1
|
Lahogue C, Boulouard M, Menager F, Freret T, Billard JM, Bouet V. A new 2-hit model combining serine racemase deletion and maternal separation displays behavioral and cognitive deficits associated with schizophrenia. Behav Brain Res 2024; 477:115301. [PMID: 39442565 DOI: 10.1016/j.bbr.2024.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Schizophrenia (SCZ) is a multifactorial psychotic disorder characterized by positive and negative symptoms as well as cognitive impairments. To advance the current treatments, it is important to improve animal models by considering the multifactorial etiology, thus by combining different risk factors. The objective of our study was to explore in a new mouse model, the impact of genetic deletion of serine racemase (genetic vulnerability) combined with an early stress factor induced by maternal separation (early environmental exposure) in the context of SCZ development. The face validity of the model was assessed through a wide range of behavioral experiments. The 2-hit mice displayed an increased locomotor activity mimicking positive symptoms, working memory impairment, cognitive deficits and recognition memory alterations, which could reflect neophobia. This new multifactorial model therefore presents an interesting phenotype for modelling animal model with partial behavioral and cognitive deficits associated with SCZ.
Collapse
Affiliation(s)
- Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, FHU A(2)M(2)P, COMETE, 14000 Caen, France.
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, FHU A(2)M(2)P, COMETE, 14000 Caen, France
| | - François Menager
- Normandie Univ, UNICAEN, INSERM, FHU A(2)M(2)P, COMETE, 14000 Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, FHU A(2)M(2)P, COMETE, 14000 Caen, France
| | - Jean-Marie Billard
- Normandie Univ, UNICAEN, INSERM, FHU A(2)M(2)P, COMETE, 14000 Caen, France
| | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, FHU A(2)M(2)P, COMETE, 14000 Caen, France.
| |
Collapse
|
2
|
Percelay S, Lahogue C, Billard JM, Freret T, Boulouard M, Bouet V. The 3-hit animal models of schizophrenia: Improving strategy to decipher and treat the disease? Neurosci Biobehav Rev 2024; 157:105526. [PMID: 38176632 DOI: 10.1016/j.neubiorev.2023.105526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Schizophrenia is a complex disease related to combination and interactions between genetic and environmental factors, with an epigenetic influence. After the development of the first mono-factorial animal models of schizophrenia (1-hit), that reproduced patterns of either positive, negative and/or cognitive symptoms, more complex models combining two factors (2-hit) have been developed to better fit with the multifactorial etiology of the disease. In the two past decades, a new way to design animal models of schizophrenia have emerged by adding a third hit (3-hit). This review aims to discuss the relevance of the risk factors chosen for the tuning of the 3-hit animal models, as well as the validities measurements and their contribution to schizophrenia understanding. We intended to establish a comprehensive overview to help in the choice of factors for the design of multiple-hit animal models of schizophrenia.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Caroline Lahogue
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| | - Jean-Marie Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Thomas Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Michel Boulouard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France
| | - Valentine Bouet
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, 14000 Caen, France.
| |
Collapse
|
3
|
Fang C, Wang H, Naumann RK. Developmental Patterning and Neurogenetic Gradients of Nurr1 Positive Neurons in the Rat Claustrum and Lateral Cortex. Front Neuroanat 2021; 15:786329. [PMID: 34924965 PMCID: PMC8675902 DOI: 10.3389/fnana.2021.786329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
The claustrum is an enigmatic brain structure thought to be important for conscious sensations. Recent studies have focused on gene expression patterns, connectivity, and function of the claustrum, but relatively little is known about its development. Interestingly, claustrum-enriched genes, including the previously identified marker Nurr1, are not only expressed in the classical claustrum complex, but also embedded within lateral neocortical regions in rodents. Recent studies suggest that Nurr1 positive neurons in the lateral cortex share a highly conserved genetic expression pattern with claustrum neurons. Thus, we focus on the developmental progression and birth dating pattern of the claustrum and Nurr1 positive neurons in the lateral cortex. We comprehensively investigate the expression of Nurr1 at various stages of development in the rat and find that Nurr1 expression first appears as an elongated line along the anterior-posterior axis on embryonic day 13.5 (E13.5) and then gradually differentiates into multiple sub-regions during prenatal development. Previous birth dating studies of the claustrum have led to conflicting results, therefore, we combine 5-ethynyl-2'-deoxyuridine (EdU) labeling with in situ hybridization for Nurr1 to study birth dating patterns. We find that most dorsal endopiriform (DEn) neurons are born on E13.5 to E14.5. Ventral claustrum (vCL) and dorsal claustrum (dCL) are mainly born on E14.5 to E15.5. Nurr1 positive cortical deep layer neurons (dLn) and superficial layer neurons (sLn) are mainly born on E14.5 to E15.5 and E15.5 to E17.5, respectively. Finally, we identify ventral to dorsal and posterior to anterior neurogenetic gradients within vCL and DEn. Thus, our findings suggest that claustrum and Nurr1 positive neurons in the lateral cortex are born sequentially over several days of embryonic development and contribute toward charting the complex developmental pattern of the claustrum in rodents.
Collapse
Affiliation(s)
| | | | - Robert Konrad Naumann
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
4
|
Guerrin CGJ, Doorduin J, Sommer IE, de Vries EFJ. The dual hit hypothesis of schizophrenia: Evidence from animal models. Neurosci Biobehav Rev 2021; 131:1150-1168. [PMID: 34715148 DOI: 10.1016/j.neubiorev.2021.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder, which can severely impact social and professional functioning. Epidemiological and clinical studies show that schizophrenia has a multifactorial aetiology comprising genetic and environmental risk factors. Although several risk factors have been identified, it is still not clear how they result in schizophrenia. This knowledge gap, however, can be investigated in animal studies. In this review, we summarise animal studies regarding molecular and cellular mechanisms through which genetic and environmental factors may affect brain development, ultimately causing schizophrenia. Preclinical studies suggest that early environmental risk factors can affect the immune, GABAergic, glutamatergic, or dopaminergic system and thus increase the susceptibility to another risk factor later in life. A second insult, like social isolation, stress, or drug abuse, can further disrupt these systems and the interactions between them, leading to behavioural abnormalities. Surprisingly, first insults like maternal infection and early maternal separation can also have protective effects. Single gene mutations associated with schizophrenia did not have a major impact on the susceptibility to subsequent environmental hits.
Collapse
Affiliation(s)
- Cyprien G J Guerrin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Medical Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
5
|
Lin CC, Chen TY, Cheng PY, Liu YP. Early life social experience affects adulthood fear extinction deficit and associated dopamine profile abnormalities in a rat model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109914. [PMID: 32165120 DOI: 10.1016/j.pnpbp.2020.109914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Individuals may develop fear extinction deficits after life-threatening traumatic events; such deficits indicate posttraumatic stress disorder (PTSD). Because the occurrence of this disorder differs among people who have experienced trauma, hidden underlying factors should be determined. Increasing evidence suggests the involvement of neuronal dysregulation of information processes or cognitive function during development. This neuronal dysregulation is caused by disturbances in dopamine (DA) transmission within the fear circuit, which comprises the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Single prolonged stress (SPS) combined with an isolation rearing (IR) paradigm was used to randomly assign rats to four groups [social rearing-no SPS (SR-NS), SR-SPS, IR-NS, and IR-SPS], and their performance in prepulse inhibition (PPI) and on Pavlovian fear conditioning tests was assessed. Tissue DA levels and the expression of DA receptors (D1R and D2R) in the fear circuit were measured at the end of the experiment. Our results indicated that PPI deficits and fear extinction problems were specific to rats subjected to IR and SPS, respectively. Furthermore, IR-induced PPI deficits were not influenced by SPS, but SPS-induced fear extinction retrieval impairment could be adjusted according to previous IR experiences. Neurochemically, tissue DA levels and D1R expression in the mPFC and amygdala were nonspecifically reduced by IR and SPS, whereas D2R expression in the mPFC and amygdala was higher in IR-SPS than in SR-SPS rats. These findings suggest that early life experiences may influence fear responses in adulthood through a change in DA profiles within the fear circuit.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Tzung-Yan Chen
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
6
|
Khan A, Powell SB. Sensorimotor gating deficits in "two-hit" models of schizophrenia risk factors. Schizophr Res 2018; 198:68-83. [PMID: 29070440 PMCID: PMC5911431 DOI: 10.1016/j.schres.2017.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Genetic and environmental models of neuropsychiatric disease have grown exponentially over the last 20years. One measure that is often used to evaluate the translational relevance of these models to human neuropsychiatric disease is prepulse inhibition of startle (PPI), an operational measure of sensorimotor gating. Deficient PPI characterizes several neuropsychiatric disorders but has been most extensively studied in schizophrenia. It has become a useful tool in translational neuropharmacological and molecular genetics studies because it can be measured across species using almost the same experimental parameters. Although initial studies of PPI in rodents were pharmacological because of the robust predictive validity of PPI for antipsychotic efficacy, more recently, PPI has become standard common behavioral measures used in genetic and neurodevelopmental models of schizophrenia. Here we review "two hit" models of schizophrenia and discuss the utility of PPI as a tool in phenotyping these models of relevant risk factors. In the review, we consider approaches to rodent models of genetic and neurodevelopmental risk factors and selectively review "two hit" models of gene×environment and environment×environment interactions in which PPI has been measured.
