1
|
Ansari MA, Al-Jarallah A, Rao MS, Babiker A, Bensalamah K. Upregulation of NADPH-oxidase, inducible nitric oxide synthase and apoptosis in the hippocampus following impaired insulin signaling in the rats: Development of sporadic Alzheimer's disease. Brain Res 2024; 1834:148890. [PMID: 38552936 DOI: 10.1016/j.brainres.2024.148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
NADPH-oxidase (NOX) is a multi-subunit enzyme complex. The upregulation of NOX causes massive production of superoxide (O2¯), which avidly reacts with nitric oxide (NO) and increases cellular reactive oxygen/nitrogen species (ROS/RNS). Increased ROS/RNS plays pivotal role in the sporadic Alzheimer's disease (sAD) development and brain damage following impaired insulin signaling. Hence, this study aimed to examine early-time course of changes in NOX and NOS expression, and apoptotic proteins in the rats hippocampi following insulin signaling impairment [induced by STZ injection; intraperitoneal (IP) or in cerebral ventricles (ICV)]. Early effects (1, 3, or 6 weeks) on the NOX activity, translocation of NOX subunits from cytosol to the membrane, NO-synthases [neuronal-, inducible- and endothelial-NOS; nNOS, iNOS and eNOS], The Rac-1 protein expression, levels of NO and O2¯, cytochrome c release, caspase-3 and 9 activations (cleavage) were studied. STZ injection (in both models) increased NOX activity, O2¯ production, and enhanced cytosolic subunits translocation into membrane. The iNOS but not nNOS and eNOS expression and NO levels were increased in STZ treated rats. Finally, STZ injection increased cytochrome c release, caspase-3 and 9 activations in a manner that was significantly associated with levels of O2¯ and NO in the hippocampus. ICV-STZ administration resulted in significant profound changes over the IP route. In conclusion, impairment in insulin function induces early changes in ROS/RNS contents through NOX and iNOS upregulation and neuronal apoptosis in the hippocampus. Our results could mechanistically explain the role of impaired insulin function in the development of sAD.
Collapse
Affiliation(s)
- Mubeen A Ansari
- Department of Pharmacology and Toxicology, Kuwait University, Kuwait City, Safat 13110, Kuwait.
| | - Aishah Al-Jarallah
- Department of Biochemistry, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Ahmed Babiker
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| | - Khaled Bensalamah
- Faculty of Medicine, Kuwait University, Kuwait City, Safat 13110, Kuwait
| |
Collapse
|
2
|
Haigh S, Brown ZL, Shivers MA, Sellers HG, West MA, Barman SA, Stepp DW, Csanyi G, Fulton DJR. A Reappraisal of the Utility of L-012 to Measure Superoxide from Biologically Relevant Sources. Antioxidants (Basel) 2023; 12:1689. [PMID: 37759992 PMCID: PMC10525458 DOI: 10.3390/antiox12091689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The detection of superoxide anion (O2●-) in biological tissues remains challenging. Barriers to convenient and reproducible measurements include expensive equipment, custom probes, and the need for high sensitivity and specificity. The luminol derivative, L-012, has been used to measure O2●- since 1993 with mixed results and concerns over specificity. The goal of this study was to better define the conditions for use and their specificity. We found that L-012 coupled with depolymerized orthovanadate, a relatively impermeable tyrosine phosphatase inhibitor, yielded a highly sensitive approach to detect extracellular O2●-. In O2●- producing HEK-NOX5 cells, orthovanadate increased L-012 luminescence 100-fold. The combination of L-012 and orthovanadate was highly sensitive, stable, scalable, completely reversed by superoxide dismutase, and selective for O2●- generating NOXes versus NOX4, which produces H2O2. Moreover, there was no signal from cells transfected with NOS3 (NO●) and NOS2(ONOO-). To exclude the effects of altered tyrosine phosphorylation, O2●- was detected using non-enzymatic synthesis with phenazine methosulfate and via novel coupling of L-012 with niobium oxalate, which was less active in inducing tyrosine phosphorylation. Overall, our data shows that L-012 coupled with orthovanadate or other periodic group 5 salts yields a reliable, sensitive, and specific approach to measuring extracellular O2●- in biological systems.
Collapse
Affiliation(s)
- Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Zach L. Brown
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Mitch A. Shivers
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Hunter G. Sellers
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Madison A. West
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Scott A. Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
- David Fulton Vascular Biology Center, Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB 3316, Augusta, GA 30909, USA
| |
Collapse
|
3
|
Pinelis V, Krasilnikova I, Bakaeva Z, Surin A, Boyarkin D, Fisenko A, Krasilnikova O, Pomytkin I. Insulin Diminishes Superoxide Increase in Cytosol and Mitochondria of Cultured Cortical Neurons Treated with Toxic Glutamate. Int J Mol Sci 2022; 23:ijms232012593. [PMID: 36293449 PMCID: PMC9604026 DOI: 10.3390/ijms232012593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate excitotoxicity is involved in the pathogenesis of many disorders, including stroke, traumatic brain injury, and Alzheimer’s disease, for which central insulin resistance is a comorbid condition. Neurotoxicity of glutamate (Glu) is primarily associated with hyperactivation of the ionotropic N-methyl-D-aspartate receptors (NMDARs), causing a sustained increase in intracellular free calcium concentration ([Ca2+]i) and synchronous mitochondrial depolarization and an increase in intracellular superoxide anion radical (O2–•) production. Recently, we found that insulin protects neurons against excitotoxicity by decreasing the delayed calcium deregulation (DCD). However, the role of insulin in O2–• production in excitotoxicity still needs to be clarified. The present study aims to investigate insulin’s effects on glutamate-evoked O2–• generation and DCD using the fluorescent indicators dihydroethidium, MitoSOX Red, and Fura-FF in cortical neurons. We found a linear correlation between [Ca2+]i and [O2–•] in primary cultures of the rat neuron exposed to Glu, with insulin significantly reducing the production of intracellular and mitochondrial O2–• in the primary cultures of the rat neuron. MK 801, an inhibitor of NMDAR-gated Ca2+ influx, completely abrogated the glutamate effects in both the presence and absence of insulin. In experiments in sister cultures, insulin diminished neuronal death and O2 consumption rate (OCR).
