (12 ± 2 vs. 11 ± 4 cells/hpf, respectively; p > 0.05). Taken together, these results suggest a protective role of AQP4 in post-traumatic seizure susceptibility by promoting astrogliosis, formation of a glial scar, and preventing microgliosis.
Collapse
Affiliation(s)
- Daniel C Lu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Zsolt Zador
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jinghua Yao
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Farbod Fazlollahi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
36
|
Olesen JL, Østergaard L, Shemesh N, Jespersen SN. Beyond the diffusion standard model in fixed rat spinal cord with combined linear and planar encoding. Neuroimage 2021; 231:117849. [PMID: 33582270 DOI: 10.1016/j.neuroimage.2021.117849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022] Open
Abstract
Information about tissue on the microscopic and mesoscopic scales can be accessed by modelling diffusion MRI signals, with the aim of extracting microstructure-specific biomarkers. The standard model (SM) of diffusion, currently the most broadly adopted microstructural model, describes diffusion in white matter (WM) tissues by two Gaussian components, one of which has zero radial diffusivity, to represent diffusion in intra- and extra-axonal water, respectively. Here, we reappraise these SM assumptions by collecting comprehensive double diffusion encoded (DDE) MRI data with both linear and planar encodings, which was recently shown to substantially enhance the ability to estimate SM parameters. We find however, that the SM is unable to account for data recorded in fixed rat spinal cord at an ultrahigh field of 16.4 T, suggesting that its underlying assumptions are violated in our experimental data. We offer three model extensions to mitigate this problem: first, we generalize the SM to accommodate finite radii (axons) by releasing the constraint of zero radial diffusivity in the intra-axonal compartment. Second, we include intracompartmental kurtosis to account for non-Gaussian behaviour. Third, we introduce an additional (third) compartment. The ability of these models to account for our experimental data are compared based on parameter feasibility and Bayesian information criterion. Our analysis identifies the three-compartment description as the optimal model. The third compartment exhibits slow diffusion with a minor but non-negligible signal fraction (∼12%). We demonstrate how failure to take the presence of such a compartment into account severely misguides inferences about WM microstructure. Our findings bear significance for microstructural modelling at large and can impact the interpretation of biomarkers extracted from the standard model of diffusion.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
37
|
Bloodletting Puncture at Hand Twelve Jing-Well Points Relieves Brain Edema after Severe Traumatic Brain Injury in Rats via Inhibiting MAPK Signaling Pathway. Chin J Integr Med 2021; 27:291-299. [PMID: 33515398 DOI: 10.1007/s11655-021-3326-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate whether blood-brain barrier (BBB) served a key role in the edema-relief effect of bloodletting puncture at hand twelve Jing-well points (HTWP) in traumatic brain injury (TBI) and the potential molecular signaling pathways. METHODS Adult male Sprague-Dawley rats were assigned to the sham-operated (sham), TBI, and bloodletting puncture (bloodletting) groups (n=24 per group) using a randomized number table. The TBI model rats were induced by cortical contusion and then bloodletting puncture were performed at HTWP twice a day for 2 days. The neurological function and cerebral edema were evaluated by modified neurological severity score (mNSS), cerebral water content, magnetic resonance imaging and hematoxylin and eosin staining. Cerebral blood flow was measured by laser speckles. The protein levels of aquaporin 4 (AQP4), matrix metalloproteinases 9 (MMP9) and mitogen-activated protein kinase pathway (MAPK) signaling were detected by immunofluorescence staining and Western blot. RESULTS Compared with TBI group, bloodletting puncture improved neurological function at 24 and 48 h, alleviated cerebral edema at 48 h, and reduced the permeability of BBB induced by TBI (all P<0.05). The AQP4 and MMP9 which would disrupt the integrity of BBB were downregulated by bloodletting puncture (P<0.05 or P<0.01). In addition, the extracellular signal-regulated kinase (ERK) and p38 signaling pathways were inhibited by bloodletting puncture (P<0.05). CONCLUSIONS Bloodletting puncture at HTWP might play a significant role in protecting BBB through regulating the expressions of MMP9 and AQP4 as well as corresponding regulatory upstream ERK and p38 signaling pathways. Therefore, bloodletting puncture at HTWP may be a promising therapeutic strategy for TBI-induced cerebral edema.