Collapse
Affiliation(s)
- Asma Khan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States
| | - Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, La Jolla, CA, United States.
| |
Collapse
|
7
|
Ma J, Wang F, Yang J, Dong Y, Su G, Zhang K, Pan X, Ma P, Zhou T, Wu C. Xiaochaihutang attenuates depressive/anxiety-like behaviors of social isolation-reared mice by regulating monoaminergic system, neurogenesis and BDNF expression. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:94-104. [PMID: 28687505 DOI: 10.1016/j.jep.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaochaihutang (XCHT), as a classical herbal formula for the treatment of "Shaoyang syndrome" has been demonstrated to exert an antidepressant effect in multiple animal models of depression as shown in our previous studies. However, the effects of XCHT on social isolation (SI)-reared mice have not been investigated. This study aims to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice, and its implicated mechanisms, including alterations in the monoaminergic system, neurogenesis and neurotrophin expression. MATERIALS AND METHODS Male C57 BL/6J mice (aged 4 weeks after weaning) were reared isolatedly for 8 weeks and XCHT (0.8, 2.3, 7.0g/kg) were given by gavage once a day. Forced swimming test (FST), tail suspension test (TST), open field test (OFT), elevated-plus maze test (EPM) and intruder-induced aggression test were used to explore the effects of XCHT on depressive/anxiety-like behaviors of SI-reared mice after administration of XCHT for 6 weeks. HPLC-MS/MS was performed to quantify the levels of neurotransmitters in the hippocampus by in vivo microdialysis, while western immunoblotting was used to evaluate the action of XCHT on the synthesis, transport and degradation of monoamine neurotransmitters. Immunofluorescence was used to study the effects of XCHT on neurogenesis and neurotrophin expression, including Ki-67, DCX, BrdU and BDNF. RESULTS Our results showed that administration of XCHT (0.8, 2.3 and 7.0g/kg) for 6 weeks significantly attenuated the increase in immobility time in TST and FST, improved the anxiety-like behaviors in OFT and EPM, and improved the aggressive behaviors of SI-reared mice. XCHT significantly elevated monoamine neurotransmitters levels and inhibited 5-HT turnover (5-HIAA/5-HT) in hippocampal microdialysates of SI-reared mice. In addition, we found XCHT enhanced monoamine neurotransmitter synthesis enzymes (TPH2 and TH) expressions, inhibited serotonin transporter (SERT) expression and decreased monoamine neurotransmitter degradation enzyme (MAOA) expression in the hippocampus of SI-reared mice for the first time. Moreover, XCHT significantly augmented hippocampal neurogenesis and BDNF expression in hippocampus of SI-reared mice. CONCLUSIONS Our results showed for the first time that XCHT improved depressive/anxiety-like behaviors of SI-reared mice by regulating the monoaminergic system, neurogenesis and neurotrophin expression. The findings indicate that XCHT may have a therapeutic application for early-life stress model of depression and in turn provide further evidence supporting XCHT a novel potential antidepressant from a distinct perspective.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Fang Wang
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Yingxu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Guangyue Su
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Xing Pan
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Ping Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Tingshuo Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China.
| |
Collapse
|
8
|
Kummari E, Guo-Ross S, Eells JB. Region Specific Effects of Aging and the Nurr1-Null Heterozygous Genotype on Dopamine Neurotransmission. NEUROCHEMISTRY & NEUROPHARMACOLOGY : OPEN ACCESS 2017; 3:114. [PMID: 28989991 PMCID: PMC5630175 DOI: 10.4172/2469-9780.1000114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transcription factor Nurr1 is essential for dopamine neuron differentiation and is important in maintaining dopamine synthesis and neurotransmission in the adult. Reduced Nurr1 function, due to the Nurr1-null heterozygous genotype (+/-), impacts dopamine neuron function in a region specific manner resulting in a decrease in dopamine synthesis in the dorsal and ventral striatum and a decrease in tissue dopamine levels in the ventral striatum. Additionally, maintenance of tissue dopamine levels in the dorsal striatum and survival of nigrostriatal dopamine neurons with aging (>15 months) or after various toxicant treatments are impaired. To further investigate the effects of aging and the Nurr1-null heterozygous genotype, we measured regional tissue dopamine levels, dopamine neuron numbers, body weight, open field activity and rota-rod performance in young (3-5 months) and aged (15-17 months) wild-type +/+ and +/- mice. Behavioral tests revealed no significant differences in rota-rod performance or basal open field activity as a result of aging or genotype. The +/- mice did show a significant increase in open field activity after 3 min of restraint stress. No differences in tissue dopamine levels were found in the dorsal striatum. However, there were significant reductions in tissue dopamine levels in the ventral striatum, which was separated into the nucleus accumbens core and shell, in the aged +/- mice. These data indicate that the mesoaccumbens system is more susceptible to the combination of aging and the +/- genotype than the nigrostriatal system. Additionally, the effects of aging and the +/- genotype may be dependent on genetic background or housing conditions. As Nurr1 mutations have been implicated in a number of diseases associated with dopamine neurotransmission, further data is needed to understand why and how Nurr1 can have differential functions across different dopamine neuron populations in aging.
Collapse
Affiliation(s)
- Evangel Kummari
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Shirley Guo-Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jeffrey B Eells
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
9
|
Ayhan Y, McFarland R, Pletnikov MV. Animal models of gene-environment interaction in schizophrenia: A dimensional perspective. Prog Neurobiol 2015; 136:1-27. [PMID: 26510407 DOI: 10.1016/j.pneurobio.2015.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/07/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Schizophrenia has long been considered as a disorder with multifactorial origins. Recent discoveries have advanced our understanding of the genetic architecture of the disease. However, even with the increase of identified risk variants, heritability estimates suggest an important contribution of non-genetic factors. Various environmental risk factors have been proposed to play a role in the etiopathogenesis of schizophrenia. These include season of birth, maternal infections, obstetric complications, adverse events at early childhood, and drug abuse. Despite the progress in identification of genetic and environmental risk factors, we still have a limited understanding of the mechanisms whereby gene-environment interactions (G × E) operate in schizophrenia and psychoses at large. In this review we provide a critical analysis of current animal models of G × E relevant to psychotic disorders and propose that dimensional perspective will advance our understanding of the complex mechanisms of these disorders.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Hacettepe University Faculty of Medicine, Department of Psychiatry, Turkey
| | - Ross McFarland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA; Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, USA.
| |
Collapse
|
10
|
Eells JB, Varela-Stokes A, Guo-Ross SX, Kummari E, Smith HM, Cox AD, Lindsay DS. Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity. PLoS One 2015; 10:e0119280. [PMID: 25855987 PMCID: PMC4391871 DOI: 10.1371/journal.pone.0119280] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.