Collapse
Affiliation(s)
- Vsevolod Pinelis
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Correspondence: (V.P.); (I.P.)
| | - Irina Krasilnikova
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Zanda Bakaeva
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Department of General Biology and Physiology, Kalmyk State University Named after B.B. Gorodovikov, St. Pushkin, 11, 358000 Elista, Russia
| | - Alexander Surin
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Laboratory of Pathology of Ion Transport and Intracellular Signaling, Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
| | - Dmitrii Boyarkin
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Andrei Fisenko
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Olga Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, 4 Koroleva St., 249036 Obninsk, Russia
| | - Igor Pomytkin
- Institute of Pharmacy, The First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation, St. Trubetskaya, 8, Bldg 2, 119991 Moscow, Russia
- Correspondence: (V.P.); (I.P.)
| |
Collapse
|
4
|
Piccirillo S, Magi S, Preziuso A, Serfilippi T, Cerqueni G, Orciani M, Amoroso S, Lariccia V. The Hidden Notes of Redox Balance in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:1456. [PMID: 35892658 PMCID: PMC9331713 DOI: 10.3390/antiox11081456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) are versatile molecules that, even if produced in the background of many biological processes and responses, possess pleiotropic roles categorized in two interactive yet opposite domains. In particular, ROS can either function as signaling molecules that shape physiological cell functions, or act as deleterious end products of unbalanced redox reactions. Indeed, cellular redox status needs to be tightly regulated to ensure proper cellular functioning, and either excessive ROS accumulation or the dysfunction of antioxidant systems can perturb the redox homeostasis, leading to supraphysiological concentrations of ROS and potentially harmful outcomes. Therefore, whether ROS would act as signaling molecules or as detrimental factors strictly relies on a dynamic equilibrium between free radical production and scavenging resources. Of notice, the mammalian brain is particularly vulnerable to ROS-mediated toxicity, because it possesses relatively poor antioxidant defenses to cope with the redox burden imposed by the elevated oxygen consumption rate and metabolic activity. Many features of neurodegenerative diseases can in fact be traced back to causes of oxidative stress, which may influence both the onset and progression of brain demise. This review focuses on the description of the dual roles of ROS as double-edge sword in both physiological and pathological settings, with reference to Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Monia Orciani
- Department of Clinical and Molecular Sciences-Histology, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy;
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy; (S.P.); (A.P.); (T.S.); (G.C.); (S.A.); (V.L.)
| |
Collapse
|
5
|
Lin YC, Cheung G, Porter E, Papadopoulos V. The neurosteroid pregnenolone is synthesized by a mitochondrial P450 enzyme other than CYP11A1 in human glial cells. J Biol Chem 2022; 298:102110. [PMID: 35688208 PMCID: PMC9278081 DOI: 10.1016/j.jbc.2022.102110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022] Open
Abstract
Neurosteroids, modulators of neuronal and glial cell functions, are synthesized in the nervous system from cholesterol. In peripheral steroidogenic tissues, cholesterol is converted to the major steroid precursor pregnenolone by the CYP11A1 enzyme. Although pregnenolone is one of the most abundant neurosteroids in the brain, expression of CYP11A1 is difficult to detect. We found that human glial cells produced pregnenolone, detectable by mass spectrometry and ELISA, despite the absence of observable immunoreactive CYP11A1 protein. Unlike testicular and adrenal cortical cells, pregnenolone production in glial cells was not inhibited by CYP11A1 inhibitors DL-aminoglutethimide and ketoconazole. Furthermore, addition of hydroxycholesterols increased pregnenolone synthesis, suggesting desmolase activity that was not blocked by DL-aminoglutethimide or ketoconazole. We explored three different possibilities for an alternative pathway for glial cell pregnenolone synthesis: (1) regulation by reactive oxygen species, (2) metabolism via a different CYP11A1 isoform, and (3) metabolism via another CYP450 enzyme. First, we found oxidants and antioxidants had no significant effects on pregnenolone synthesis, suggesting it is not regulated by reactive oxygen species. Second, overexpression of CYP11A1 isoform b did not alter synthesis, indicating use of another CYP11A1 isoform is unlikely. Finally, we show nitric oxide and iron chelators deferoxamine and deferiprone significantly inhibited pregnenolone production, indicating involvement of another CYP450 enzyme. Ultimately, knockdown of endoplasmic reticulum cofactor NADPH-cytochrome P450 reductase had no effect, while knockdown of mitochondrial CYP450 cofactor ferredoxin reductase inhibited pregnenolone production. These data suggest that pregnenolone is synthesized by a mitochondrial cytochrome P450 enzyme other than CYP11A1 in human glial cells.
Collapse
|
6
|
Villegas L, Nørremølle A, Freude K, Vilhardt F. Nicotinamide Adenine Dinucleotide Phosphate Oxidases Are Everywhere in Brain Disease, but Not in Huntington's Disease? Front Aging Neurosci 2021; 13:736734. [PMID: 34803655 PMCID: PMC8602359 DOI: 10.3389/fnagi.2021.736734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by neuronal loss and tissue atrophy mainly in the striatum and cortex. In the early stages of the disease, impairment of neuronal function, synaptic dysfunction and white matter loss precedes neuronal death itself. Relative to other neurodegenerative diseases such as Alzheimer's and Parkinson's disease and Amyotrophic Lateral Sclerosis, where the effects of either microglia or NADPH oxidases (NOXs) are recognized as important contributors to disease pathogenesis and progression, there is a pronounced lack of information in HD. This information void contrasts with evidence from human HD patients where blood monocytes and microglia are activated well before HD clinical symptoms (PET scans), and the clear signs of oxidative stress and inflammation in post mortem HD brain. Habitually, NOX activity and oxidative stress in the central nervous system (CNS) are equated with microglia, but research of the last two decades has carved out important roles for NOX enzyme function in neurons. Here, we will convey recent information about the function of NOX enzymes in neurons, and contemplate on putative roles of neuronal NOX in HD. We will focus on NOX-produced reactive oxygen species (ROS) as redox signaling molecules in/among neurons, and the specific roles of NOXs in important processes such as neurogenesis and lineage specification, neurite outgrowth and growth cone dynamics, and synaptic plasticity where NMDAR-dependent signaling, and long-term depression/potentiation are redox-regulated phenomena. HD animal models and induced pluripotent stem cell (iPSC) studies have made it clear that the very same physiological processes are also affected in HD, and we will speculate on possible roles for NOX in the pathogenesis and development of disease. Finally, we also take into account the limited information on microglia in HD and relate this to any contribution of NOX enzymes.