Collapse
|
38
|
Aquaporin-1 and aquaporin-9 gene variations in sudden infant death syndrome. Int J Legal Med 2021; 135:719-725. [PMID: 33462668 PMCID: PMC8036210 DOI: 10.1007/s00414-020-02493-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022]
Abstract
Several studies have indicated that a vulnerability in the development and regulation of brain function is involved in sudden infant death syndrome (SIDS). The aim of this study was to investigate the genes encoding the brain aquaporins (AQPs) AQP1 and AQP9 in SIDS. The hypothesis was that specific variants of these genes are part of the genetic vulnerability predisposing infants to sudden unexpected death. The study included 168 SIDS cases with a median age of 15.5 (range 2–52) weeks and 372 adolescent/adult deceased controls with a median age of 44 (range 11–91) years. In the AQP1 gene, the rs17159702 CC/CT genotypes were found to be associated with SIDS (p = 0.02). In the AQP9 gene, the combination of a TT genotype of rs8042354, rs2292711 and rs13329178 was more frequent in SIDS cases than in controls (p = 0.03). In the SIDS group, an association was found between genetic variations in the AQP1 gene and maternal smoking and between the 3xTT combination in the AQP9 gene and being found lifeless in a prone position. In conclusion, this study adds further evidence to the involvement of brain aquaporins in SIDS, suggesting that specific variants of AQP genes constitute a genetic predisposition, making the infant vulnerable to sudden death together with external risk factors and probably other genetic factors.
Collapse
|
39
|
Kwiecien JM, Dąbrowski W, Yaron JR, Zhang L, Delaney KH, Lucas AR. The Role of Astrogliosis in Formation of the Syrinx in Spinal Cord Injury. Curr Neuropharmacol 2021; 19:294-303. [PMID: 32691715 PMCID: PMC8033977 DOI: 10.2174/1570159x18666200720225222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
A massive localized trauma to the spinal cord results in complex pathologic events driven by necrosis and vascular damage which in turn leads to hemorrhage and edema. Severe, destructive and very protracted inflammatory response is characterized by infiltration by phagocytic macrophages of a site of injury which is converted into a cavity of injury (COI) surrounded by astroglial reaction mounted by the spinal cord. The tissue response to the spinal cord injury (SCI) has been poorly understood but the final outcome appears to be a mature syrinx filled with the cerebrospinal fluid with related neural tissue loss and permanent neurologic deficits. This paper reviews known pathologic mechanisms involved in the formation of the COI after SCI and discusses the integrative role of reactive astrogliosis in mechanisms involved in the removal of edema after the injury. A large proportion of edema fluid originating from the trauma and then from vasogenic edema related to persistent severe inflammation, may be moved into the COI in an active process involving astrogliosis and specifically over-expressed aquaporins.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Wojciech Dąbrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, ul. Jaczewskiego 8, Lublin 20-090 Poland
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Kathleen H. Delaney
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
40
|
Ohene Y, Harrison IF, Evans PG, Thomas DL, Lythgoe MF, Wells JA. Increased blood-brain barrier permeability to water in the aging brain detected using noninvasive multi-TE ASL MRI. Magn Reson Med 2020; 85:326-333. [PMID: 32910547 PMCID: PMC8432141 DOI: 10.1002/mrm.28496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022]
Abstract
