1
|
Garcia E, Buzoianu-Anguiano V, Silva-Garcia R, Esparza-Salazar F, Arriero-Cabañero A, Escandon A, Doncel-Pérez E, Ibarra A. Use of Cells, Supplements, and Peptides as Therapeutic Strategies for Modulating Inflammation after Spinal Cord Injury: An Update. Int J Mol Sci 2023; 24:13946. [PMID: 37762251 PMCID: PMC10531377 DOI: 10.3390/ijms241813946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Spinal cord injury is a traumatic lesion that causes a catastrophic condition in patients, resulting in neuronal deficit and loss of motor and sensory function. That loss is caused by secondary injury events following mechanical damage, which results in cell death. One of the most important events is inflammation, which activates molecules like proinflammatory cytokines (IL-1β, IFN-γ, and TNF-α) that provoke a toxic environment, inhibiting axonal growth and exacerbating CNS damage. As there is no effective treatment, one of the developed therapies is neuroprotection of the tissue to preserve healthy tissue. Among the strategies that have been developed are the use of cell therapy, the use of peptides, and molecules or supplements that have been shown to favor an anti-inflammatory environment that helps to preserve tissue and cells at the site of injury, thus favoring axonal growth and improved locomotor function. In this review, we will explain some of these strategies used in different animal models of spinal cord injury, their activity as modulators of the immune system, and the benefits they have shown.
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Vinnitsa Buzoianu-Anguiano
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Raúl Silva-Garcia
- Unidad de Investigación Médica en Inmunología Hospital de Pediatría, CMN-SXXI, IMSS, Mexico City 06720, Mexico;
| | - Felipe Esparza-Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Alejandro Arriero-Cabañero
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Adela Escandon
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| | - Ernesto Doncel-Pérez
- Grupo Regeneración Neural, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain; (V.B.-A.); (A.A.-C.)
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico; (E.G.); (F.E.-S.); (A.E.)
| |
Collapse
|
2
|
Junghans M, John F, Cihankaya H, Schliebs D, Winklhofer KF, Bader V, Matschke J, Theiss C, Matschke V. ROS scavengers decrease γH2ax spots in motor neuronal nuclei of ALS model mice in vitro. Front Cell Neurosci 2022; 16:963169. [PMID: 36119129 PMCID: PMC9470831 DOI: 10.3389/fncel.2022.963169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the loss of motor neurons in cerebral cortex, brainstem and spinal cord. Numerous studies have demonstrated signs of oxidative stress in postmortem neuronal tissue, cerebrospinal fluid, plasma and urine of ALS patients, without focusing on the specific processes within motor neurons. Thus, we aimed to investigate the relevance of reactive oxygen species (ROS) detoxification mechanisms and its consequences on the formation of toxic/lethal DNA double strand breaks (DSBs) in the ALS model of the Wobbler mouse. Methods: Live cell imaging in dissociated motor neuronal cultures was used to investigate the production of ROS using Dihydroethidium (DHE). The expression levels of ROS detoxifying molecules were investigated by qPCR as well as Western blots. Furthermore, the expression levels of DNA damage response proteins p53bp1 and H2ax were investigated using qPCR and immunofluorescence staining. Proof-of-principle experiments using ROS scavengers were performed in vitro to decipher the influence of ROS on the formation of DNA double strand breaks quantifying the γH2ax spots formation. Results: Here, we verified an elevated ROS-level in spinal motor neurons of symptomatic Wobbler mice in vitro. As a result, an increased number of DNA damage response proteins p53bp1 and γH2ax in dissociated motor neurons of the spinal cord of Wobbler mice was observed. Furthermore, we found a significantly altered expression of several antioxidant molecules in the spinal cord of Wobbler mice, suggesting a deficit in ROS detoxification mechanisms. This hypothesis could be verified by using ROS scavenger molecules in vitro to reduce the number of γH2ax foci in dissociated motor neurons and thus counteract the harmful effects of ROS. Conclusion: Our data indicate that maintenance of redox homeostasis may play a key role in the therapy of the neurodegenerative disease ALS. Our results underline a necessity for multimodal treatment approaches to prolong the average lifespan of motor neurons and thus slow down the progression of the disease, since a focused intervention in one pathomechanism seems to be insufficient in ALS therapy.
Collapse
Affiliation(s)
- Maya Junghans
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Felix John
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Hilal Cihankaya
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Daniel Schliebs
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Veronika Matschke
| |
Collapse
|
3
|
Garcia E, Hernández-Ayvar F, Rodríguez-Barrera R, Flores-Romero A, Borlongan C, Ibarra A. Supplementation With Vitamin E, Zinc, Selenium, and Copper Re-Establishes T-Cell Function and Improves Motor Recovery in a Rat Model of Spinal Cord Injury. Cell Transplant 2022; 31:9636897221109884. [PMID: 35808825 PMCID: PMC9272473 DOI: 10.1177/09636897221109884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) causes a dysfunction of sympathetic nervous
system innervation that affects the immune system, leading to
immunosuppression syndrome (ISS) and contributing to patient
degeneration and increased risk of several infections. A possible
therapeutic strategy that could avoid further patient deterioration is
the supplementation with Vitamin E or trace elements, such as Zinc,
Selenium, and Copper, which individually promotes T-cell
differentiation and proliferative responses. For this reason, the aim
of the present study was to evaluate whether Vitamin E, Zinc,
Selenium, and Copper supplementation preserves the number of
T-lymphocytes and improves their proliferative function after
traumatic SCI. Sprague–Dawley female rats were subjected to moderate
SCI and then randomly allocated into three groups: (1) SCI +
supplements; (2) SCI + vehicle (olive oil and phosphate-buffered
saline); and (3) sham-operated rats. In all rats, the intervention was
initiated 15 min after SCI and then administered daily until the end
of study. Locomotor recovery was assessed at 7 and 15 days after SCI.
At 15 days after supplementation, the quantification of the number of
T-cells and its proliferation function were examined. Our results
showed that the SCI + supplements group presented a significant
improvement in motor recovery at 7 and 15 days after SCI. In addition,
this group showed a better T-cell number and proliferation rate than
that observed in the group with SCI + vehicle. Our findings suggest
that Vitamin E, Zinc, Selenium, and Copper supplementation could be
part of a therapy for patients suffering from acute SCI, helping to
preserve T-cell function, avoiding complications, and promoting a
better motor recovery. All procedures were approved by the Animal
Bioethics and Welfare Committee (Approval No. 201870; CSNBTBIBAJ
090812960).