Collapse
Affiliation(s)
- Jeffrey B. Eells
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| | - Andrea Varela-Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Shirley X. Guo-Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Evangel Kummari
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Holly M. Smith
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Arin D. Cox
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - David S. Lindsay
- Department of Biomedical Sciences & Pathobiology, Virginia–Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
11
|
Ira E, De Santi K, Lasalvia A, Bonetto C, Zanatta G, Cristofalo D, Bertani M, Bissoli SS, Riolo R, Gardellin F, Morandin I, Ramon L, Tansella M, Ruggeri M, Tosato S. Positive symptoms in first-episode psychosis patients experiencing low maternal care and stressful life events: a pilot study to explore the role of the COMT gene. Stress 2014; 17:410-5. [PMID: 25068285 DOI: 10.3109/10253890.2014.948841] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
COMT Val(158)Met moderates the effect of stress on psychotic symptoms. Exposure to stress is also associated with mesolimbic dopamine release in individuals experiencing low maternal care. We therefore test the hypothesis that recent stressful life events are associated with more severe positive symptoms (associated with mesolimbic dopamine release) in first-episode psychosis (FEP) patients who experienced low maternal care during childhood. We hypothesized that COMT Val(158)Met moderates this association. A total of 149 FEP patients recruited within the Psychosis Incident Cohort Outcome Study (PICOS) participated in the present study. Maternal care was assessed by the Parental Bonding Instrument (PBI), stressful life events were collected by the List of Events Scale and positive symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS). We found that low maternal care and recent stressful life events were associated with higher level of positive symptoms at the onset (analysis of variance [ANOVA], p = 0.012), and that patients who were also homozygotes for the COMT Val(158) allele had the highest level of positive symptoms (ANOVA, p = 0.024). Low maternal care and severe stressful life events may contribute to a symptomatology characterized by more severe positive symptoms at the onset, possibly due to an increased mesolimbic dopamine release. Homozygosity for the COMT Val(158) allele seems to confer a biological predisposition to the stress-related hyperactivity of the mesolimbic dopaminergic system. The data imply that the mesolimbic dopaminergic system is involved in the mediation/modulation of the effect of stressful events on the vulnerability for psychosis.
Collapse
Affiliation(s)
- Elisa Ira
- Department of Public Health and Community Medicine, Section of Psychiatry, University of Verona , Verona , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Howell KR, Pillai A. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study. Eur Neuropsychopharmacol 2014; 24:1324-36. [PMID: 24946696 PMCID: PMC4183161 DOI: 10.1016/j.euroneuro.2014.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023]
Abstract
Both genetic and environmental factors play important roles in the pathophysiology of schizophrenia. Although prenatal hypoxia is a potential environmental factor implicated in schizophrenia, very little is known about the consequences of combining models of genetic risk factor with prenatal hypoxia. Heterozygous reeler (haploinsufficient for reelin; HRM) and wild-type (WT) mice were exposed to prenatal hypoxia (9% oxygen for two hour) or normoxia at embryonic day 17 (E17). Behavioral (Prepulse inhibition, Y-maze and Open field) and functional (regional volume in frontal cortex and hippocampus as well as hippocampal blood flow) tests were performed at 3 months of age. The levels of hypoxia and stress-related molecules such as hypoxia-inducible factor-1 α (HIF-1α), vascular endothelial factor (VEGF), VEGF receptor-2 (VEGFR2/Flk1) and glucocorticoid receptor (GR) were examined in frontal cortex and hippocampus at E18, 1 month and 3 months of age. In addition, serum VEGF and corticosterone levels were also examined. Prenatal hypoxia induced anxiety-like behavior in both HRM and WT mice. A significant reduction in hippocampal blood flow, but no change in brain regional volume was observed following prenatal hypoxia. Significant age and region-dependent changes in HIF-1α, VEGF, Flk1 and GR were found following prenatal hypoxia. Serum VEGF and corticosterone levels were found decreased following prenatal hypoxia. None of the above prenatal hypoxia-induced changes were either diminished or exacerbated due to reelin deficiency. These results argue against any gene-environment interaction between hypoxia and reelin deficiency.
Collapse
Affiliation(s)
- Kristy R Howell
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 St. Sebastian Way, Augusta, GA 30912, USA.
| |
Collapse
|
13
|
Guillozet-Bongaarts AL, Hyde TM, Dalley RA, Hawrylycz MJ, Henry A, Hof PR, Hohmann J, Jones AR, Kuan CL, Royall J, Shen E, Swanson B, Zeng H, Kleinman JE. Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2014; 19:478-85. [PMID: 23528911 PMCID: PMC3965839 DOI: 10.1038/mp.2013.30] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/24/2013] [Accepted: 02/06/2013] [Indexed: 01/31/2023]
Abstract
The underlying pathology of schizophrenia (SZ) is likely as heterogeneous as its symptomatology. A variety of cortical and subcortical regions, including the prefrontal cortex, have been implicated in its pathology, and a number of genes have been identified as risk factors for disease development. We used in situ hybridization (ISH) to examine the expression of 58 genes in the dorsolateral prefrontal cortex (DLPFC, comprised of Brodmann areas 9 and 46) from 19 individuals with a premorbid diagnosis of SZ and 33 control individuals. Genes were selected based on: (1) previous identification as risk factors for SZ; (2) cell type markers or (3) laminar markers. Cell density and staining intensity were compared in the DLPFC, as well as separately in Brodmann areas 9 and 46. The expression patterns of a variety of genes, many of which are associated with the GABAergic system, were altered in SZ when compared with controls. Additional genes, including C8orf79 and NR4A2, showed alterations in cell density or staining intensity between the groups, highlighting the need for additional studies. Alterations were, with only a few exceptions, limited to Brodmann area 9, suggesting regional specificity of pathology in the DLPFC. Our results agree with previous studies on the GABAergic involvement in SZ, and suggest that areas 9 and 46 may be differentially affected in the disease. This study also highlights additional genes that may be altered in SZ, and indicates that these potentially interesting genes can be identified by ISH and high-throughput image analysis techniques.