Purpose A fundamental goal in the drive to understand and find better treatments for dementia is the identification of the factors that render the aging brain vulnerable to neurodegenerative disease. Recent evidence indicates the integrity of the blood–brain barrier (BBB) to be an important component of functional failure underlying age‐related cognitive decline. Practical and sensitive measurement is necessary, therefore, to support diagnostic and therapeutic strategies targeted at maintaining BBB integrity in aging patients. Here, we investigated changes in BBB permeability to endogenous blood water in the aging brain. Methods A multiple‐echo‐time arterial spin‐labeling MRI technique, implemented on a 9.4T Bruker imaging system, was applied to 7‐ and 27‐month‐old mice to measure changes in water permeability across the BBB with aging. Results We observed that BBB water permeability was 32% faster in aged mice. This occurred along with a 2.1‐fold increase in mRNA expression of aquaporin‐4 water channels and a 7.1‐fold decrease in mRNA expression of α‐syntrophin protein, which anchors aquaporin‐4 to the BBB. Conclusion Age‐related changes to water permeability across the BBB can be captured using noninvasive noncontrast MRI techniques. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Yolanda Ohene
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Phoebe G Evans
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Jack A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
41
|
Fujiwara A, Nakahira J, Nakano S, Sawai T, Minami T. Efficacy of Goreisan in Preventing Transurethral Resection Syndrome in Transurethral Resection of the Prostate: A Randomized-Controlled Study. J Altern Complement Med 2020; 26:738-742. [PMID: 32609534 DOI: 10.1089/acm.2019.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objectives: Nonconductive irrigation fluids used during transurethral resection (TUR) of the prostate can cause fluid overload and dilutional hyponatremia. TUR syndrome is generally defined as serum sodium at or below 125 mmol/L with cardiovascular and neurologic symptoms. The aim of this study was to evaluate the effects of Goreisan, a traditional Japanese Kampo medicine, on serum sodium levels and the occurrence of TUR syndrome in patients undergoing TUR of the prostate. Design: This was a randomized-controlled trial. Settings/Location: This trial was conducted at the Osaka Medical College Hospital and Keneikai Sanko Hospital. Subjects: Fifty patients scheduled for TUR of the prostate were included. Interventions: Patients in the Goreisan group (n = 23) received 2.5 g Goreisan orally on the night before surgery and on the morning of surgery. The control group (n = 27) did not receive Goreisan. Surgical procedures, perioperative management, and patient monitoring were otherwise the same in both groups. Outcome Measures: The primary outcome was occurrence of TUR syndrome. The secondary outcome was serum sodium level. Results: Serum sodium remained above 125 mmol/L in all patients, so none of the patients met the criteria for TUR syndrome. However, the Goreisan group had significantly higher intraoperative sodium levels (p < 0.001) and significantly higher intraoperative (p = 0.008) and postoperative (p = 0.02) hemoglobin levels than the control group. Conclusions: These findings indicate that preoperative Goreisan administration can help maintain serum sodium levels in patients undergoing TUR of the prostate.
Collapse
Affiliation(s)
- Atsushi Fujiwara
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| | - Junko Nakahira
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| | - Shoko Nakano
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| | - Toshiyuki Sawai
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| | - Toshiaki Minami
- Department of Anesthesiology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
42
|
Toft-Bertelsen TL, Larsen BR, Christensen SK, Khandelia H, Waagepetersen HS, MacAulay N. Clearance of activity-evoked K + transients and associated glia cell swelling occur independently of AQP4: A study with an isoform-selective AQP4 inhibitor. Glia 2020; 69:28-41. [PMID: 32506554 DOI: 10.1002/glia.23851] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