Collapse
Affiliation(s)
- Elisa Garcia
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Fernanda Hernández-Ayvar
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| | - Cesar Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México
| |
Collapse
|
4
|
Kim SJ, Ko WK, Han GH, Lee D, Lee Y, Sheen SH, Hong JB, Sohn S. Chirality-Dependent Anti-Inflammatory Effect of Glutathione after Spinal Cord Injury in an Animal Model. Pharmaceuticals (Basel) 2021; 14:ph14080792. [PMID: 34451889 PMCID: PMC8398565 DOI: 10.3390/ph14080792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation forms a glial scar following a spinal cord injury (SCI). The injured axon cannot regenerate across the scar, suggesting permanent paraplegia. Molecular chirality can show an entirely different bio-function by means of chiral-specific interaction. In this study, we report that d-chiral glutathione (D-GSH) suppresses the inflammatory response after SCI and leads to axon regeneration of the injured spinal cord to a greater extent than l-chiral glutathione (L-GSH). After SCI, axon regrowth in D-GSH-treated rats was significantly increased compared with that in L-GSH-treated rats (*** p < 0.001). Secondary damage and motor function were significantly improved in D-GSH-treated rats compared with those outcomes in L-GSH-treated rats (** p < 0.01). Moreover, D-GSH significantly decreased pro-inflammatory cytokines and glial fibrillary acidic protein (GFAP) via inhibition of the mitogen-activated protein kinase (MAPK) signaling pathway compared with L-GSH (*** p < 0.001). In primary cultured macrophages, we found that D-GSH undergoes more intracellular interaction with activated macrophages than L-GSH (*** p < 0.001). These findings reveal a potential new regenerative function of chiral GSH in SCI and suggest that chiral GSH has therapeutic potential as a treatment of other diseases.
Collapse
Affiliation(s)
- Seong-Jun Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13493, Korea; (S.-J.K.); (W.-K.K.); (G.-H.H.); (D.L.)
| | - Wan-Kyu Ko
- Department of Biomedical Science, CHA University, Seongnam-si 13493, Korea; (S.-J.K.); (W.-K.K.); (G.-H.H.); (D.L.)
| | - Gong-Ho Han
- Department of Biomedical Science, CHA University, Seongnam-si 13493, Korea; (S.-J.K.); (W.-K.K.); (G.-H.H.); (D.L.)
| | - Daye Lee
- Department of Biomedical Science, CHA University, Seongnam-si 13493, Korea; (S.-J.K.); (W.-K.K.); (G.-H.H.); (D.L.)
| | - Yuhan Lee
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Seung-Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, Seongnam-si 13496, Korea;
| | - Je-Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, Seongnam-si 13496, Korea;
- Correspondence: ; Tel.: +82-31-881-7966
| |
Collapse
|
5
|
Glutathione ethyl ester reverses the deleterious effects of fentanyl on ventilation and arterial blood-gas chemistry while prolonging fentanyl-induced analgesia. Sci Rep 2021; 11:6985. [PMID: 33772077 PMCID: PMC7997982 DOI: 10.1038/s41598-021-86458-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/16/2021] [Indexed: 02/01/2023] Open
Abstract
There is an urgent need to develop novel compounds that prevent the deleterious effects of opioids such as fentanyl on minute ventilation while, if possible, preserving the analgesic actions of the opioids. We report that L-glutathione ethyl ester (GSHee) may be such a novel compound. In this study, we measured tail flick latency (TFL), arterial blood gas (ABG) chemistry, Alveolar-arterial gradient, and ventilatory parameters by whole body plethysmography to determine the responses elicited by bolus injections of fentanyl (75 μg/kg, IV) in male adult Sprague-Dawley rats that had received a bolus injection of GSHee (100 μmol/kg, IV) 15 min previously. GSHee given alone had minimal effects on TFL, ABG chemistry and A-a gradient whereas it elicited changes in some ventilatory parameters such as an increase in breathing frequency. In vehicle-treated rats, fentanyl elicited (1) an increase in TFL, (2) decreases in pH, pO2 and sO2 and increases in pCO2 (all indicative of ventilatory depression), (3) an increase in Alveolar-arterial gradient (indicative of a mismatch in ventilation-perfusion in the lungs), and (4) changes in ventilatory parameters such as a reduction in tidal volume, that were indicative of pronounced ventilatory depression. In GSHee-pretreated rats, fentanyl elicited a more prolonged analgesia, relatively minor changes in ABG chemistry and Alveolar-arterial gradient, and a substantially milder depression of ventilation. GSHee may represent an effective member of a novel class of thiolester drugs that are able to prevent the ventilatory depressant effects elicited by powerful opioids such as fentanyl and their deleterious effects on gas-exchange in the lungs without compromising opioid analgesia.
Collapse
|
6
|
Parra-Villamar D, Blancas-Espinoza L, Garcia-Vences E, Herrera-García J, Flores-Romero A, Toscano-Zapien A, Villa JV, Barrera-Roxana R, Karla SZ, Ibarra A, Silva-García R. Neuroprotective effect of immunomodulatory peptides in rats with traumatic spinal cord injury. Neural Regen Res 2021; 16:1273-1280. [PMID: 33318405 PMCID: PMC8284257 DOI: 10.4103/1673-5374.301485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several therapies have shown obvious effects on structural conservation contributing to motor functional recovery after spinal cord injury (SCI). Nevertheless, neither strategy has achieved a convincing effect. We purposed a combined therapy of immunomodulatory peptides that individually have shown significant effects on motor functional recovery in rats with SCI. The objective of this study was to investigate the effects of the combined therapy of monocyte locomotion inhibitor factor (MLIF), A91 peptide, and glutathione monoethyl ester (GSH-MEE) on chronic-stage spinal cord injury. Female Sprague-Dawley rats underwent a laminectomy of the T9 vertebra and a moderate contusion. Six groups were included: sham, PBS, MLIF + A91, MLIF + GSH-MEE, A91 + GSH-MEE, and MLIF + A91 + GSH-MEE. Two months after injury, motor functional recovery was evaluated using the open field test. Parenchyma and white matter preservation was evaluated using hematoxylin & eosin staining and Luxol Fast Blue staining, respectively. The number of motoneurons in the ventral horn and the number of axonal fibers were determined using hematoxylin & eosin staining and immunohistochemistry, respectively. Collagen deposition was evaluated using Masson's trichrome staining. The combined therapy of MLIF, A91, and GSH-MEE greatly contributed to motor functional recovery and preservation of the medullary parenchyma, white matter, motoneurons, and axonal fibres, and reduced the deposition of collagen in the lesioned area. The combined therapy of MLIF, A91, and GSH-MEE preserved spinal cord tissue integrity and promoted motor functional recovery of rats after SCI. This study was approved by the National Commission for Scientific Research on Bioethics and Biosafety of the Instituto Mexicano del Seguro Social under registration number R-2015-785-116 (approval date November 30, 2015) and R-2017-3603-33 (approval date June 5, 2017).
Collapse
Affiliation(s)
- Dulce Parra-Villamar
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Liliana Blancas-Espinoza
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Elisa Garcia-Vences
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Juan Herrera-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Adrian Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Alberto Toscano-Zapien
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Jonathan Vilchis Villa
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| | - Rodríguez Barrera-Roxana
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Soria Zavala Karla
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México; Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México, México
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo de México; Centro de Investigación del Proyecto Camina A.C, Ciudad de México, México
| | - Raúl Silva-García
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI; Instituto Mexicano del Seguro Social; Ciudad de México, México
| |
Collapse
|
7
|
Recent progress in therapeutic drug delivery systems for treatment of traumatic CNS injuries. Future Med Chem 2020; 12:1759-1778. [PMID: 33028091 DOI: 10.4155/fmc-2020-0178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Most therapeutics for the treatment of traumatic central nervous system injuries, such as traumatic brain injury and spinal cord injury, encounter various obstacles in reaching the target tissue and exerting pharmacological effects, including physiological barriers like the blood-brain barrier and blood-spinal cord barrier, instability rapid elimination from the injured tissue or cerebrospinal fluid and off-target toxicity. For central nervous system delivery, nano- and microdrug delivery systems are regarded as the most suitable and promising carriers. In this review, the pathophysiology and biomarkers of traumatic central nervous system injuries (traumatic brain injury and spinal cord injury) are introduced. Furthermore, various drug delivery systems, novel combinatorial therapies and advanced therapies for the treatment of traumatic brain injury and spinal cord injury are emphasized.