Collapse
Affiliation(s)
- A L Guillozet-Bongaarts
- Allen Institute for Brain Science, Seattle, WA, USA,Data Annotations and Analysis, Allen Institute for Brain Science, 551North 34th Street, Seattle, WA 98103, USA. E-mail:
| | - T M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Clinical Brain Disorders Branch, Genes Cognition and Psychosis Program, Intramural Research Program, NIMH, NIH, Bethesda, MD, USA,Department of Psychiatry and Behavioral Sciences, and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R A Dalley
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - A Henry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - P R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - J Hohmann
- Allen Institute for Brain Science, Seattle, WA, USA
| | - A R Jones
- Allen Institute for Brain Science, Seattle, WA, USA
| | - C L Kuan
- Allen Institute for Brain Science, Seattle, WA, USA
| | - J Royall
- Allen Institute for Brain Science, Seattle, WA, USA
| | - E Shen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - B Swanson
- Allen Institute for Brain Science, Seattle, WA, USA
| | - H Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - J E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Clinical Brain Disorders Branch, Genes Cognition and Psychosis Program, Intramural Research Program, NIMH, NIH, Bethesda, MD, USA
| |
Collapse
|
14
|
Kirac D, Ozden I, Yildirim A, Genç E. Effect of high-fat intake on motor activity, homovanillic acid and 5-hydroxyindoleacetic acid levels in striatum and cortex of rats exposed to stress. Nutr Neurosci 2013; 12:89-94. [DOI: 10.1179/147683009x423256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, Matsuda T. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology 2013; 38:1535-47. [PMID: 23426384 PMCID: PMC3682148 DOI: 10.1038/npp.2013.52] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Isolation-reared male rodents show abnormal behaviors such as hyperlocomotion, aggressive behaviors, deficits of prepulse inhibition, and depression- and anxiety-like behaviors, but the neurochemical mechanism for the effects of psychological stress in these animals is not fully understood. This study examined the effects of social interactions between isolation-reared mice and intruder mice on brain monoaminergic systems. A cage was divided into two compartments by a mesh partition to prevent direct physical interactions. The 20-min encounter with an intruder elicited a restless and hyperexcitable state (hyperactivity) in male, but not in female, isolation-reared mice, whereas encounters with a sleeping intruder or a novel object did not. Although the encounter did not affect prefrontal neuronal-activity-marker c-Fos expression, dopamine (DA) levels, or serotonin (5-HT) levels in male group-reared mice or female isolation-reared mice, it increased prefrontal c-Fos expression, DA levels, and 5-HT levels in male isolation-reared mice. Furthermore, encounter-induced increases in c-Fos expression in the dorsal raphe nucleus and ventral tegmental area, but not in the nucleus accumbens shell, were much greater in isolation-reared than group-reared male mice. A 5-HT1A receptor agonist, a metabotropic glutamate 2/3 receptor agonist, and a gamma-aminobutyric acid A receptor agonist attenuated isolation-induced aggressive behaviors and encounter-induced hyperactivity, c-Fos expression in the prefrontal cortex and dorsal raphe nucleus, and increases in prefrontal 5-HT levels. These findings suggest that the prefrontal DA and 5-HT systems are activated by encounter stimulation in male isolation-reared mice, and the encounter-induced activation of 5-HT system triggers the induction of some abnormal behaviors in male isolation-reared mice. Furthermore, this study implies that the encounter stimulation-induced signal has a pharmacological significance.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ryota Araki
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tatsunori Tanaka
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Asuka Sasaga
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Saki Nishiyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kazuhiro Takuma
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan,Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan, Tel: +81 6 6879 8161, Fax: +81 6 6879 8159, E-mail:
| |
Collapse
|
16
|
Stergiopoulos A, Politis PK. The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells. Arch Biochem Biophys 2013; 534:27-37. [DOI: 10.1016/j.abb.2012.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/23/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
|
17
|
Petrovszki Z, Adam G, Tuboly G, Kekesi G, Benedek G, Keri S, Horvath G. Characterization of gene–environment interactions by behavioral profiling of selectively bred rats: The effect of NMDA receptor inhibition and social isolation. Behav Brain Res 2013. [DOI: 10.1016/j.bbr.2012.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Coudereau JP, Sreng L, Palme R, Touma C, Pratte M. Do social statuses affect the startle reflex in male mice? Behav Brain Res 2012; 234:117-20. [PMID: 22728306 DOI: 10.1016/j.bbr.2012.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/07/2012] [Accepted: 06/12/2012] [Indexed: 11/30/2022]
Abstract
Usual housing conditions lead to dominance hierarchy forming between male mice. The situation produces physiological and behavioural differences between dominants and subordinates. The goal of the present study was to assess stress responses, and possible changes in prepulse inhibition (PPI) of the startle reflex in dominant and subordinate male mice. Three weeks of daily social interactions led to stable aggressive dominance in 11 pairs of male NMRI mice. Stress levels were assessed by measuring faecal corticosterone metabolites (FCM), a non-invasive technique for monitoring hormonal changes in response to specific situations, with repeated sampling of each animal. The analysis of FCM levels showed greater stress in subordinate males at the beginning of the experiment, as the hierarchy was being established, but by the end of the experiment, FCM levels were reduced and similar in both dominants and subordinates. No significant differences were found in the startle response or PPI.
Collapse
Affiliation(s)
- J-P Coudereau
- Genetique Medicale et Genomique Fonctionnelle, Inserm UMR 910, Faculte de Medecine de Timone, 27 boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | |
Collapse
|
19
|
Powell SB, Weber M, Geyer MA. Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. Curr Top Behav Neurosci 2012; 12:251-318. [PMID: 22367921 PMCID: PMC3357439 DOI: 10.1007/7854_2011_195] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sensorimotor gating, or the ability of a sensory event to suppress a motor response, can be measured operationally via prepulse inhibition (PPI) of the startle response. PPI is deficient in schizophrenia patients as well as other neuropsychiatric disorders, can be measured across species, and has been used widely as a translational tool in preclinical neuropharmacological and genetic research. First developed to assess drug effects in pharmacological and developmental models, PPI has become one of the standard behavioral measures in genetic models of schizophrenia and other neuropsychiatric disorders that exhibit PPI deficits. In this chapter we review the literature on genetic models of sensorimotor gating and discuss the utility of PPI as a tool in phenotyping mutant mouse models. We highlight the approaches to genetic mouse models of neuropsychiatric disease, discuss some of the important caveats to these approaches, and provide a comprehensive table covering the more recent genetic models that have evaluated PPI.
Collapse
Affiliation(s)
- Susan B. Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Martin Weber
- Department of Neuroscience, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
20
|
Abstract
Basic research in animals represents a fruitful approach to study the neurobiological basis of brain and behavioral disturbances relevant to neuropsychiatric disease and to establish and evaluate novel pharmacological therapies for their treatment. In the context of schizophrenia, there are models employing specific experimental manipulations developed according to specific pathophysiological or etiological hypotheses. The use of selective lesions in adult animals and the acute administration of psychotomimetic agents are indispensable tools in the elucidation of the contribution of specific brain regions or neurotransmitters to the genesis of a specific symptom or collection of symptoms and enjoy some degrees of predictive validity. However, they may be inaccurate, if not inadequate, in capturing the etiological mechanisms or ontology of the disease needed for a complete understanding of the disease and may be limited in the discovery of novel compounds for the treatment of negative and cognitive symptoms of schizophrenia. Under the prevailing consensus of schizophrenia as a disease of neurodevelopmental origin, we have seen the establishment of neurodevelopmental animal models which aim to identify the etiological processes whereby the brain, following specific triggering events, develops into a "schizophrenia-like brain" over time. Many neurodevelopmental models such as the neonatal ventral hippocampus (vHPC) lesion, methylazoxymethanol (MAM), and prenatal immune activation models can mimic a broad spectrum of behavioral, cognitive, and pharmacological abnormalities directly implicated in schizophrenic disease. These models allow pharmacological screens against multiple and coexisting schizophrenia-related dysfunctions while incorporating the disease-relevant concept of abnormal brain development. The multiplicity of existing models is testimonial to the multifactorial nature of schizophrenia, and there are ample opportunities for their integration. Indeed, one ultimate goal must be to incorporate the successes of distinct models into one unitary account of the complex disorder of schizophrenia and to use such unitary approaches in the further development and evaluation of novel antipsychotic treatment strategies.
Collapse
|
21
|
The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation. Dev Psychopathol 2011; 23:975-99. [PMID: 22018077 DOI: 10.1017/s0954579411000459] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractThe term allostasis, which is defined as stability through change, has been invoked repeatedly by developmental psychopathologists to describe long-lasting and in some cases permanent functional alterations in limbic–hypothalamic–pituitary–adrenal axis responding following recurrent and/or prolonged exposure to stress. Increasingly, allostatic load models have also been invoked to describe psychological sequelae of abuse, neglect, and other forms of maltreatment. In contrast, neural adaptations to stress, including those incurred by monoamine systems implicated in (a) mood and emotion regulation, (b) behavioral approach, and (c) social affiliation and attachment, are usually not included in models of allostasis. Rather, structural and functional alterations in these systems, which are exquisitely sensitive to prolonged stress exposure, are usually explained as stress mediators, neural plasticity, and/or programming effects. Considering these mechanisms as distinct from allostasis is somewhat artificial given overlapping functions and intricate coregulation of monoamines and the limbic–hypothalamic–pituitary–adrenal axis. It also fractionates literatures that should be mutually informative. In this article, we describe structural and functional alterations in serotonergic, dopaminergic, and noradrenergic neural systems following both acute and prolonged exposure to stress. Through increases in behavioral impulsivity, trait anxiety, mood and emotion dysregulation, and asociality, alterations in monoamine functioning have profound effects on personality, attachment relationships, and the emergence of psychopathology.