The mammalian brain consists of 80% water, which is continuously shifted between different compartments and cellular structures by mechanisms that are, to a large extent, unresolved. Aquaporin 4 (AQP4) is abundantly expressed in glia and ependymal cells of the mammalian brain and has been proposed to act as a gatekeeper for brain water dynamics, predominantly based on studies utilizing AQP4-deficient mice. However, these mice have a range of secondary effects due to the gene deletion. An efficient and selective AQP4 inhibitor has thus been sorely needed to validate the results obtained in the AQP4-/- mice to quantify the contribution of AQP4 to brain fluid dynamics. In AQP4-expressing Xenopus laevis oocytes monitored by a high-resolution volume recording system, we here demonstrate that the compound TGN-020 is such a selective AQP4 inhibitor. TGN-020 targets the tested species of AQP4 with an IC50 of ~3.5 μM, but displays no inhibitory effect on the other AQPs (AQP1-AQP9). With this tool, we employed rat hippocampal slices and ion-sensitive microelectrodes to determine the role of AQP4 in glia cell swelling following neuronal activity. TGN-020-mediated inhibition of AQP4 did not prevent stimulus-induced extracellular space shrinkage, nor did it slow clearance of the activity-evoked K+ transient. These data, obtained with a verified isoform-selective AQP4 inhibitor, indicate that AQP4 is not required for the astrocytic contribution to the K+ clearance or the associated extracellular space shrinkage.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Roland Larsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Kjellerup Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Szu JI, Patel DD, Chaturvedi S, Lovelace JW, Binder DK. Modulation of posttraumatic epileptogenesis in aquaporin-4 knockout mice. Epilepsia 2020; 61:1503-1514. [PMID: 32484924 DOI: 10.1111/epi.16551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the role of aquaporin-4 (AQP4) in posttraumatic epileptogenesis using long-term video-electroencephalographic (vEEG) recordings. Here, differences in EEG were analyzed between wild-type (WT) and AQP4 knockout (KO) mice and between mice with and without posttraumatic epilepsy (PTE). METHODS WT and AQP4 KO mice were subjected to a single controlled cortical impact traumatic brain injury (TBI) in the frontal cortex, and vEEG was recorded in the ipsilateral hippocampus at 14, 30, 60, and 90 days postinjury (dpi). Intrahippocampal electrical stimulation was also used to assess electrographic seizure threshold and electrographic seizure duration (ESD). RESULTS The mean seizure frequency per day for WT mice was 0.07 ± 0.07, 0.11 ± 0.07, 0.26 ± 0.13, and 0.12 ± 0.10 at 14, 30, 60, and 90 dpi, respectively. The mean seizure frequency per day for AQP4 KO mice was 0.45 ± 0.27, 0.29 ± 0.12, and 0.26 ± 0.19 at 14, 30, and 60 dpi, respectively. The mean seizure duration was 15 ± 2 seconds and 24 ± 3 seconds for WT and AQP4 KO mice, respectively. The percentage of mice that developed PTE were 28% and 37% for WT and AQP4 KO mice, respectively. Power spectral density (PSD) analysis revealed alterations in EEG frequency bands between sham and TBI in both genotypes. Additionally, PSD analysis of spontaneous recurrent seizures revealed alterations in delta power between genotypes. Morlet wavelet analysis detected heterogeneity in EEG seizure subtypes and dynamic EEG power patterns after TBI. Compared with AQP4 KO mice, a significant increase in ESD was observed in WT mice at 14 dpi. SIGNIFICANCE Posttraumatic seizures (PTSs) may be modulated by the astrocyte water channel AQP4. Absence of AQP4 increases the number of spontaneous seizures, increases seizure duration, and alters EEG power patterns of PTSs.
Collapse
Affiliation(s)
- Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Dillon D Patel
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Som Chaturvedi
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Jonathan W Lovelace
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
44
|
Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S, Al-Jubair T, Winkel Missel J, Gourdon P, Törnroth-Horsefield S, Conner MT, Ahmed Z, Conner AC, Bill RM. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell 2020; 181:784-799.e19. [PMID: 32413299 PMCID: PMC7242911 DOI: 10.1016/j.cell.2020.03.037] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/09/2020] [Accepted: 03/17/2020] [Indexed: 01/07/2023]
Abstract
Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.