Collapse
|
8
|
Diao X, Zhou Z, Xiang W, Jiang Y, Tian N, Tang X, Chen S, Wen J, Chen M, Liu K, Li Q, Liao R. Glutathione alleviates acute intracerebral hemorrhage injury via reversing mitochondrial dysfunction. Brain Res 2019; 1727:146514. [PMID: 31628933 DOI: 10.1016/j.brainres.2019.146514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
Glutathione (GSH) has been studied for its neuroprotection value in several diseases, but the effect of GSH on intracerebral hemorrhage (ICH) is unclear. In this study, we examined the protective effects of GSH in an experimentally induced ICH model and investigated the relative mechanisms. Adult male C57BL/6j mice were randomized into Sham, ICH and GSH treatment groups. GSH was injected with the dose of 50, 100 or 200 mg/kg once per day for 3 days, starting immediately after operation. The results revealed a GSH-mediated improvement of neurological deficits score (NDS), motor and sensory functions impairment in a dose-dependent manner three days post ICH (p < 0.01, GSH 200 vs ICH. Sham, n = 12; ICH, n = 9; GSH 50, n = 10; GSH 100, n = 10; GSH 200, n = 11) in addition to significantly reduced mortality rate (p = 0.2632, GSH 200 vs ICH. n = 12 per group) and damage volume (p < 0.05, GSH 200 vs ICH. n = 12 per group). GSH treatment also attenuated injury measured by decreased brain edema (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), blood-brain barrier disruption (p < 0.05, GSH 200 vs ICH. Sham, n = 10; ICH, n = 10; GSH 200, n = 12), and histopathological damage (p < 0.05, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) 72 h after ICH. In addition, GSH treatment also decreased cell apoptosis (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8) and resulted in up-regulated protein expression of complex I (p < 0.01, GSH 200 vs ICH. Sham, n = 6; ICH, n = 6; GSH 200, n = 8), which was consistent with an overall up-regulation of complex I function in mitochondria using Oxygraph-2 K high resolution respirometry (p < 0.05, GSH 200 vs ICH. Sham, n = 4; ICH, n = 5; GSH 200, n = 6). In conclusion, GSH effectively improved the prognosis of ICH mice by attenuating neurological impairment, decreasing neural damage, and inhibiting apoptosis. The neuroprotection by GSH resulted from the up-regulation of mitochondrial oxidative respiration function. The results of our study suggest that GSH can be a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Xiaojun Diao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Guilin Medical University, Guilin 541004, China
| | - Zixian Zhou
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Wenjing Xiang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Yanlin Jiang
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Ning Tian
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Xiaoling Tang
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Sangsang Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Jian Wen
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China
| | - Meiling Chen
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Kaixiang Liu
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410000, China; Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| | - Rujia Liao
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
9
|
Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. Int J Mol Sci 2019; 20:ijms20051054. [PMID: 30823442 PMCID: PMC6429374 DOI: 10.3390/ijms20051054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor (HGF) was first identified as a potent mitogen for mature hepatocytes, and has also gained attention as a strong neurotrophic factor in the central nervous system. We found that during the acute phase of spinal cord injury (SCI) in rats, c-Met, the specific receptor for HGF, increases sharply, while the endogenous HGF up-regulation is relatively weak. Introducing exogenous HGF into the spinal cord by injecting an HGF-expressing viral vector significantly increased the neuron and oligodendrocyte survival, angiogenesis, and axonal regeneration, to reduce the area of damage and to promote functional recovery in rats after SCI. Other recent studies in rodents have shown that exogenously administered HGF during the acute phase of SCI reduces astrocyte activation to decrease glial scar formation, and exerts anti-inflammatory effects to reduce leukocyte infiltration. We also reported that the intrathecal infusion of recombinant human HGF (intrathecal rhHGF) improves neurological hand function after cervical contusive SCI in the common marmoset, a non-human primate. Based on these collective results, we conducted a phase I/II clinical trial of intrathecal rhHGF for patients with acute cervical SCI who showed a modified Frankel grade of A/B1/B2 72 h after injury onset, from June 2014 to May 2018.
Collapse
|
10
|
Beltrán JQ, Carrillo-Ruiz JD. Neurological Functional Surgery in Mexico: From Pre-Columbian Cranial Surgery to Functional Neurosurgery in the 21st Century. World Neurosurg 2019; 122:549-558. [DOI: 10.1016/j.wneu.2018.11.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/28/2023]
|
11
|
Gao SJ, Liu Y, Wang HJ, Ban DX, Cheng SZ, Ning GZ, Wang LL, Chang J, Feng SQ. New approach to treating spinal cord injury using PEG-TAT-modified, cyclosporine-A-loaded PLGA/polymeric liposomes. J Drug Target 2016; 25:75-82. [DOI: 10.1080/1061186x.2016.1191082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Tang P, Zhang Y, Chen C, Ji X, Ju F, Liu X, Gan WB, He Z, Zhang S, Li W, Zhang L. In vivo two-photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury. Sci Rep 2015; 5:9691. [PMID: 25989524 PMCID: PMC4437044 DOI: 10.1038/srep09691] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/17/2015] [Indexed: 12/30/2022] Open
Abstract
Severe spinal cord injury (SCI) can cause neurological dysfunction and paralysis. However, the early dynamic changes of neurons and their surrounding environment after SCI are poorly understood. Although methylprednisolone (MP) is currently the standard therapeutic agent for treating SCI, its efficacy remains controversial. The purpose of this project was to investigate the early dynamic changes and MP's efficacy on axonal damage, blood flow, and calcium influx into axons in a mouse SCI model. YFP H-line and Thy1-GCaMP transgenic mice were used in this study. Two-photon microscopy was used for imaging of axonal dieback, blood flow, and calcium influx post-injury. We found that MP treatment attenuated progressive damage of axons, increased blood flow, and reduced calcium influx post-injury. Furthermore, microglia/macrophages accumulated in the lesion site after SCI and expressed the proinflammatory mediators iNOS, MCP-1 and IL-1β. MP treatment markedly inhibited the accumulation of microglia/macrophages and reduced the expression of the proinflammatory mediators. MP treatment also improved the recovery of behavioral function post-injury. These findings suggest that MP exerts a neuroprotective effect on SCI treatment by attenuating progressive damage of axons, increasing blood flow, reducing calcium influx, and inhibiting the accumulation of microglia/macrophages after SCI.