Collapse
|
22
|
Vuillermot S, Feldon J, Meyer U. Nurr1 is not essential for the development of prepulse inhibition deficits induced by prenatal immune activation. Brain Behav Immun 2011; 25:1316-21. [PMID: 21723940 DOI: 10.1016/j.bbi.2011.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 11/26/2022] Open
Abstract
Inflammation-induced disruption of fetal neurodevelopmental processes has been linked to the precipitation of long-lasting behavioral abnormalities and associated neuropathology. Recent longitudinal investigations in prenatal immune activation models have revealed developmental correspondences between the ontogeny of specific dopaminergic neuropathology and the postnatal onset of distinct forms of dopamine-dependent functional abnormalities implicated in schizophrenia. Two examples of such developmental correspondences are increased expression of the orphan nuclear receptor Nurr1 (NR4A2) in ventral midbrain areas and disruption of prepulse inhibition of the acoustic startle reflex, with both the neuroanatomical and behavioral effects emerging only in adult but not pre-pubertal subjects exposed to prenatal maternal inflammation. In the present study, we tested the hypothesis that Nurr1 may be a critical molecular mediator of prepulse inhibition deficits induced by prenatal immune activation. To this end, we compared the effects of prenatal immune challenge on adult PPI in wild-type (wt) mice and mice with a heterozygous constitutive deletion of Nurr1 (Nurr1+/-) using a well established mouse model of maternal immune activation by exposure to the viral mimetic poly(I:C) (=polyriboinosinic-polyribocytidilic acid). We found that prenatal poly(I:C) treatment on gestation day 9 was similarly effective in disrupting prepulse inhibition in adult wt and Nurr1+/- mice. Prenatal poly(I:C) treatment also generally increased midbrain Nurr1-positive cells and counteracted the genetically driven Nurr1 deficit in the substantia nigra. Our data thus suggest that at least under the present experimental conditions, Nurr1 is not essential for the development of prepulse inhibition deficits induced by prenatal immune activation.
Collapse
Affiliation(s)
- Stéphanie Vuillermot
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | |
Collapse
|
23
|
Burrows EL, McOmish CE, Hannan AJ. Gene-environment interactions and construct validity in preclinical models of psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1376-82. [PMID: 21168465 DOI: 10.1016/j.pnpbp.2010.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 11/11/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022]
Abstract
The contributions of genetic risk factors to susceptibility for brain disorders are often so closely intertwined with environmental factors that studying genes in isolation cannot provide the full picture of pathogenesis. With recent advances in our understanding of psychiatric genetics and environmental modifiers we are now in a position to develop more accurate animal models of psychiatric disorders which exemplify the complex interaction of genes and environment. Here, we consider some of the insights that have emerged from studying the relationship between defined genetic alterations and environmental factors in rodent models. A key issue in such animal models is the optimization of construct validity, at both genetic and environmental levels. Standard housing of laboratory mice and rats generally includes ad libitum food access and limited opportunity for physical exercise, leading to metabolic dysfunction under control conditions, and thus reducing validity of animal models with respect to clinical populations. A related issue, of specific relevance to neuroscientists, is that most standard-housed rodents have limited opportunity for sensory and cognitive stimulation, which in turn provides reduced incentive for complex motor activity. Decades of research using environmental enrichment has demonstrated beneficial effects on brain and behavior in both wild-type and genetically modified rodent models, relative to standard-housed littermate controls. One interpretation of such studies is that environmentally enriched animals more closely approximate average human levels of cognitive and sensorimotor stimulation, whereas the standard housing currently used in most laboratories models a more sedentary state of reduced mental and physical activity and abnormal stress levels. The use of such standard housing as a single environmental variable may limit the capacity for preclinical models to translate into successful clinical trials. Therefore, there is a need to optimize 'environmental construct validity' in animal models, while maintaining comparability between laboratories, so as to ensure optimal scientific and medical outcomes. Utilizing more sophisticated models to elucidate the relative contributions of genetic and environmental factors will allow for improved construct, face and predictive validity, thus facilitating the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Emma L Burrows
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
24
|
Vuillermot S, Feldon J, Meyer U. Relationship between sensorimotor gating deficits and dopaminergic neuroanatomy in Nurr1-deficient mice. Exp Neurol 2011; 232:22-32. [PMID: 21820432 DOI: 10.1016/j.expneurol.2011.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/06/2011] [Accepted: 07/16/2011] [Indexed: 10/17/2022]
Abstract
Nurr1 (NR4A2) is an orphan nuclear receptor highly essential for the development and maintenance of dopaminergic neurons. Reduced expression of Nurr1 has been linked to the etiopathogenesis of Parkinson's disease and other dopamine-related disorders such as schizophrenia. Recent experimental work in mice with a heterozygous constitutive deletion of Nurr1 has revealed that this genetic manipulation leads to the presence of sensorimotor gating dysfunctions in the form of reduced prepulse inhibition of the acoustic startle reflex. However, the neuronal substances for this behavioral manifestation remain essentially unknown. Since converging evidence supports a key role of the central dopamine system in the regulation of prepulse inhibition, we hypothesized that the emergence of prepulse inhibition deficits in adult Nurr1-deficient mice may be linked to dopaminergic neuroanatomical changes. To test this hypothesis, we followed a within-subject approach in which sensorimotor gating performance was correlated with post-mortem expression of several dopaminergic markers in relevant striatal and midbrain regions. We found that prepulse inhibition deficits in Nurr1-deficient mice were paralleled by reduced numbers of substantia nigra dopamine cells expressing tyrosine hydroxylase, and by decreased tyrosine hydroxylase and dopamine transporter immunoreactivity in ventral parts of the striatum. Most interestingly, we also revealed a striking negative correlation between prepulse inhibition levels and tyrosine hydroxylase immunoreactivity in Nurr1-deficient mice in dorsal striatal regions (caudate putamen) and ventral striatal regions (nucleus accumbens core and shell). Our findings thus suggest that the emergence of prepulse inhibition deficits induced by heterozygous constitutive deletion of Nurr1 is, at least in part, related to alterations in presynaptic components of the striatal dopamine system. The constellation of neuroanatomical and behavioral alterations in Nurr1-deficient mice observed here confirms previous impressions that the consequences of Nurr1 down-regulation capture neuronal and behavioral pathologies relevant especially for (but not limited to) Parkinson's disease.
Collapse
Affiliation(s)
- Stéphanie Vuillermot
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | | | | |
Collapse
|
25
|
Vuillermot S, Joodmardi E, Perlmann T, Ove Ögren S, Feldon J, Meyer U. Schizophrenia-relevant behaviors in a genetic mouse model of constitutive Nurr1 deficiency. GENES BRAIN AND BEHAVIOR 2011; 10:589-603. [DOI: 10.1111/j.1601-183x.2011.00698.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Läck AK, Gill KE, Porrino LJ. Local cerebral glucose utilization in rats exposed to an enriched environment: a comparison to impoverishment. Pharmacol Biochem Behav 2010; 96:521-5. [PMID: 20673779 PMCID: PMC3137127 DOI: 10.1016/j.pbb.2010.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/23/2010] [Accepted: 07/22/2010] [Indexed: 01/24/2023]
Abstract
Environmental enrichment and environmental impoverishment have been shown to differentially alter brain function. Here, we investigate the effects of enrichment vs. impoverishment on cerebral use of glucose in rodents. Rats were housed from postnatal day 28 to day 58 in either a socially and environmentally enriched environment or an impoverished environment devoid of other rats or environmental stimuli. Locomotor activity was measured at the end of the enrichment/impoverishment period. Following the duration of the exposure to these environments, cerebral metabolic rate of glucose utilization was determined using quantitative 2-[(14)C]deoxyglucose autoradiography in 37 brain regions in the cerebral cortex, forebrain, brain stem and thalamus. There were no differences in locomotor activity between the conditions. The nucleus accumbens core and shell had significantly higher rates of glucose utilization in enriched compared to impoverished animals. These data suggest that environment has a significant effect on brain function which may help to explain the beneficial and protective effects of enrichment against drug abuse and addiction.