Collapse
Affiliation(s)
- Luisana Villegas
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Abarzúa S, Ampuero E, Zundert B. Superoxide generation via the NR2B‐NMDAR/RasGRF1/NOX2 pathway promotes dendritogenesis. J Cell Physiol 2019; 234:22985-22995. [DOI: 10.1002/jcp.28859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sebastian Abarzúa
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Centro de Envejecimiento y Regeneración CARE Chile UC Santiago Chile
| | - Estibaliz Ampuero
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud Universidad Autónoma de Chile Santiago Chile
| | - Brigitte Zundert
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de la Ciencias de la Vida Universidad Andres Bello Santiago Chile
- Centro de Envejecimiento y Regeneración CARE Chile UC Santiago Chile
| |
Collapse
|
9
|
Experimental Evidences Supporting Training-Induced Benefits in Spontaneously Hypertensive Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:287-306. [DOI: 10.1007/978-981-10-4307-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Chakraborty P, Bjork P, Källberg E, Olsson A, Riva M, Mörgelin M, Liberg D, Ivars F, Leanderson T. Vesicular Location and Transport of S100A8 and S100A9 Proteins in Monocytoid Cells. PLoS One 2015; 10:e0145217. [PMID: 26661255 PMCID: PMC4678419 DOI: 10.1371/journal.pone.0145217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/30/2015] [Indexed: 12/18/2022] Open
Abstract
We show here, by using surface biotinylation, followed by Western blotting or surface plasmon resonance analysis, that very low levels of S100A8 and/or S100A9 can be detected on the surface of THP-1 cells or freshly isolated human monocytes. This was supported by immune-electron microscopy where we observed membrane-associated expression of the proteins restricted to small patches. By using confocal microscopy we could determine that S100A8 and S100A9 protein in THP-1 cells or freshly isolated human monocytes was mostly present in vesicular structures. This finding was confirmed using immune-electron microscopy. Subcellular fractionation and confocal microscopy showed that these vesicular structures are mainly early endosomes and endolysosomes. Our subsequent studies showed that accumulation of S100A8 and S100A9 in the endolysosomal compartment is associated with induction of their release from the cells. Furthermore, an inhibitor of lysosomal activity could modulate the release of S100A8 and S100A9 in the extracellular milieu. Our current results suggest that the S100A8 and S100A9 proteins are primarily associated with certain kinds of cytosolic vesicles and may be secreted via an endolysosomal pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tomas Leanderson
- Immunology Group, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
- * E-mail:
| |
Collapse
|
11
|
Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 2015; 22:161-74. [PMID: 24628477 PMCID: PMC4281853 DOI: 10.1089/ars.2013.5767] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Neuronal superoxide production contributes to cell death in both glutamate excitotoxicity and brain ischemia (stroke). NADPH oxidase-2 (NOX2) is the major source of neuronal superoxide production in these settings, and regulation of NOX2 activity can thereby influence outcome in stroke. RECENT ADVANCES Reduced NOX2 activity can rescue cells from oxidative stress and cell death that otherwise occur in excitotoxicity and ischemia. NOX2 activity is regulated by several factors previously shown to affect outcome in stroke, including glucose availability, intracellular pH, protein kinase ζ/δ, casein kinase 2, phosphoinositide-3-kinase, Rac1/2, and phospholipase A2. The newly identified functions of these factors as regulators of NOX2 activity suggest alternative mechanisms for their effects on ischemic brain injury. CRITICAL ISSUES Key aspects of these regulatory influences remain unresolved, including the mechanisms by which rac1 and phospholipase activities are coupled to N-methyl-D-aspartate (NMDA) receptors, and whether superoxide production by NOX2 triggers subsequent superoxide production by mitochondria. FUTURE DIRECTIONS It will be important to establish whether interventions targeting the signaling pathways linking NMDA receptors to NOX2 in brain ischemia can provide a greater neuroprotective efficacy or a longer time window to treatment than provided by NMDA receptor blockade alone. It will likewise be important to determine whether dissociating superoxide production from the other signaling events initiated by NMDA receptors can mitigate the deleterious effects of NMDA receptor blockade.
Collapse
|
12
|
Moylan JS, Smith JD, Wolf Horrell EM, McLean JB, Deevska GM, Bonnell MR, Nikolova-Karakashian MN, Reid MB. Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle. Redox Biol 2014; 2:910-20. [PMID: 25180167 PMCID: PMC4143815 DOI: 10.1016/j.redox.2014.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022] Open
Abstract
Aims Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. Results We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. Innovation These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Conclusion Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity. First measures of endogenous nSMase3 protein in muscle. Detection of nSMase3 splice variant proteins. Identification of a functional role for nSMase3 in redox signaling. Identification of an intermediate in TNF/redox signaling.