Collapse
Affiliation(s)
- Peifu Tang
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| | - Yiling Zhang
- 1] Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853 [2] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Chao Chen
- 1] Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853 [2] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Xinran Ji
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| | - Furong Ju
- School of Life Sciences, Lanzhou University, Lanzhou, China, 73000
| | - Xingyu Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing, China, 100069
| | - Wen-Biao Gan
- 1] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055 [2] Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA, 10016
| | - Zhigang He
- F.M. Kirby Program in Neuroscience, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China, 73000
| | - Wei Li
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Lihai Zhang
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| |
Collapse
|
13
|
Mestre H, Ramirez M, Garcia E, Martiñón S, Cruz Y, Campos MG, Ibarra A. Lewis, Fischer 344, and sprague-dawley rats display differences in lipid peroxidation, motor recovery, and rubrospinal tract preservation after spinal cord injury. Front Neurol 2015; 6:108. [PMID: 26029162 PMCID: PMC4432686 DOI: 10.3389/fneur.2015.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/30/2015] [Indexed: 01/20/2023] Open
Abstract
The rat is the most common animal model for the preclinical validation of neuroprotective therapies in spinal cord injury (SCI). Lipid peroxidation (LP) is a hallmark of the damage triggered after SCI. Free radicals react with fatty acids causing cellular and membrane disruption. LP accounts for a considerable amount of neuronal cell death after SCI. To better understand the implications of inbred and outbred rat strain selection on preclinical SCI research, we evaluated LP after laminectomy sham surgery and a severe contusion of the T9 spinal cord in female Sprague-Dawley (SPD), Lewis (LEW), and Fischer 344 (F344) rats. Further analysis included locomotor recovery using the Basso, Beattie, and Bresnahan (BBB) scale and retrograde rubrospinal tract tracing. LEW had the highest levels of LP products 72 h after sham surgery and SCI, significantly different from both F344 and SPD. SPD rats had the fastest functional recovery and highest BBB scores; these were not significantly different to F344. However, LEW rats achieved the lowest BBB scores throughout the 2-month follow-up, yielding significant differences when compared to SPD and F344. To see if the improvement in locomotion was secondary to an increase in axon survival, we evaluated rubrospinal neurons (RSNs) via retrograde labeling of the rubrospinal tract and quantified cells at the red nuclei. The highest numbers of RSNs were observed in SPD rats then F344; the lowest counts were seen in LEW rats. The BBB scores significantly correlated with the amount of positively stained RSN in the red nuclei. It is critical to identify interstrain variations as a potential confound in preclinical research. Multi-strain validation of neuroprotective therapies may increase chances of successful translation.
Collapse
Affiliation(s)
- Humberto Mestre
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico
| | | | - Elisa Garcia
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico ; CAMINA Project Research Center , Mexico City , Mexico
| | | | - Yolanda Cruz
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico
| | - Maria G Campos
- Pharmacology Medical Research Unit, National Medical Center "Century XXI", IMSS , Mexico City , Mexico
| | - Antonio Ibarra
- Faculty of Health Sciences, Universidad Anahuac Mexico Norte , Mexico City , Mexico ; CAMINA Project Research Center , Mexico City , Mexico
| |
Collapse
|
14
|
Cibert-Goton V, Phillips JP, Shortland PJ. Vascular changes associated with spinal root avulsion injury. Somatosens Mot Res 2015; 32:158-62. [PMID: 25901469 DOI: 10.3109/08990220.2015.1018511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This paper has investigated the hypothesis that spinal root avulsion (SRA) injury produces alterations in blood flow that contribute to avulsion injury induced pain-like behaviour in rodents. Photoplethysmography (PPG) is an established way of assessing blood flow in the central nervous system (CNS) and laser Doppler flowmetry (LDF) is the most widely used technique for measuring tissue perfusion. Using an established model of SRA injury that produces mechanical hypersensitivity, the PPG and LDF signals were recorded in animals 2 weeks post-injury and compared to naive recordings. PPG and LDF measurements were assessed on the ipsilateral and contralateral sides of the spinal cord rostral and caudal to the avulsion injury and at the level of the injury. Two weeks after injury, a time when vascular blood vessel endothelial markers are known to be decreased, no significant changes were seen in the spinal cord blood flow (SCBF) above, at, or below the injury site or when comparing the ipsilateral vs. contralateral side. Assessment of oxygenation levels again revealed no significant differences between naive and spinal root injured animals along the rostrocaudal axis (i.e., above, at, and below the site of injury or its equivalent on the contralateral side). From these experiments it is concluded that SRA does not significantly alter blood flow or tissue oxygen levels and so ischemia may play a less prominent role in avulsion injury induced pain.
Collapse
Affiliation(s)
- Vincent Cibert-Goton
- a Centre for Neuroscience & Trauma, Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London , London , UK
| | - Justin P Phillips
- b School of Engineering and Mathematical Sciences, City University , London , UK , and
| | - Peter J Shortland
- a Centre for Neuroscience & Trauma, Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London , London , UK .,c School of Science & Health, University of Western Sydney , Australia
| |
Collapse
|
15
|
|
16
|
Zhang L, Kaneko S, Kikuchi K, Sano A, Maeda M, Kishino A, Shibata S, Mukaino M, Toyama Y, Liu M, Kimura T, Okano H, Nakamura M. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Mol Brain 2014; 7:14. [PMID: 24618249 PMCID: PMC4008261 DOI: 10.1186/1756-6606-7-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/12/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the "rewiring" of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. RESULTS Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). CONCLUSIONS This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hideyuki Okano
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | |
Collapse
|
17
|
Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci U S A 2014; 111:E1035-42. [PMID: 24591593 DOI: 10.1073/pnas.1401595111] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans with ALS and transgenic rodents expressing ALS-associated superoxide dismutase (SOD1) mutations develop spontaneous blood-spinal cord barrier (BSCB) breakdown, causing microvascular spinal-cord lesions. The role of BSCB breakdown in ALS disease pathogenesis in humans and mice remains, however, unclear, although chronic blood-brain barrier opening has been shown to facilitate accumulation of toxic blood-derived products in the central nervous system, resulting in secondary neurodegenerative changes. By repairing the BSCB and/or removing the BSCB-derived injurious stimuli, we now identify that accumulation of blood-derived neurotoxic hemoglobin and iron in the spinal cord leads to early motor-neuron degeneration in SOD1(G93A) mice at least in part through iron-dependent oxidant stress. Using spontaneous or warfarin-accelerated microvascular lesions, motor-neuron dysfunction and injury were found to be proportional to the degree of BSCB disruption at early disease stages in SOD1(G93A) mice. Early treatment with an activated protein C analog restored BSCB integrity that developed from spontaneous or warfarin-accelerated microvascular lesions in SOD1(G93A) mice and eliminated neurotoxic hemoglobin and iron deposits. Restoration of BSCB integrity delayed onset of motor-neuron impairment and degeneration. Early chelation of blood-derived iron and antioxidant treatment mitigated early motor-neuronal injury. Our data suggest that BSCB breakdown contributes to early motor-neuron degeneration in ALS mice and that restoring BSCB integrity during an early disease phase retards the disease process.