Collapse
Affiliation(s)
- Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pharmacology, College of Pharmacy, University of Mosul, Mosul 41002, Iraq
| | - Andrea M Halsey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charlotte Clarke-Bland
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Justin A MacDonald
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hans J Vogel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Julie Winkel Missel
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Science, Lund University, PO Box 118, 221 00 Lund, Sweden
| | | | - Matthew T Conner
- School of Sciences, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
45
|
Harada Y, Yoshida K, Nojiri S, Kurihara Y, Kobayashi H, Arai H. Identification of chronic subdural hematoma types most responsive to Goreisan, Kampo medicine: A retrospective study. J Clin Neurosci 2020; 78:198-202. [PMID: 32336630 DOI: 10.1016/j.jocn.2020.04.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/25/2020] [Accepted: 04/11/2020] [Indexed: 01/22/2023]
Abstract
Chronic subdural hematoma (CSDH) has a reported postoperative recurrence rate of 3-20% and the optimal therapeutic strategy remains controversial. Recently, in Japan, Goreisan (Kampo medicine) was used for preventing postoperative CSDH recurrence. Therefore, this study aimed to explore if Goreisan is effective against specific CSDH types by evaluating its effects on postoperative CSDH recurrence and reoperation rates based on its natural history and internal structure on CT images. This retrospective, single-center, cohort study was conducted at the Tokyo Metropolitan Hiroo Hospital. After applying the inclusion/exclusion criteria, data from 107 patients (70 men and 37 women; mean age, 77.1 ± 10.9 years), admitted for CSDH from January 2013 to December 2018, were included in the Goreisan group, whereas those of 122 patients (84 men and 38 women; mean age, 73.9 ± 13.3 years), admitted for CSDH from January 2007 to December 2012, were included in the control group. This corresponded to 114 lesions, with 14 reoperation lesions, in the Goreisan group and 108 lesions, with 16 reoperation lesions, in the control group. Lesions were categorized as homogeneous, laminar, separated, or trabecular type, and patients with homogeneous type lesions in the Goreisan group were approximately 50% less likely to undergo reoperation compared with those in the control group (7.3% versus 14%; odds ratio = 0.51; 95% confidence interval = 0.12-2.11). Thus, the homogeneous type CSDH was the most responsive to Goreisan, whereas the separated type was the least responsive. Therefore, selecting treatment strategies for preventing CSDH recurrence on CSDH type may contribute toward reducing reoperation rates.
Collapse
Affiliation(s)
- Yoshinao Harada
- Department of Neurosurgery, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Neurosurgery, Tokyo Metropolitan Hiroo Hospital, 2-34-10 Ebisu, Shibuya-ku, Tokyo 150-0013, Japan.
| | - Kensaku Yoshida
- Department of Neurosurgery, Tokyo Metropolitan Hiroo Hospital, 2-34-10 Ebisu, Shibuya-ku, Tokyo 150-0013, Japan.
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yumiko Kurihara
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Hiroyuki Kobayashi
- Department of Personalized Kampo Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
46
|
Uddin MS, Mamun AA, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, Mathew B, Abdel-Daim MM, Aleya L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135624. [PMID: 31784171 DOI: 10.1016/j.scitotenv.2019.135624] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Neurological disorders represent a great challenge and are the leading cause of death and disability globally. Although numerous complicated mechanisms are involved in the progressions of chronic and acute neurodegenerative disorders, most of the diseases share mutual pathogenic features such as oxidative stress, mitochondrial dysfunction, neuroinflammation, protein misfolding, excitotoxicity, and neuronal damage, all of these are the common targets of nuclear factor erythroid 2 related factor 2 (Nrf2) signaling cascade. No cure has yet been discovered to tackle these disorders, so, intervention approaches targeting phytochemicals have been recommended as an alternative form of treatment. Sulforaphane is a sulfur-rich dietary phytochemical which has several activities such as antioxidant, anti-inflammatory, and anti-tumor via multiple targets and various mechanisms. Given its numerous actions, sulforaphane has drawn considerable attention for neurological disorders in recent years. Nrf2 is one of the most crucial targets of sulforaphane which has potential in regulating the series of cytoprotective enzyme expressions that have neuroprotective, antioxidative, and detoxification actions. Neurological disorders are auspicious candidates for Nrf2-targeted treatment strategy. Sulforaphane protects various neurological disorders by regulating the Nrf2 pathway. In this article, we recapitulate current studies of sulforaphane-mediated Nrf2 activation in the treatment of various neurological disorders.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France.