Collapse
Affiliation(s)
- Jennifer S Moylan
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Jeffrey D Smith
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Erin M Wolf Horrell
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA ; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Julie B McLean
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Gergana M Deevska
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Mark R Bonnell
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | | | - Michael B Reid
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Park MH, Kim HN, Lim JS, Ahn JS, Koh JY. Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor. Mol Brain 2013; 6:50. [PMID: 24289788 PMCID: PMC4222118 DOI: 10.1186/1756-6606-6-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/26/2013] [Indexed: 01/19/2023] Open
Abstract
Background The angiotensin system has several non-vascular functions in the central nervous system. For instance, inhibition of the brain angiotensin system results in a reduction in neuronal death following acute brain injury such as ischemia and intracerebral hemorrhage, even under conditions of constant blood pressure. Since endogenous zinc has been implicated as a key mediator of ischemic neuronal death, we investigated the possibility that the angiotensin system affects the outcome of zinc-triggered neuronal death in cortical cell cultures. Results Exposure of cortical cultures containing neurons and astrocytes to 300 μM zinc for 15 min induced submaximal death in both types of cells. Interestingly, addition of angiotensin II significantly enhanced the zinc-triggered neuronal death, while leaving astrocytic cell death relatively unchanged. Both type 1 and 2 angiotensin II receptors (AT1R and AT2R, respectively) were expressed in neurons as well as astrocytes. Zinc neurotoxicity was substantially attenuated by PD123319, a specific inhibitor of AT2R, and augmented by CGP42112, a selective activator of AT2R, indicating a critical role for this receptor subtype in the augmentation of neuronal cell death. Because zinc toxicity occurs largely through oxidative stress, the levels of superoxides in zinc-treated neurons were assessed by DCF fluorescence microscopy. Combined treatment with zinc and angiotensin II substantially increased the levels of superoxides in neurons compared to those induced by zinc alone. This increase in oxidative stress by angiotensin II was completely blocked by the addition of PD123319. Finally, since zinc-induced oxidative stress may be caused by induction and/or activation of NADPH oxidase, the activation status of Rac and the level of the NADPH oxidase subunit p67phox were measured. Angiotensin II markedly increased Rac activity and the levels of p67phox in zinc-treated neurons and astrocytes in a PD123319-dependent manner. Conclusion The present study shows that the angiotensin system, especially that involving AT2R, may have an oxidative injury-potentiating effect via augmentation of the activity of NADPH oxidase. Hence, blockade of angiotensin signaling cascades in the brain may prove useful in protecting against the oxidative neuronal death that is likely to occur in acute brain injury.
Collapse
Affiliation(s)
- Mi-Ha Park
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, South Korea.
| | | | | | | | | |
Collapse
|
14
|
Simonyan RM, Galoyan KA, Simonyan GM, Hachatryan AR, Babayan MA, Oxuzyan GR, Simonyan MA. Ferrihemoglobin induces the release of NADPH oxidase from brain-cell membrane tissue ex vivo: the suppression of this process by galarmin. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413030148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Membrane trafficking of NADPH oxidase p47(phox) in paraventricular hypothalamic neurons parallels local free radical production in angiotensin II slow-pressor hypertension. J Neurosci 2013; 33:4308-16. [PMID: 23467347 DOI: 10.1523/jneurosci.3061-12.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
NADPH oxidase-generated reactive oxygen species (ROS) are highly implicated in the development of angiotensin II (AngII)-dependent hypertension mediated in part through the hypothalamic paraventricular nucleus (PVN). This region contains vasopressin and non-vasopressin neurons that are responsive to cardiovascular dysregulation, but it is not known whether ROS is generated by one or both cell types in response to "slow-pressor" infusion of AngII. We addressed this question using ROS imaging and electron microscopic dual labeling for vasopressin and p47(phox), a cytoplasmic NADPH oxidase subunit requiring mobilization to membranes for the initiation of ROS production. C57BL/6 mice or vasopressin-enhanced green fluorescent protein (VP-eGFP) mice were infused systemically with saline or AngII (600 ng · kg(-1) · min(-1), s.c.) for 2 weeks, during which they slowly developed hypertension. Ultrastructural analysis of the PVN demonstrated p47(phox) immunolabeling in many glial and neuronal profiles, most of which were postsynaptic dendrites. Compared with saline, AngII recipient mice had a significant increase in p47(phox) immunolabeling on endomembranes just beneath the plasmalemmal surface (+42.1 ± 11.3%; p < 0.05) in non-vasopressin dendrites. In contrast, AngII infusion decreased p47(phox) immunolabeling on the plasma membrane (-35.5 ± 16.5%; p < 0.05) in vasopressin dendrites. Isolated non-VP-eGFP neurons from the PVN of AngII-infused mice also showed an increase in baseline ROS production not seen in VP-eGFP neurons. Our results suggest that chronic low-dose AngII may offset the homeostatic control of blood pressure by differentially affecting membrane assembly of NADPH oxidase and ROS production in vasopressin and non-vasopressin neurons located within the PVN.
Collapse
|
16
|
Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WST, Jones SM. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 2011; 8:129. [PMID: 21975039 PMCID: PMC3198931 DOI: 10.1186/1742-2094-8-129] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/05/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS), superoxide and hydrogen peroxide (H2O2), are necessary for appropriate responses to immune challenges. In the brain, excess superoxide production predicts neuronal cell loss, suggesting that Parkinson's disease (PD) with its wholesale death of dopaminergic neurons in substantia nigra pars compacta (nigra) may be a case in point. Although microglial NADPH oxidase-produced superoxide contributes to dopaminergic neuron death in an MPTP mouse model of PD, this is secondary to an initial die off of such neurons, suggesting that the initial MPTP-induced death of neurons may be via activation of NADPH oxidase in neurons themselves, thus providing an early therapeutic target. METHODS NADPH oxidase subunits were visualized in adult mouse nigra neurons and in N27 rat dopaminergic cells by immunofluorescence. NADPH oxidase subunits in N27 cell cultures were detected by immunoblots and RT-PCR. Superoxide was measured by flow cytometric detection of H2O2-induced carboxy-H2-DCFDA fluorescence. Cells were treated with MPP+ (MPTP metabolite) following siRNA silencing of the Nox2-stabilizing subunit p22phox, or simultaneously with NADPH oxidase pharmacological inhibitors or with losartan to antagonize angiotensin II type 1 receptor-induced NADPH oxidase activation. RESULTS Nigral dopaminergic neurons in situ expressed three subunits necessary for NADPH oxidase activation, and these as well as several other NADPH oxidase subunits and their encoding mRNAs were detected in unstimulated N27 cells. Overnight MPP+ treatment of N27 cells induced Nox2 protein and superoxide generation, which was counteracted by NADPH oxidase inhibitors, by siRNA silencing of p22phox, or losartan. A two-wave ROS cascade was identified: 1) as a first wave, mitochondrial H2O2 production was first noted at three hours of MPP+ treatment; and 2) as a second wave, H2O2 levels were further increased by 24 hours. This second wave was eliminated by pharmacological inhibitors and a blocker of protein synthesis. CONCLUSIONS A two-wave cascade of ROS production is active in nigral dopaminergic neurons in response to neurotoxicity-induced superoxide. Our findings allow us to conclude that superoxide generated by NADPH oxidase present in nigral neurons contributes to the loss of such neurons in PD. Losartan suppression of nigral-cell superoxide production suggests that angiotensin receptor blockers have potential as PD preventatives.