Collapse
|
18
|
Ormond DR, Shannon C, Oppenheim J, Zeman R, Das K, Murali R, Jhanwar-Uniyal M. Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS One 2014; 9:e88916. [PMID: 24558450 PMCID: PMC3928327 DOI: 10.1371/journal.pone.0088916] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023] Open
Abstract
Acute traumatic spinal cord injury (SCI) is marked by the enhanced production of local cytokines and pro-inflammatory substances that induce gliosis and prevent reinnervation. The transplantation of stem cells is a promising treatment strategy for SCI. In order to facilitate functional recovery, we employed stem cell therapy alone or in combination with curcumin, a naturally-occurring anti-inflammatory component of turmeric (Curcuma longa), which potently inhibits NF-κB. Spinal cord contusion following laminectomy (T9–10) was performed using a weight drop apparatus (10 g over a 12.5 or 25 mm distance, representing moderate or severe SCI, respectively) in Sprague-Dawley rats. Neural stem cells (NSC) were isolated from subventricular zone (SVZ) and transplanted at the site of injury with or without curcumin treatment. Functional recovery was assessed by BBB score and body weight gain measured up to 6 weeks following SCI. At the conclusion of the study, the mass of soleus muscle was correlated with BBB score and body weight. Stem cell therapy improved recovery from moderate SCI, however, it had a limited effect on recovery after severe SCI. Curcumin stimulated NSC proliferation in vitro, and in combination with stem cell therapy, induced profound recovery from severe SCI as evidenced by improved functional locomotor recovery, increased body weight, and soleus muscle mass. These findings demonstrate that curcumin in conjunction with stem cell therapy synergistically improves recovery from severe SCI. Furthermore, our results indicate that the effect of curcumin extends beyond its known anti-inflammatory properties to the regulation of stem cell proliferation.
Collapse
Affiliation(s)
- D. Ryan Ormond
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Craig Shannon
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Julius Oppenheim
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Richard Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, United States of America
| | - Kaushik Das
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Raj Murali
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
| | - Meena Jhanwar-Uniyal
- Department of Neurosurgery, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Brown A, Nabel A, Oh W, Etlinger JD, Zeman RJ. Perfusion imaging of spinal cord contusion: injury-induced blockade and partial reversal by β2-agonist treatment in rats. J Neurosurg Spine 2013; 20:164-71. [PMID: 24313676 DOI: 10.3171/2013.10.spine13113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Traumatic injury to the spinal cord results in considerable delayed tissue loss. The authors investigated the extent to which ischemia occurs following contusion-induced spinal cord injury and whether ischemia exacerbates tissue damage that leads to the loss of locomotor function. They also determined if ischemia is reversed with β2-adrenoceptor agonist treatment, which has been established to be neuroprotective following contusion injury. METHODS The extent and role of circulation loss in spinal cord injury was determined in an established experimental model of contusion injury. The spinal cord dura mater of Wistar rats was exposed by performing a laminectomy at T-8 to T-11. Laser Doppler perfusion imaging was then used to measure microcirculation in the exposed spinal cord. After imaging, a moderately severe contusion injury was produced using a weight-drop device unto the exposed dura at T-10. Perfusion imaging was again performed, scans were quantitated, and integrated intensities were compared. RESULTS Postinjury imaging revealed an 18%-27% reduction in perfusion in regions rostral and caudal to the injury site, and a 68% reduction was observed at the contusion epicenter. These perfusion losses persisted for at least 48 hours. At 24 hours after injury, some rats were intraperitoneally injected with 2 mg/kg of the β2-adrenoceptor agonist clenbuterol, which has been shown to promote the partial recovery of locomotor function and spare spinal cord tissue when administered within 2 days after contusion injury. Clenbuterol injection caused a gradual increase in perfusion, which was detectable at 30 minutes postinjection and continued over time, resulting in an 127% overall increase in perfusion at the epicenter 24 hours after treatment. CONCLUSIONS These results suggest that the occurrence of chronic perfusion loss after contusion contributes to delayed damage and tissue loss. In contrast, β2-adrenoceptor agonist treatment may exert neuroprotection by restoring perfusion, thereby preventing ischemic neurodegeneration. The ability of laser Doppler imaging to measure the loss of perfusion and its restoration upon treatment suggests that it may have clinical utility in the assessment and treatment of spinal cord injury.
Collapse
Affiliation(s)
- Abraham Brown
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla; and
| | | | | | | | | |
Collapse
|
20
|
Monocyte locomotion inhibitory factor produced by E. histolytica improves motor recovery and develops neuroprotection after traumatic injury to the spinal cord. BIOMED RESEARCH INTERNATIONAL 2013; 2013:340727. [PMID: 24294606 PMCID: PMC3835973 DOI: 10.1155/2013/340727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 11/03/2022]
Abstract
Monocyte locomotion inhibitory factor (MLIF) is a pentapeptide produced by Entamoeba histolytica that has a potent anti-inflammatory effect. Either MLIF or phosphate buffered saline (PBS) was administered directly onto the spinal cord (SC) immediately after injury. Motor recovery was evaluated. We also analyzed neuroprotection by quantifying the number of surviving ventral horn motor neurons and the persistence of rubrospinal tract neurons. To evaluate the mechanism through which MLIF improved the outcome of SC injury, we quantified the expression of inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and transforming growth factor- β (TGF- β ) genes at the site of injury. Finally, the levels of nitric oxide and of lipid peroxidation were also determined in peripheral blood. Results showed that MLIF improved the rate of motor recovery and this correlated with an increased survival of ventral horn and rubrospinal neurons. These beneficial effects were in turn associated with a reduction in iNOS gene products and a significant upregulation of IL-10 and TGF- β expression. In the same way, MLIF reduced the concentration of nitric oxide and the levels of lipid peroxidation in systemic circulation. The present results demonstrate for the first time the neuroprotective effects endowed by MLIF after SC injury.
Collapse
|
21
|
Zhou X, Wang C, Feng S, Chang J, Kong X, Liu Y, Gao S. Transactivating-transduction protein-polyethylene glycol modified liposomes traverse the blood-spinal cord and blood-brain barriers. Neural Regen Res 2012; 7:2784-92. [PMID: 25317128 PMCID: PMC4190860 DOI: 10.3969/j.issn.1673-5374.2012.35.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/07/2012] [Indexed: 11/18/2022] Open
Abstract
Naive liposomes can cross the blood-brain barrier and blood-spinal cord barrier in small amounts. Liposomes modified by a transactivating-transduction protein can deliver antibiotics for the treatment of acute bacterial infection-induced brain inflammation. Liposomes conjugated with polyethylene glycol have the capability of long-term circulation. In this study we prepared transactivating-transduction protein-polyethylene glycol-modified liposomes labeled with fluorescein isothiocyanate. Thus, liposomes were characterized by transmembrane, long-term circulation and fluorescence tracing. Uptake, cytotoxicity, and the ability of traversing blood-spinal cord and blood-brain barriers were observed following coculture with human breast adenocarcinoma cells (MCF-7). Results demonstrated that the liposomes had good biocompatibility, and low cytotoxicity when cocultured with human breast adenocarcinoma cells. Liposomes could traverse cell membranes and entered the central nervous system and neurocytes through the blood-spinal cord and blood-brain barriers of rats via the systemic circulation. These results verified that fluorescein isothiocyanate-modified transactivating-transduction protein-polyethylene glycol liposomes have the ability to traverse the blood-spinal cord and blood-brain barriers.