| |
Collapse
|
47
|
Rauen K, Pop V, Trabold R, Badaut J, Plesnila N. Vasopressin V 1a Receptors Regulate Cerebral Aquaporin 1 after Traumatic Brain Injury. J Neurotrauma 2020; 37:665-674. [PMID: 31547764 PMCID: PMC7045352 DOI: 10.1089/neu.2019.6653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Brain edema formation contributes to secondary brain damage and unfavorable outcome after traumatic brain injury (TBI). Aquaporins (AQP), highly selective water channels, are involved in the formation of post-trauma brain edema; however, their regulation is largely unknown. Because vasopressin receptors are involved in AQP-mediated water transport in the kidney and inhibition of V1a receptors reduces post-trauma brain edema formation, we hypothesize that cerebral AQPs may be regulated by V1a receptors. Cerebral Aqp1 and Aqp4 messenger ribonucleic acid (mRNA) and AQP1 and AQP4 protein levels were quantified in wild-type and V1a receptor knockout (V1a-/-) mice before and 15 min, 1, 3, 6, 12, or 24 h after experimental TBI by controlled cortical impact. In non-traumatized mice, we found AQP1 and AQP4 expression in cortical neurons and astrocytes, respectively. Experimental TBI had no effect on Aqp4 mRNA or AQP4 protein expression, but increased Aqp1 mRNA (p < 0.05) and AQP1 protein expression (p < 0.05) in both hemispheres. The Aqp1 mRNA and AQP1 protein regulation was blunted in V1a receptor knockout mice. The V1a receptors regulate cerebral AQP1 expression after experimental TBI, thereby unraveling the molecular mechanism by which these receptors may mediate brain edema formation after TBI.
Collapse
Affiliation(s)
- Katrin Rauen
- Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- University Hospital of Psychiatry Zurich, Department of Geriatric Psychiatry & Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Viorela Pop
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Raimund Trabold
- Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
| | - Jerome Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Aquitaine Institute for Cognitive and Integrative Neuroscience, University of Bordeaux, Bordeaux, France
| | - Nikolaus Plesnila
- Laboratory of Experimental Neurosurgery, Department of Neurosurgery & Institute for Surgical Research, University of Munich Medical Center, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| |
Collapse
|
48
|
Wicha P, Tocharus J, Janyou A, Jittiwat J, Chaichompoo W, Suksamrarn A, Tocharus C. Hexahydrocurcumin alleviated blood-brain barrier dysfunction in cerebral ischemia/reperfusion rats. Pharmacol Rep 2020; 72:659-671. [PMID: 32048258 DOI: 10.1007/s43440-019-00050-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hexahydrocurcumin (HHC), a major metabolite of curcumin, has been reported to have protective effects against ischemic and reperfusion damage. The goal of the present research was to examine whether HHC could alleviate brain damage and ameliorate functional outcomes by diminishing the blood-brain barrier (BBB) damage that follows cerebral ischemia/reperfusion. METHODS Middle cerebral artery occlusion was induced for 2 h in rats followed by reperfusion. The rats were divided into three groups: sham-operated, vehicle-treated, and HHC-treated groups. At the onset of reperfusion, the rats were immediately intraperitoneally injected with 40 mg/kg HHC. At 48 h after reperfusion, the rats were evaluated for neurological deficits and TTC staining. At 24 h and 48 h after reperfusion, animals were sacrificed, and their brains were extracted. RESULTS Treatment with HHC reduced neurological scores, infarct volume, morphological changes, Evans blue leakage and immunoglobulin G extravasation. Moreover, HHC treatment reduced BBB damage and neutrophil infiltration, downregulated myeloperoxidase, ICAM-1, and VCAM-1, upregulated tight junction proteins (TJPs), and reduced aquaporin 4 expression and brain water content. CONCLUSION These results revealed that HHC treatment preserved the BBB from cerebral ischemia/reperfusion injury by regulating TJPs, attenuating neutrophil infiltration, and reducing brain edema formation.