Collapse
Affiliation(s)
- W Michael Zawada
- Donald W, Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Khan FA, Campbell AJ, Hoyt B, Herdman C, Ku T, Thangavelu S, Gordon RK. Oxidative mechanisms for the biotransformation of 1-methyl-1,6-dihydropyridine-2-carbaldoxime to pralidoxime chloride. Life Sci 2011; 89:911-7. [PMID: 21989207 DOI: 10.1016/j.lfs.2011.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023]
Abstract
AIMS Due to pralidoxime chloride's (2-PAM) positive charge, it's penetration through the blood brain barrier (BBB) and reactivation of organophosphate (OP) inhibited central nervous system (CNS) acetylcholinesterase (AChE) is poor. The results of CNS inhibited AChE are seizures. Pro-2-PAM (1-methyl-1,6-dihydropyridine-2-carbaldoxime), a pro-drug of 2-PAM, due to higher hydrophobicity, penetrates the BBB better but must be oxidized to 2-PAM, the active form of the oxime to reactivate CNS AChE in order to abrogate seizures. In this study, we characterize the in vivo mechanism of pro-2-PAM oxidation. MAIN METHODS A high pressure liquid chromatography (HPLC) assay was developed to quantify the conversion of pro-2-PAM to 2-PAM. NADPH oxidase activity was measured by a photo-luminescence assay using lucigenin substrate. Upon analysis, the rate of NADPH induced oxidation suggested that an alternate mechanism may be involved. Therefore, various enzyme co-factors of oxidation-reduction enzyme systems were evaluated, including nicotinamide adenine dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate (NADP), flavin adenine dinucleotide (FAD), riboflavin 5'-phosphate (FMN), and riboflavin. Next, a spectrophotometric assay was developed to measure the conversion of pro-2-PAM to 2-PAM in the presence of riboflavin. KEY FINDINGS In guinea pig brain homogenate, diphenyleneiodonium (DPI), a specific NADPH oxidase inhibitor, reduced pro-2-PAM to 2-PAM conversion to less than 25%. In contrast, riboflavin, FAD, and FMN rapidly oxidized all pro-2-PAM to 2-PAM in an in vitro assay. Riboflavin oxidized pro-2-PAM reactivated diisopropylfluorophosphate (DFP) inhibited AChE. SIGNIFICANCE The present study shows that pro-2-PAM was rapidly oxidized by riboflavin to 2-PAM, which reactivated organophosphate (OP)-inhibited AChE.
Collapse
Affiliation(s)
- Farhat A Khan
- Department of Regulated Laboratories, Division of Regulated Activities, Silver Spring, MD 20910, United States.
| | | | | | | | | | | | | |
Collapse
|
18
|
Murotomi K, Takagi N, Takeo S, Tanonaka K. NADPH oxidase-mediated oxidative damage to proteins in the postsynaptic density after transient cerebral ischemia and reperfusion. Mol Cell Neurosci 2011; 46:681-8. [PMID: 21262362 DOI: 10.1016/j.mcn.2011.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 01/12/2023] Open
Abstract
NADPH oxidase is an important source of superoxide in the central nervous system. Although NADPH oxidase is localized near the postsynaptic site in neurons, little is known about the pathophysiological role of NADPH oxidase in synapses after cerebral ischemia and reperfusion. In the present study, we sought to determine the role of NADPH oxidase in oxidative damage to postsynaptic density (PSD) proteins, which were isolated from rats subjected to transient focal cerebral ischemia and reperfusion. The amounts of carbonylated PSD proteins were increased after transient focal cerebral ischemia and reperfusion. This change was accompanied by an increase in the level of NADPH oxidase subunits in the PSD. The administration of apocynin, an NADPH oxidase inhibitor, attenuated both the protein carbonylation in the PSD and cerebral infarct volume. We further demonstrated that the decreases seen in the amounts of PSD-associated proteins, such as neuroligin, N-cadherin, and SAP102, in the PSD were prevented by treatment with apocynin. These results suggest that pronounced activation of NADPH oxidase in the PSD after cerebral ischemia and reperfusion may be related to the focal oxidative damage to synaptic functions and subsequent development of ischemia and reperfusion-induced cerebral injury.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
19
|
Cheng WH, Lu PJ, Ho WY, Tung CS, Cheng PW, Hsiao M, Tseng CJ. Angiotensin II Inhibits Neuronal Nitric Oxide Synthase Activation Through the ERK1/2-RSK Signaling Pathway to Modulate Central Control of Blood Pressure. Circ Res 2010; 106:788-95. [DOI: 10.1161/circresaha.109.208439] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rationale
:
Angiotensin (Ang) II exerts diverse physiological actions in both the peripheral and central neural systems. It was reported that the activity of Ang II is higher in the nucleus tractus solitarii (NTS) of spontaneously hypertensive rats (SHRs) and that angiotensin type-1 receptors are colocalized with NAD(P)H oxidase in the neurons of the NTS, resulting in the induction of local reactive oxygen species production by Ang II. However, the signaling mechanisms of Ang II that induce hypertension remain unclear.
Objective
:
The aim of this study was to investigate the possible signaling pathways involved in Ang II–mediated blood pressure regulation in the NTS.