Collapse
Affiliation(s)
- Xianhu Zhou
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunyuan Wang
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shiqing Feng
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jin Chang
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaohong Kong
- Medicine College, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shijie Gao
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
22
|
del Rayo Garrido M, Silva-García R, García E, Martiñón S, Morales M, Mestre H, Flores-Domínguez C, Flores A, Ibarra A. Therapeutic window for combination therapy of A91 peptide and glutathione allows delayed treatment after spinal cord injury. Basic Clin Pharmacol Toxicol 2012; 112:314-8. [PMID: 23057752 DOI: 10.1111/bcpt.12023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/04/2012] [Indexed: 12/17/2022]
Abstract
Immunisation with neural-derived peptides is a promising strategy in models of spinal cord (SC) injury. Recent studies have also demonstrated that the addition of glutathione monoethyl ester (GHSE) to this strategy further improves motor recovery, tissue protection and neuronal survival after SC injury. As it is realistic to envision that this combination therapy could be tested in clinical trials, the therapeutic window should be experimentally explored before implementing its use in SC-injured human beings. For this purpose, 50 rats (10 per group) were subjected to a moderate SC contusion. The combined therapy was initiated at 10 min., 24, 72 or 120 hr after injury. Motor recovery and the survival of rubrospinal (RS) and ventral horn (VH) neurones were evaluated 60 days after injury. Results showed a significant motor improvement even if the combined therapy was initiated up to 72 hr after injury. BBB scores were as follows: 10 min.: 10.5 ± 0.7, 24 hr: 10.7 ± 0.5, 72 hr: 11.0 ± 1.3 and PBS: 6.7 ± 1 (mean ± S.D.). Initiation of combined therapy 120 hr after injury had no beneficial effect on motor recovery. Survival of RS and VH neurones was significantly higher in animals treated during the first 72 hr than those treated only with PBS. In this case again, animals treated with combined therapy 120 hr after injury did not present significant survival of neurones. Treatment with this combined strategy has a clinically feasible therapeutic window. This therapy provides enough time to transport and diagnose the patient and allows the concomitant use of other neuroprotective therapies.
Collapse
Affiliation(s)
- María del Rayo Garrido
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan Edo. de México, México
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kitamura K, Fujiyoshi K, Yamane JI, Toyota F, Hikishima K, Nomura T, Funakoshi H, Nakamura T, Aoki M, Toyama Y, Okano H, Nakamura M. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS One 2011; 6:e27706. [PMID: 22140459 PMCID: PMC3226561 DOI: 10.1371/journal.pone.0027706] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/23/2011] [Indexed: 12/16/2022] Open
Abstract
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.
Collapse
Affiliation(s)
- Kazuya Kitamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Department of Orthopedic Surgery, Hiratsuka City Hospital, Hiratsuka, Kanagawa, Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Jun-ichi Yamane
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Fumika Toyota
- Central Institute for Experimental Animals, Miyamae-ku, Kawasaki, Kanagawa Japan
| | - Keigo Hikishima
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Central Institute for Experimental Animals, Miyamae-ku, Kawasaki, Kanagawa Japan
| | - Tatsuji Nomura
- Central Institute for Experimental Animals, Miyamae-ku, Kawasaki, Kanagawa Japan
| | - Hiroshi Funakoshi
- Center for Advanced Research and Education, Asahikawa Medical University, Midorigaoka, Asahikawa, Japan
| | - Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
24
|
Kitamura K, Fujiyoshi K, Yamane JI, Toyota F, Hikishima K, Nomura T, Funakoshi H, Nakamura T, Aoki M, Toyama Y, Okano H, Nakamura M. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS One 2011. [PMID: 22140459 DOI: 10.1016/10.1371/journal.pone.0027706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.
Collapse
Affiliation(s)
- Kazuya Kitamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 2011; 50:264-74. [DOI: 10.1038/sc.2011.111] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
The red nucleus and the rubrospinal projection in the mouse. Brain Struct Funct 2011; 217:221-32. [PMID: 21927901 DOI: 10.1007/s00429-011-0348-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/31/2011] [Indexed: 12/20/2022]
Abstract
We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8-T1 (hand motor neurons) and L5-L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.
Collapse
|
27
|
Beneficial effect of the traditional chinese drug shu-xue-tong on recovery of spinal cord injury in the rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953395 PMCID: PMC2952331 DOI: 10.1155/2011/862197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 04/20/2010] [Accepted: 06/30/2010] [Indexed: 11/17/2022]
Abstract
Shu-Xue-Tong (SXT) is a traditional Chinese drug widely used to ameliorate stagnation of blood flow, such as brain or myocardial infarction. Whether SXT may have therapeutic value for spinal cord injury (SCI), during which ischemia plays an important role in its pathology, remains to be elucidated. We hypothesized that SXT may promote SCI healing by improving spinal cord blood flow (SCBF), and a study was thus designed to explore this possibility. Twenty-five male Sprague-Dawley rats were used. SCI was induced by compression, and SXT was administrated 24 h postinjury for 14 successive days. The effects of SXT were assessed by means of laser-Doppler flowmetry, motor functional analysis (open-field walking and footprint analysis), and histological analysis (hematoxylin-eosin and thionin staining and NeuN immunohistochemistry). SXT significantly promoted SCBF of the contused spinal cord and enhanced the recovery of motor function. Histological analysis indicated that the lesion size was reduced, the pathological changes were ameliorated, and more neurons were preserved. Based on these results we conclude that SXT can effectively improve SCI.
Collapse
|
28
|
Murali G, Dhivya S, Rasappan P. Role of Glutathione monoester on age‐related neurochemical alterations in rat brain. Int J Dev Neurosci 2009; 27:643-8. [DOI: 10.1016/j.ijdevneu.2009.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/08/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ganesan Murali
- Department of Medical BiochemistryDr. ALM Postgraduate Institute of Basic Medical SciencesUniversity of MadrasTaramani CampusChennai600 113India
| | | | | |
Collapse
|
29
|
Akhtar AZ, Pippin JJ, Sandusky CB. Animal studies in spinal cord injury: a systematic review of methylprednisolone. Altern Lab Anim 2009; 37:43-62. [PMID: 19292575 DOI: 10.1177/026119290903700108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to examine whether animal studies can reliably be used to determine the usefulness of methylprednisolone (MP) and other treatments for acute spinal cord injury (SCI) in humans. This was achieved by performing a systematic review of animal studies on the effects of MP administration on the functional outcome of acute SCI. Data were extracted from the published articles relating to: outcome; MP dosing regimen; species/strain; number of animals; methodological quality; type of injury induction; use of anaesthesia; functional scale used; and duration of follow-up. Subgroup analyses were performed, based on species or strain, injury method, MP dosing regimen, functional outcome measured, and methodological quality. Sixty-two studies were included, which involved a wide variety of animal species and strains. Overall, beneficial effects of MP administration were obtained in 34% of the studies, no effects in 58%, and mixed results in 8%. The results were inconsistent both among and within species, even when attempts were made to detect any patterns in the results through subgroup analyses. The results of this study demonstrate the barriers to the accurate prediction from animal studies of the effectiveness of MP in the treatment of acute SCI in humans. This underscores the need for the development and implementation of validated testing methods.