Collapse
Affiliation(s)
- A K Läck
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
27
|
van den Buuse M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophr Bull 2010; 36:246-70. [PMID: 19900963 PMCID: PMC2833124 DOI: 10.1093/schbul/sbp132] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, there have been huge advances in the use of genetically modified mice to study pathophysiological mechanisms involved in schizophrenia. This has allowed rapid progress in our understanding of the role of several proposed gene mechanisms in schizophrenia, and yet this research has also revealed how much still remains unresolved. Behavioral studies in genetically modified mice are reviewed with special emphasis on modeling psychotic-like behavior. I will particularly focus on observations on locomotor hyperactivity and disruptions of prepulse inhibition (PPI). Recommendations are included to address pharmacological and methodological aspects in future studies. Mouse models of dopaminergic and glutamatergic dysfunction are then discussed, reflecting the most important and widely studied neurotransmitter systems in schizophrenia. Subsequently, psychosis-like behavior in mice with modifications in the most widely studied schizophrenia susceptibility genes is reviewed. Taken together, the available studies reveal a wealth of available data which have already provided crucial new insight and mechanistic clues which could lead to new treatments or even prevention strategies for schizophrenia.
Collapse
Affiliation(s)
- Maarten van den Buuse
- Mental Health Research Institute of Victoria, Parkville, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
28
|
Haczku A, Panettieri RA. Social stress and asthma: the role of corticosteroid insensitivity. J Allergy Clin Immunol 2010; 125:550-8. [PMID: 20153032 DOI: 10.1016/j.jaci.2009.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/02/2009] [Accepted: 11/05/2009] [Indexed: 02/07/2023]
Abstract
Psychosocial stress alters susceptibility to infectious and systemic illnesses and may enhance airway inflammation in asthma by modulating immune cell function through neural and hormonal pathways. Stress activates the hypothalamic-pituitary-adrenal axis. Release of endogenous glucocorticoids, as a consequence, may play a prominent role in altering the airway immune homeostasis. Despite substantial corticosteroid and catecholamine plasma levels, chronic psychosocial stress evokes asthma exacerbations. Animal studies suggest that social stress induces corticosteroid insensitivity that in part may be a result of impaired glucocorticoid receptor expression and/or function. Such mechanisms likely promote and amplify airway inflammation in response to infections, allergen, or irritant exposure. This review discusses evidence of an altered corticosteroid responsive state as a consequence of chronic psychosocial stress. Elucidation of the mechanisms of stress-induced impairment of glucocorticoid responsiveness and immune homeostasis may identify novel therapeutic targets that could improve asthma management.
Collapse
Affiliation(s)
- Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pa 19104-3403, USA.
| | | |
Collapse
|
29
|
Desbonnet L, Waddington JL, Tuathaigh CMPO. Mice mutant for genes associated with schizophrenia: common phenotype or distinct endophenotypes? Behav Brain Res 2009; 204:258-73. [PMID: 19728400 DOI: 10.1016/j.bbr.2009.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Schizophrenia is a complex neuropsychiatric disorder whose etiology involves a mixture of genetic and environmental factors. By virtue of this complexity, schizophrenia is a field of research in which a number of key technologies converge: in particular, identification of putative susceptibility genes through association studies in clinical populations leads to investigation of the behavioural roles of these genes by targeted manipulation in mice and their phenotypic characterisation ('gene-driven' approach); in a complementary manner, identification of putative pathophysiological processes and therapeutic pathways leads to investigation of behavioural phenotype in mice mutant for genes regulating such processes and pathways ('phenotype-driven' approach). As several susceptibility genes for schizophrenia and numerous genes implicated in the pathophysiology of schizophrenia have now been genetically manipulated in mice, it is timely to consider the roles of these genes in abnormal brain development and the ontogeny of putative schizophrenia-like phenotypes. The aim of this review is to outline existing knowledge from mutant studies concerning the contribution of these genes to the development of a common schizophrenia phenotype vis-à-vis discrete schizophrenia endophenotypes. Emphasis is also placed on the importance of studying gene x environment and gene x gene interactions, as well as addressing methodological issues related to genetic modelling and phenotyping strategies.
Collapse
Affiliation(s)
- Lieve Desbonnet
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | | | | |
Collapse
|
30
|
Expression pattern of NuIP gene in adult mouse brain. Brain Res 2009; 1302:42-53. [PMID: 19765553 DOI: 10.1016/j.brainres.2009.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/01/2009] [Accepted: 09/05/2009] [Indexed: 11/23/2022]
Abstract
We previously reported the identification of the Nurr1 interacting protein (NuIP) that was demonstrated to modulate the transcriptional activity of Nurr1, the orphan nuclear receptor required for midbrain dopaminergic neuron differentiation. NuIP was also cloned by others and referred to as a small G protein signaling modulators. The open reading frame of NuIP predicts a protein with an N-terminal RUN domain (RPIP8, UNC-14, and NESCA) and a C-terminal TBC domain (Tre-2, Bub2, and Cdc16) both of which are found in proteins of the GTPase activating protein (GAP) family, involved in the GTPase signaling pathway. To characterize the NuIP gene product, we developed a polyclonal antibody. Since NuIP gene is expressed most abundantly in adult and the level of expression during development is below the detection limit of immunohistochemistry, we now report the expression pattern of NuIP in adult mouse brain compared with the expression pattern of Nurr1 protein. Many regions co-expressed Nurr1 and NuIP including cortex, hippocampus, substantia nigra, and the cerebellum. However, there are also regions that exclusively express NuIP such as striatum, septum, globus pallidus, and the reticular thalamic nucleus. We also find that NuIP protein expresses mainly in NeuN-positive (neuronal nuclei) neurons but can be detected in GFAP-positive (glial fibrillary acidic protein) glial cells in hippocampus. Interestingly, NuIP is expressed in high levels in midbrain dopaminergic neurons including ventral tegmental area (VTA) and substantia nigra (SN) dopaminergic neurons but is not expressed or expressed in low levels in other dopaminergic neurons such as olfactory bulb and hypothalamus. Overall, the expression pattern of NuIP in adult mouse brain suggests that it may be involved in motor activity control in basal ganglia as well as higher central nervous system (CNS) functions such as cognition and memory in cortex and hippocampus.
Collapse
|
31
|
Oliver PL, Davies KE. Interaction between environmental and genetic factors modulates schizophrenic endophenotypes in the Snap-25 mouse mutant blind-drunk. Hum Mol Genet 2009; 18:4576-89. [PMID: 19729413 PMCID: PMC2773274 DOI: 10.1093/hmg/ddp425] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To understand the pathophysiology of neuropsychiatric disorders such as schizophrenia requires consideration of multiple genetic and non-genetic factors. However, very little is known about the consequences of combining models of synaptic dysfunction with controlled environmental manipulations. Therefore, to generate new insights into gene–environment interactions and complex behaviour, we examined the influence of variable prenatal stress (PNS) on two mouse lines with mutations in synaptosomal-associated protein of 25 kDa (Snap-25): the blind-drunk (Bdr) point mutant and heterozygous Snap-25 knockout mice. Neonatal development was analysed in addition to an assessment of adult behavioural phenotypes relevant to the psychotic, cognitive and negative aspects of schizophrenia. These data show that PNS influenced specific anxiety-related behaviour in all animals. In addition, sensorimotor gating deficits previously noted in Bdr mutants were markedly enhanced by PNS; significantly, these effects could be reversed with the application of anti-psychotic drugs. Moreover, social interaction abnormalities were observed only in Bdr animals from stressed dams but not in wild-type littermates or mutants from non-stressed mothers. These results show for the first time that combining a synaptic mouse point mutant with a controlled prenatal stressor paradigm produces both modified and previously unseen phenotypes, generating new insights into the interactions between genetics and the environment relevant to the study of psychiatric disease.