Methods and Results
:
Male SHRs were treated with losartan or tempol for 2 weeks, after which systolic blood pressure was observed to decrease significantly. Dihydroethidium staining showed many cells with high reactive oxygen species in the NTS of SHRs. The addition of losartan or tempol decreased the numbers of reactive oxygen species–positive cells in the NTS. The systemic administration of losartan or tempol reduced the systolic blood pressure and increased NO production. Immunoblotting and immunohistochemical analysis further showed that inhibition of Ang II activity by losartan or tempol significantly increased the expression extracellular signal-regulated kinase (ERK)1/2, ribosomal protein S6 kinase (RSK), and also increased neuronal NO synthase (nNOS) phosphorylation. RSK was also found to bind directly to nNOS and induce phosphorylation at the Ser1416 position.
Conclusions
:
Taken together, these results suggest that the ERK1/2-RSK-nNOS signaling pathway may play a significant role in Ang II–mediated central blood pressure regulation.
Collapse
Affiliation(s)
- Wen-Han Cheng
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Pei-Jung Lu
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Wen-Yu Ho
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Che-Se Tung
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Pei-Wen Cheng
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Michael Hsiao
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| | - Ching-Jiunn Tseng
- From the Department of Medical Education and Research (W.-H.C., P.-W.C., C.-J.T.), Kaohsiung Veterans General Hospital, Kaohsiung; Institute of Clinical Medicine (W.-H.C., C.-J.T.), National Yang-Ming University, Taipei; Institute of Biomedical Sciences (W.-H.C., C.-J.T.), National Sun Yat-sen University, Kaohsiung; Institute of Clinical Medicine (P.-J.L.), National Cheng-Kung University, Tainan; Department of Internal Medicine (W.-Y.H.), Zuoying Armed Forces General Hospital, Kaohsiung; Department
| |
Collapse
|
20
|
Abstract
Oxidative stress has been implicated in the pathogenesis of neurologic and psychiatric diseases. The brain is particularly vulnerable to oxidative damage due to high oxygen consumption, low antioxidant defense, and an abundance of oxidation-sensitive lipids. Production of reactive oxygen species (ROS) by mitochondria is generally thought to be the main cause of oxidative stress. However, a role for ROS-generating NADPH oxidase NOX enzymes has recently emerged. Activation of the phagocyte NADPH oxidase NOX2 has been studied mainly in microglia, where it plays a role in inflammation, but may also contribute to neuronal death in pathologic conditions. However, NOX-dependent ROS production can be due to the expression of other NOX isoforms, which are detected not only in microglia, but also in astrocytes and neurons. The physiologic and pathophysiologic roles of such NOX enzymes are only partially understood. In this review, we summarize the present knowledge about NOX enzymes in the central nervous system and their involvement in neurologic and psychiatric diseases.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
21
|
Pierce JP, Kievits J, Graustein B, Speth RC, Iadecola C, Milner TA. Sex differences in the subcellular distribution of angiotensin type 1 receptors and NADPH oxidase subunits in the dendrites of C1 neurons in the rat rostral ventrolateral medulla. Neuroscience 2009; 163:329-38. [PMID: 19501631 DOI: 10.1016/j.neuroscience.2009.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM), a region critical for the tonic and reflex control of arterial pressure, contains a group of adrenergic (C1) neurons that project to the spinal cord and directly modulate pre-ganglionic sympathetic neurons. Epidemiological data suggest that there are gender differences in the regulation of blood pressure. One factor that could be involved is angiotensin II signaling and the associated production of reactive oxygen species (ROS) by NADPH oxidase, which is emerging as an important molecular substrate for central autonomic regulation and dysregulation. In this study dual electron microscopic immunolabeling was used to examine the subcellular distribution of the angiotensin type 1 (AT(1)) receptor and two NADPH oxidase subunits (p47 and p22) in C1 dendritic processes, in tissue from male, proestrus (high estrogen) and diestrus (low estrogen) female rats. Female dendrites displayed significantly more AT(1) labeling and significantly less p47 labeling than males. While elevations in AT(1) labeling primarily resulted from higher levels of receptor on the plasma membrane, p47 labeling was reduced both on the plasma membrane and in the cytoplasm. Across the estrous cycle, proestrus females displayed significantly higher levels of AT(1) labeling than diestrus females, which resulted exclusively from plasma membrane density differences. In contrast, p47 labeling did not change across the estrous cycle, indicating that ROS production might reflect AT(1) receptor membrane density. No significant differences in p22 labeling were observed. These findings demonstrate that both sex and hormonal levels can selectively affect the expression and subcellular distribution of components of the angiotensin II signaling pathway within C1 RVLM neurons. Such effects could reflect differences in the capacity for ROS production, potentially influencing short term excitability and long term gene expression in a cell group which is critically involved in blood pressure regulation, potentially contributing to gender differences in the risk of cardiovascular disease.