Collapse
Affiliation(s)
- Aysha Z Akhtar
- Physicians Committee for Responsible Medicine, Washington, DC, USA.
| | | | | |
Collapse
|
30
|
Abstract
Multiple neuroprotective agents have shown benefit for the treatment of acute spinal cord injury (SCI) in animal studies. However, clinical trials have, thus far, been uniformly disappointing. This review explores reasons for discrepancies between promising animal studies and disappointing clinical trials and potential barriers to extrapolation of research results from animals to humans. The three major barriers disclosed are: differences in injury type between laboratory-induced SCI and clinical SCI, difficulties in interpreting functional outcome in animals, and inter-species and interstrain differences in pathophysiology of SCI. These barriers can impair the effectiveness of animal models of SCI to predict human outcomes. While some of these barriers can be overcome, others are inherent to the animal models.
Collapse
Affiliation(s)
- Aysha Z Akhtar
- Physicians Committee for Responsible Medicine, Washington, D.C. 20016, USA.
| | | | | |
Collapse
|
31
|
Murali G, Panneerselvam C. Modulatory Role of Glutathione Monoester in Augmenting Age-Associated Neuronal Antioxidant System. Exp Aging Res 2008; 34:419-36. [DOI: 10.1080/03610730802271906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Vertiz-Hernandez A, Castaneda-Hernandez G, Martinez-Cruz A, Cruz-Antonio L, Grijalva I, Guizar-Sahagun G. L-arginine reverses alterations in drug disposition induced by spinal cord injury by increasing hepatic blood flow. J Neurotrauma 2008; 24:1855-62. [PMID: 18159997 DOI: 10.1089/neu.2007.0375] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High hepatic extraction drugs--such as phenacetin, methylprednisolone, and cyclosporine--exhibit an increased bioavailability after acute spinal cord injury (SCI) due to an impaired clearance. For these drugs, metabolic clearance depends on hepatic blood flow. Thus, it is possible that pharmacokinetic alterations can be reversed by increasing liver perfusion. Therefore, we evaluated the effect of L-arginine, a nitric oxide precursor, on the pharmacokinetics of a prototype drug with high hepatic extraction, and on hepatic microvascular blood flow (MVBF) after acute SCI. Pharmacokinetics of i.v. phenacetin was studied in rats 24 h after a severe T-5 spinal cord contusion; animals being pretreated with L-arginine 100 mg/kg i.v. or vehicle. MVBF was assessed under similar experimental conditions using laser Doppler flowmetry. SCI significantly altered phenacetin pharmacokinetics. Clearance was significantly reduced, resulting in a prolonged half-life and an increase in bioavailability, while volume of distribution was decreased. Pharmacokinetic alterations were reversed when injured rats were pretreated with L -arginine. It was also observed that L-arginine significantly increased hepatic MVBF in injured rats, notwithstanding it exhibited a limited effect on sham-injured animals. Our data hence suggest that L-arginine is able to reverse SCI-induced alterations in phenacetin pharmacokinetics due to an impaired hepatic MVBF, likely by increased nitric oxide synthesis leading to vasodilation. Further studies are warranted to examine the potential usefulness of nitric oxide supplementation in a clinical setting.
Collapse
|
33
|
Kitamura K, Iwanami A, Nakamura M, Yamane J, Watanabe K, Suzuki Y, Miyazawa D, Shibata S, Funakoshi H, Miyatake S, Coffin RS, Nakamura T, Toyama Y, Okano H. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res 2007; 85:2332-42. [PMID: 17549731 DOI: 10.1002/jnr.21372] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many therapeutic interventions using neurotrophic factors or pharmacological agents have focused on secondary degeneration after spinal cord injury (SCI) to reduce damaged areas and promote axonal regeneration and functional recovery. Hepatocyte growth factor (HGF), which was identified as a potent mitogen for mature hepatocytes and a mediator of inflammatory responses to tissue injury, has recently been highlighted as a potent neurotrophic and angiogenic factor in the central nervous system (CNS). In the present study, we revealed that the extent of endogenous HGF up-regulation was less than that of c-Met, an HGF receptor, during the acute phase of SCI and administered exogenous HGF into injured spinal cord using a replication-incompetent herpes simplex virous-1 (HSV-1) vector to determine whether HGF exerts beneficial effects and promotes functional recovery after SCI. This treatment resulted in the significant promotion of neuron and oligodendrocyte survival, angiogenesis, axonal regrowth, and functional recovery after SCI. These results suggest that HGF gene delivery to the injured spinal cord exerts multiple beneficial effects and enhances endogenous repair after SCI. This is the first study to demonstrate the efficacy of HGF for SCI.
Collapse
Affiliation(s)
- Kazuya Kitamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu XH, Yang SH, Duan DY, Cheng HH, Bao YT, Zhang Y. Anti-Apoptotic Effect of Insulin in the Control of Cell Death and Neurologic Deficit after Acute Spinal Cord Injury in Rats. J Neurotrauma 2007; 24:1502-12. [PMID: 17892411 DOI: 10.1089/neu.2006.0228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent studies confirmed that the new cell survival signal pathway of Insulin-PI3K-Akt exerted cyto-protective actions involving anti-apoptosis. This study was undertaken to investigate the potential neuroprotective effects of insulin in the pathogenesis of spinal cord injury (SCI) and evaluate its therapeutic effects in adult rats. SCI was produced by extradural compression using modified Allen's stall with damage energy of 40 g-cm force. One group of rats was subjected to SCI in combination with the administration of recombinant human insulin dissolved in 50% glucose solution at the dose of 1 IU/kg day, for 7 days. At the same time, another group of rats was subjected to SCI in combination with the administration of an equal volume of sterile saline solution. Functional recovery was evaluated using open-field walking, inclined plane tests, and motor evoked potentials (MEPs) during the first 14 days post-trauma. Levels of protein for B-cell lymphoma/leukemia-2 gene (Bcl-2), Caspase-3, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified in the injured spinal cord by Western blot analysis. Neuronal apoptosis was detected by TUNEL, and spinal cord blood flow (SCBF) was measured by laser-Doppler flowmetry (LDF). Ultimately, the data established the effectiveness of insulin treatment in improving neurologic recovery, increasing the expression of anti-apoptotic bcl-2 proteins, inhibiting caspase-3 expression decreasing neuronal apoptosis, reducing the expression of proinflammatory cytokines iNOS and COX-2, and ameliorating microcirculation of injured spinal cord after moderate contusive SCI in rats. In sum, this study reported the beneficial effects of insulin in the treatment of SCI, with the suggestion that insulin should be considered as a potential therapeutic agent.