Collapse
Affiliation(s)
- Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
32
|
Lukkes JL, Watt MJ, Lowry CA, Forster GL. Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Front Behav Neurosci 2009; 3:18. [PMID: 19738931 PMCID: PMC2737489 DOI: 10.3389/neuro.08.018.2009] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 08/05/2009] [Indexed: 01/09/2023] Open
Abstract
Exposure to adverse experiences in early-life is implicated in the later vulnerability to development of psychiatric disorders, including anxiety and affective disorders in humans. Adverse early-life experiences likely impart their long-term consequences on mental health by disrupting the normal development of neural systems involved in stress responses, emotional behavior and emotional states. Neural systems utilizing the neurotransmitters serotonin, dopamine and the neuropeptide corticotropin-releasing factor (CRF) are implicated in mediating emotive behaviors, and dysfunction of these neurochemical systems is associated with mood/anxiety disorders. These neural systems continue maturing until early or mid-adolescence in humans, thus alterations to their development are likely to contribute to the long-term consequences of adverse early-life experiences. A large body of literature suggests that post-weaning isolation rearing of rodents models the behavioral consequences of adverse early-life experiences in humans. Overall, the majority findings suggest that post-weaning social isolation that encompasses pre-adolescence produces long-lasting alterations to anxiety behavior, while measures of monoaminergic activity in various limbic regions during social isolation suggest alterations to dopamine and serotonin systems. The goal of this review is to evaluate and integrate findings from post-weaning social isolation studies specifically related to altered fear and anxiety behaviors and associated changes in neuroendocrine function and the activity of monoaminergic systems.
Collapse
Affiliation(s)
- Jodi L Lukkes
- Department of Integrative Physiology, University of Colorado at Boulder Boulder, CO, USA
| | | | | | | |
Collapse
|
33
|
Ebstein RP, Israel S, Lerer E, Uzefovsky F, Shalev I, Gritsenko I, Riebold M, Salomon S, Yirmiya N. Arginine vasopressin and oxytocin modulate human social behavior. Ann N Y Acad Sci 2009; 1167:87-102. [PMID: 19580556 DOI: 10.1111/j.1749-6632.2009.04541.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.
Collapse
Affiliation(s)
- Richard P Ebstein
- Department of Psychology, The Hebrew University of Jerusalem, Herzog Memorial Hospital, Givat Shaul, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Levin R, Heresco-Levy U, Bachner-Melman R, Israel S, Shalev I, Ebstein RP. Association between arginine vasopressin 1a receptor (AVPR1a) promoter region polymorphisms and prepulse inhibition. Psychoneuroendocrinology 2009; 34:901-8. [PMID: 19195791 DOI: 10.1016/j.psyneuen.2008.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/25/2008] [Accepted: 12/26/2008] [Indexed: 01/22/2023]
Abstract
Arginine vasopressin and the arginine vasopressin 1a (AVPR1a) gene contribute to a range of social behaviors both in lower vertebrates and in humans. Human promoter-region microsatellite repeat regions (RS1 and RS3) in the AVPR1a gene region have been associated with autism spectrum disorders, prosocial behavior and social cognition. Prepulse inhibition (PPI) of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. Reduced PPI has been observed in disorders including schizophrenia that are distinguished by deficits in social skills. In the current investigation association was examined between PPI and the AVPR1a RS1 and RS repeat regions and PPI in a group of 113 nonclinical subjects. Using a robust family-based strategy, association was observed between AVPR1a promoter-region repeat length, especially RS3) and PPI (30 ms: global p=0.04; 60 ms p=0.006; 120 ms p=0.008). Notably, longer RS3 alleles were associated with greater levels of prepulse inhibition. Using a short/long classification scheme for the repeat regions, significant association was also observed between all three PPI intervals (30, 60 and 120 ms) and both RS1 and RS3 polymorphisms (PBAT: FBAT-PC(2) statistic p=0.047). Tests of within-subject effects (SPSS GLM) showed significant sexxRS3 interactions at 30 ms (p=0.045) and 60 ms (p=0.01). Longer alleles, especially in male subjects, are associated with significantly higher PPI response, consistent with a role for the promoter repeat region in partially molding social behavior in both animals and humans. This is the first report in humans demonstrating a role of the AVPR1a gene in contributing to the PPI response to auditory stimuli.
Collapse
Affiliation(s)
- Raz Levin
- Neurobiology, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Bailey MT, Kierstein S, Sharma S, Spaits M, Kinsey SG, Tliba O, Amrani Y, Sheridan JF, Panettieri RA, Haczku A. Social stress enhances allergen-induced airway inflammation in mice and inhibits corticosteroid responsiveness of cytokine production. THE JOURNAL OF IMMUNOLOGY 2009; 182:7888-96. [PMID: 19494313 DOI: 10.4049/jimmunol.0800891] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic psychosocial stress exacerbates asthma, but the underlying mechanisms remain poorly understood. We hypothesized that psychosocial stress aggravates allergic airway inflammation by altering innate immune cell function. The effects of stress on airway inflammation, lung function, and glucocorticoid responsiveness were studied in a novel in vivo murine model of combined social disruption stress and allergic sensitization. The effects of corticosterone were assessed on cytokine profile and glucocorticoid receptor activation in LPS-stimulated spleen cell cultures in vitro. Airway inflammation resolved 48 h after a single allergen provocation in sensitized control mice, but not in animals that were repeatedly exposed to stress before allergen challenge. The enhanced eosinophilic airway inflammation 48 h after allergen challenge in these mice was associated with increased levels of IL-5, GM-CSF, IgG1, thymus-activated and regulatory chemokine, TNF-alpha, and IL-6 in the airways and a diminished inhibition of these mediators by corticosterone in LPS-stimulated splenocyte cultures in vitro. Stress-induced reduction of the corticosteroid effects paralleled increased p65 expression and a decreased DNA-binding capability of the glucocorticoid receptor in vitro. Furthermore, glucocorticoid receptor mRNA and protein expression in the lungs of mice exposed to both stress and allergen was markedly reduced in comparison with that in either condition alone or in naive mice. Thus, exposure to repeated social stress before allergen inhalation enhances and prolongs airway inflammation and alters corticosterone responsiveness. We speculate that these effects were mediated at least in part by impaired glucocorticoid receptor expression and function.
Collapse
Affiliation(s)
- Michael T Bailey
- Department of Oral Biology and Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Powell SB, Zhou X, Geyer MA. Prepulse inhibition and genetic mouse models of schizophrenia. Behav Brain Res 2009; 204:282-94. [PMID: 19397931 DOI: 10.1016/j.bbr.2009.04.021] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 12/26/2022]
Abstract
Mutant mouse models related to schizophrenia have been based primarily on the pathophysiology of schizophrenia, the known effects of antipsychotic drugs, and candidate genes for schizophrenia. Sensorimotor gating deficits in schizophrenia patients, as indexed by measures of prepulse inhibition of startle (PPI), have been well characterized and suggested to meet the criteria as a useful endophenotype in human genetic studies. PPI refers to the ability of a non-startling "prepulse" to inhibit responding to the subsequent startling stimulus or "pulse." Because of the cross-species nature of PPI, it has been used primarily in pharmacological animal models to screen putative antipsychotic medications. As techniques in molecular genetics have progressed over the past 15 years, PPI has emerged as a phenotype used in assessing genetic mouse models of relevance to schizophrenia. In this review, we provide a selected overview of the use of PPI in mouse models of schizophrenia and discuss the contribution and usefulness of PPI as a phenotype in the context of genetic mouse models. To that end, we discuss mutant mice generated to address hypotheses regarding the pathophysiology of schizophrenia and candidate genes (i.e., hypothesis driven). We also briefly discuss the usefulness of PPI in phenotype-driven approaches in which a PPI phenotype could lead to "bottom up" approaches of identifying novel genes of relevance to PPI (i.e., hypothesis generating).
Collapse
Affiliation(s)
- Susan B Powell
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
37
|
Ayhan Y, Sawa A, Ross CA, Pletnikov MV. Animal models of gene-environment interactions in schizophrenia. Behav Brain Res 2009; 204:274-81. [PMID: 19379776 DOI: 10.1016/j.bbr.2009.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 12/12/2022]
Abstract
The pathogenesis of schizophrenia and related mental illnesses likely involves multiple interactions between susceptibility genes of small effects and environmental factors. Gene-environment interactions occur across different stages of neurodevelopment to produce heterogeneous clinical and pathological manifestations of the disease. The main obstacle for mechanistic studies of gene-environment interplay has been the paucity of appropriate experimental systems for elucidating the molecular pathways that mediate gene-environment interactions relevant to schizophrenia. Recent advances in psychiatric genetics and a plethora of experimental data from animal studies allow us to suggest a new approach to gene-environment interactions in schizophrenia. We propose that animal models based on identified genetic mutations and measurable environment factors will help advance studies of the molecular mechanisms of gene-environment interplay.