Collapse
Affiliation(s)
- J P Pierce
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
22
|
MacFarlane PM, Satriotomo I, Windelborn JA, Mitchell GS. NADPH oxidase activity is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation. J Physiol 2009; 587:1931-42. [PMID: 19237427 DOI: 10.1113/jphysiol.2008.165597] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is a form of spinal, serotonin-dependent synaptic plasticity that requires reactive oxygen species (ROS) formation. We tested the hypothesis that spinal NADPH oxidase activity is a necessary source of ROS for pLTF. Sixty minutes post-AIH (three 5-min episodes of 11% O(2), 5 min intervals), integrated phrenic and hypoglossal (XII) nerve burst amplitudes were increased from baseline, indicative of phrenic and XII LTF. Intrathecal injections (approximately C(4)) of apocynin or diphenyleneiodonium chloride (DPI), two structurally and functionally distinct inhibitors of the NADPH oxidase complex, attenuated phrenic, but not XII, LTF. Immunoblots from soluble (cytosolic) and particulate (membrane) fractions of ventral C(4) spinal segments revealed predominantly membrane localization of the NADPH oxidase catalytic subunit, gp91(phox), whereas membrane and cytosolic expression were both observed for the regulatory subunits, p47(phox) and RAC1. Immunohistochemical analysis of fixed tissues revealed these same subunits in presumptive phrenic motoneurons of the C(4) ventral horn, but not in neighbouring astrocytes or microglia. Collectively, these data demonstrate that NADPH oxidase subunits localized within presumptive phrenic motoneurons are a major source of ROS necessary for AIH-induced pLTF. Thus, NADPH oxidase activity is a key regulator of spinal synaptic plasticity, and may be a useful pharmaceutical target in developing therapeutic strategies for respiratory insufficiency in patients with, for example, cervical spinal injury.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
23
|
Basuroy S, Bhattacharya S, Leffler CW, Parfenova H. Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 2008; 296:C422-32. [PMID: 19118162 DOI: 10.1152/ajpcell.00381.2008] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammatory brain disease may damage cerebral vascular endothelium leading to cerebral blood flow dysregulation. The proinflammatory cytokine TNF-alpha causes oxidative stress and apoptosis in cerebral microvascular endothelial cells (CMVEC) from newborn pigs. We investigated contribution of major cellular sources of reactive oxygen species to endothelial inflammatory response. Nitric oxide synthase and xanthine oxidase inhibitors (N(omega)-nitro-l-arginine and allopurinol) had no effect, while mitochondrial electron transport inhibitors (CCCP, 2-thenoyltrifluoroacetone, and rotenone) attenuated TNF-alpha-induced superoxide (O(2)(*-)) and apoptosis. NADPH oxidase inhibitors (diphenylene iodonium and apocynin) greatly reduced TNF-alpha-evoked O(2)(*-) generation and apoptosis. TNF-alpha rapidly increased NADPH oxidase activity in CMVEC. Nox4, the cell-specific catalytic subunit of NADPH oxidase, is highly expressed in CMVEC, contributes to basal O(2)(*-) production, and accounts for a burst of oxidative stress in response to TNF-alpha. Nox4 small interfering RNA, but not Nox2, knockdown prevented oxidative stress and apoptosis caused by TNF-alpha in CMVEC. Nox4 is colocalized with HO-2, the constitutive isoform of heme oxygenase (HO), which is critical for endothelial protection against TNF-alpha toxicity. The products of HO activity, bilirubin and carbon monoxide (CO, as a CO-releasing molecule, CORM-A1), inhibited Nox4-generated O(2)(*-) and apoptosis caused by TNF-alpha stimulation. We conclude that Nox4 is the primary source of inflammation- and TNF-alpha-induced oxidative stress leading to apoptosis in brain endothelial cells. The ability of CO and bilirubin to combat TNF-alpha-induced oxidative stress by inhibiting Nox4 activity and/or by O(2)(*-) scavenging, taken together with close intracellular compartmentalization of HO-2 and Nox4 in cerebral vascular endothelium, may contribute to HO-2 cytoprotection against inflammatory cerebrovascular disease.
Collapse
Affiliation(s)
- Shyamali Basuroy
- Dept. of Physiology, Univ. of Tennessee Health Science Center, 894 Union Ave., Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
24
|
Inaba S, Iwai M, Tomono Y, Senba I, Furuno M, Kanno H, Okayama H, Mogi M, Higaki J, Horiuchi M. Exaggeration of focal cerebral ischemia in transgenic mice carrying human Renin and human angiotensinogen genes. Stroke 2008; 40:597-603. [PMID: 19023100 DOI: 10.1161/strokeaha.108.519801] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE We examined the possibility that activation of the human brain renin-angiotensin system is involved in enhancement of ischemic brain damage using chimeric transgenic mice with human renin (hRN) and human angiotensinogen (hANG) genes. METHODS Chimeric (hRN/hANG-Tg) mice were generated by mating of hRN and hANG transgenic mice. Permanent occlusion of the middle cerebral artery (MCA) by an intraluminal filament technique induced focal ischemic brain lesions. RESULTS hRN/hANG-Tg mice showed higher angiotensin II levels in the plasma and brain. The ischemic brain area at 24 hours after MCA occlusion was significantly enlarged in hRN/hANG-Tg mice with an enhanced neurological deficit compared to that in wild-type, hRN-Tg and hANG-Tg mice. The reduction of cerebral blood flow in the periphery region of the MCA territory after MCA occlusion was markedly exaggerated in hRN/hANG-Tg mice. Superoxide anion production in the brain and arteries was also increased significantly in hRN/hANG-Tg mice even before MCA occlusion and was further enhanced after MCA occlusion. Treatment with an AT(1) receptor blocker, valsartan (3.0 mg/kg per day), for 2 weeks significantly reduced the ischemic brain area and improved the neurological deficit after MCA occlusion in hRN/hANG-Tg mice, similar to those in wild-type, hRN-Tg, and hANG-Tg mice, with restoration of cerebral blood flow in the peripheral region and decreases in superoxide anion production and blood pressure. CONCLUSIONS These results indicate that activation of the human renin-angiotensin system exaggerates ischemic brain damage mainly through stimulation of the AT(1) receptor and marked reduction of cerebral blood flow and enhanced oxidative stress.