Collapse
Affiliation(s)
- Xing-Huo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
35
|
Martiñon S, García E, Flores N, Gonzalez I, Ortega T, Buenrostro M, Reyes R, Fernandez-Presas AM, Guizar-Sahagún G, Correa D, Ibarra A. Vaccination with a neural-derived peptide plus administration of glutathione improves the performance of paraplegic rats. Eur J Neurosci 2007; 26:403-12. [PMID: 17623024 DOI: 10.1111/j.1460-9568.2007.05650.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After damage to the central nervous system (CNS) the body is protected by an adaptive immune response which is directed against myelin-associated proteins. Active immunization with nonpathogenic derivatives of CNS-associated peptides (DCAP) reduces the degeneration of neurons and promotes motor recovery after spinal cord injury (SCI) in rats. In order to improve even more the neurological outcome obtained with this therapy, either a combination of DCAP immunization plus glutathione monoethyl ester (GSHE) or a double DCAP immunization were performed. GSHE is a cell-permeant derivative of glutathione, a potent antioxidant agent that significantly inhibits lipid peroxidation after SCI. After a contusive or compressive SCI, the combination of GSHE + DCAP immunization, induced better motor recovery, a higher number of myelinated axons and better rubrospinal neuron survival than immunization alone. On the other hand, double-DCAP immunization counteracted the protective effect of DCAP therapy. Motor recovery and neuronal survival of double-immunized rats were similar to those observed in control animals (PBS-treated). Further studies revealed that double immunization was not encephalitogenic but inhibited the proliferative response of T-cells specific to the DCAP-immunized peptide. This clonal dysfunction was probably secondary to anergy. GSHE improves the protective effect induced by DCAP immunization while double immunization, reverts it.
Collapse
Affiliation(s)
- S Martiñon
- Unidad de Investigación Médica en Enfermedades Neurológicas, HE, CMN Siglo XXI, IMSS, Avenida Cuauhtemoc no. 330, Col. Doctores, C.P. 06720, México D.F., México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hall RM, Oakland RJ, Wilcox RK, Barton DC. Spinal cord–fragment interactions following burst fracture: an in vitro model. J Neurosurg Spine 2006; 5:243-50. [PMID: 16961086 DOI: 10.3171/spi.2006.5.3.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The purpose of the study was to develop an in vitro model of the bone fragment and spinal cord interactions that occur during a burst fracture and further the understanding of how the velocity of the bone fragment and the status of the posterior longitudinal ligament (PLL) affect the deformation of the cord.
Methods
An in vitro model was developed such that high-speed video and pressure measurements recorded the impact of a simulated bone fragment on sections of explanted bovine spinal cord. The model simulated the PLL and the posterior elements.
The status of the PLL had a significant effect on both the maximum occlusion of the spinal cord and the time for occlusion to occur. Raising the fragment velocity led to an overall increase in the spinal cord deformation. Interestingly the dura mater appeared to have little or no effect on the extent of occlusion.
Conclusions
These findings may indicate the importance of the dura’s interaction with the cerebrospinal fluid in protecting the cord during this type of impact.
Collapse
Affiliation(s)
- Richard M Hall
- School of Mechanical Engineering, University of Leeds, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 2006; 23:264-80. [PMID: 16629615 DOI: 10.1089/neu.2006.23.263] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury results in acute as well as progressive secondary destruction of local and distant nervous tissue through a number of degenerative mechanisms. Spinal cord injury also initiates a number of endogenous neuroprotective and regenerative responses. Understanding of these mechanisms might identify potential targets for treatments after spinal cord injury in humans. Here, we first discuss recent developments in our understanding of the immediate traumatic and subsequent secondary degeneration of local tissue and long projecting pathways in animal models. These include the inflammatory and vascular responses during the acute phase, as well as cell death, demyelination and scar formation in the subacute and chronic phases. Secondly, we discuss the spontaneous axonal regeneration of injured and plasticity of uninjured systems, and other repair-related responses in animals, including the upregulation of regeneration-associated genes in some neurons, increases in neurotrophic factors in the spinal cord and remyelination by oligodendrocyte precursors and invading Schwann cells. Lastly, we comment on the still limited understanding of the neuropathology in humans, which is largely similar to that in rodents. However, there also are potentially important differences, including the reduced glial scarring, inflammation and demyelination, the increased Schwannosis and the protracted Wallerian degeneration in humans. The validity of current rodent models for human spinal cord injury is also discussed. The emphasis of this review is on the literature from 2002 to early 2005.
Collapse
Affiliation(s)
- Theo Hagg
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
38
|
Sleven HJ, Gibbs JE, Cock HR. The antioxidant N-acetyl-L-cysteine does not prevent hippocampal glutathione loss or mitochondrial dysfunction associated with status epilepticus. Epilepsy Res 2006; 69:165-9. [PMID: 16490347 DOI: 10.1016/j.eplepsyres.2006.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/16/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Hippocampal reduced glutathione (GSH) levels diminish after status epilepticus (SE), which precedes damage to mitochondrial enzymes, which is associated with cell death. The rat perforant pathway stimulation model was used to assess whether intraperitoneal administration of the GSH precursor N-acetyl-L-cysteine (NAC) protected against these changes. NAC (300 mg/kg) treated animals exhibited the same GSH decrease post SE as vehicle treated. Furthermore, NAC treatment had no protective effects on mitochondrial dysfunction.
Collapse
Affiliation(s)
- H J Sleven
- Epilepsy Group, Centre for Clinical Neurosciences, St. Georges, University of London, Cranmer Terrace, Tooting, London SE1 0RE, UK
| | | | | |
Collapse
|
39
|
Sleven H, Gibbs JE, Heales S, Thom M, Cock HR. Depletion of reduced glutathione precedes inactivation of mitochondrial enzymes following limbic status epilepticus in the rat hippocampus. Neurochem Int 2005; 48:75-82. [PMID: 16290321 DOI: 10.1016/j.neuint.2005.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/26/2005] [Accepted: 10/03/2005] [Indexed: 11/22/2022]
Abstract
The time course and critical determinants of mitochondrial dysfunction and oxidative stress following limbic status epilepticus (SE) were investigated in hippocampal sub-regions of an electrical stimulation model in rats, at time points 4-44h after status. Mitochondrial and cytosolic enzyme activities were measured spectrophotometrically, and reduced glutathione (GSH) concentrations by HPLC, and compared to results from sham controls. The earliest change in any sub-region was a fall in GSH, appearing as early as 4h in CA3 (-13%, p<0.05), and persisting at all time points. This was followed by a transient fall in complex I activity (CA3, 16h, -13%, p<0.05), and later changes in aconitase (CA1,-18% and CA3, -22% at 44h, p<0.05). The activity of the cytosolic enzyme glyceraldehyde-3-phosphate-dehydrogenase was unaffected at all time points. It is known that GSH levels are dependent both on redox status, and on the availability of the precursor cysteine, in turn dependent on the cysteine/glutamate antiporter, for which extracellular glutamate concentrations are rate limiting. Both mechanisms are likely to contribute indirectly to GSH depletion following seizures. That a relative deficiency in GSH precedes later changes in the activities of complex I and aconitase in vulnerable hippocampal sub-regions, occurring within a clinically relevant therapeutic time window, suggests that strategies to boost GSH levels and/or otherwise reduce oxidative stress following seizures, deserve further study, both in terms of preventing the biochemical consequences of SE and the neuronal dysfunction and clinical consequences.
Collapse
Affiliation(s)
- Hannah Sleven
- Epilepsy Group, Centre for Clinical Neurosciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | |
Collapse
|