Collapse
Affiliation(s)
- Yavuz Ayhan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
38
|
Blin M, Norton W, Bally-Cuif L, Vernier P. NR4A2 controls the differentiation of selective dopaminergic nuclei in the zebrafish brain. Mol Cell Neurosci 2008; 39:592-604. [DOI: 10.1016/j.mcn.2008.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 08/03/2008] [Accepted: 08/13/2008] [Indexed: 10/21/2022] Open
|
39
|
Moore TM, Brown T, Cade M, Eells JB. Alterations in amphetamine-stimulated dopamine overflow due to the Nurr1-null heterozygous genotype and postweaning isolation. Synapse 2008; 62:764-74. [DOI: 10.1002/syn.20550] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 2008; 199:331-88. [PMID: 18568339 PMCID: PMC2771731 DOI: 10.1007/s00213-008-1072-4] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/03/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Under specific conditions, a weak lead stimulus, or "prepulse", can inhibit the startling effects of a subsequent intense abrupt stimulus. This startle-inhibiting effect of the prepulse, termed "prepulse inhibition" (PPI), is widely used in translational models to understand the biology of brainbased inhibitory mechanisms and their deficiency in neuropsychiatric disorders. In 1981, four published reports with "prepulse inhibition" as an index term were listed on Medline; over the past 5 years, new published Medline reports with "prepulse inhibition" as an index term have appeared at a rate exceeding once every 2.7 days (n=678). Most of these reports focus on the use of PPI in translational models of impaired sensorimotor gating in schizophrenia. This rapid expansion and broad application of PPI as a tool for understanding schizophrenia has, at times, outpaced critical thinking and falsifiable hypotheses about the relative strengths vs. limitations of this measure. OBJECTIVES This review enumerates the realistic expectations for PPI in translational models for schizophrenia research, and provides cautionary notes for the future applications of this important research tool. CONCLUSION In humans, PPI is not "diagnostic"; levels of PPI do not predict clinical course, specific symptoms, or individual medication responses. In preclinical studies, PPI is valuable for evaluating models or model organisms relevant to schizophrenia, "mapping" neural substrates of deficient PPI in schizophrenia, and advancing the discovery and development of novel therapeutics. Across species, PPI is a reliable, robust quantitative phenotype that is useful for probing the neurobiology and genetics of gating deficits in schizophrenia.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, 92093-0804, USA,
| | | | | | | | | |
Collapse
|
41
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
42
|
Li N, Wu X, Li L. Chronic administration of clozapine alleviates reversal-learning impairment in isolation-reared rats. Behav Pharmacol 2007; 18:135-45. [PMID: 17351420 DOI: 10.1097/fbp.0b013e3280d3ee83] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Isolation rearing has been used for inducing schizophrenia-like symptoms in rats. Human schizophrenics have deficits in prefrontal-dysfunction-related cognitive/behavioral flexibility. Rats with lesions of the medial prefrontal cortex perform poorly in reversal learning. It is uncertain whether isolation rearing, however, causes reversal-learning impairment in adult rats. Using the rotating T maze, this study examined the effect of chronic administration of clozapine on visual discrimination learning and reversal learning in isolation-reared and socially reared adult rats. The results show that isolation-reared rats without clozapine injection performed significantly worse than socially reared rats in reversal learning but not in acquisition learning. Chronic injection of clozapine (5 or 10 mg/kg) in isolation-reared rats significantly improved reversal learning but had no effects on acquisition learning. Further data analyses show that in both the inhibition phase and the new-strategy-acquisition phase of reversal learning, isolation-reared rats needed significantly more correct-response trials to reach the criterion than socially reared rats, and clozapine significantly reduced the isolation-induced impairment of reversal learning only in the new-strategy-acquisition phase. In socially reared rats, clozapine had a dose-related interfering effect on reversal learning but not acquisition learning. This study supports the use of isolation rearing as a model for investigating the neurodevelopmental hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Nanxin Li
- Department of Psychology, Speech and Hearing Research Center, Peking University, Beijing, China
| | | | | |
Collapse
|
43
|
Colón-Cesario WI, Martínez-Montemayor MM, Morales S, Félix J, Cruz J, Adorno M, Pereira L, Colón N, Maldonado-Vlaar CS, Peña de Ortiz S. Knockdown of Nurr1 in the rat hippocampus: implications to spatial discrimination learning and memory. Learn Mem 2006; 13:734-44. [PMID: 17142303 PMCID: PMC1783627 DOI: 10.1101/lm.407706] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 02/04/2023]
Abstract
Nurr1 expression is up-regulated in the brain following associative learning experiences, but its relevance to cognitive processes remains unclear. In these studies, rats initially received bilateral hippocampal infusions of control or antisense oligodeoxynucleotides (ODNs) 1 h prior to training in a holeboard spatial discrimination task. Such pre-training infusions of nurr1 antisense ODNs caused a moderate effect in learning the task and also impaired LTM tested 7 d later. In a second experiment, ODN infusions were given immediately after the animals had received two sessions of training, during which all animals showed normal learning. Although antisense treated rats were significantly impaired during the post-infusion stages of acquisition of the task, no group differences were observed during the LTM test given 7 d later. These animals were subjected 3 d later to reversal training in the same maze in the absence of any additional treatments. Remarkably, rats previously treated with antisense ODNs displayed perseveration: The animals were fixated with the previously learned pattern of baited holes, causing them to be significantly impaired in the extinction of acquired spatial preferences and future learning. We postulate that Nurr1 function in the hippocampus is important for normal cognitive processes.
Collapse
Affiliation(s)
| | | | - Sohaira Morales
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico
| | - Jahaira Félix
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico
| | - Juan Cruz
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico
| | - Monique Adorno
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico
| | - Lixmar Pereira
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico
| | - Nydia Colón
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico
| | | | - Sandra Peña de Ortiz
- Department of Biology, University of Puerto Rico, San Juan 00931-3360, Puerto Rico
| |
Collapse
|
44
|
Eells JB, Misler JA, Nikodem VM. Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res Bull 2006; 70:186-95. [PMID: 16782508 DOI: 10.1016/j.brainresbull.2006.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/05/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
The nuclear receptor Nurr1 is essential for the development of midbrain dopamine neurons and appears to be an important regulator of dopamine levels as adult Nurr1-null heterozygous (+/-) mice have reduced mesolimbic/mesocortical dopamine levels. The mechanism(s) through which reduced Nurr1 expression affects dopamine levels has not been determined. Quantitative real-time PCR revealed a significant reduction in tyrosine hydroxylase (TH) and GTP cyclohydrolase (GTPCH) mRNA in ventral midbrain of +/- mice as compared to wild-type mice (+/+). The effect on TH expression was only observed at birth, while reduced GTP cyclohydrolase was also observed in the adult ventral tegemental area. No differences in dopamine transporter, vesicular monoamine transporter, dopamine D2 receptor or aromatic amino acid decarboxylase were observed. Since TH and GTPCH are both involved in dopamine synthesis, regulation of in vivo TH activity was measured in these mice. In vivo TH activity was reduced in nucleus accumbens and striatum of the +/- mice (24.7% and 15.7% reduction, respectively). In the striatum, gamma-butyrolactone exacerbated differences on +/- striatal TH activity (29.8% reduction) while haloperidol equalized TH activity between the +/+ and +/-. TH activity in the nucleus accumbens was significantly reduced in all conditions measured. Furthermore, dopamine levels in the striatum of +/- mice were significantly reduced after inhibition of dopamine synthesis or after haloperidol treatment but not under basal conditions while dopamine levels in the nucleus accumbens were reduced under basal conditions. Based on these data the +/- genotype results in changes in gene expression and impairs dopamine synthesis which can affect the maintenance of dopamine levels, although with differential effects between mesolimbic/mesocortical and nigrostriatal dopamine neurons. Together, these data suggest that Nurr1 may function to modify TH and GTPCH expression and dopamine synthesis.
Collapse
Affiliation(s)
- Jeffrey B Eells
- National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|