Collapse
Affiliation(s)
- Shinji Inaba
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang G, Milner TA, Speth RC, Gore AC, Wu D, Iadecola C, Pierce JP. Sex differences in angiotensin signaling in bulbospinal neurons in the rat rostral ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1149-57. [PMID: 18685065 DOI: 10.1152/ajpregu.90485.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex differences may play a significant role in determining the risk of hypertension. Bulbospinal neurons in the rostral ventrolateral medulla (RVLM) are involved in the tonic regulation of arterial pressure and participate in the central mechanisms of hypertension. Angiotensin II (ANG II) acting on angiotensin type 1 (AT(1)) receptors in RVLM neurons is implicated in the development of hypertension by activating NADPH oxidase and producing reactive oxygen species (ROS). Therefore, we analyzed RVLM bulbospinal neurons to determine whether there are sex differences in: 1) immunolabeling for AT(1) receptors and the key NADPH oxidase subunit p47 using dual-label immunoelectron microscopy, and 2) the effects of ANG II on ROS production and Ca(2+) currents using, respectively, hydroethidine fluoromicrography and patch-clamping. In tyrosine hydroxylase-positive RVLM neurons, female rats displayed significantly more AT(1) receptor immunoreactivity and less p47 immunoreactivity than male rats (P < 0.05). Although ANG II (100 nM) induced comparable ROS production in dissociated RVLM bulbospinal neurons of female and male rats (P > 0.05), an effect mediated by AT(1) receptors and NADPH oxidase, it triggered significantly larger dihydropyridine-sensitive long-lasting (L-type) Ca(2+) currents in female RVLM neurons (P < 0.05). These observations suggest that an increase in AT(1) receptors in female RVLM neurons is counterbalanced by a reduction in p47 levels, such that ANG II-induced ROS production does not differ between females and males. Since the Ca(2+) current activator Bay K 8644 induced larger Ca(2+) currents in females than in male RVLM neurons, increased ANG II-induced L-type Ca(2+) currents in females may result from sex differences in calcium channel densities or dynamics.
Collapse
Affiliation(s)
- Gang Wang
- Division of Neurobiology, Weill Cornell Medical College, 411 East 69th St., New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sun GY, Horrocks LA, Farooqui AA. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 2007; 103:1-16. [PMID: 17561938 DOI: 10.1111/j.1471-4159.2007.04670.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
27
|
Glass MJ, Chan J, Frys KA, Oselkin M, Tarsitano MJ, Iadecola C, Pickel VM. Changes in the subcellular distribution of NADPH oxidase subunit p47phox in dendrites of rat dorsomedial nucleus tractus solitarius neurons in response to chronic administration of hypertensive agents. Exp Neurol 2007; 205:383-95. [PMID: 17418121 PMCID: PMC2708175 DOI: 10.1016/j.expneurol.2007.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/10/2007] [Accepted: 02/15/2007] [Indexed: 02/07/2023]
Abstract
NADPH oxidase-generated superoxide can modulate crucial intracellular signaling cascades in neurons of the nucleus tractus solitarius (NTS), a brain region that plays an important role in cardiovascular processes. Modulation of NTS signaling by superoxide may be linked to the subcellular location of the mobile NADPH oxidase p47(phox) subunit, which is known to be present in dendrites of NTS neurons. It is not known, however, if hypertension can produce changes in the trafficking of p47(phox) in defined NTS subregions, particularly the preferentially barosensitive dorsomedial NTS (dmNTS), or preferentially gastrointestinal medial NTS (mNTS). We used immunogold electron microscopy to determine if p47(phox) localization was differentially affected in dendritic profiles of neurons from these NTS subregions of the rat in response to distinct models of hypertension, namely chronic 7-day subcutaneous administration of angiotensin II (AngII), or phenylephrine. In small (<1 microm) dendritic processes, both AngII and phenylephrine produced a decrease in intracellular p47(phox) labeling selectively in dmNTS neurons. In intermediate-size (1-2 microm) dendritic profiles in the dmNTS region only, there was an increase in p47(phox) labeling in response to each hypertensive agent, although these changes occurred in different subcellular compartments. There was an increase in non-vesicular labeling in response to AngII, but an increase in surface labeling with phenylephrine. Moreover, each of the changes in p47(phox) targeting mentioned above occurred in dendritic profiles with, or without immunoperoxidase labeling for the AngII AT-1A receptor subtype (AT-1A). These results indicate that chronic administration of agents that induce hypertension can also produce changes in the subcellular localization in p47(phox) in dmNTS neurons. Thus, systemic hypertension may produce alterations in the trafficking of proteins associated with superoxide production in central autonomic neurons, thus revealing a potentially important neurogenic component of free radical production and systemic blood pressure elevation.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 E. 69th St., KB410, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Nozoe M, Hirooka Y, Koga Y, Sagara Y, Kishi T, Engelhardt JF, Sunagawa K. Inhibition of Rac1-derived reactive oxygen species in nucleus tractus solitarius decreases blood pressure and heart rate in stroke-prone spontaneously hypertensive rats. Hypertension 2007; 50:62-8. [PMID: 17515454 DOI: 10.1161/hypertensionaha.107.087981] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) in the brain are thought to contribute to the neuropathogenesis of hypertension by enhancing sympathetic nervous system activity. The nucleus tractus solitarius (NTS), which receives afferent input from baroreceptors, has an important role in cardiovascular regulation. reduced nicotinamide-adenine dinucleotide phosphate oxidase is thought to be a major source of ROS in the NTS. Rac1 is a small G protein and a key component of reduced nicotinamide-adenine dinucleotide phosphate oxidase. The role of Rac1-derived ROS in the NTS in cardiovascular regulation of hypertension is unknown. Therefore, we examined whether inhibition of Rac1 in the NTS decreases ROS generation, thereby reducing blood pressure in stroke-prone spontaneously hypertensive rats (SHRSPs). The basal Rac1 activity level in the NTS was greater in SHRSPs than in Wistar-Kyoto rats. Inhibition of Rac1, induced by transfecting adenovirus vectors encoding dominant-negative Rac1 into the NTS, decreased blood pressure, heart rate, and urinary norepinephrine excretion in SHRSPs but not in Wistar-Kyoto rats. Inhibition of Rac1 also reduced nicotinamide-adenine dinucleotide phosphate oxidase activity and ROS generation. In addition, Cu/Zn-superoxide dismutase activity in the NTS of SHRSPs was decreased compared with that of Wistar-Kyoto rats, despite the increased ROS generation. Overexpression of Cu/Zn-superoxide dismutase in the NTS decreased blood pressure and heart rate in SHRSPs. These results indicate that the activation of Rac1 in the NTS generates ROS via reduced nicotinamide-adenine dinucleotide phosphate oxidase in SHRSPs, and this mechanism might be important for the neuropathogenesis of hypertension in SHRSPs.
Collapse
Affiliation(s)
- Masatsugu Nozoe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Maidashi, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|