Collapse
Affiliation(s)
- Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Adchara Janyou
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Maha Sarakham University, Maha Sarakham, 44150, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
49
|
Jaeger V, DeMorrow S, McMillin M. The Direct Contribution of Astrocytes and Microglia to the Pathogenesis of Hepatic Encephalopathy. J Clin Transl Hepatol 2019; 7:352-361. [PMID: 31915605 PMCID: PMC6943208 DOI: 10.14218/jcth.2019.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy is a neurological complication resulting from loss of hepatic function and is associated with poor clinical outcomes. During acute liver failure over 20% of mortality can be associated with the development of hepatic encephalopathy. In patients with liver cirrhosis, 1-year survival for those that develop overt hepatic encephalopathy is under 50%. The pathogenesis of hepatic encephalopathy is complicated due to the multiple disruptions in homeostasis that occur following a reduction in liver function. Of these, elevations of ammonia and neuroinflammation have been shown to play a significant contributing role to the development of hepatic encephalopathy. Disruption of the urea cycle following liver dysfunction leads to elevations of circulating ammonia, which enter the brain and disrupt the functioning of astrocytes. This results in dysregulation of metabolic pathways in astrocytes, oxidative stress and cerebral edema. Besides ammonia, circulating chemokines and cytokines are increased following liver injury, leading to activation of microglia and a subsequent neuroinflammatory response. The combination of astrocyte dysfunction and microglia activation are significant contributing factors to the pathogenesis of hepatic encephalopathy.
Collapse
Affiliation(s)
- Victoria Jaeger
- Baylor Scott & White Health, Department of Internal Medicine, Temple, TX, USA
| | - Sharon DeMorrow
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- University of Texas at Austin, College of Pharmacy, Austin, TX, USA
| | - Matthew McMillin
- Texas A&M University Health Science Center, Department of Medical Physiology, Temple, TX, USA
- Central Texas Veterans Health Care System, Temple, TX, USA
- University of Texas at Austin, Dell Medical School, Department of Internal Medicine, Austin, TX, USA
- Correspondence to: Matthew McMillin, University of Texas at Austin Dell Medical School, 1601 Trinity Street, Building B, Austin, TX 78701, USA. Tel: +1-512-495-5037, Fax: +1-512-495-5839, E-mail:
| |
Collapse
|
50
|
Szu JI, Chaturvedi S, Patel DD, Binder DK. Aquaporin-4 Dysregulation in a Controlled Cortical Impact Injury Model of Posttraumatic Epilepsy. Neuroscience 2019; 428:140-153. [PMID: 31866558 DOI: 10.1016/j.neuroscience.2019.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022]
Abstract
Posttraumatic epilepsy (PTE) is a long-term negative consequence of traumatic brain injury (TBI) in which recurrent spontaneous seizures occur after the initial head injury. PTE develops over an undefined period during which circuitry reorganization in the brain causes permanent hyperexcitability. The pathophysiology by which trauma leads to spontaneous seizures is unknown and clinically relevant models of PTE are key to understanding the molecular and cellular mechanisms underlying the development of PTE. In the present study, we used the controlled-cortical impact (CCI) injury model of TBI to induce PTE in mice and to characterize changes in aquaporin-4 (AQP4) expression. A moderate-severe TBI was induced in the right frontal cortex and video-electroencephalographic (vEEG) recordings were performed in the ipsilateral hippocampus to monitor for spontaneous seizures at 14, 30, 60, and 90 days post injury (dpi). The percentage of mice that developed PTE were 13%, 20%, 27%, and 14% at 14, 30, 60, and 90 dpi, respectively. We found a significant increase in AQP4 in the ipsilateral frontal cortex and hippocampus of mice that developed PTE compared to those that did not develop PTE. Interestingly, AQP4 was found to be mislocalized away from the perivascular endfeet and towards the neuropil in mice that developed PTE. Here, we report for the first time, AQP4 dysregulation in a model of PTE which may carry significant implications for epileptogenesis after TBI.
Collapse
Affiliation(s)
- Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Som Chaturvedi
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Dillon D Patel
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|